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Abstract: A novel general method for constructing nonparametric hypotheses tests based on the field
of symbolic analysis is introduced in this paper. Several existing tests based on symbolic entropy
that have been used for testing central hypotheses in several branches of science (particularly in
economics and statistics) are particular cases of this general approach. This family of symbolic
tests uses few assumptions, which increases the general applicability of any symbolic-based test.
Additionally, as a theoretical application of this method, we construct and put forward four new
statistics to test for the null hypothesis of spatiotemporal independence. There are very few tests
in the specialized literature in this regard. The new tests were evaluated with the mean of several
Monte Carlo experiments. The results highlight the outstanding performance of the proposed test.

Keywords: symbolic dynamics; time series analysis; test hypothesis

1. Introduction

The construction and design of powerful statistical tests are crucial elements for both
theoretical and applied scientists. The utility of a test generally depends on its degree of
applicability, which is usually related to the assumptions contained in the design of the
test, and the restrictions of the scientific field in which the test will be used. Nowadays,
the utility of statistical tests also depends on efficiency: reducing the need for computational
resources and speed, which are vital for real-time monitoring and control applications.
Taking applicability and efficiency into account, in this paper we propose a new general,
flexible statistical methodology to design and test central hypotheses, and we establish an
asymptotic distribution theory for a wide range of tests by using the new proposed approach.

The new framework is based on symbolic analysis, which is a field of increasing
interest for several scientific disciplines (see [1]) Symbolic analysis studies dynamical
systems on the basis of the sequences of symbols which are obtained for a suitable (and
generally selected by the user) partition of the state space. In other words, the idea behind
the symbolic approach is to split the phase space into a finite number of regions, and then
each region is labeled with a symbol. From this point of view, the symbolic approach is a
coarse-grained description of dynamics. As coarse-grained methods, which are usually
used to provide some description of the data generating process, symbolic analysis focuses
on some essential features of the generating dynamics which are frequently of interest to
the researcher, for example, (in)dependence, cycles and nonlinear structure. In general
terms, it can be said that symbolic analysis allows for designing tests that only focus on the
relevant information required for the problem at hand.

This approach is not new in science. In the particular case of time series analysis,
the symbolic approach implies transforming raw time series into a sequence of symbols.
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Although seeminglycounter-intuitive, symbolic analysis is rooted in information theory
and also in dynamics theory. For example, properties of symbols or codes are central to
the theory of communication [2]. Not in vein, there is a well-established mathematical
discipline, namely, symbolic dynamics, that studies the behavior of dynamical systems.
The name of “symbolic dynamics” was firstly coined by [3], although the discipline started
in 1898 with the pioneering work by Hadamard, who developed a symbolic description of
sequences of geodesic flows. Interestingly, ref. [4] highlighted the power of the symbolic
approach by showing that a complete description of the behavior of a dynamical system can
be captured in terms of symbols. Notice that this property is crucial for the understanding
of this paper as long as important characteristics of a random variable can also be captured
by studying the symbols derived from it.

The symbolic approach has been useful in many areas of scientific research. In the ex-
perimentalist realm, relevant contributions have been made in several fields: astrophysics;
biology and medicine; chemistry, mechanical systems and fluid flow; artificial intelligence,
control and communication; and data mining, classification and rule discovery ([5–7],
for an overview). In the non-experimentalist realm, symbolic analysis has been interest-
ingly used. In economics and finance, data are transformed and analyzed in terms of
particular symbols [8]. Two examples are recession indicators utilized to study and to de-
termine the business cycle, and the indicators used to characterize the stock market bull and
bear market periods. In geography, works like that of [9] show how qualitative variables
(symbolic analysis) can be used to map descriptions. In spatial econometrics, economic
spatial dependence has recently been studied by transforming data into symbols [10,11].
Other interesting applications are [12,13].

Despite all these interesting applications and the scientifically founded roots of the
symbolic approach, there is no systematic body of statistical tools for conducting inference
based on symbolic sequences. There are some notable exceptions: [14–21]. A common factor
to all of these statistical approaches is that they are centered on ordinal patterns, which is
one type of symbol. In this paper we present a novel, systematic and general framework
for any potential symbol in order to test for wide range of potential null hypotheses that
include, as particular cases, most of the previously indicated multidisciplinary situations,
namely, ordinal patterns. We also provide a general asymptotic distribution theory for
symbolic analysis. Particularly, this paper shows how, by means of symbols, it is possible
to design nonparametric tests for a wide class of null hypotheses with special attention to
limitations (restrictions) that typically appear in economics and finance. Therefore, this
paper aims also to provide the theoretical basis for hypothesis testing by means of symbols.

An appealing advantage to symbolic analysis is that it requires very few assumptions
about the data generating process in order to conduct statistical inference. This advantage
is promising as the tools based on this method will share the model-free property, which
avoids making unnecessary assumptions and provides more general results. Most of the
econometric and statistical tests typically used in some of the mentioned disciplines cannot
deal with potential nonlinear forms of dependence. By construction, nonlinear structures
are not a limitation for symbolic analysis.

The capability of this approach is clearly illustrated by the scope of what we label
“the symbolic main theorem” (SMT). Given a null hypothesis H0, for example, the null of
serial independence, the SMT will give us four nonparametric asymptotic tests for that
null, which are distribution free. The transformation of data into symbols is done by
means of a symbolization map. Some of its properties are also studied in this paper. These
symbolic-based tests have to deal with ordinary statistical problems that usually appear
in economics and finance, such as data scarcity and suboptimal empirical power of the
test. Given the flexibility of the symbols, we provide theoretical results and strategies to
overcome such difficulties.

A clear example of the power of the new tool is illustrated by the spatio-temporal
data modeling issues occupying a prominent role in spatial econometrics, geography and
regional science, about which we can find a vast amount of literature ([3], and references
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therein). We constructed several symbolic-based tests by using the SMT. These tests also
constitute an added-value of the paper, because there are currently very few available tests
designed to deal with spatiotemporal dependence. The problem becomes more difficult if
potential nonlinear dependence is considered. A notable exception is [9] who has treated
nonlinearity in a spatial framework.

Finally, the results of this paper might be of interest to fields of research where
information theory plays a relevant role. Particularly, nonparametric entropy measures
and tests for serial dependence have drawn the attention of econometricians (see [22] and
references therein). The clearest link between our results and information theory is through
the concept of symbolic entropy. In the context of time series analysis, permutation entropy,
which is a type of symbolic entropy, uses the probabilities of length-m ordinal patterns in the
definition of Shannon entropy. An ordinal pattern is a particular type of symbolization map.
Given the characteristics of this map, the SMT allows us to obtain an asymptotic distribution
theory for a permutation entropy-based test. Providing the statistical foundation for
permutation entropy is specially relevant because: (a) there are very few asymptotic
distribution theories available for entropy, in general; and (b) permutation entropy is
currently used in computer science due to its relation to “incompressibility”, and is also
useful in the study of dynamical systems because of its connection to complexity.

From another point of view, some well-established nonparametric tests can be un-
derstood as particular types of symbolic analysis. For example, the nonparametric runs
test for randomness by Wald-Wolfowitz (see [23]); joint-counting procedures for spatial
association [24]; and in general, categorical data techniques [25] are simple examples that
use the very general procedures of translating information into symbols. In this regard,
symbolic analysis can be understood as a method related to this literature.

The paper is organized as follows: In Section 2, we provide the main notation and
relevant concepts that will be used in the paper. Among them we highlight: symbolization
maps, standard or non-standard maps and decomposable maps. Due to the generality of the
method, we require the potential tests to be adaptable to different contexts that are to be able
to deal with a wide range of null hypotheses. To this end we introduce the notion of perfect
and non-perfect set on subindexes in Section 3. This allows us to give general theoretical
results to tackle practical situations that might otherwise be intractable because of the
problem and/or of the type of hypothesis. Therefore we distinguish between two main
classes of theoretical situations that lead us to different statistical solutions. In Section 4
we show how to construct symbolic-based tests via likelihood ratio statistics and via
asymptotic normality. Section 5 considers the theoretical case that the null hypothesis
cannot be treated under perfect situations, and hence other results are applicable. Section 6
puts forward the main theorem of this paper. Under the general conditions of this theorem,
we introduce four tests for serial independence, four tests for spatial independence and
four new tests for spatiotemporal independence, in Section 7. These tests are based
on different symbolization maps, according to those given in Sections 2 and 3. Finally,
in Section 8, we outline a Monte Carlo simulation experiment to show the capabilities of
the spatiotemporal test for independence under linear and nonlinear settings. The paper
ends with some conclusions.

2. Notation and Definitions

As indicated in the previous section, we give some definitions and introduce the basic
notation that will be used throughout the rest of the paper.

Let {Xi}i∈I be a stationary real-valued process, where I is a set of indexes.
Let Γ = {η1, η2, . . . , ηn} be a set of n > 1 elements that we label as symbols. Now

assume that there exists a map
f : {Xi}i∈I′ → Γ

for some subset of indexes I′ ⊆ I. We will say that i ∈ I is of η-type if and only if f (Xi) = η.
We will call the map f a symbolization map for {Xi}i∈I .
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Notice that it is possible to expand the definition of a symbolization map to the
k−dimensional case by introducing the concept of decomposable maps: if f j : {Xij}i∈I′ →
Γj, j = 1, 2, . . . , k, are k symbolization maps, then the product

F =
k

∏
j=1

f j :
k

∏
j=1
{Xij}i∈I′ →

k

∏
j=1

Γj

is a symbolization map for the k-dimensional variable {(Xi1, Xi2, . . . , Xik)}i∈I′ . We will
call F a k-decomposable symbolization map.

Given a symbolization map f : {Xi}i∈I′ → Γ and a symbol η ∈ Γ, we denote by pη the
probability of occurrence of symbol η. Symbolization maps can be classified according to
their behavior under the null hypothesis. If the symbolization map f is such that under a
given null hypothesis (H0) all the symbols have the same probability to occur, we will say
that f is a standard symbolization map. On the contrary, we will refer to f as a non-standard
symbolization map.

The symbolic entropy of a process {Xi}i∈I′ is defined as the Shannon’s entropy of the
n distinct symbols as follows:

h(Γ) = − ∑
η∈Γ

pη ln(pη), (1)

with the convention 0× ln 0 = lı́mx→0+x ln x = 0.
Symbolic entropy, h(Γ), can be understood as the information in terms of symbols

η ∈ Γ of the process {Xi}i∈I′ . Notice that 0 ≤ h(Γ) ≤ ln(n). Notice also that the lower
bound is attained when only one symbol occurs, and the upper bound when all n possible
symbols appear with the same probability.

Consider the following index i ∈ I′ that we define an indicator random variable Zηi
as follows:

Zηi =

{
1 if f (Xi) = η
0 otherwise,

that is, we have that Zηi = 1 if and only if i is of η-type, and Zηi = 0 otherwise.
Then Zηi is a Bernoulli variable with probability of “success” pη , where “success”

means that i is of η-type. It is straightforward to see that

∑
η∈Γ

pη = 1

Our interest is in knowing how many is are of η-type for all symbol η ∈ Γ. In order to
answer the question, we construct the following counting variable:

Yη = ∑
i∈I′

Zηi

The variable Yη can take the values {0, 1, 2, . . . , R}, where |I′| = R.
To complete with notation, we will denote by

nη =
∣∣{i ∈ I′| f (Xi) = η}

∣∣,
the cardinality of the subset of symbolized indexes I′ formed by all the elements of η-type.

Then, under the conditions above, one could easily compute the relative frequency of
a symbol η ∈ Γ by:

p̂η :=
|{i ∈ I′ | i is of η − type}|

R
which is the maximum likelihood estimator of pη .
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3. On the Independence of Variables {Zη i}i∈I′

If the subset of symbolized indexes I′ is chosen such that the Zηi variables are inde-
pendent for all i ∈ I′, then Yη is a binomial random variable

Yη ∼ B(R, pη).

Moreover, if the subset of indexes I′ is such that the variables Zηs and Zσt are indepen-
dent for all symbol ηs, σt ∈ Γ, s 6= t, where s, t ∈ {1, 2, . . . , n}, then the joint probability
density function of the n variables (Yη1 , Yη2 , . . . , Yηn) is:

P(Yη1 = a1, Yη2 = a2, . . . , Yηn = an) =
(a1 + a2 + · · ·+ an)!

a1!a2! · · · · · an!
pa1

η1 pa2
η2 · · · p

an
ηn

where a1 + a2 + · · · + an = R. Consequently the joint distribution of the n variables
(Yη1 , Yη2 , . . . , Yηn) is a multinomial distribution. In this case we will call the set of symbol-
ized indexes I′ a perfect subset.

It is possible to develop theoretical results that contemplate situations for which the
researcher will benefit of constructing symbolization maps for which the set I′ is not perfect.
Given our previous definition of perfect set, the indexes subset I′ can be nonperfect in the
following cases:

• Case (a): Zηi and Zη j are not independent for all i 6= j for some η ∈ Γ, and hence Yη is
not a binomial random variable.

• Case (b): Zηs and Zσt are not independent for all s 6= t for some σt, ηs ∈ Γ, and hence
(Yη1 , Yη2 , . . . , Yηn) is not a multinomial distribution.

Theoretical results for perfect and non-perfect subsets are the topics of the following
two sections.

4. Constructing Tests with Perfect Subsets of I

In this section we establish a general framework for testing for a null hypothesis H0.
This is done by focusing on the symbols’ distribution when the subset I′ of symbolized
symbols is perfect. Under this condition, we now show how to construct tests of hypothesis
via likelihood ratio statistics and via asymptotic normality.

Procedure

In general, our procedure consists of proceeding systematically as follows:

1. (step 1) Fix the null hypothesis H0 to be tested.
2. (step 2) Define the set of symbols Γ and the symbolization map f .

3. (step 3) Compute the distribution of the symbols under H0, namely, p(0)η for all η ∈ Γ.
4. (step 4) Finally design and compute a desired test statistic.

Steps 1 to 2 will be developed later in the paper. To accomplish the aim with steps 3
and 4, we first show how to construct a likelihood ratio test.

Recall that when the set is perfect, (Yη1 , . . . , Yηn) follows a multinomial distribution
and its likelihood function is:

L(pη1 , pη2 , . . . , pηn) =
R!

nη1 !nη2 ! · · · · · nηn !
p

nη1
η1 p

nη2
η2 · · · p

nηn
ηn

and the likelihood ratio test statistic is

λ(Y) =
R!

nη1 !nη2 !·····nηn ! p
(0)nη1
η1 p

(0)nη2
η2 · · · p(0)nηn

ηn

R!
nη1 !nη2 !·····nηn ! p̂

nη1
η1 p̂

nη2
η2 · · · p̂

nηn
ηn

, (2)

where p̂ηi is the maximum likelihood estimator of pηi for all i = 1, 2, . . . , n. In this case,
as shown in the Appendix A, maximum likelihood estimators are p̂ηi =

nηi
R .
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Moreover, it is possible to show (see Appendix A.2) that

−2[RLn(R) +
n

∑
i=1

nηi Ln

(
pηi

n0
ηi

)
] ∼ χ2

k ,

where the k degrees of freedom will depend on the set of symbols.
It is also proved that, if standard symbolization maps are considered, then

2R[Ln(n)− h(Γ)] ∼ χ2
k , (3)

which is an affine transformation of the symbolic entropy (1).
As we have emphasized in the Introduction that nonparametric results of entropy

based measures are relevant for econometrics and for other fields of research. Given that
the distribution of the affine transformation in (3) holds for standard symbolization maps
under broad conditions, this result will be of general applicability. In particular, as we will
show in other sections, permutation entropy, as introduced in [26], is a particular type of
symbolic entropy that has drew the attention of several scholars for theoretical interests
basically because stationary and ergodic processes coincide with Shannon entropy, and for
an applied interest in nonlinear and complex systems or processes (see [1]). In this regard,
(2) and (3) can be viewed as an initial step towards statistical inference of ordinal pattern
distributions.

An alternative to likelihood ratio tests for symbolic maps can be considered by modify-
ing step 4. Given that under a perfect subset I′ the indicator variables Zηi are independent,

the random variable Yη−Rpη√
Rpη(1−pη)

has a limiting normal distribution with zero mean and

unit variance for all symbol η ∈ Γ. Moreover Yη1 − Rpη1√
Rpη1(1− pη1)

,
Yη2 − Rpη2√
Rpη2(1− pη2)

, . . . ,
Yηn − Rpηn√
Rpηn(1− pηn)


asymptotically distributes as a multivariate normal distribution MN(0, I). In this case,
the asymptotic distribution holds for standard or nonstandard symbolization maps at the
cost of estimating pηi that can be consistently estimated by p̂ηi .

5. Constructing Tests with Non Perfect Subsets of I

In this section we establish the equivalent counterpart of the general framework
(above presented) when the subset I′ of symbolized symbols is non-perfect. Accordingly,
we now show to what extent and under which situations the previous likelihood and
asymptotically normal tests (elaborated under perfect situations) can be adapted to deal
with them.

Non perfect sets of indexes I might be very useful for test design, especially for
situations or scientific domains characterized by relatively scarce sample size as compared
with the number of symbols. In macroeconomics, although not necessarily in finance,
data scarcity can be the usual restriction. Ideally, one can be able to design perfect sets of
indexes to carry out symbolic-based hypothesis testing. This section then tries to provide
symbolic-based methods for constructing hypothesis tests for situations for which an ideal
design is not possible because of the nature of the problem, because of the computational
capabilities or because of any other potential reason.

5.1. Binomial Approximation

Let us consider that variables Zηi and Zη j are not independent for all i 6= j for some
η ∈ Γ. In this case, Yη is not a binomial random variable. The interesting question is how
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far is Yη from B(R, pη). We are interested in studying under what assumptions the variable
Yη can be approximated to a binomial random variable:

Yη ≈ B(R, pη).

In fact, it is possible to compute a bound for this binomial approximation.
Denote by L(Yη) the distribution of Yη , and we are interested in the bound of the

binomial approximation of the distribution of Yη measured in terms of total variation
distance. The total variation distance dTV between two probability measures P and Q is
defined by

dTV(P, Q) = sup
A
|P(A)−Q(A)|

where the supremum is taken over all measurable sets of the real line.
Following Theorem 1.1 in [27] and after a few calculations, a bound can be given

as follows:
For each i, j ∈ I′ let Zη j, Zηi and Jηij be defined in the same probability space where

Jη ji = (Zη j|Zηi = 1). Let
Wi = ∑

j 6=i
Zη j Vi = ∑

j 6=i
Jη ji

and

CR,p =
1− pR+1 − qR+1

(R + 1)pq
.

Wi counts the number of indexes that are of η-type and p = pη and q = 1− pη . On the other
hand Vi = ∑

j 6=i
(Zη j|Zηi = 1) counts the number of indexes that are of η-type conditioned to

location i is of η-type.
Then

dTV(L(Yη), B(R, p)) ≤ CR,p p
R

∑
i=1

E(|Wi −Vi|).

Therefore, in order to get a bound for the binomial approximation, we have to get
bound

R

∑
i=1

E(|Wi −Vi|).

On the other hand, we have that E(|Wi − Vi|) ≤ ∑
j 6=i

E(|Zη j − Jη ji|) and pE(Jη ji) =

E(ZηiZη j). Now denote by Bη
i a subset of indexes such that Zηi is independent of {Zη j| j 6∈

Bi}. Therefore, we obtain that

dTV(L(Yη), B(R, p)) ≤ CR,p p
R

∑
i=1

E(|Wi −Vi|)

≤ CR,p p
R

∑
i=1

∑
j∈Bi\{i}

E(|Zη j − Jη ji|)

≤ CR,p p
R

∑
i=1

∑
j∈Bi\{i}

(
p + E(Jη ji)

)

≤ CR,p

 R

∑
i=1

p2(|Bi| − 1) +
R

∑
i=1

∑
j∈Bi\{i}

E(ZηiZη j)


Therefore, we have shown that the sum of dependent indicators can be approximated

to a binomial random variable when the following two conditions are satisfied: (1) depen-
dencies among the indicators are weak and (2) the probabilities of the indicators occurring
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under the null hypothesis are small. Notice that point (1) can be guaranteed by selecting
the subset of symbolized indexes I′ such that |Bi| is small enough.

5.2. Normal Approximation

Additionally, when the indicator variables Zηi are not independent for all i ∈ I′,
the following central limit theorem for dependent indicators ensures the convergence to a
normal distribution:

Theorem 1 (Theorem 7.7.5 (Anderson, 1971)). Let Z1, Z2, . . . be a stationary stochastic process
such that for every integer n and integers t1, t2, . . . , tn with t1 < · · · < tn, Zt1 , . . . , Ztn are
distributed independently of Z1, . . . , Zt1−m−1 and Ztn+m+1, . . . . If E(Zt) = 0 and E(Z2

t ) < ∞,
then

T
∑

t=1
Zt

√
T

has a limiting normal distribution with mean 0 and variance

E(Z2
1) + 2E(Z1Z2) + · · ·+ 2E(Z1Zm+1).

Theorem 1 states that, if the dependencies are weak (for instance, |Bi| is small enough

for all i ∈ I′) we get that Yη−Rpη√
Var(Yη)

d→ N(0, 1) as R → ∞. The variance of the variable Yη

can be computed as follows:

Var(Yη) = E(Y2
η )− E(Yη)

2 =
R

∑
i=1

E(Z2
ηi) +

R

∑
i=1

∑
j 6=i

E(ZηiZη j)− R2 p2
η

= Rpη − R2 p2
η +

R

∑
i=1

(R− |Bi|)p2
η +

R

∑
i=1

∑
j∈Bi\{i}

E(ZηiZη j)

= Rpη − R2 p2
η + R2 p2

η − p2
η

R

∑
i=1
|Bi|+

R

∑
i=1

∑
j∈Bi\{i}

E(ZηiZη j)

= Rpη − p2
η

R

∑
i=1
|Bi|+

R

∑
i=1

∑
j∈Bi\{i}

E(ZηiZη j) (4)

We now consider the case where Zηs and Zσt are not independent for all s 6= t for some
σt, ηs ∈ Γ, and hence (Yη1 , Yη2 , . . . , Yηn) is not a multinomial distribution (i.e., previous case

(b)). To this end, denote by B(η,σ)
i the subset of indexes satisfying that Zηi is independent

of {Zσj| j 6∈ B(η,σ)
i } and Xη =

Yη−Rpη√
Var(Yη)

. It is possible to show that (Xη1 , Xη2 , . . . , Xηn)

is a multivariate normal distribution. In fact, it is equivalent to proving that any linear
combination of the Xηs is normal. In order to do so, notice that each variable Xη is a sum
of indicator variables, and therefore, any linear combination of these variables is again a
sum of indicator variables. Consider an arbitrary linear combination as follows:

M = α1Xη1 + α2Xη2 + · · ·+ αnXηn

Notice that the variable αXη can be written as αXη =
R
∑

i=1
Iη
i where Iη

i is an indicator

variable for all i ∈ I′. Therefore, it follows that the variable M is a sum of dependent
indicator variables. Again, by Theorem 1 we get that M follows a normal distribution
whenever the dependencies among the indicator variables are weak (for instance, when the
cardinality of the set Bi ∪ B(ηs ,ηt)

i is small enough for all i ∈ I′ and all symbol η, ηs, ηt ∈ Γ).
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Then we get that (Xη1 , Xη2 , . . . , Xηn) has a limiting multivariate normal distribution and
we can compute the variance and covariance matrix for all ηs, ηt ∈ Γ as follows:

Cov(Yηs , Yηt) =
R

∑
i=1

R

∑
j=1

Cov(Zηsi, Zηt j) =
R

∑
i=1

∑
j∈B(ηs ,ηt)

i

Cov(Zηsi, Zηt j)

=
R

∑
i=1

∑
j∈B(ηs ,ηt)

i

{E(ZηsiZηt j)− E(Zηsi)E(Zηt j)}

= pηs

R

∑
i=1

∑
j∈B(ηs ,ηt)

i

p(Zηt j = 1|Zηsi = 1)− pηs pηt

R

∑
i=1
|B(ηs ,ηt)

i |. (5)

6. The Symbolic Main Theorem

Previous partial results can be collected in the following main theorem.

Theorem 2. Let {Xi}i∈I′ be a stationary real valued process. Let Γ = {η1, η2, . . . , ηn} be a finite
set of symbols. Let f : {Xi}i∈I′ → Γ be a standard symbolization map for a null hypothesis H0.
Then under the null H0 we have that:

• If the set of symbolized indexes I′ is perfect:

1. Then G(Γ) = 2R[ln(n)− h(Γ)] is asymptotically χ2
k distributed where k is the differ-

ence between the number of parameters to be estimated under the alternative hypothesis
H1 and the number of parameters to be estimated under the null H0.

2. Then (
Yη1−Rpη1√
Rpη1 (1−pη1 )

,
Yη2−Rpη2√
Rpη2 (1−pη2 )

, . . . , Yηn−Rpηn√
Rpηn (1−pηn )

) is a multivariate normal dis-

tribution MN(0, I).

• The set of symbolized indexes I′ is not perfect:

1. If the sets Bi and B(ηs ,ηt)
i have good properties in the sense that for all symbol η ∈ Γ the

variables Yη have a good approximation to a binomial distribution and (Yη1 , Yη2 , . . . , Yηn)
has a good approximation to a multinomial distribution, then G(Γ) = 2R[ln(n)− h(Γ)]
is asymptotically χ2

k distributed where k is the difference between the number of parame-
ters to be estimated under the alternative hypothesis H1 and the number of parameters
to be estimated under the null H0.

2. If I′ is such that Theorem 1 holds, then (
Yη1−Rpη1√

Var(Yη1 )
,

Yη2−Rpη2√
Var(Yη2 )

, . . . , Yηn−Rpηn√
Var(Yηn )

) is a

multivariate normal distribution MN(0, Σ) where the variance and covariance matrix
can be estimated using (4) and (5).

Notice that in the case of nonstandard symbolization maps, an analogous theorem to
Theorem 2 will hold. More concretely, for point 1 of the SMT, a likelihood ratio test is also
available, although not in the closed form as presented here (see for example [28]). Point 2
of the SMT hold independently of whether the symbolization map is standard.

The usefulness of the theorem will become evident in the next section, where it will
be applied to specific null hypotheses. Naturally, it is possible to consider an alternatively
bootstrap-based test for symbolization maps, instead of asymptotic ones, although we do
not follow this way in this paper, it being a subfield for further research of interest since it
partially might avoid taking care of nonperfect indexes sets.

7. Different Symbolizations for Different Nulls Related with Independence

According to the general symbolic theorem, in this section we show how it is possible
to test interesting null hypotheses by using symbolic analysis. To concrete, we focus on
testing for different nulls of independence as it is a well-known field of research and
because recently published articles can be generally understood and extended under
this new theoretical framework. Given that each null hypothesis (step 1) will require a
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particular symbolization map, in this section we present different symbolization procedures
(step 2) to test for serial dependence, spatial dependence, and spatiotemporal dependence,
respectively. Then we present the results of step 3 and step 4 depending on the statistic
technique the researcher wants to use according to Theorem 2, i.e., either likelihood ratio
statistics or/and asymptotically normal statistics. Given a null hypothesis, the behavior of
the tests obtained from this approach will strongly depend on the expertise of the researcher
in constructing the symbolization map. We emphasize that both power analysis of the class
of tests, and power competition among alternative nonparametric tests were already given
in previous work [10,16]; therefore, we are not going to replicate them here.

As we have indicated, the crucial component of the symbolic procedure is to choose a
symbolic mapping which ensures that the distribution of the symbols can detect deviations
from the null. The null hypotheses considered in this section are related to the important
topic of “statistical independence”. This is a very well-studied topic in time series analysis
and therefore there is a generous number of available tests. On the contrary, spatial
independence is not so well-known and is non-trivial how to test for it. As we will show, it
is needed to use another different symbolization map for detecting spatial patterns. Similar
comments can be made for spatio-temporal independence. Needless to say, there are other
hypotheses of interest in econometrics, and the researcher will have to design suitable
symbolic maps for testing them. For example, in [29], the authors dealt with the opposite
problem: how to test for a pure deterministic chaotic process. In these and other cases,
the power of the tests will centrally depend on the ability of the research to design the
symbolization map for the desired null hypothesis.

7.1. Serial Independence Tests

In the case of time series, refs. [15,16] used the following symbolization procedure to
test for serial dependence: Let {Xt}t∈I be a real-valued time series (in this case the subindex
t refers to time) for which we are interested in testing the null of serial independence (step 1).
In order to complete step 2, we denote by Γ1 = Sm the symmetric group of order m!, that
is, the group formed by all the permutations of length m (for a positive integer m ≥ 2).
Let πi = (i1, i2, . . . , im) ∈ Sm. The positive integer m is usually known as the embedding
dimension.

An ordinal pattern for a symbol is defined as πi = (i1, i2, . . . , im) ∈ Sm at a given time
t ∈ I. The time series can be embedded in an m-dimensional space:

Xm(t) = (Xt+1, Xt+2, . . . , Xt+m) for t ∈ I

It is said that t is of πi−type if and only if πi = (i1, i2, . . . , im) is the unique symbol in
the group Sm satisfying the two following conditions:

(a) Xt+i1 ≤ Xt+i2 ≤ · · · ≤ Xt+im , and

(b) is−1 < is if Xt+is−1 = Xt+is

Notice that condition (b) guaranties uniqueness of the symbol πi. This is justified if
the values of Xt have a continuous distribution so that equal values are very uncommon,
with a theoretical probability of occurrence of 0.

In this case, the symbolization map is defined as f1 : {Xt}t∈I′ → Sm given by

f1(Xt) = (i1, i2, . . . , im) (6)

where (i1, i2, . . . , im) ∈ Sm is such that t is of (i1, i2, . . . , im)-type. Now the design of the
symbolization map (step 2) is completed.

Moreover, under the null of independence the distribution of the symbols is uni-
form and therefore the map f1 is a standard symbolization map. Additionally, the set of
symbolized indexes is I′ = {1, 2, . . . , T −m + 1}, which is not perfect.
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Notice that in order to have a perfect set and therefore ensure the independence of the
indicator variables Zπt, it is enough to consider as a set of symbolized indexes

I′ = {0, m− 1, 2(m− 1), . . . , t(m− 1), . . . }.

Accordingly, using this symbolization map, the next corollary straightforwardly fol-
lows from Theorem 2:

Corollary 1. Let f1 : {Xt}t∈I′ → Γ1 be the symbolization map defined in (6) with |I′| = R. De-
note by h(Γ1) the permutation entropy defined in (1). If the time series {Xt}t∈I is independent, then

• If the set I′ is perfect, then:

1. The affine transformation of the permutation entropy

G(Sm) = 2R[Ln(m!)− h(Sm)]

is asymptotically χ2
m!−1 distributed.

2. Then (
Yπ1−Rpπ1√
Rpπ1 (1−pπ1 )

,
Yπ2−Rpπ2√
Rpπ2 (1−pπ2 )

, . . . ,
Yπm!−Rpπm!√
Rpπm! (1−pπm! )

) is a multivariate normal

distribution NM(0, I).

• If the set I′ is not perfect:

1. Since the sets Bπ
i ’s has cardinality of at most 2m, we can get a good approximation to

the following result via [21]. The affine transformation of the permutation entropy

G(Sm) = 2R[Ln(m!)− h(Sm)]

is asymptotically χ2
m!−1 distributed.

2. Then (
Yπ1−Rpπ1√

Var(Yπ1 )
,

Yπ2−Rpπ2√
Var(Yπ2 )

, . . . ,
Yπm!−Rpπm!√

Var(Yπm! )
) is a multivariate normal distribution

MN(0, Σ) where the variance and covariance matrix can be estimated using (4) and (5).

These results for permutation entropy are in relation to a relatively recent line of
research based on order patterns for analyzing time series. Ordinal patterns can be, per
se, used for descriptive purposes, like autocorrelation, with the added advantage that
the require no assumptions such as Gaussianity or linearity. On the contrary, only mild
stationary conditions can exist in the underlying process. The above corollary is a further
step for the development of statistical inference for ordinal time series. Naturally, it is
possible to obtain other kinds of statistical results by adding more assumptions to the
generating process. In fact, notorious results can be found in [4]) if Gaussianity and
ergodicity are assumed. In this regard, our asymptotic results for order patterns keep
assumptions at a minimum. Additionally, by maintaining general applicability at minimum
cost (in terms of assumptions) for serial independence tests, some bootstrap-based statistics
for ordinal patterns have been put forward in [29].

An interesting property of the symbolization procedure presented in this section
is that it can be also used for discrete distributions. To do so it necessary to consider a
non-standard version of the map. Under such circumstances, the likelihood ratio (2) can be
directly used once the behavior of pηi is known under the null of serial independence.

7.2. Spatial Independence Tests

In the case of spatial processes, ref. [10] gave a symbolization procedure to test for
spatial independence as follows: Let {Xs}s∈S be a real-valued spatial process, where S is a
set of coordinates. Given a location s0, we will denote by (ρ0

i , θ0
i ) the polar coordinates of

location si taking as origin s0.
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Let m ∈ N with m ≥ 2. Consider now that the spatial process {Xs}s∈S is embedded in
a different m-dimensional space as follows:

Xm(s0) = (Xs0 , Xs1 , . . . , Xsm−1) for s0 ∈ S

where s1, s2, . . . , sm−1 are the m − 1 nearest neighbors to s0, which are ordered from
lesser to higher Euclidean distance with respect to location s0. Notice that in the case of
two or more locations being equidistant to s0, we will choose them in an anticlockwise
manner. In formal terms, s1, s2, . . . , sm−1 are the m− 1 nearest neighbors to s0 satisfying
the following two conditions:

• (a) ρ0
1 ≤ ρ0

2 ≤ · · · ≤ ρ0
m−1;

• (b) If ρ0
i = ρ0

i+1, then θ0
i < θ0

i+1.

Notice that conditions (a) and (b) ensure the uniqueness of Xm(s) for all s ∈ S.
The proposed standard symbolization map f is defined as follows: denote by Me the

median of the spatial process {Xs}s∈S and let

δs =

{
0 if Xs ≤ Me
1 otherwise

Now, define the indicator function

Is1s2 =

{
0 if δs1 6= δs2

1 otherwise
(7)

Then, the standard symbolization map

f2 : {Xs}s∈I′ → Γ2 (8)

is defined as:
f2(Xs) = (Iss1 , Iss2 , . . . , Issm−1), (9)

where Γ2 stands for the set of symbols defined by f2.
Notice that under the null of spatial independence, the distribution of the symbols is

uniform and therefore the map f2 is a standard symbolization map.
Moreover, in this case I′ = S is not a perfect symbolized set. To construct a perfect

symbolized set I′, one can proceed as follows. Take a location s0 ∈ S at random. Let
Ns be the set of nearest neighbors to s. Now select the following element in I′ by taking
s1 ∈ S such that Ns1 ∩ Ns0 = ∅. Then construct recursively the set I′ by taking sk ∈
S \ {s0, s1, . . . , sk−1} satisfying Nsi ∩ Nsj = ∅ for all i 6= j with i, j = 1, 2, . . . , k.

As it is evident, the method is flexible enough to allow the researcher to select his own
set and map of symbols for a given null. For example, if under the previous symbolization
procedure, the power (or size) of the test is not satisfactory, one can always consider
other possible symbolization procedures for the same null and for the same spatial process
{Xs}s∈S. Let Γ3 = {1, 2, . . . , k}× {1, 2, . . . , k}. Again, let Ns be the set of nearest neighbors
to s and let ns be its cardinality. Denote by XN

s = 1
ns

∑
s′∈Ns

Xs′ . Denote by qi and qN
i the i-th

quantile of the variables X and XN respectively, for i ∈ {1, 2, . . . , k− 1}. We will denote
by q0 = min

s∈S
Xs (resp qN

0 = min
s∈S

XN
s ) and qk+1 = max

s∈S
Xs (resp. qN

k+1 = max
s∈S

XN
s ). Then we

define the symbolization map
f3(Xs) = (i, j) (10)

if and only if Xs ∈ [qi−1, qi] and XN
s ∈ [qN

j−1, qN
j ].

Again, under the null of independence the distribution of the symbols is uniform and
therefore the map f3 : {Xs}s∈I′ → {1, 2, . . . , k} × {1, 2, . . . , k} is a standard symboliza-
tion map.
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Again, the same set of recursively constructed symbolized indexes S′ ensures the
independence of the indicator variables Zηs. Accordingly, using this symbolization map,
the next corollary straightforwardly follows from Theorem 2:

Corollary 2. Let fi : {Xs}s∈S′ → Γi, i = 2, 3 be the symbolization maps defined in (8) and (10)
with |S′| = R. Denote by h(Γi) the symbolic entropy defined in (1). If the spatial process {Xs}s∈S
is independent, it follows that:

• If the set S′ is perfect then:

1. The affine transformation of the symbolic entropy

SG(Γi) = 2R[Ln(ni)− h(Γi)]

is asymptotically χ2
di

distributed where d2 = 2m−1, d3 = (k− 1)2 + 2, n2 = 2m−1 and
n3 = k2.

2. Then (
Yσ1−Rpσ1√
Rpσ1 (1−pσ1 )

,
Yσ2−Rpσ2√
Rpσ2 (1−pσ2 )

, . . . ,
Yσni−Rpσni√
Rpσni (1−pni)

) is a multivariate normal dis-

tribution MN(0, I).

• If the set S′ is not perfect, then:

1. Since the sets Bσ
i have small cardinality, we can get a good approximation to the following

result of [17]. The affine transformation of the symbolic entropy

SG(Γi) = 2R[Ln(ni)− h(Γi)]

is asymptotically χ2
di

distributed where d2 = 2m−1, d3 = (k− 1)2 + 2, n2 = 2m−1 and
n3 = k2.

2. Then (
Yσ1−Rpσ1√

Var(Yσ1 )
,

Yσ2−Rpσ2√
Var(Yσ2 )

, . . . ,
Yσni−Rpσni√

Var(Yσni )
) is a multivariate normal distribution

MN(0, Σ) where the variance and covariance matrix can be estimated using (4) and (5).

In Section 2 we indicate that there is a class of symbolization maps that are non-
standard. Consider a situation in which a reduction in the number of possible symbols
under study will benefit the behavior and properties of the test. In this, and other potential
situations, non-standard maps might be useful. As an example, we now construct a non-
standard symbolization map to test for independence in the spatial context. The following
symbolization is an example of the most general procedure that we give in Appendix A.3.

Consider again the set Γ2 of symbols defined in (9) for a fixed embedding dimension
m. Now we will denote by a the rest of the division of a over m− 1.

Now define the following equivalence relation ∼:

(Iss1 , Iss2 , . . . , Issm−1) ∼ (Is′s′1
, Is′s′2

, . . . , Is′s′m−1
)

if and only if there exists an integer k such that Is′s′i
= Issi+k

for all i ∈ {1, 2, . . . , m− 1}.
Now we consider as a set of symbols Γ4 = Γ2/ ∼ the set of classes in Γ2 modulo, the

equivalence relation ∼.
Notice that, in general, in this case not all the symbols in Γ4 have the same probability

of occurring, and therefore the symbolization map f4 : {Xs}s∈S′ → Γ̃4 is non-standard.

7.3. Spatiotemporal Independence Tests

The issues related to spatiotemporal data modeling occupy a prominent role in cur-
rent econometrics, where we can find recent literature devoted to this topic (see [9,30]).
Spatiotemporal dependence introduces considerable difficulties with respect to modeling,
computation and statistical theory. If independence can be taken for granted, and likewise
the common assumption of cross-sectional independence, then computations and the appli-
cation of inference rules simplifies significantly. It seems reasonable therefore to test first for
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spatiotemporal independence, and if the evidence for independence is strong, then proceed
with the well-known methods. Unfortunately, tests for spatiotemporal independence are
scarce. The aim of this section is twofold: to contribute to this rather scarce literature, and
to highlight the usefulness of the novel general method presented in this paper. To this
end we consider the relevant null of spatiotemporal dependence. Of particular interest for
our tests is that dependence is not taken as a synonymous with correlation, and therefore
nonlinearities are not restrictions for our test.

Consider the process {Xts}t∈I,s∈S. As in the previous cases, one can define several
standard and non-standard symbolization maps. For simplicity, we adapt the previous
symbolizations to the spatiotemporal case as follows:

For a fixed location s0 ∈ S′ define {Xt(s0)
} as the time series {X1s0 , X2s0 , . . . , Xp(s0)

, . . . }.
Similarly for a fixed period t0 ∈ I′ we define {X(t0)s} as the spatial process

{Xt0s1 , Xt0s2 , . . . , Xt0sp , . . . }

Let mt, ms ∈ N with mt, ms ≥ 2 be the time and space embedding dimensions respec-
tively. Then under this setting we define the following decomposable symbolization maps
F1i : {Xts}t∈I′ ,s∈S′ → §m × Γi for i = 2, 3 and 4 defined by:

F1i(Xts) = ( f1(Xt(s)), fi(X(t)s)) (11)

where f1 : {Xt(s)} → Sm and fi : {X(t)s} → Γi for i = 2, 3, 4 are defined as above.
Notice that, when testing for spatiotemporal independence, when i = 2, 3 the symbol-

ization map F1i is standard, while for i = 4 is non-standard.
It is also possible to define an extension of the symbolization map f2 in a spatiotempo-

ral context. Indeed, consider the following map:

g : {Xts}t∈I′ ,s∈S′ →
mt

∏
i=1

Γ2 (12)

defined by
g(Xts) = ( f (X(t)s), f (X(t+1)s), . . . , f (X(t+mt−1)s))

where f (X(t+i)s) = (Its,(t+i)s1
, Its,(t+i)s2

, . . . , Its,(t+i)smt−1
)) for all i = 0, 1, . . . , mt − 1 and

the indicator function Its,(t+i)sj
is defined as in (7).

Accordingly, using this symbolization map, the next corollary straightforwardly fol-
lows from Theorem 2:

Corollary 3. Let F1i : {Xts}t∈I′ ,s∈S′ → Smt × Γi and g : {Xts}t∈I′ ,s∈S′ →
mt
∏
i=1

Γ2 be the standard

symbolization maps defined in (11) with i = 2, 3 and in (12) respectively. Denote by h(Smt × Γi)

and h(
mt
∏
i=1

Γ2) the symbolic entropy defined in (1). If the spatiotemporal process {Xts}t∈I,s∈S is

independent, then:

• If indexes sets are perfect then:

1. The affine transformations of the symbolic entropy

STG(Smt × Γi) = 2RT[Ln(ni)− h(Smt × Γi)] (13)

STG(
mt

∏
i=1

Γ2) = 2RT[Ln(2mt(ms−1))− h(
mt

∏
i=1

Γ2)] (14)

are asymptotically χ2
q distributed. In (13) for i = 2 q = (mt − 1)!2ms−1 and n2 =

mt!2ms−1, and for i = 3 q = (mt! − 1)((k − 1)2 + 2) and n3 = mt!k2. In (14)
q = 2mt(ms−1).
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2. Then (
Yσ1−Rpσ1√
Rpσ1 (1−pσ1 )

,
Yσ2−Rpσ2√
Rpσ2 (1−pσ2 )

, . . . ,
Yσ

2m−1−Rpσn√
Rpσn (1−pσn )

) is a multivariate normal dis-

tribution MN(0, I) where n is the cardinality of the set of symbols.

• If indexes sets are not perfect then

1. If the sets Bi’s have small cardinality for all symbol η, then the affine transformations of
the symbolic entropy

STG(Sm × Γi) = 2RT[Ln(ni)− h(Sm × Γi)] (15)

STG(
m

∏
i=1

Γ2) = 2RT[Ln(2mt(m−1))− h(
mt

∏
i=1

Γ2)] (16)

are asymptotically χ2
q distributed. In (15) for i = 2 q = (mt − 1)!2ms−1 and n2 =

mt!2ms−1, and for i = 3 q = (mt! − 1)((k − 1)2 + 2) and n3 = mt!k2. In (16)
q = 2mt(ms−1).

2. Then (
Yη1−Rpη1√

Var(Yη1 )
,

Yη2−Rpη2√
Var(Yη2 )

, . . . , Yηn−Rpηn√
Var(Yηn )

) is a multivariate normal distribution

MN(0, Σ) where the variance and covariance matrix can be estimated using (4) and (5)
and n is the cardinality of the set of symbols.

8. Empirical Behavior of the Tests for Spatiotemporal Independence

In this section we evaluate the empirical behavior of the STG test with different
configurations for the subset I′. The first aim of this section is to show the flexibility of
Corollary 3 to cope with different scenarios. The second goal is to evaluate the empirical
behavior of the new test. An the third intention of this simulation is to evaluate the
incidence of the selection of I′ on the empirical size of the test and on the power.

To those ends we designed a Monte Carlo experiment as follows: Firstly we consider
the problem of testing for independence on regular lattices of several orders—R = 64 (8 × 8)
and T = 150; R = 100 (10 × 10)—for which we consider two possible temporal scenarios,
depending on data availability, T = 200 and T = 800. We also simulated richer regular
lattices of order R = 400 (20 × 20), although on this occasion we only considered T = 200.
The symbolization map follows from (12) with ms = 4 and mt = 2. The test under study
was generated from Corollary 3 under Expression (13). Therefore, we used a perfect indexes
subset. This subset was constructed recursively, as indicated in Section 7: Nsitj ∩ Nsrtk = ∅,
where Nsitj is the set conformed with si, the three nearest neighbors of si in tj and the
four spatial locations in the next time period. The power of the test is evaluated with the
following DGPs:

DGP1 : yt = (I − γW)−1(αyt−1 + λ + εt)

DGP2 : yt =
3
√
(I − γW)−1(αyt−1 + λ + εt)

where εt ∼ N(0, 1), which was also used for evaluating the empirical size of the test.
Parameters α, γ intensified temporal and spatial dependencies, respectively, and λ was
fixed at five in all simulations. The weighting matrix W has been specified as a binary type
using a contiguity criterion and rook-type movements.

Table 1 collects the empirical size and power of STG statistical test for 1000 repeti-
tions. It is straightforward to observe that the size is controlled, and the test is powerful.
For low intensity level of parameter (α = γ = 0.1) the test is absolutely powerful. We
have to set α = 1/40, γ = 1/25 (or below) to lose power. This occurred despite the DGP
under consideration.
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Table 1. Size and power of STG test under a perfect subset of indexes.

DGPs1 DGPs2

Size Power

α = 0.1 α = 2/80, α = 1/80, α = 0.1 α = 2/60, α = 1/60,
R T γ = 0.1 γ = 2/50 γ = 1/50 γ = 0.1 γ = 2/30 γ = 1/30

64 150 0.060 1.000 0.096 0.073 1.000 0.152 0.077
100 200 0.064 1.000 0.149 0.065 1.000 0.220 0.086
100 800 0.053 1.000 0.492 0.112 1.000 0.860 0.196
400 200 0.058 1.000 0.412 0.111 1.000 0.772 0.160

Regular spatiotemporal configurations are interesting because (1) time series posit a
natural order for observations, (2) lattice data provide the simplest extension of time series
and (3) some scientific methods are compatible with this spatiotemporal configuration.
However, irregular patterns are of frequent occurrence with spatial data. In geographical
settings, data are liable to be recorded across heterogeneously-sized administrative regions,
while economic distances do not correspond to regular spacing. Therefore, it is also useful
to adapt the STG symbolic test to irregular spatiotemporal settings. In terms of our general
methodology (see Corollary 3) this problem in tractable by considering the symbolization
map F1i, i = 2 where we control the dependence among the indicators by controlling on
average the cardinality of the sets Bi. Particularly, we will select the set of indexes I′ such
that |B̄i| ≤ (ms + mt − 1)/2; i.e., the average of the cardinality of the sets Bi is less than
half of the number of spationtemporal neighbors.

Therefore, to complete the experiment (in the case of nonperfect lattices) we evaluate
the STG-version for irregular lattices where coordinates of each spatial location are drawn
from a N(0,1). We have considered the three nearest neighbors for irregular lattices.
Afterwards, the resulting matrix was row-standardised in the usual way.

Table 2 collects the size and power for models constructed from DGP1 and DGP2.
The introduction of irregular lattices has led us to introduce non-perfect indexes, and
accordingly the size of the test slightly increased, although the levels seem acceptable,
particularly for generous sample data. Power is as interesting as for the case of perfect
indexes, and therefore the same comments applies (similar results are obtained in the case
of using the multivariate normal approximation).

Table 2. Size and power of STG test under a non-perfect subset of indexes.

DGPs1 DGPs2

Size Power

α = 0.1 α = 2/80, α = 1/80, α = 0.1 α = 2/60, α = 1/60,
R T γ = 0.1 γ = 2/50 γ = 1/50 γ = 0.1 γ = 2/30 γ = 1/30

64 150 0.077 1.000 0.094 0.070 1.000 0.082 0.082
100 200 0.070 1.000 0.211 0.098 1.000 0.286 0.096
100 800 0.077 1.000 0.794 0.201 1.000 0.410 0.274
400 200 0.060 1.000 0.758 0.196 1.000 0.467 0.278

Comparison with Other Spatiotemporal Test for Independence

We now face our test with an unfavorable scenario characterized by small amount
of available data on irregular lattices, also in linear and nonlinear setups. To this end we
consider pairs of the following sample sizes: (36× 10), (64× 10), (100× 10), (100 × 30) and
(200× 10). According to our theoretical discussion, given data scarcity and irregular spatial
configuration, we use the non-perfect subset of indexes. Additionally, we consider the sym-
bolization map based on equivalence relations F̄1,2 = ( f1, f̄2) as depicted in Appendix A.3
for nonstandard maps.

To complete the empirical study, we compare our test with another nonparametric
spatiotemporal test [31] which is described in Appendix A.4 and we refer to it as STBP.
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Notice, however, that the STBP test requires one to correctly specify the weighting matrix,
W; this is not a requirement for the symbolic test.

In terms of empirical size, both tests behave similarly well for linear processes (Table 3).
On the contrary, for the nonlinear processes (Table 4), the size of the STBP test is poor,
while the symbolic-based test performs as expected. In terms of empirical power, the STBP
test outperforms the STG test, especially for low intensity levels of dependence in the case
of the linear process. However, under a nonlinear spatiotemporal configuration, the STG
clearly presents a better balance between size and power and outperforms the STBP in
all cases.

Table 3. Size and power of STG and STBP tests under linearity.

Size Power

STG STBP STG STBP STG STBP STG STBP

R T (α = 5/80, γ = 5/50) (α = 10/80, γ = 10/50) (α = 15/80, γ = 15/50)

36 10 0.069 0.046 0.096 0.154 0.328 0.615 0.787 0.989
64 10 0.057 0.054 0.145 0.193 0.504 0.815 0.962 0.999
100 10 0.063 0.066 0.192 0.228 0.677 0.926 0.993 1.000
100 30 0.058 0.054 0.443 0.395 0.982 1.000 1.000 1.000
200 10 0.063 0.067 0.346 0.327 0.935 0.997 1.000 1.000

Table 4. Size and power of STG and STBP tests under nonlinearity.

Size Power

STG STBP STG STBP STG STBP STG STBP

R T (α = 1/10, γ = 1/10) (α = 2/10, γ = 2/10) (α = 3/10, γ = 3/10)
36 10 0.060 0.002 0.094 0.007 0.269 0.060 0.507 0.473
64 10 0.055 0.000 0.111 0.002 0.376 0.119 0.784 0.743
100 10 0.067 0.000 0.175 0.011 0.557 0.209 0.941 0.915
100 30 0.056 0.000 0.357 0.005 0.949 0.642 1.000 1.000
200 10 0.062 0.001 0.281 0.007 0.856 0.381 1.000 0.998

9. Conclusions

Central null hypotheses in experimental and non-experimental branches of science
can be easily tested by means of symbolized information. This paper provides with the
analytical tools to construct nonparametric hypothesis tests based on symbols. These tools
are able to cope with different null hypotheses and with distinct scenarios in which some
realistic limitations might be imposed to test designs.

A shared characteristic of all these symbolic test families is that few assumptions are
needed to obtain asymptotic results. Therefore, general applicability of this method is guar-
anteed. In particular, in this paper we have shown that two well-known symbolic-based
tests are particular cases of the main symbolic theorem (Theorem 2), which is stated in this
paper for the first time. Furthermore, a set of new symbolic-based tests for spatiotemporal
independence is put forward by using the main results of this paper collected under the
main symbolic theorem (Theorem 2). Monte Carlo simulations provide evidence of the
extraordinary power of the contrasted test. Currently, there are circumstances where ro-
bustness to speed, noise or computational cost are paramount, so fruitful applications of
symbolic analysis are favored.

Further lines of research are worthy. We now indicate some of them on which we and
other scholars are currently working: (i) One of the appealing properties of symbolic-based
testing is that it requires few assumptions. In this paper we have assumed stationarity;
however, it would be interesting to study whether it is possible to be less restrictive. (ii) In
the context of time series analysis, most available techniques require the existence of second
moments; however, by using certain symbolizations, it might be possible to waive this
requirement. This will allow time series researchers to consider a wider variety of model
classes. (iii) One of the main contributions of the paper is that it suggests that researchers
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can design a symbolization procedure (map) to test null hypotheses. It would be interesting
to study what types of null hypotheses are more suitable to analysis using symbolic maps.
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Appendix A

Appendix A.1. Maximum Likelihood Estimators

Since
n
∑

i=1
pηi = 1 it follows that

L(pη1 , pη2 , . . . , pηn) =
R!

nη1 !nη2 ! · · · · · nηn !
p

nη1
η1 p

nη2
η2 · · · (1− pη1 − pη2 − · · · − pηn−1)

nηn .

Then the logarithm of this likelihood function remains as

Ln(L(pη1 , pη2 , . . . , pηn)) = Ln(
R!

nη1 !nη2 ! · · · · · nηn !
) +

n−1

∑
i=i

nηi Ln(pηi )

+nηn Ln(1− pη1 − pη2 − · · · − pηn−1).

Maximum likelihood estimators p̂ηi =
nηi
R are obtained by solving the following

equation
∂Ln(L(pη1 , pη2 , . . . , pηn))

∂pηi

= 0.

Appendix A.2. Chi-Squared Distributions for Symbolic Maps

Notice that 2Ln(λ(Y)) asymptotically follows a Chi-squared distribution with k de-
grees of freedom, which will depend on the set of symbols. Hence

−2Ln(λ(Y)) = −2[RLn(R) +
n

∑
i=1

nηi Ln
(

pηi

nηi

)
] ∼ χ2

k
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Now, if the symbolization map f is standard, that is, under the null H0 all the symbols
have the same probability to occur, pηi =

1
n for all i = 1, 2, . . . , n, then it follows that

−2Ln(λ(Y)) = −2R[Ln(R) +
n

∑
i=1

nηi

R
Ln
(

pηi

nηi

)
]

= −2R[Ln(R) +
n

∑
i=1

nηi

R
(Ln

(
1
n

)
− Ln(nηi ))]

= −2R[Ln(R) +
n

∑
i=1

nηi

R
(Ln

(
1
n

)
− Ln

(nηi

R

)
− Ln(R))]

Now taking into account that h(Γ) = −
n
∑

i=1
pηi Ln(pηi ) = −

n
∑

i=1

nηi
R Ln

( nηi
R

)
, we have

that −2Ln(λ(Y)) = 2R[Ln(n)− h(Γ)].

Appendix A.3. Non-Standard Symbolization Maps

This appendix gives a procedure to construct a non-standard symbolization maps.
Let A = {A1, A2, . . . , Ad} be a family of nonempty subsets of the set of symbols Γ.

Assume that A is a partition of Γ, that is, Γ =
⋃d

i=1 Ai and A1 ∩ Aj = ∅ for all i 6= j. Now
we define the relation ∼ in Γ by η ∼ σ if and only if η, σ ∈ Ai for some i = 1, 2, . . . , d.
Obviously the relation ∼ is an equivalence relation and therefore we can consider the
quotient set Γ = Γ/ ∼ formed by all the classes of equivalence as a new set of symbols.
Denote by σ the class o equivalence of symbol σ. Therefore, there exists a natural projection
π : Γ→ Γ defined by π(σ) = σ. Moreover, any symbolization map with set of symbols Γ,
namely f : {Xi}i∈I′ → Γ , can be extended to a symbolization map with set of symbols Γ
by considering the following map

f = π ◦ f : {Xi}i∈I′ → Γ

defined by f (Xi) = f (Xi).
Notice that the cardinality of the set Γ is d which is always smaller or equal than the

cardinality of the former set Γ.

Appendix A.4. A Generalization to Spatiotemporal Data of the Brett and Pinkse Test

The test of [32] is a nonparametric test of spatial dependence based on that two vari-
ables are independent if the joint characteristic function factorizes into the product of the
marginal characteristic functions. We adapt this test to its use for studying spatiotempo-
ral data.

Let {yts}t∈I,s∈S a spatiotemporal realization of a process. The yts’s can have continu-
ous, discrete or mixed distributions, and the distribution functions are generally unknown.
Under the null hypothesis, the spatiotemporal process is stationary and independent in
space and time.

The design of the test is as follows. Let g be any practitioner-chosen density function
with infinite support, and denote by h(x) =

∫
eiuxg(u)du the Fourier transform of g. Given

a location s, Ns refers to the set of neighbors of coordinate s. Fix a positive integer m and
define Nm

ts = {t′s′| t′ = t, t + 1, . . . , t + m− 1; s′ ∈ Ns} as the set of nearby observations to
location s in period t and nts = ]Nm

ts as the number of observations. Let yN
ts = 1

nts
∑

rk∈Nm
ts

yrk

stands for the sampling average of the proximate observations to yts. The STBP test null
hypothesis is

H0. yts and yN
ts are independent for all t∈ I and s∈ S.
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Define h(t1s1,t2s2)
= h(yt1s1 − yt2s2) and hNN

(t1s1,t2s2)
= h(yN

t1s1
− yN

t2s2
). Introduce ηn1, ηn2

and ηn3 defined by

ηn1 = n−2 ∑
ts,rk

h(ts,rk)hNN
(ts,rk); ηn2 = n−3 ∑

ts,rk,uv
h(ts,rk)hNN

(ts,uv);

ηn3 = n−4 ∑
ts,rk,uv,pq

h(ts,rk)hNN
(uv,pq),

where n = RT is the number of observations. Let

ηn = (ηn1 − ηn2)
2 + (ηn2 − ηn3)

2

and

νn = (γn − µ2
n)

2n−1 ∑
ts

n−1
ts

(
I(nts > 0) + ∑

rk
n−1

rk I(rk ∈ Nts)I(ts ∈ Nrk)

)
where µn = n−2 ∑

t,s
hts, γn = n−3 ∑

s,t,u
htshtu and I(·) is an indicator function.

Under the null of the test, the extension of the Brett and Pinkse statistic for a spa-
tiotemporal context is the following:

STBP =
nηn

2νn

which is asymptotically χ2
1 distributed.

The following two sufficient conditions are required by the STBP test to be consistent:
(1) spatiotemporal dependence of a fixed order, (2) the sequence has to be strongly mixing.
Strong mixing is a weak dependence condition, while fixed ordered dependence is a
restriction regarding these relationships must be produced between proximate observations.
In this case, then the null hypothesis will be asymptotically rejected; however the behavior
of the test will be undetermined, when the dependence involves observations that are not
geographically or temporally proximate. Using spatial data, this means that an specification
of the so-called spatial weighting matrix is needed and that this specification must be correct
(Lopez et al, 2011, for more details).
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