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Abstract
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rical tool in the solution of problems in mechanics and that provides Lagrangian descriptions

and constants of motion for second-order ordinary differential equations, and nonholonomic

Lagrangian mechanics where the dynamics is determined by Hamel’s equations.
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1 Introduction

The study of the integrability by quadratures of a given system of first-order differential equations

is not an easy task and a very relevant advance is due to Jacobi, who introduced the concept of

Jacobi multiplier [27] and proved that the knowledge of one such Jacobi multipliers and some first

integrals is sufficient to carry out the integrability by quadratures [22, 28, 41]. Jacobi multipliers

have been attracting some attention all over the last years (see e.g. [8] and references therein) and

have several applications in the analysis of systems of first-order ordinary differential equations

[2, 12, 23, 35, 36, 42].
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In the geometric approach autonomous systems of first-order differential equations are replaced

by vector fields on a manifold Q and the solutions of the corresponding system in a chart provide

us the integral curves of the vector field. Systems of second-order differential equations can also be

seen as systems with a double number of first-order differential equations and the associated vector

field is then a vector field of a special kind on the tangent bundle τ : TQ→ Q.

In many problems in nonholonomic classical mechanics, where the systems of second-order differ-

ential equations appear, it is useful to consider quasi-velocities, and then the dynamics is determined

by Hamel’s equations [25, 34, 37]. For instance for a system with linear nonholonomic constraints

one can define quasi-velocities in such a way that some of them coincide with the constraints,

obtaining as a result less equations to solve.

Our aim in this work is to establish some relations between Jacobi multipliers for such nonholo-

nomic systems [14, 21, 28] and Hamel’s formalism. The structure of this article is as follows: In

Section 2 in order to the paper be more self-contained we recall the geometric theory behind Jacobi

multipliers. Section 3 is devoted to study Jacobi multipliers in the framework of regular Lagrangian

systems, and we prove that the determinant of the Hessian matrix of the Lagrangian in the veloci-

ties is a Jacobi multiplier for the system with respect to the natural volume element on the velocity

phase space. A more general result in the particular case of generalised forces only depending on

the positions is explicitly proved. The theory is illustrated in Section 4 with some simple prob-

lems: starting with that of spherical geometry, then we analyse the case of Liénard’s equation and

Chiellini’s condition, and finally the dynamics of a position-dependent mass particle is analysed

from this perspective. In Section 5, we consider a system determined by linear nonholonomic con-

straints, and the use of quasi-coordinates and the Boltzmann-Hamel equations are reviewed, and

then we write the dynamics and determine Jacobi multipliers with respect to several proportional

volume forms in the Lagrangian formulation in terms of quasi-coordinates. Jacobi multipliers for a

nonholonomic system is studied in Section 6. The main result of Jacobi on multipliers is given in

Section 7 in geometric terms: it is shown how a Jacobi multiplier of a nonholonomic system can be

used with other constants of motion, to obtain a reduced system endowed with a Jacobi multiplier.

Then, when such reduced system is two-dimensional, this Jacobi last multiplier allows us to solve

the reduced system by quadratures.
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2 Jacobi multipliers and volume forms

Let (M,Ω) be an oriented n-dimensional manifold, where Ω stands for a volume form on the

manifold, i.e. a never vanishing n-form on the manifold. Given a vector field X on M we define

the divergence of X as the unique function div(X) : M → R satisfying (see [8])

LXΩ = div(X) Ω. (2.1)

A Jacobi multiplier for X is a non-vanishing function µ : M → R satisfying

LµX(Ω) = 0, (2.2)

that is, div(µX) = 0. Notice that as Ω is closed, Cartan’s magic formula implies that LµX(Ω) =

d(µ i(X)Ω) and then µ is a Jacobi multiplier for X if and only if µ i(X)Ω is a closed form, and

equivalently, if and only if LX(µΩ) = 0. Furthermore, using that LX is a derivation of degree zero,

we see that LX(µΩ) = (Xµ+ µ div(X))Ω, which proves that (2.2) is equivalent to

Xµ+ µ div(X) = 0, (2.3)

sometimes written as (see e.g. [21, 36, 42])

X(ln |µ|) + div(X) = 0. (2.4)

This means that along the integral curves of the vector field X

d

dt
ln |µ|+ div(X) = 0, (2.5)

which is called the generalised Liouville equation.

Remark that, as indicated above,

LX(µΩ) = d(µ i(X)Ω) = d(i(µX)Ω) = LµX(Ω),

and we see that µ is a Jacobi multiplier for X if and only if the vector field X is divergence-free

with respect to µΩ. In this sense µ plays the role of the component of the X-invariant n-form µΩ,

which means that the behaviour of the Jacobi multiplier under changes of coordinates is not that

of a function but that of a pseudo-function.
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This property is very relevant because it shows the equivalence of searching for Jacobi multipliers

and for invariant volume-forms: a volume form Ω′ = µΩ is X-invariant, i.e. LXΩ′ = 0, if and

only if µ is a Jacobi multiplier for the vector field X on the oriented manifold (M,Ω). Moreover

this property also shows that µ is a Jacobi multiplier for X in the oriented manifold (M,Ω) if, and

only if, the function f µ is a Jacobi multiplier for X on the oriented manifold (M,f−1 Ω), for each

positive function f .

The theory of Jacobi multipliers which was introduced to integrate the system is also particularly

useful to find first-integrals (i.e. constants of motion): the knowledge of two Jacobi multipliers µ1

and µ2 for X implies that I = µ1/µ2 is a first-integral of X (see e.g. [8, 22, 41]). In the case of

a two-dimensional system, a Jacobi multiplier µ determines a (only locally defined) first-integral

of the system, I, and vice versa, by means of µ i(X)Ω = dI. Recall that if a first-integral I of a

vector field X on a two-dimensional manifold is known, then using the condition I(x1, x2) = k ∈ R,

if, for instance, ∂I/∂x2 6= 0, the implicit function theorem shows that we can locally express the

variable x2 as a function of x1 for each value of k, what provides us the general solution for the

integral curves of X. Conversely, if a Jacobi multiplier µ for a vector field on a two-dimensional

manifold is known, there exists a, at least locally defined, function I such that µ i(X)ω = dI, and

consequently the function I is a first-integral which can be found by a quadrature.

When considering another volume form Ω′ on M , there exists a non-vanishing function η : M →

R, such that, Ω′ = ηΩ, and there is a relation between two Jacobi multipliers of X for both volume

forms, µ′ = µ/η. This particular relation will be crucial to deduce the integrating factor of a system

with nonholonomic constraints.

The simplest case is when M is an open set of the n-dimensional Euclidean space. There exist

global (Euclidean) coordinates (x1, . . . , xn) and we can choose the volume form Ω = dx1∧· · ·∧dxn.

If the vector field X is given by

X =
n∑
i=1

Xi(x)
∂

∂xi
, (2.6)

then the divergence of X with respect to such volume form takes the usual form

div(X) =
n∑
i=1

∂Xi

∂xi
. (2.7)

As a first instance of the usefulness of Jacobi multipliers, it has been proved [2, 22, 41] that in the

case of a three-dimensional system with a Jacobi multiplier µ and a first-integral I1 satisfying the
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condition ∂I1/∂x1 6= 0, which allows us to express x1 as a function of x2 and x3, we get a reduced

system in the coordinates (x2, x3) that has an integrating factor µ′(x2, x3) given by µ′ = µ/ ∂I1∂x1
,

where in the functions of the right hand side x1 is expressed as a function of x2 and x3, and this

integrating factor determines a second first-integral I2, depending only on the coordinates (x2, x3),

by µ′ i(X)(dx2 ∧ dx3) = dI2, and then, as indicated above, the general solution can be found by

quadratures. This is but a particular example of the more general case which motivated Jacobi for

the introduction of Jacobi multipliers: If a Jacobi multiplier µ and (n−2) functionally independent

first-integrals, {I1, . . . , In−2}, for a given vector field X on an oriented manifold (M,Ω) are known,

the determination of the integral curves of the vector field X is reduced to quadratures.

3 Jacobi multipliers for regular Lagrangian systems

Even if the concept of Jacobi multiplier is defined for any vector field X on an oriented manifold

(M,Ω), in the search for integral curves of X the existence of geometric structures compatible with

X is very useful and in particular in the very important case of second-order differential equations

appearing in many physical applications and deserving therefore an special attention. We will see

that in the particular case in which such systems of second-order differential equations admit a

Lagrangian formulation it is possible to find a Jacobi multiplier directly from such a Lagrangian.

It is a well-known fact that autonomous systems of second-order differential equations

ẍi = f(xj , ẋj), i, j = 1, . . . , n, (3.1)

on an open set U of Rn, can also be seen as systems with a double number of first-order differential

equations  ẋi = vi

v̇i = f i(x, v)
. (3.2)

In the simplest case of the n-dimensional Euclidean space, the Euclidean coordinates (x1, . . . , xn)

mentioned above induce global coordinates in its tangent bundle, denoted (x1, . . . , xn, v1, . . . , vn),

and there is a natural volume element (tangent and cotangent bundles are identified by the Eu-

clidean metric)

Ω = dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn. (3.3)
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The autonomous system of second-order differential equations (3.1) and its corresponding system

(3.2) can be described by a special kind of vector field Γ, to be called SODE vector field, on the

open set τ−1(U) of TRn, with τ : TRn → Rn and coordinate expression

Γ =

n∑
i=1

(
vi

∂

∂xi
+ f i(x, v)

∂

∂vi

)
, (3.4)

whose integral curves are the tangent lift of solutions of the given system (3.1), i.e. solutions

of (3.2). More specifically, such curves are the solutions of the associated system of first-order

differential equations (3.2). Observe that in this case div(Γ) =
n∑
i=1

∂f i

∂vi
.

The geometric framework for the study of Lagrangian mechanics is that of tangent bundles

[7, 15, 16]. The tangent bundle τ : TQ→ Q is characterised by two geometric tensors, the vertical

endomorphism S, a (1,1)-tensor field on TQ, also called tangent structure, which satisfies ImS =

kerS and an integrability condition and the Liouville vector field ∆ generating dilations along fibres

in TQ [17]. If (U,ϕ) is a local chart on Q and πi : Rn → R are the natural projections on the i-th-

factor and qi = πi ◦ ϕ we define the coordinate system (U, q1, . . . , qn) on Q, and the corresponding

chart in U = τ−1(U), given by (U , ϕ, ϕ∗) defines a coordinate system (U, q1, . . . , qn, v1, . . . , vn)

on TQ. Correspondingly, we consider the coordinate basis of X(U) usually denoted {∂/∂qj | j =

1, . . . , n} and its dual basis for Ω1(U), {dqj | j = 1, . . . , n}. Then a vector v in a point q ∈ U is

v = vj (∂/∂qj)q, i.e. vi = dqi(v). With this notation the coordinate expressions of the vertical

endomorphism S and the Liouville vector field ∆, are [15, 16]:

S(x, v) =
∂

∂vi
⊗ dqi, ∆(x, v) = vi

∂

∂vi
. (3.5)

Recall also that given a Lagrangian L ∈ C∞(TQ) we can define a 1-form θL = dL ◦ S and the

exact 2-form ωL = −dθL. When ωL is regular the Lagrangian L is said to be regular and then ωL

is a symplectic form and the dynamics is given by the uniquely defined SODE vector field Γ such

that

i(Γ)ωL = dEL ⇐⇒ LΓθL − dL = 0, (3.6)

where the energy function EL is defined by EL = ∆L− L.

It is also a well-known property that if a second-order differential equation ẍ = f(x, ẋ) admits a

Lagrangian formulation in terms of a Lagrangian function L, then the function

µ =
∂2L

∂v2
(3.7)
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is a Jacobi last multiplier for the volume 2-form dx ∧ dv [41]. Actually, if the system (3.1) admits

a Lagrangian formulation, then the function f is given by

f(x, v) =
1

µ

(
∂L

∂x
− v ∂

2L

∂x∂v

)
. (3.8)

We can now see that the function function µ defined by (3.7) satisfies the condition for being a

Jacobi last multiplier, because if Γ is given by

Γ =

(
v
∂

∂x
+ f(x, v)

∂

∂v

)
, (3.9)

the condition

div(µΓ) = 0⇐⇒ ∂(µ v)

∂x
+
∂(µ f)

∂v
= 0,

when µf is given by (3.8), becomes

v
∂µ

∂x
+

∂

∂v

(
∂L

∂x
− v ∂

2L

∂x∂v

)
= v

∂3L

∂v2∂x
+

∂2L

∂x∂v
− ∂2L

∂x∂v
− v ∂3L

∂v2∂x
= 0 ,

and then µ is a Jacobi last multiplier.

The corresponding result for n-dimensional systems is given in the following theorem:

Theorem 1 If a regular Lagrangian L ∈ C∞(TRn) determines the autonomous system (3.2), i.e.

the vector field (3.4), then the determinant of the Hessian matrix in the velocities, W =
(

∂2L
∂vi∂vj

)
,

is a Jacobi multiplier for the system (3.2), i.e. for the vector field (3.4).

Proof.- The vector field determined by the regular Lagrangian is the solution of the equation

i(Γ)ωL = dEL, where, as defined above, EL is the energy of the system, ωL is the Cartan 2-form

ωL = −dθL and θL = S∗(dL) is the Cartan 1-form determined by the Lagrangian, with S denoting

the vertical endomorphism (see [15, 16]). Then the solution of the equation (3.6) is a Hamiltonian

vector field w.r.t. ωL, and then LΓωL = 0. Hence, if Ω′ = ω∧nL , then LΓΩ′ = 0, and therefore

µ′ = 1 is a Jacobi multiplier for (Γ,Ω′). The relation between Ω given by (3.3) and Ω′ is

Ω′ = (−1)n d

(
n∑

i1=1

∂L

∂vi1
dxi1

)
∧ · · · ∧ d

(
n∑

in=1

∂L

∂vin
dxin

)

=

n∑
i1,...,in=1

dxi1 ∧ d
(
∂L

∂vi1

)
∧ · · · ∧ dxin ∧ d

(
∂L

∂vin

)

= (−1)n(n−1)/2 n! dx1 ∧ · · · ∧ dxn ∧ d
(
∂L

∂v1

)
∧ · · · ∧ d

(
∂L

∂vn

)
= (−1)n(n−1)/2 n! det(W ) Ω (3.10)
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and as det(W ) is the proportionality factor between both volume forms the results follows. �

Remark that, as a corollary, if we have two equivalent regular Lagrangians L1 and L2, the quotient

det(W2)/det(W1) is a constant of motion. This result has been given in [18] for the onedimensional

case and in [26] as a particular case of other more general result, which is that the characteristic

polynomial of the recursion operator R = ω̂−1
L1
◦ ω̂L2 , is a constant of motion, or in other words, the

traces of powers of the recursion operator R are constants of the motion (see e.g. [6] and references

therein).

The theory can be extended to more general cases where the configuration space is not the

Euclidean space. If a given second-order differential equation vector field Γ admits a Lagrangian

description by the regular Lagrange function L in the tangent bundle τ : TQ → Q, i.e. i(Γ)ωL =

dEL, then LΓωL = 0 implies that LΓω
∧n
L = 0, and therefore the vector field Γ is divergence-free

with respect to the volume form ω∧nL . In other words, we are able to find a Γ-invariant volume

form.

If a chart in the open set U ⊂ Q is chosen, i.e. we consider a coordinate system (U, q1, . . . , qn)

on the open set U of Q and the corresponding chart in U = τ−1(U), then this coordinate system

determines a basis ((∂/∂q1)|m, . . . , (∂/∂q
n)|m) of the tangent bundle at each point m of U , and the

local basis of the C∞(U)-module of vector fields X(U) given by {∂/∂qi | i = 1, . . . , n} defines a local

basis of the C∞(TU )-module of vector fields X(TU ) given by {∂/∂qi, ∂/∂vi | i = 1, . . . , n}. When

restricted to such a tangent chart on the open set U of TQ, i.e. in terms of the associated local

coordinate system (q1, . . . , qn, v1, . . . , vn) on the tangent bundle TQ, we can consider the volume

form locally given as follows

Ω = dq1 ∧ · · · ∧ dqn ∧ dv1 ∧ · · · ∧ dvn, (3.11)

and then the volume form ω∧nL on U = τ−1(U) is proportional to Ω = dq1∧· · ·∧dqn∧dv1∧· · ·∧dvn

with proportionality factor det(W ), and this shows that det(W ) is a Jacobi multiplier for the

restriction of Γ onto the oriented manifold (U ,Ω).

Let (Q, g) be a n-dimensional manifold endowed with a Riemann metric g, and consider a co-

ordinate system (U, q1, . . . , qn) on the open set U of Q. The metric g is represented on U by

the matrix G with elements gij = g(∂/∂qi, ∂/∂qj). In the associated local coordinate system

(q1, . . . , qn, v1, . . . , vn) of the tangent bundle TQ, the volume form is locally given by (3.11). The

8



remarkable point is that if the local coordinates are orthonormal, i.e. gij = δij , Ω is well defined

no matter of the choice of the orthonormal system of coordinates, because for an orthonormal

change of coordinates the determinant of the Jacobian matrix with elements Jij = ∂q̄i/∂qj is 1,

and therefore dq1 ∧ · · · ∧ dqn ∧ dv1 ∧ · · · ∧ dvn = dq̄1 ∧ · · · ∧ dq̄n ∧ dv̄1 ∧ · · · ∧ dv̄n.

Suppose we have an autonomous second-order vector field Γ in a neighbourhood of a point in the

velocity phase space TQ, with coordinate expression (3.4) whose integral curves are the solutions

of the associated system of first-order differential equations (3.2). Then, if we choose in such a

neighbourhood the volume form (3.11), we can conclude, in full similarity with the preceding result

for the Euclidean case that:

Theorem 2 If the vector field Γ in (3.4) is determined by a regular Lagrangian L ∈ C∞(TQ),

where (Q, g) is a n-dimensional Riemann manifold, and the local coordinates are orthonormal, then

the determinant of the Hessian matrix in the velocities, with coordinate expression W =
(

∂2L
∂vi∂vj

)
,

is a Jacobi multiplier of the system with respect to the volume form (3.11).

As a consequence of Theorem 2 for second-order differential equations (i.e. one degree of freedom)

we recover the above mentioned well-known result on the theory of Jacobi multipliers, that is, the

function (3.7) is a Jacobi multiplier of the system (see e.g. [8]).

Nucci et al. extended in [35] this result for systems with one-degree of freedom to systems with

n-degrees of freedom if the generalised force is independent of velocities. The authors stated that,

for each pair of indices, the partial derivative µij = ∂2L/∂vi∂vj is a Jacobi multiplier of the system

and proved the result for the particular case of systems of two second-order differential equations.

The extended result given in [35], valid for SODE vector fields Γ of the form

Γ =

n∑
i=1

(
vi

∂

∂qi
+ f i(q)

∂

∂vi

)
. (3.12)

We first remark that if the system (3.2) is such that the generalised forces f i(q, v) do not depend

on the velocities, then as the divergence of Γ is zero, µ is a Jacobi multiplier of the system iff it

is a constant of motion, because since the generalised force of the system is independent of the

velocities, div(Γ) = 0 and then div(µΓ) = Γ(µ).

The extended result is summarised in the following theorem:
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Theorem 3 If the vector field Γ in (3.12) is determined by a regular Lagrangian L ∈ C∞(TQ),

where (Q, g) is a n-dimensional Riemann manifold, and the local coordinates are orthonormal, then,

for each pair of indices the partial derivative µij = ∂2L/∂vi∂vj is a Jacobi multiplier of the system

with respect to the volume form (3.11).

Proof.- If a chart of orthonormal local coordinates in the open set U ⊂ Q is chosen and we consider

the corresponding chart on U = τ−1(U), and the corresponding local bases of the C∞(U)-module

X(U) and the C∞(U )-module X(U ), then, having in mind the explicit form of the 1-form θL,

θL =
n∑
i=1

∂L

∂vi
dqi, (3.13)

we see that for each SODE vector field Γ on τ−1(U), as

LΓθL = LΓ

(
∂L

∂vi

)
dqi +

∂L

∂vi
dvi,

we have that 
i

(
∂

∂qi

)
LΓθL = LΓ

(
∂L

∂vi

)
i

(
∂

∂vi

)
LΓθL =

∂L

∂vi

, (3.14)

and consequently Γ is a solution of the dynamical equation (3.6) if and only if

i

(
∂

∂qi

)
dL =

∂L

∂qi
= LΓ

(
∂L

∂vi

)
, (3.15)

because if LΓθL− dL = 0, the second equation in (3.14) reduces to an identity and the first one to

(3.15), and conversely, if (3.15) holds, the 1-forms dL and LΓθL on TQ take the same value on a

local basis of vector fields, and then both coincide.

We can make use of these results to prove that if the SODE vector field Γ is solution of the

dynamical equation (3.6) for a Lagrangian L such that the f j components f j = i(∂/∂vj)Γ are

basic functions, namely, the vector field Γ is given by (3.12), then the Lagrangian L is such that

∂2L

∂qi∂vj
=

1

2

∂2(ΓL)

∂vi∂vj
.

In fact, taking into account the commutation relation[
Γ,

∂

∂vi

]
= − ∂

∂qi
, (3.16)
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we obtain the mentioned result, because

∂2L

∂qi∂vj
=

∂

∂vj

(
∂L

∂qi

)
=

∂

∂vj

(
LΓ

(
∂L

∂vi

))
=

∂

∂vj

(
∂(ΓL)

∂vi
− ∂L

∂qi

)
,

where use has been made of LΓ ◦ i(∂/∂vi)− i(∂/∂vi) ◦LΓ = i([Γ, ∂/∂vi]) = −i(∂/∂qi). Therefore,

the regular Lagrangian regular L defining a vector field Γ as in (3.12) satisfies

∂2L

∂qi∂vj
=

∂2L

∂qj∂vi
. (3.17)

Hence, the functions µij = ∂2L/∂vi∂vj are constants of the motion, because using the commutation

relation (3.16) of Γ with ∂/∂vj , we see that

Γ

(
∂

∂vj

(
∂L

∂vi

))
=

∂

∂vj

(
Γ

(
∂L

∂vi

))
− ∂

∂qj

(
∂L

∂vi

)
,

which can be rewritten as

Γ

(
∂

∂vj

(
∂L

∂vi

))
=

∂

∂vj

(
∂L

∂qi

)
− ∂

∂qj

(
∂L

∂vi

)
,

as a consequence of the Euler–Lagrange equations, and then (3.17) show that the functions ∂2L/∂vi∂vj

are constants of the motion. Therefore, dµij/dt = 0 and µij is a Jacobi multiplier for (ΓL,Ω). �.

Using this result in the example of a 2-dimensional coupled oscillator it is possible to find a

general Lagrangian for such system [35].

4 Examples

In this section, some examples are given to illustrate several applications of the theory of Jacobi

multipliers in the integration of dynamical systems, or as a way to find new constants of motion.

A Jacobi multiplier can also be used to solve the inverse problem for a second-order differential

equation, allowing us to find a (may be non-standard) Lagrangian description for a given second-

order differential equation when a Jacobi multiplier is known [5, 28, 31, 36], or also constants of

motion when two inequivalent Jacobi multipliers are known, leading to the result, usually attributed

to Currie and Saletan [18], that if two regular Lagrangians L1 and L2 are known for a second-order

differential equation, the quotient function f defined by

f
∂2L1

∂v2
=
∂2L2

∂v2
(4.1)

is a constant of the motion.
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4.1 Spherical geometry

Consider the motion of a unity mass point on a sphere of radius R = 1/
√
λ centred at the origin.

In the usual spherical polar coordinates [3], a chart is fixed by two coordinates (θ, φ) such that

0 < θ < π, 0 < φ < 2π, and

x(θ, φ) = (R sin θ cosφ,R sin θ sinφ,R cos θ).

The sphere can be seen as a Riemann manifold with the metric induced by the Euclidean metric

in R3 and then

gθθ = R2, gθφ = 0, gφφ = R2 sin2 θ,

i.e. the arc-length is ds2 = R2(dθ2 + sin2 θ dφ2). The geodesics are given by maximal length arcs.

In particular, if we choose as origin in the sphere the North pole N , the distance of a generic point

with coordinates (θ, φ) to N is Rθ. If we consider the free motion on the sphere the Lagrangian

reduces to the kinetic energy

T (θ, φ, vθ, vφ) =
1

2
R2(v2

θ + sin2 θ v2
φ).

Suppose a central motion, i.e. under the action described by a potential function V (θ) that does

not depend on φ but only on θ, a parameter proportional to the distance to the North pole. The

Lagrangian of such mechanical system is (see e.g. [3])

L(θ, φ, vθ, vφ) =
1

2
R2(v2

θ + sin2 θ v2
φ)− V (θ).

The dynamics is given by the integral curves of the vector field

ΓL = vθ
∂

∂θ
+ vφ

∂

∂φ
+

(
sin θ cos θ v2

φ −
1

R2

∂V

∂θ

)
∂

∂vθ
− 2 cot θ vθvφ

∂

∂vφ
.

Then, by Theorem 1, we conclude that, as

Wθθ = R2, Wθφ = 0, Wφφ = R2 sin2 θ,

µ = det(W ) = R4 sin2 θ is a Jacobi multiplier for ΓL, with volume form Ω = dθ ∧ dφ ∧ dvθ ∧ dvφ.

In fact, one can check that

ΓLµ = 2R4 vθ sin θ cos θ, div ΓL = −2cot θ vθ,

and therefore ΓLµ+ µ div ΓL = 0.
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4.2 Liénard’s equation and Chiellini’s condition

Consider the classical Liénard equation [33]

ẍ+ f(x)ẋ+ g(x) = 0. (4.2)

This is a class of second-order differential equations (SODE) in which the damping term is propor-

tional to the velocity, f(x)ẋ, where f is a non-vanishing function. The Liénard equation defines a

SODE vector field in TR ≈ R2 given by

Γ = v
∂

∂x
− (f(x)v + g(x))

∂

∂v
. (4.3)

We can consider the 2-form ω = dx ∧ dv on TR and look for (see [4]) a Jacobi last multiplier for

Γ. Since div Γ = −f , the function µ is a Jacobi multiplier of the system iff Γµ− µf = 0. This is

partial differential equation whose most general solution is not easy to find but we can look for a

particular solution of the form µ(x, v) = (v −W (x))1/s, wherein s is a non-zero real constant [4].

This function µ is a Jacobi multiplier of the system iff

0 = v
∂µ

∂x
− (f(x)v + g(x))

∂µ

∂v
− µf(x)

= − µ
1−s

s
W ′(x) v − µ1−s

s
(f(x)v + g(x))− µf(x)

= − µ
1−s

s

(
W ′(x) v + f(x)v + g(x) + sµsf(x))

)
= − µ

1−s

s

( [
W ′(x) + (1 + s)f(x)

]
v + g(x)− sf(x)W (x)

)
.

So µ is a Jacobi multiplier iff sW (x) = g(x)/f(x) and W ′(x) = −(1 + s)f(x). Combining the two

equations we obtain the following compatibility condition between f and g for the existence of a

Jacobi last multiplier µ of the previously chosen form

d

dx

(
g

f

)
= kf, with k = −s(1 + s). (4.4)

The above condition (4.4) is known in the literature as Chiellini condition [13], and appears in this

example as a consequence of the Jacobi multiplier theory. More details can be found in [4, 31].

The Chiellini condition (4.4) is used to integrate the first kind Abel equations [24], and has been

applied for obtaining exact solutions of second-order differential equations that can be reduced to

an Abel equation. It was shown in [30] the relationship of this condition to its linearisability under
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an appropriate Sundman transformation [39], and then it was shown in [31] that the corresponding

Lagrangian can be easily derived from that of the damped harmonic oscillator.

Using (3.7), the Jacobi multiplier we have found can be used to derive a non-standard Lagrangian

for the classical Liénard equation [4].

4.3 Dynamics of a position-dependent mass particle

In a recent paper [11] Casetta studied a particular example of a position-dependent mass one-

dimensional system whose dynamical evolution is given by a Meshchersky’s equation,

m(q) q̈ +
dV

dq
− α q̇2 dm

dq
= 0, α ∈ R, (4.5)

where m = m(q) is the position-dependent mass function and the real function V is the potential

energy. This kind of position-dependent mass systems were studied in [40] in the context of the

quadratic Liénard type equation, and it was proved to have an autonomous first integral and,

consequently, a Jacobi last multiplier, and therefore to be derived from a Lagrangian.

The associated vector field is

Γα = v
∂

∂q
+ Fα(q, v)

∂

∂v
, (4.6)

where

Fα(q, v) =
1

m(q)

(
−dV
dq

+ α v2 dm

dq

)
. (4.7)

Note that

div Γα =
∂Fα
∂v

= 2α
1

m(q)

dm

dq
v,

and we can look for a Jacobi multiplier µ, for the vector field Γα that depends only on the position,

i.e. ∂µ/∂v = 0, and then a solution for the differential equation for the Jacobi last multipliers:

Γα(µ) + µ div Γα = v
dµ

dq
+ 2α

µ

m(q)

dm

dq
v = 0,

which admits as a particular solution µ = (m(q))−2α.

Therefore, the dynamical system can be defined by a Lagrangian L, uniquely defined, up to

addition of a gauge term, that verifies µ = ∂2L/∂v2. The Lagrangian is then given, up to a gauge

term, by

Lα(q, v) =
1

2
(m(q))−2α v2 − Ṽα(q), (4.8)
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for an appropriated function Ṽα, with an associated energy function

ELα(q, v) =
1

2
(m(q))−2α v2 + Ṽα(q), (4.9)

and then, in order to the dynamical vector field to be (4.6) with the function Fα given by (4.7),

the function Ṽα must be such that

−(m(q))−2α Fα(q, v) =
∂ELα
∂q

= −α (m(q))−2α−1m′(q) v2 + Ṽ ′α(q),

which determines the function Ṽα as follows:

Ṽα(q) =

∫ q

(m(ζ))−2α−1V ′(ζ) dζ, (4.10)

as established in [11]. This means that (4.9) with this value of the function Ṽα is the only func-

tionally independent constant of motion.

A particularly interesting case is when α = −1/2, for which (4.5) reduces to

m(q) q̈ +
dV

dq
+

1

2
q̇2 dm

dq
= 0, (4.11)

which, as Ṽ−1/2(q) = V (q), is described by the Lagrangian

L−1/2(q, v) =
1

2
m(q) v2 − V (q). (4.12)

Casetta deduced a conservation law along curves in the same level E of the energy function EL

by

I(q, v) = fE

(
1

2
mv2 + V

)
,

where the following function fE ,

fE = exp

(
−
(

1

2
+ α

)∫ q 2m′m2α(E − Ṽ )

m2α+1(E − Ṽ ) + V
dζ

)
,

depends only on the position. Note that, there is a different function for each value of the parameter

E. We can prove that dI = −fEmη, with η = F−1/2(q, v)dq − v dv, so, as expected, the new

constant of motion I and the generalised energy EL are functionally dependent. In fact,

dI =

[
f ′E

(
1

2
mv2 + V

)
+ fE

(
1

2
m′v2 + V ′

)]
dq + fEmv dv
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and since f ′E = −fE(1
2 + α)m′v2/(1

2mv
2 + V ) we obtain

dI =
[
−fE

(
1
2 + α

)
m′v2 + fE

(
1
2m
′v2 + V ′

)]
dq + fEmv dv

= fEm
([
− 1
m

(
1
2 + α

)
m′v2 + 1

m

(
1
2m
′v2 + V ′

)]
dq + vdv

)
= fEm

([
− 1
mαm

′v2 + 1
mV

′] dq + v dv
)

= fEm
(
−F−1/2(q, v) dq + v dv

)
= −fEmη.

However, if the potential energy function is identically zero we obtain fE = m−1−2α thus mfE = µ

and I = EL, and then if α = −1
2 we have fE = 1 and I = EL.

5 Jacobi multipliers for Boltzmann-Hamel equations

The use of quasi-coordinates or nonholonomic coordinates (see e.g. [9] and [25, 29, 37] for a

geometric interpretation of quasi-coordinates) has been shown to be very efficient to deal with

many problems in Mechanics. In this section we recall the concept of quasi-coordinates and the

implications they have on the equations of motion. We will see that the choice of quasi-coordinates

will have a direct effect on the Jacobi multipliers of a Lagrangian system, the associated Lagrangian

being the counterpart of the one proved by Ghori [21] for the Hamiltonian formalism.

5.1 Quasi-coordinates overview and Boltzmann-Hamel equations

Consider a configuration manifold Q where a mechanical system is evolving. Recall that usual

coordinates on a tangent bundle TQ are induced from a chart on its base manifold Q. As indicated

above, given a coordinate chart (U,ϕ) of Q, we can induce a chart on U = τ−1(U) by the tangent

map φ = Tϕ, i.e. φ(m, v) = (ϕ(m), ϕ∗m(v)), and then, if ϕ = (q1, . . . , qn) then the coordinates of

a vector v are given by dqi(v) = v(qi). However, we can substitute the 1-forms dq1, . . . , dqn, by n

linearly independent non-exact 1-forms α1, . . . , αn,

αi =

n∑
j=1

αi j(q) dq
j , i = 1, . . . , n, with det(αi j(q)) 6= 0 ,

and the inverse relation

dqi =
n∑
j=1

βi j(q) α
j , i = 1, . . . , n , with

n∑
j=1

αi j(q)β
j
k(q) = δik.

Then the 1-forms αi are such that α1 ∧ · · · ∧ αn = det(A ) dq1, . . . , dqn, with A the matrix with

elements αi j , and then α1∧· · ·∧αn is a volume form on Q. Consider the basis {X1, . . . , Xn} of the
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C∞(Q)-module of vector fields on Q dual to the basis of 1-forms {α1, . . . , αn}, i.e. 〈αi, Xj〉 = δij .

The expressions of such vector fields are

Xj =

n∑
i=1

βi j
∂

∂qi
,

∂

∂qj
=

n∑
i=1

αi j Xi. (5.1)

They provide a local trivialization of the tangent bundle TQ on U and the quasi-velocities v̄i at a

point m ∈ Q (also called nonintegrable velocities) are the coordinates of the vector with respect to

the basis {X1m, . . . , Xnm} of TmU determined by such basis of vector fields at m ∈ U .

The base coordinates q̄i on TQ are the original ones but the fibre coordinates are related by

v̄i =

n∑
j=1

αi j v
j , vi =

n∑
j=1

βi j v̄
j .

The coordinate expression of the Lagrange function in terms of these quasi-coordinates is

L̄(q̄i, v̄i) = L

qi, n∑
j=1

αi j v
j

 .

Remark that the notation q̄i is convenient because q̄i = qi, but

∂

∂qi
=

∂

∂q̄i
+

n∑
k,l=1

vl
∂αk l
∂q̄i

∂

∂v̄k
=

n∑
k,l,r=1

∂

∂q̄i
+

n∑
k,l,r=1

βl rv̄
r ∂α

k
l

∂q̄i
∂

∂v̄k
=

∂

∂q̄i
−

n∑
k,l,r=1

v̄rαk l
∂βl r
∂q̄i

∂

∂v̄k
,

while

∂

∂q̄i
=

∂

∂qi
+

n∑
k,l=1

v̄l
∂βk l
∂q̄i

∂

∂vk
=

∂

∂qi
+

n∑
k,l,r=1

αl rv
r ∂β

k
l

∂qi
∂

∂vk
=

∂

∂qi
−

n∑
k,l,r=1

vrβk l
∂αl r
∂qi

∂

∂vk
.

On the other side,
∂

∂vi
=

n∑
j=1

αj i
∂

∂v̄j
,

∂

∂v̄i
=

n∑
k=1

βk i
∂

∂vk
. (5.2)

As a consequence, we also have the following relation

∂

∂vi
∂

∂vj
= αl i

∂

∂v̄l

(
αk j

∂

∂v̄j

)
= αl iα

k
j
∂

∂v̄l
∂

∂v̄j
. (5.3)

The Euler–Lagrange equations for the system defined by the Lagrangian function L ∈ C∞(TQ)

are (see [9] and [25] for a geometric approach)

d

dt

(
∂L̄

∂v̄l

)
=

n∑
j=1

βj l
∂L̄

∂q̄j
+

n∑
j,k=1

v̄jγkjl
∂L̄

∂v̄k
, l = 1, . . . , n, (5.4)
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where the Hamel symbols γkml are the functions given by

γkml =
n∑

i,j=1

βj mβ
i
l

(
∂αk j
∂qi

− ∂αk i
∂qj

)
. (5.5)

The geometric interpretation in terms of the Lie algebroid structure was given in [9], where it

was shown that the use of quasi-velocities is equivalent to use the Lie algebroid structure of TQ

but deliberately forgetting the tangent structure, and using a local basis of sections given by the

above mentioned vector fields Xj . Note that the structure functions in such a basis, given by the

relation [Xi, Xj ] = Cij
kXk, coincide with the corresponding Hamel symbols, because[

n∑
l=1

βl i
∂

∂ql
,

n∑
m=1

βm j
∂

∂qm

]
=

n∑
l,m=1

(
βl i

∂βm j

∂ql
∂

∂qm
− βm j

∂βl i
∂qm

∂

∂ql

)
=
∑
klm

(
βm i

∂βl j
∂qm

− βm j
∂βl i
∂qm

)
αk lXk

and if we take into account that, as

n∑
j=1

αi j(q)β
j
k(q) = δik,

n∑
l=1

∂βl j
∂qm

αk l = −
n∑
l=1

βl j
∂αk l
∂qm

,

n∑
l=1

∂βl i
∂qm

αk l = −
n∑
l=1

βl i
∂αk l
∂qm

,

we obtain

[Xi, Xj ] =
n∑

k,l,m=1

(
βm jβ

l
i
∂αk l
∂qm

− βm iβ
l
j
∂αk l
∂qm

)
Xk =

n∑
k,l,m=1

βm jβ
l
i

(
∂αk l
∂qm

− ∂αk m
∂ql

)
Xk,

from where we see that Cij
k coincides with the Hamel symbol γkij given by (5.5).

The Boltzmann-Hamel equations [34, 37] determine the projections on the configuration manifold

of the integral curves of the vector field with local expression

Γ =

n∑
i,j=1

βi j v̄
j ∂

∂q̄i
+

n∑
i=1

f̄ i(q̄, v̄)
∂

∂v̄i
, (5.6)

where (see later on for a proof)

f̄ i(q̄, v̄) =

n∑
l=1

W̄ il

 n∑
k=1

βk l
∂L̄

∂q̄k
+

n∑
j,k=1

v̄jγkjl
∂L̄

∂v̄k
−

n∑
j,k=1

v̄jβk j
∂2L̄

∂q̄k∂v̄l

 , (5.7)

18



and W̄ ik represents the matrix element of the inverse matrix of W̄ =
(

∂2L̄
∂v̄i∂v̄j

)
. More explicitly,

such integral curves are solution of 
˙̄qi =

n∑
j=1

βi j v̄
j

˙̄vi = f̄ i(q̄, v̄)

. (5.8)

In such quasi-coordinates on the tangent bundle we can consider the following two alternative

volume forms

Ω̄ = dq1 ∧ · · · ∧ dqn ∧ dv̄1 ∧ · · · ∧ dv̄n, ¯̄Ω = α1 ∧ · · · ∧ αn ∧ dv̄1 ∧ · · · ∧ dv̄n,

which are related to Ω by

Ω̄ = det(A ) Ω, ¯̄Ω = (det(A ))2 Ω. (5.9)

Similarly a covector ζ ∈ T ∗qQ can be expressed as ζ =

n∑
j=1

πjα
j(q), and then (π1, . . . , πn) are

called the quasi-momenta of ζ in the given basis and (qi, πk) are called the quasi-coordinates of

ζ ∈ T ∗Q (see [9]). The relation between standard momenta and quasi-momenta is given by the

well-known basis change formulas, πj =
n∑
i=1

pi β
i
j(q). The Hamel symbols are such that dαk =

−
n∑

l,m=1

1
2γ

k
mlα

m ∧ αl. Note that when the 1-forms αk are all exact the quasi-velocities v̄j ’s and the

quasi-momenta πj ’s would be the velocities vj ’s and momenta pj ’s w.r.t. a new local coordinate

system on Q.

5.2 Dynamical equations in terms of quasi-velocities

Let us first remark that in terms of quasi-coordinates the two geometric objects characterising the

tangent bundle structure of TQ, the Liouville vector field ∆, infinitesimal generator of dilations

along fibres, and the vertical endomorphism S are respectively given by

∆ =

n∑
i=1

v̄i
∂

∂v̄i
, S =

n∑
i,k=1

αk i
∂

∂v̄k
⊗ dq̄i,

because
∂

∂v̄i
=

n∑
k=1

βk i
∂

∂vk
,

∂

∂vi
=

n∑
k=1

αk i
∂

∂v̄k
.
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Consequently, the expression in terms of quasi-coordinates of the energy is given by

EL̄ =
n∑
j=1

v̄j
∂L̄

∂v̄j
− L̄,

because
∂L̄

∂v̄j
=

n∑
k=1

∂L

∂vk
βk j ,

and therefore,
n∑
j=1

v̄j
∂L̄

∂v̄j
=

n∑
j,k=1

∂L

∂vk
βk j v̄

j =
n∑
k=1

∂L

∂vk
vk.

Hence,

dEL̄ =

n∑
j=1

∂L̄

∂v̄j
dv̄j +

n∑
j,k=1

v̄j
∂2L̄

∂q̄k∂v̄j
dq̄k +

n∑
j,k=1

v̄j
∂2L̄

∂v̄j∂v̄k
dv̄k −

n∑
j=1

∂L̄

∂q̄j
dq̄j −

n∑
j=1

∂L̄

∂v̄j
dv̄j ,

i.e.

dEL̄ =
n∑
k=1

 n∑
j=1

v̄j
∂2L̄

∂q̄k∂v̄j
− ∂L̄

∂q̄k

 dq̄k +
n∑

j,k=1

v̄j
∂2L̄

∂v̄j∂v̄k
dv̄k. (5.10)

Moreover, the expression in quasi-coordinates of the Liouville 1-form θL is

θL = dL ◦ S =

n∑
i=1

∂L

∂vi
dqi =

n∑
i,k=1

∂L̄

∂v̄k
∂v̄k

∂vi
dqi =

n∑
i,k=1

∂ L̄

∂v̄k
αk i dq̄

i =

n∑
k=1

∂L̄

∂v̄k
αk,

and therefore,

dθL =
n∑
k=1

d

(
∂L̄

∂v̄k

)
∧ αk +

n∑
k=1

∂L̄

∂v̄k
dαk,

and developing these expressions

ωL = −
n∑

j,k=1

∂2L̄

∂q̄j∂v̄k
dq̄j ∧ αk −

n∑
j,k=1

∂2L̄

∂v̄k∂v̄j
dv̄j ∧ αk −

n∑
j,k,l=1

∂L̄

∂v̄k
∂αk j
∂q̄l

dq̄l ∧ dq̄j .

and therefore,

i

(
∂

∂q̄j

)
ωL=−

n∑
k,l=1

∂2L̄

∂q̄j∂v̄k
αk l dq̄

l+
n∑

i,k=1

(
∂2L̄

∂q̄i∂v̄k
αk j dq̄

i+
∂2L̄

∂v̄i∂v̄k
αk jdv̄

i− ∂L̄

∂v̄k

(
∂αk i
∂q̄j
− ∂α

k
j

∂q̄i

)
dq̄i
)
,

and

i

(
∂

∂v̄j

)
ωL = −

n∑
k=1

∂2L̄

∂v̄j∂v̄k
αk = −

n∑
i,k=1

∂2L̄

∂v̄j∂v̄k
αk i dq̄

i.
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In other words, the matrix representing ω̂L is

ω̂L =

 C −A T W̄

W̄A 0

 . (5.11)

Here ω̂L denotes the map ω̂L : X(TQ) →
∧1(TQ) defined by ω̂L(X) = i(X)ωL. In the usual

bases given by {∂/∂q̄1, . . . , ∂/∂q̄n, ∂/∂v̄1, . . . , ∂/∂v̄n} and its dual it is represented by a matrix

ω̂L =

C M

N 0


where

Cij = i

(
∂

∂q̄i

)
i

(
∂

∂q̄j

)
ωL, Mij = i

(
∂

∂q̄i

)
i

(
∂

∂v̄j

)
ωL, Nij = i

(
∂

∂v̄i

)
i

(
∂

∂q̄j

)
ωL,

Then we have

Nij = i

(
∂

∂v̄i

)
i

(
∂

∂q̄j

)
ωL =

n∑
k=1

W̄ikα
k
j = (W̄A )ij ,

and similarly,

Mij = i

(
∂

∂q̄i

)
i

(
∂

∂v̄j

)
ωL = −

n∑
k=1

W̄jkα
k
i = −(A T W̄ )ij ,

and

Cij =
n∑
k=1

(
−αk i

∂2L̄

∂q̄j∂v̄k
+

∂2L̄

∂q̄i∂v̄k
αk j +

∂L̄

∂v̄k

(
∂αk j
∂q̄i

− ∂αk i
∂q̄j

))
,

i.e the matrix representation is the above matrix where A T denotes the transpose matrix of A .

Therefore, taking into account (5.10) we see that a vector field Γ =
n∑
i=1

(ξi∂/∂q̄i + ηi∂/∂v̄i) is a

solution of the dynamical equation (3.6) if and only if

n∑
j,k=1

W̄ikα
k
jξ
j =

n∑
j=1

W̄ij v̄
j ⇐⇒ ξi =

n∑
k=1

βi k v̄
k,

and (summation on repeated indices is understood)[
−αk i

∂2L̄

∂q̄j∂v̄k
+

∂2L̄

∂v̄k∂q̄i
αk j +

∂L̄

∂v̄k

(
∂αk j
∂q̄i

− ∂αk i
∂q̄j

)]
ξj − ∂2L̄

∂v̄j∂v̄k
αk i η

j = v̄j
∂2L̄

∂q̄i∂v̄j
− ∂L̄

∂q̄i
.

Recall that according to the definition (5.5) of Hamel symbols,

n∑
i,j=1

(
∂αk j
∂q̄i

− ∂αk i
∂q̄j

)
βi lβ

j
m = γkml ⇐⇒

∂αk j
∂q̄i

− ∂αk i
∂q̄j

=

n∑
l,m=1

αm j α
l
i γ

k
ml,
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and then using this together with ξi =
n∑
k=1

βi k v̄
k, the preceding equation becomes (summation on

repeated indices is understood)(
−αk i

∂2L̄

∂q̄j∂v̄k
+

∂2L̄

∂v̄k∂q̄i
αk j +

∂L̄

∂v̄k
αm j α

l
i γ

k
ml

)
βj m v̄

m − W̄jkα
k
i η
j = v̄k

∂2L̄

∂q̄i∂v̄k
− ∂L̄

∂q̄i
,

i.e.,

−αk i
∂2L̄

∂q̄j∂v̄k
βj m v̄

m +
∂L̄

∂v̄k
αl i γ

k
ml v̄

m − W̄jkα
k
i η
j = − ∂L̄

∂q̄i
,

and we can obtain then the second component of the dynamical vector field

ηr =
n∑

i,s=1

βi sW̄
rs

 ∂L̄

∂q̄i
−

n∑
j,k,m=1

αk i
∂2L̄

∂q̄j∂v̄k
βj m v̄

m +
n∑

k,l,m=1

∂L̄

∂v̄k
αl i γ

k
ml v̄

m

 ,

and then, using that
n∑
i=1

αk iβ
i
l = δkl ,

ηr =
n∑
s=1

W̄ rs

 n∑
i=1

βi s
∂L̄

∂q̄i
−

n∑
j,m=1

∂2L̄

∂q̄j∂v̄s
βj m v̄

m +
n∑

k,m=1

∂L̄

∂v̄k
γkms v̄

m


which shows (5.7) with a different notation.

5.3 Jacobi multipliers for systems defined by Lagrangians in quasi-coordinates

As far as Jacobi multipliers for the dynamics of systems defined by Lagrangians in quasi-coordinates

is concerned, we have the following result:

Theorem 4 If the vector field Γ whose expression in quasi-coordinates is (5.6) is defined by a

regular Lagrangian with quasi-coordinate expression L̄(q̄, v̄), then the determinant of the product

A W̄ is a Jacobi multiplier of Γ with respect to the volume form Ω̄, and therefore the determinant

of the product A 2W̄ is a Jacobi multiplier of Γ with respect to the volume form Ω.

Proof.- Computing the n-exterior power of the Cartan 2-form, we obtain in quasi-coordinates

ΩL = ω∧nL =

n∑
i1,...,in=1

αi1 ∧ d
(
∂L̄

∂v̄i1

)
∧ · · · ∧ αin ∧ d

(
∂L̄

∂v̄in

)

=
n∑

i1,...,in=1

(−1)n(n−1)/2 n! det(W̄ )αi1 ∧ · · · ∧ αin ∧ dv̄1 ∧ · · · ∧ dv̄n

=
n∑

i1,...,in=1

(−1)n(n−1)/2 n! det(W̄ ) det(A ) dq1 ∧ · · · ∧ dqn ∧ dv̄1 ∧ · · · ∧ dv̄n,(5.12)
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i.e. ΩL = (−1)n(n−1)/2 n! det(W̄ ) ¯̄Ω = (−1)n(n−1)/2 n! det(W̄ ) det(A )Ω̄. The solution of the dy-

namical system defined by a Lagrangian is a Hamiltonian vector field w.r.t. the symplectic form

ωL, then µ′ = 1 is a Jacobi multiplier for (Γ, ω∧nL ). Therefore, µ̄ = det(A W̄ ) is a Jacobi multiplier

of Γ w.r.t. the volume form Ω̄, and µ = det(A 2W̄ ) is a Jacobi multiplier of Γ w.r.t. the volume

form Ω. �

The above result is the Lagrangian equivalent of the one proved by Ghori [21] for the Hamilto-

nian formalism in quasi-coordinates. In [21] Ghori proved that the determinant of A is a Jacobi

multiplier for Hamel’s equations.

Example 1 (Kepler problem [3, 9]) Consider a particle P of mass m moving in a plane under the

action of a central force F (r) = −kmm′/r2 on the direction of a fixed point O of mass m′ � m,

where k > 0 and r = dist(O,P ). The configuration space of the system is Q = R2 − {O}. Let θ be

the angle that the line OP makes with a fixed direction on the plane. The dynamics is determined

by the regular Lagrangian in the chart of polar coordinates given by

L =
m

2
(v2
r + r2v2

θ) +
kmm′

r
. (5.13)

Therefore, as
∂2L

∂v2
r

= m,
∂2L

∂vr∂vθ
= 0,

∂2L

∂v2
θ

= mr2,

Theorem 1 gives us a Jacobi multiplier for the system in polar coordinates with respect to the volume

form Ω = dr ∧ dθ ∧ dvr ∧ dvθ: µ = det(W ) = m2 r2.

As the coordinate θ is cyclic, ∂L/∂θ̇ = mr2 θ̇ is a constant of motion. This suggests us to consider

the following set of quasi-velocities on the tangent bundle TQ: v̄r = ṙ and v̄θ = r2θ̇, determined by

the 1-forms α1 = dr and α2 = r2 dθ, with associated vector fields X1 = ∂/∂r and X2 = r−2∂/∂θ

and Hamel symbols γ1
12 = 0 and γ2

12 = −2/r. The dynamics in quasi-coordinates is determined by

the Lagrangian

L̄(r, θ, v̄r, v̄θ) =
m

2

(
v̄2
r +

v̄2
θ

r2

)
+
kmm′

r
, (5.14)

and the matrices A = (αi j) and B = (βi j) associated to this set of quasi-velocities are given by

A =

1 0

0 r2

 , B =

1 0

0 r−2

 .
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Therefore, µ̄ = det(αW̄ ) = m2, i.e. any constant, is a Jacobi multiplier for the system in quasi-

coordinates and the volume form Ω̄ = dr ∧ dθ ∧ dv̄r ∧ dv̄θ. Note that as γ1
12 = 0, γ2

12 = −2/r

and
∂L̄

∂r
= −m

r3
v̄2
θ −

kmm′

r2
,

∂L̄

∂θ
= 0,

the vector field determined by the system of second-order differential equations is

Γ = v̄r
∂

∂r
+
v̄θ
r2

∂

∂θ
+

(
−γm

′

r2
+
v̄2
θ

r3

)
∂

∂v̄r
.

6 Jacobi multipliers and nonholonomic systems

The use of quasi-coordinates is particularly useful when we have linear nonholonomic constraints,

i.e. constraints on the velocities of the type
n∑
i=1

αi(q)v
i = 0, that are not derivable from holonomic

constraints [1, 9, 29, 34]. If ζ is a 1-form on Q, with coordinate expression ζ =
n∑
i=1

ζi(q) dq
i, then

we denote ζ̂ the function ζ̂ ∈ C∞(TQ) given by ζ̂(v) = ζτ(v)(v). In the usual coordinates ζ̂ is

given by ζ̂(q, v) =
n∑
i=1

ζi(q)v
i, and therefore the linear nonholonomic constraints are given by the

1-forms α =
n∑
i=1

αi(q) dq
i, and those that are not derivable from holonomic constraints correspond

to non-exact 1-forms.

In the usual formulation [10, 32, 38] for a n degrees of freedom system with r < n functionally

independent linear nonholonomic constraints ζ̂A = 0, for A = n − r + 1, . . . , n, we can set the

last r quasi-velocities equal to the constraints and solve the remaining 2n − r Hamel’s equations:

such a set of r linear constraints defines a rank r vector subbundle D of τ : TQ → Q called the

constraint submanifold S0. The admissible velocities are the elements of D, and a curve in Q is

said to be admissible if its velocities take values in D. From the annihilator D◦ ⊂ T ∗Q of D, i.e.

the set of 1-forms on TQ vanishing on the elements of D, we can construct the vector subbundle

D̃◦ of T (TQ) defined by D̃◦ = { ζ ◦ Tτ ∈ T ∗(TQ) | ζ ∈ D◦ }.

Given a regular Lagrangian function L ∈ C∞(TQ), consider the nonholonomic system defined by

the Lagrangian L and the linear constraints given by D. The evolution of the nonholonomic system

is determined by the Lagrange–d’Alembert principle, which states that the dynamics of the system
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is given by the integral curves of the vector fields Γ tangent to D satisfying the Lagrange–d’Alembert

equation

(i(Γ)ωL − dEL)|D ∈ D̃◦. (6.1)

If D◦ is generated by the set {ζA | A = n′ + 1, . . . , n} of 1-forms in Q, with n′ = n − r, then the

vector bundle D̃◦ is generated by the set of basic 1-forms {τ∗ζA | A = n′ + 1, . . . , n}.

More explicitly, the dynamics is given by a vector field Γ determined by the equation (see e.g.

[10])

i(Γ)ωL − dEL =
n∑

A=n′+1

λA τ
∗ζA, (6.2)

where the functions λA ∈ C∞(TQ) are the Lagrangian multipliers of the system, to be determined

by the tangency conditions LΓζ̂
A = 0, for all A = n′+ 1, . . . , n. This vector field can be written as

a sum Γ = ΓL +
n∑

A=n′+1

λA Z
A, where ΓL is given by the right hand side of (5.6) and (5.7), and ZA

is the vertical vector field corresponding by ω̂L to τ∗ζA, i.e. i(ZA)ωL = τ∗ζA. Each vector fields

ZA is vertical, because it corresponds to a basic 1-form τ∗ζA, and therefore ZA =
n∑
i=1

zAi∂/∂vi

with zAi = −
n∑
j=1

W ijζAj , i.e. the local expression in quasi-coordinates of ZA is

ZA = −
n∑

i,j=1

W ijζAj
∂

∂vi
= −

n∑
i,j,k,l,r=1

βi jW̄
jkβl kζ

A
l α

r
i
∂

∂v̄r
= −

n∑
j,k,l=1

W̄ jkβl kζ
A
l

∂

∂v̄j
,

where use has been made of (5.3), which implies W = (A )T W̄A . The same result can be obtained

directly in quasi-coordinates using the form of ω̂L given by (5.11) and so, if ZA =

n∑
i=1

z̄Ai∂/∂v̄i,

then z̄Ai = −
n∑

j,k=1

W̄ ijβk jζ
A
k .

Consider appropriate quasi-coordinates as mentioned before, (q̄i, v̄j) = (q̄i, v̄a, v̄A) on TQ, with

i = 1, . . . , n, a = 1, . . . n′ and A = n′ + 1, . . . , n, for which the equations defining the constraint

manifold D are simply v̄A = ζ̂A = 0, with A = n′ + 1, . . . , n. In other words, (q̄i, v̄a), with

i = 1, . . . , n and a = 1, . . . n′, are the coordinates for D. Recall that the tangency conditions are

LΓv̄
A = 0, for all A = n′ + 1, . . . , n.

If the matrix of functions in TQ MAB = ZAζ̂B is regular we say that the constrained system

is regular, and then the tangency conditions uniquely determine the coefficients λA as solutions of

25



ΓLζ̂
B +

n∑
A=n′+1

MABλA = 0, and the equation (6.1) has a unique Γ solution of (6.2) and tangent

to D.

When using such quasi-coordinates is convenient to choose as a basis for vector fields in TQ,

{Xi, ∂/∂v̄
i}, where the vector fielsds Xi are given by (5.1). In particular, a SODE vector field on

TQ tangent to the constraint manifold is of the form

Γ =
n∑
i=1

v̄iXi +
n′∑
a=1

f̄a(q̄i, v̄i)
∂

∂v̄a
. (6.3)

The constraints v̄A = ζ̂A = 0 define a (2n− r)-dimensional submanifold S0 of TQ,

j : U → TQ, j(q̄1, . . . , q̄n, v̄
1, . . . , v̄n−r) = (q̄1, . . . , q̄n, v̄

1, . . . , v̄n−r, 0, . . . , 0),

where U is an open set of Rn−r, and there is a vector field Γ̄0 on U that is j-related to Γ.

Hence, the system of differential equations for the integral curves of vector field obtained by

restricting Γ to the constraint submanifold, which has the same coordinate expression as in (6.3),

are 
˙̄qi =

n′∑
a=1

βi a(q̄)v̄
a

˙̄va = f̄a(q̄i, v̄b)

, (6.4)

with

fa(q̄i, v̄b) =
n′∑
b=1

W̄ ab
n∑
k=1

(
βk b

∂L̄

∂q̄k
+

n′∑
c=1

v̄cγkcb
∂L̄

∂v̄k
−

n′∑
c=1

v̄cβk c
∂2L̄

∂q̄k∂v̄b

)
.

We can consider the volume form in TQ

Ω̄ = dq̄1 ∧ . . . ∧ dq̄n ∧ dv̄1 ∧ . . . ∧ dv̄n, (6.5)

and in the constraint manifold S0 the following volume form

Ω̄0 = dq̄1 ∧ . . . ∧ dq̄n ∧ dv̄1 ∧ . . . ∧ dv̄n′ , (6.6)

and then the divergence of Γ̄0 with respect to such a volume form is given by

div(Γ̄0) =

n′∑
a=1

(
n∑
i=1

v̄a
∂βi a
∂qi

+
∂f̄a

∂v̄a

)
. (6.7)
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Notice that, according to (6.2),

LΓωL =
n′∑
a=1

d(λAτ
∗αA).

So, in general, LΓΩL 6= 0, with ΩL = ω∧nL . If µ is a Jacobi multiplier for (Γ,ΩL) then, as

ΩL = δ det(A W̄ ) Ω̄, with δ a constant, µ̄ = µdet(A W̄ ) is a Jacobi multiplier for (Γ, Ω̄). On the

other hand, if a Jacobi multiplier µ̄ for (Γ, Ω̄) is known, then µ = µ̄/ det(A W̄ ) is a Jacobi multiplier

for (Γ,ΩL).

It is to be remarked that the true tangency condition is the less restrictive condition
(
LΓζ̂

A
)
|ζ̂A=0

=

0, and therefore the vector field Γ is not fully determined by the tangency conditions but only its

restriction Γ̄0 to the constraint submanifold S0.

Example 2 Consider the motion of a free particle of unitary mass in the configuration space R3,

under the action of the linear constraint v̄z = vz − yvx (see [1, 9]). Let (x, y, z, v̄x, v̄y, v̄z) be a

system of quasi-coordinates on the tangent bundle TR3, where

v̄x = vx, v̄y = vy and v̄z = vz − yvx,

i.e.

ζ1 = dx, ζ2 = dy, ζ3 = dz − y dx.

Hence, the transformation matrix is given by

A =


1 0 0

0 1 0

−y 0 1

 , B =


1 0 0

0 1 0

y 0 1

 .

The motion of the free particle is defined by the regular Lagrangian function

L̄(x, y, z, v̄x, v̄y, v̄z) =
1

2

(
v̄2
x + v̄2

y + (v̄z + yv̄x)2
)
,

and the corresponding Hessian matrix in the quasi-velocities is given by

W̄ =


1 + y2 0 y

0 1 0

y 0 1

 .
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Then, det(A W̄ ) = 1 is a Jacobi multiplier for the free system whose solution is given by the vector

field

ΓL = v̄x ∂/∂x+ v̄y ∂/∂y + (v̄z + yv̄x) ∂/∂z − v̄xv̄y ∂/∂v̄z.

The nonholonomic system is given by the vector field Γ = ΓL + λZ tangent to D, where Z is a

vertical vector field determined by the equation iZωL = τ∗ζ3, namely:

Z = y
∂

∂vx
− ∂

∂vz
= y

∂

∂v̄x
− (1 + y2)

∂

∂v̄z
,

λ is the Lagrange multiplier associated to the constraint v̄z = 0 determined by the tangency condi-

tion,

λ = − v̄xv̄y
1 + y2

,

and then

Γ = v̄x
∂

∂x
+ v̄y

∂

∂y
+ (v̄z + yv̄x)

∂

∂z
− y v̄xv̄y

1 + y2

∂

∂v̄x
,

whose restriction to the constraint submanifold coincides with

Γ0 = v̄x
∂

∂x
+ v̄y

∂

∂y
+ yv̄x

∂

∂z
− y v̄xv̄y

1 + y2

∂

∂v̄x
.

The divergence of the solution Γ with respect to the volume form Ω̄ is non-zero,

div(Γ) = − yv̄y
1 + y2

, (6.8)

and similarly for the divergence of the vector field Γ̄0 with respect to the volume form Ω̄0.

However, the equation (6.8) implies that

d

dt
ln(
√

1 + y2) + div(Γ) = 0, (6.9)

and similarly for Γ̄0 Therefore, µ =
√

1 + y2 is a Jacobi multiplier for (Γ, Ω̄) and also for (Γ,ΩL),

because det(AW̄ ) = 1. Additionally, we can prove that η = (1 + y2)v̄x is also a Jacobi multiplier of

the system, and then I = µ/η =
√

1 + y2 v̄x is a constant of motion for the nonholonomic system.

7 A reduction theorem of a nonholonomic system in quasi-coordinates

Consider the nonholonomic system defined in the previous section, given by the vector field Γ.

Remark that i(Γ)dEL = 0, that is, the energy of the free system is a constant of motion of the
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nonholonomic system. Indeed, by the formula (6.2),

i(Γ)dEL = i(Γ)i(Γ)ωL −
n∑

A=n′+1

λAi(Γ) τ∗αA = −
n∑

A=n′+1

λAi(Γ) τ∗αA. (7.1)

Since the tangency condition i(Γ) τ∗αA = 0, for all A = n′+ 1, . . . , n, then we obtain i(Γ)dEL = 0.

Recall now the main property leading to the introduction of the concept of Jacobi last multiplier

for a given vector field.

Theorem 5 Let µ be a Jacobi multiplier for a vector field X ∈ X(M) on an oriented n-dimensional

manifold (M,Ω). If {I1, . . . , Ik} is a family of k functionally independent first-integrals of X, then

for any k real numbers, a1, . . . , ak, the vector field X is tangent to the (n−k)-dimensional manifold

S(a1,...,ak) given by the level set

S(a1,...,ak) = I−1(a1, . . . , ak) =

k⋂
l=1

I−1
l (al) ,

where I : M → Rk is the map I(p) = (I1(p), . . . , Ik(p)), p ∈M . Moreover, j∗µ ∈ C∞(S(a1,...,ak)) is

a Jacobi multiplier for the restriction of X to such level set S(a1,...,ak) endowed with the (n−k)-form

j∗τ , where j : S(a1,...,ak) → M defines the (n − k)-dimensional submanifold S(a1,...,ak) and τ is the

(n− k)-form τ = ∗(dI1 ∧ · · · ∧ dIk), with ∗ denoting the Hodge operator.

Proof.- The functions Ij are first-integrals, XIj = 0, and therefore X is tangent to each one of the

mentioned level sets, i.e. for any k real numbers, a1, . . . , ak, there exists a vector field X̄ in the

manifold defining S(a1,...,ak) such that X is j-related to X̄.

Note that as the k-first integrals are assumed to be functionally independent, dI1 ∧ · · · ∧ dIk 6= 0,

and the set of k 1-forms {dI1, . . . , dIk} span a (n − k)-dimensional integrable distribution, which

can also be defined by the k-form dI1 ∧ · · · ∧ dIk. The leaves of such foliation are the above

mentioned level sets of I and the vector field X belongs to such distribution. There are adapted

local coordinates systems with coordinates (I1, . . . , Ik, y
1, . . . , yn−k) for which the expression of the

vector field X is X = Yα(I, y) ∂/∂yα. The leaf S(a1,...,ak) is defined by a map j : U →M , where U

is an open set of Rn−k, given by

j(y1, . . . , yn−k) = (a1, . . . , ak, y
1, . . . , yn−k).
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Now note that the n-form Ω1 = dI1 ∧ · · · ∧ dIk ∧ dy1 ∧ · · · ∧ dyn−k is proportional to the volume

form Ω, i.e. there exists a function f such that Ω1 = f Ω. The fact that µ is a Jacobi multiplier for

X with respect to the volume form Ω means that LµX(Ω) = 0, i.e LµX(Ω1) = (µXf/f)Ω1. On

the other side, as LµX(dI1 ∧ · · · ∧ dIk) = 0, we have LµXΩ1 = dI1 ∧ · · · ∧ dIk ∧LµX(dy1 ∧ · · · ∧

dyn−k), and therefore, comparing both values of LµX(Ω1) we arrive to LµX(dy1 ∧ · · · ∧ dyn−k) =

µ (Xf/f)dy1 ∧ · · · ∧ dyn−k. Now, using the Hodge operator defined on (M,Ω) we obtain that

τ = ∗(dI1 ∧ · · · ∧ dIk) = (1/f)dy1 ∧ · · · ∧ dyn−k, and then

LµXτ = LµX

(
1

f
dy1 ∧ · · · ∧ dyn−k

)
= −µXf

f2
dy1 ∧ · · · ∧ dyn−k +

1

f
LµX(dy1 ∧ · · · ∧ dyn−k),

and therefore,

LµXτ =

(
−µXf

f2
+
µXf

f2

)
dy1 ∧ · · · ∧ dyn−k = 0.

Recall that (j∗µ)(y1, . . . , yn−k) = µ(a1, . . . , ak, y
1, . . . , yn−k) and that the vector field j∗µ X̄ is

j-related to µX. Moreover, as

L(j∗µ) X̄(j∗τ) = d
(
i((j∗µ)X̄)(j∗τ)

)
= d (j∗(i(µX)τ)) = j∗ (d(i(µX)τ)) = j∗ (LµXτ) ,

and µ is a Jacobi multiplier for X, then we see that L(j∗µ) X̄(j∗τ) = 0, i.e. j∗µ is a Jacobi multiplier

for X̄ with respect to the volume form j∗τ .�

Corollary 6 If a Jacobi multiplier µ and (n−2) functionally independent first-integrals, {I1, . . . , In−2},

for a given vector field X on an oriented manifold (M,Ω) are known, the determination of the in-

tegral curves of the vector field X is reduced to quadratures.

Proof.- It is a particular case of the previous result for k = n − 2. Once that n − 2 values

a1, . . . , an−2, of the first integrals I1, . . . , In−2 have been fixed, we consider the 2-dimensional man-

ifold j : S(a1,...,an−2) →M endowed with the 2-form j∗τ , defined as above, τ = ∗(dI1 ∧ · · · ∧ dIn−2).

Now the pull back j∗µ is a Jacobi last multiplier for the restriction of the vector field, i.e.

j∗µ [i(X̄)j∗τ ] is closed, and the problem is reduced to quadratures.�

The preceding result is due to Jacobi (see e.g. [28]) and this is the reason for the adjective ‘last’

for this Jacobi multiplier.
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The case of a nonholonomic system described by a regular Lagrangian L defined in TQ, for a

n-dimensional manifold Q, and under the action of r nonholonomic linear constraints ζ̂A = 0, for

A = n− r + . . . , n, is a particular case of a N = 2n dimensional oriented manifold (TQ, ω∧nL ) and

the constants of motion are given by the r linear constraints ζ̂A = 0 and the leaf we are interested

in is given by the zero values set.

The functions ζ̂A are first-integrals, because the vector Γ has been chosen to be tangent to each

one of the mentioned level sets, and in particular for the zero level, and then there exists a vector

field Γ̄0 in the manifold defining S0 such that Γ is j-related to Γ̄0. Moreover, if µ is a Jacobi

multiplier for the vector field Γ with respect to Ω̄, then j∗µ ∈ C∞(S0) is a Jacobi multiplier for the

restriction of Γ to such level S0 endowed with the (2n−r)-form j∗τ , where j : S0 → TQ defines the

(2n − r)-dimensional submanifold S0 and τ is the (2n − r)-form τ = ∗(dv̄n−r+1 ∧ · · · ∧ dv̄n), with

∗ being the Hodge operator. If, furthermore, we know s = 2n − r − 2 functionally independent

constants of motion I1, I2, . . . , Is, the dynamics reduces to a two-dimensional system endowed with

a symplectic form that admits a Jacobi multiplier, and consequently the reduced two-dimensional

system is integrable by quadratures.

8 Summary and outlook

In this paper we have reviewed from a geometric point of view the theory of Jacobi multipliers

and some of its applications, and in particular in the case of second order dynamics described by

a Lagrangian. As our aim was to show how the Jacobi multiplier theory can be used to solve

nonholonomic systems that are described by Hamel’s formalism we have presented the concept of

quasi-velocity in a geometric approach and the Boltzmann-Hamel equations of the dynamics are

rederived. The theory of Jacobi multipliers in the particular case of systems with linear nonholo-

nomic constraints have been developed as well as an updated geometric rederivation in geometric

terms of the Jacobi’s main result concerning the role played by the Jacobi ‘last’ multiplier for the

integrability by quadratures. The particular case of systems with linear nonholonomic constraints

and its reduction has been analysed.

There remain many applications to be developed from this new perspective of Jacobi multipliers

and the use of appropriate quasi-coordinates. The study of Chaplygin systems [19, 20] deserves a
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special attention and will be developed in a future paper. Moreover, as the problem of a Jacobi

multiplier for a given vector field in an oriented manifold can be seen as the search for a confor-

mally related vector field leaving invariant the considered volume form, this suggests the study of

geometric structures, given by tensor fields, that are invariant under a conformally related vector

field, a particular case being the process of Hamiltonisation of a vector field.
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70–72.

[22] A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific (2001).

[23] P. Guha, The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally Confor-

mal Symplectic Structure, In the book Mathematical Structures and Applications, T. Diagana

and B. Toni Eds, STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics and

Health, Springer Nature Switzerland, 2018.

[24] T. Harko, F.S.N. Lobo, and M.K. Mak, A Chiellini type integrability condition for the gener-

alized first kind Abel differential equation, Univ. J. Appl.Math. 1(2) (2014) 101–104.

[25] W.B. Heard, Rigid Body Mechanics, Wiley-VCH, 2006.

[26] S. Hojman and H. Harleston, Equivalent Lagrangians: Multidimensional case, J. Math. Phys.

22 (1981) 1414–1419.

[27] C.G.J. Jacobi, Theoria novi multiplicatoris systemati aequationum differentialium vulgarium

applicandi, J. Reine Angew. Math. (Crelle J.) 27, 199–268 (1844); J. Reine Angew. Math.

(Crelle J.) 29, 213–279, 333–376 (1845). .

[28] C.G.J. Jacobi, A. Clebsch and C. Brockhardt, Jacobi’s Lectures on Dynamics, Texts and

Readings in Mathematics, Hindustan Book Agency, 2009.

[29] J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Arch. Rational

Mech. Anal. 118 (1991) 113–148.

[30] N.A. Kudryashov and D.I. Sinelshchikov, On the criteria for integrability of the Liénard equa-

tion, Appl. Math. Lett. 57 (2016) 114–120.

[31] N.A. Kudryashov and D.I. Sinelshchikov, New non-standard Lagrangians for the Liénard-type

equations, Appl. Math. Lett. 63 (2017) 124–129.

34



[32] M. de León and D.M. de Diego, On the geometry of nonholonomic Lagrangian systems, J.

Math. Phys. 37 (1996) 3389–3414

[33] A. Liénard, Étude des oscillations entretenues, Revue Générale de l’électricité 23 (1928) 901–
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