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Abstract 

AMS and structural analysis are here applied to study the deformed zone associated with a large-

scale, active normal fault in the central Betic Cordillera (Spain), namely the Baza fault system, to 

determine: i) the kinematics of structures and their relation with fault zone architecture and 

segmentation degree, ii) the correlation between deformational structures and the different types 

of magnetic fabrics and iii) the evolution of magnetic fabrics patterns, from sedimentary to shear-

related, associated with normal faults. Five outcrops (969 samples) were analysed along the fault 

trace, which shows different degrees of segmentation along strike and strong localization of 

deformation along narrow fault zones. A first, main set of magnetic fabric data corroborates the 

normal kinematics of the Baza fault, showing magnetic lineations parallel to the dip-slip, transport 

direction. A second, secondary set of magnetic lineations, is parallel to the intersection lineation, 
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and can be related to less intense deformation in the fault rocks. Furthermore, a detailed study 

(523 samples) of a trench excavated across the fault zone, where two fault splays tend to coalesce 

in a linkage relay zone indicates that i) lithology and distance to fault planes are two factors that 

control the development of extension-related magnetic fabrics in weakly deformed sediments, ii) 

the development of shear-related fabrics in fault zones entails the mechanical rotation of minerals 

, iii) different orientation of magnetic lineations are related to different intensity of bulk 

deformation and iv) magnetic lineation is useful to define local deviations of deformation axes 

produced by changes in the local extension direction (from fault-perpendicular to fault-parallel 

extension) in the linkage zone between adjacent fault splays. 

Key words: Baza fault, Betic Cordillera, fault zones, magnetic fabrics, relay ramp 

 

1. Introduction 

Large normal faults usually consist of several fault segments that, in their structural 

evolution, link forming relay ramps or transfer zones (Larsen, 1988; Childs et al., 1995; 2016; 

Willemse, 1997; Gawthorpe and Leeder, 2000; Walsh et al., 2003; Soliva and Benedicto, 2004). 

Kinematically, these zones are characterized by stress and strain perturbations and consequently 

breached by minor, oblique faults. These zones accommodate and transfer the displacement 

between different fault segments (e.g. Peacock and Sanderson, 1991; 1994; Crider and Pollard, 

1998; Gupta and Scholz, 2000; Ferrill and Morris, 2001), thus contributing to the architecture of 

large-scale fault zones. The analysis of fault segmentation is crucial to characterize their 

seismogenic behaviour, because during failure Coulomb stress is enhanced around fault tips 

causing rupture jumps to adjacent segments (e.g. Manighetti et al., 2009; Finzi and Langer, 2012). 

Consequently, the geometrical and kinematic characterization of seismogenic faults is 

fundamental for the understanding of earthquake mechanics and hazard related to natural and/or 

triggered earthquakes (Sibson, 1977; 2003; Rutter et al., 1986; Jackson and White, 1989; 

Machette et al., 1991; Cowie, 1998). On the other hand, deformation within fault zones under 
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near-surface conditions is associated with strain partitioning and with the poor development of 

kinematic indicators due to the chaotic brecciation of fault rocks and the absence of clear 

foliations and mineralogical lineations. The analysis of Anisotropy of Magnetic Susceptibility 

(AMS or magnetic fabrics) represents a powerful technique to identify the rock petrofabric (e.g. 

Graham, 1954; Hrouda, 1987, 1993; Borradaile and Tarling, 1981; Tarling and Hrouda, 1993; 

Borradaile and Henry, 1997; Borradaile and Jackson, 2004). This technique is especially useful 

in scenarios of low-strain, brittle fault zones because of its proved ability to average the 

orientations of the whole set of petrofabric elements and, therefore, to provide a finite strain 

ellipsoid of the sheared rock (Solum and van der Pluijm, 2009; Mertanen and Karell, 2012; Levi 

et al., 2014; Pomella, 2014; Casas et al., 2017, 2018; Marcén et al., 2018a; Vernet et al., 2018; 

Román-Berdiel et al., 2018). Most previous AMS studies in brittle fault zones deal with kinematic 

determinations in strike-slip or reverse faults, indicating the development of magnetic lineations 

either parallel to the transport direction or to the intersection lineation (Fig. 1; see Parés and van 

Der Pluijm, 2002a; Casas-Sainz et al., 2017, 2018; Vernet et al., 2018). This ambiguity in the 

interpretation of the magnetic lineation within fault zones (e.g Marcén et al., 2018a) demands a 

proper analysis to unravel the factors involved in each type of orientation. Furthermore, AMS 

studies applied to the kinematic determinations in brittle, normal fault zones are scarce (see Braun 

et al., 2015, in the transtensive Dead Sea Fault) and usually focused on determining the distance 

at which the influence of the fault slips affects the orientation of magnetic lineations (e.g. Levi et 

al., 2014).  

In this work, AMS is applied to a large NNW-SSE normal fault system located in the 

Betic Cordillera (Southern Spain): the Baza Fault. We have sampled four outcrops and a 16 m-

long trench cutting through two fault splays. The Baza fault constitutes a significant feature in the 

recent evolution of the Betic Cordillera due to its seismogenic activity in recent times (García-

Tortosa et al., 2008, 2011; Alfaro et al., 2010; Castro et al., 2018) and its major role in controlling 

the subsidence and sedimentary filling of the intramontane Baza sub-basin since the Miocene 

(Sanz de Galdeano et al., 2007; 2012; Alfaro et al., 2008; García-Tortosa et al., 2008; Haberland 
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et al., 2017). Lacustrine sedimentation during Pliocene times favoured a continuous deposit of 

syntectonic water-laid, non-consolidated, siliciclastic sediments. These sediments ususally 

provide reliable strain information from magnetic fabric analyses, due to the development of 

preferred mineral orientation both under compressional (Sagnotti and Speranza, 1993; Aubourg 

et al., 1995; Mattei et al., 1995; Soto et al., 2009; Pueyo-Anchuela et al., 2010; Gómez‐ Paccard 

et al., 2012) and extensional regimes (Sagnotti et al., 1994; Mattei et al., 1997; 1999; Cifelli et 

al., 2005; Soto et al., 2007; 2008; 2012; Oliva-Urcia et al., 2010a,b; 2013; Pueyo-Anchuela et al., 

2011; García-Lasanta et al., 2013; 2014; 2015; 2018).  

The goal of our work is two-fold: i) from the methodological point of view, we try to 

better define the factors controlling the development of extension-related magnetic lineations 

(Figs. 1a, b) and the magnetic fabric related to shear processes within normal fault zones (which 

has remained practically unstudied until this work, Figs. 1b, c), and ii) from the regional point of 

view, we aim to characterize in detail the kinematics and architectural variations along the 

segmented Baza fault system. 

 

2. Geological setting 

The Betic Cordillera is a consequence of the NNW-SSE convergence between Africa and 

Europe since the Miocene, at a rate of 4-5mm/year. This convergence co-habited with ENE-WSW 

orogen-parallel extension (Galindo Zaldívar et al., 1999; Sanz de Galdeano and López-Garrido, 

2000; Marín-Lechado et al., 2005), that resulted in the development of intramontane basins (e.g. 

Granada and Guadix-Baza basins) limited by NNW-SSE extensional fault systems (Galindo-

Zaldívar et al., 1999; Peña, 1979, 1985; Viseras, 1991; Gibert et al., 2007; Fig. 2a). The Guadix-

Baza basin, located in the central area of the Betic Cordillera, has been traditionally divided into 

two areas: the western, Guadix sub-basin and the eastern, Baza sub-basin. The Baza fault 

separates these two sub-basins (Alfaro et al., 2008; Figs. 2a, b) and controlled the structural, 

sedimentological and geomorphological evolution of the Baza sub-basin (Vera, 1970; 1994; 
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Viseras, 1991; Gibert et al., 2007). The filling of the Baza sub-basin, reaching 2200m of sediment 

thickness (Alfaro et al., 2008; Haberland et al., 2017), started in Miocene times with the 

sedimentation of marine deposits. During Pliocene/Pleistocene times the uplift of the Betic 

Cordillera produced a transition to continental environments (Vera, 1970a, b; Peña, 1979, 1985; 

Agustí, 1986; Viseras, 1991; Guerra-Merchán, 1992; Vera et al., 1994; Agustí et al., 1997; Soria 

et al., 1998). From this period onwards, the activity of the Baza fault imposed important 

differences in sedimentary environments: proximal, fluvial in the Guadix sub-basin, and 

endorheic fluvial and lacustrine in the Baza sub-basin, as a consequence of the higher subsidence 

in the hangingwall of the Baza fault (Sanz de Galdeano et al., 2007; 2012; Alfaro et al., 2008). 

The filling of the Baza sub-basin ended in middle Pleistocene times, when the endorheic area and 

its drainage were captured by the Guadalquivir fluvial network. During the Quaternary, 

sedimentation was restricted to depressed areas, and alluvial fans and piedmont systems 

developed (Fig. 2b). These deposits are frequently offset due to the recent activity of the Baza 

Fault, producing stepped fault scarps (García-Tortosa et al., 2008; 2011; Castro et al., 2018). 

The Baza fault system shows an along-strike length of about 37 km, its strike varying 

from N-S in its central sector (the area studied in this work), to NW-SE in its southernmost sector. 

The average dip of fault segments is 45-60° E (Fig. 2b). The accumulated throw is ca. 2000-3000 

m (Alfaro et al., 2008; García-Tortosa et al., 2008; 2011). Along strike, the fault shows different 

degrees of segmentation: in its northern sector, the Baza fault is formed by two main strands, 

while in the southern sector it consists of, at least, 13 fault splays (Alfaro et al., 2008). This 

segmentation also implies a change in the width of the faulted zone, ranging between 0.2 km to 

the North to more than 7 km in the South (Figs. 2b, c). The activity of the fault has been studied 

in several, recent works, remarking the importance of its recent activity by means of 

paleosismological, geomorphological and structural techniques. These works report vertical slip 

rates between 0.17 and 0.49 mm/year (Alfaro et al., 2008; García-Tortosa et al., 2011; Sanz de 

Galdeano et al., 2012) and 8-9 seismic events in the past 45,000 years (Castro et al., 2018). The 

Baza fault is responsible for the 1531 Baza earthquake (Ms 6.0; VIII-IX), the most important 
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historical earthquake recorded in southern Iberia (Alfaro et al., 2008; Sanz de Galdeano et al., 

2012). 

 

3. Methodology 

 A combination of structural analysis and magnetic techniques (AMS analyses and 

magnetic mineralogy experiments) was used to characterize the geometry and kinematics of the 

Baza fault system and associated fault rocks. All the samples were collected from seven outcrops 

located in the central sector of the Baza fault system (Fig. 2). Five outcrops are located within the 

fault zone (Cañada del Gallego, Cueva Gil, La Tejera, El Carrizal trench, Piedras Rodadas 

outcrops; see Fig. 2 and Table 1) and two outcrops in Pliocene deposits of its footwall. 

In all outcrops, except for the El Carrizal trench, samples were obtained from oriented 

hand blocks and cut to 2.1 cm-side cubes by means of a trim saw. In el Carrizal trench (a 16 m 

long, 3 m deep trench showing an E-W direction, perpendicular to the fault trend) a detailed study 

was carried out by sampling 523 AMS specimens (Table 1). Samples were collected from the 

northern wall of the trench by means of a portable electric drill, and oriented in situ with an 

orientation device. The western wall (1.5x3 m) of the trench was also sampled in order to discard 

that drilling procedures had any imprint in AMS orientation. 

3.1. Structural analysis 

 Bedding, discrete shear bands, foliation planes, SC structures and striae were measured 

and represented in stereoplots using the Stereonet software (Allmendinger et al., 2012). 

Additionally, hydroplastic faults and their striae were measured in AMS samples. We performed 

paleostress analysis of fault planes and striae to determine the local stress tensor by two different 

methods: i) Etchecopar method (Etchecopar et al., 1981; Etchecopar, 1984) using Faille software 

(Célerier et al., 2011) and, ii) Right Dihedra method (Pegoraro, 1972; Angelier and Mechler, 

1977) using FaultKin software (Marrett and Allmendinger, 1990; Allmendinger et al., 2012). 
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A microstructural study was also carried out in 24 thin sections oriented perpendicular to 

observed foliation, bedding planes or magnetic foliation (kmax-kint plane), and containing either 

the transport direction (XZ section of the finite strain ellipsoid) or the intersection lineation (YZ 

section). In sites without kinematic indicators, we used the magnetic lineation as a reference for 

cutting the thin sections. 

3.2. Magnetic techniques: RT-AMS, LT-AMS and κ-t curves 

The magnetic analyses consisted of low-field AMS at room (RT-AMS) and low (LT-

AMS) temperature and thermomagnetic curves (κ-t curves). Measurement of RT-AMS was done 

in a total of 1077 standard specimens with a KLY-3S Kappabridge (Agico Inc., Czech Republic) 

in the Magnetic Fabrics Laboratory of the University of Zaragoza. The obtained data provide the 

orientation and magnitude of the kmax ≥ kint ≥ kmin axes of the AMS ellipsoid, defining the 

orientation of the magnetic lineation (kmax axes) and the magnetic foliation (plane perpendicular 

to kmin axes). The magnetic ellipsoid is also characterized by two scalar parameters (Jelinek, 

1981): i) the corrected degree of anisotropy (P’ or Pj), which provides information about magnetic 

minerals and their degree of preferred orientation, and ii) the shape parameter (T), varying 

between 0 ≥ T ≥ −1 (prolate ellipsoids) and 0 ≤ T ≤ 1 (oblate ellipsoids). The average directional 

and scalar value for each site was calculated using Jelinek’s (1978) statistics with Anisoft 4.2 

(Chadima and Jelinek, 2009).  

LT-AMS measurements were carried out in 4 sites (23 specimens) in order to enhance 

the paramagnetic contribution following the Curie-Weiss law for paramagnetic behaviour: Kpara 

= C/T-Θ, where Kpara is the paramagnetic susceptibility, C is the Curie constant and Θ is the 

paramagnetic Curie temperature (Ihmlé et al., 1989; Ritcher and Van der Plujim, 1994; 

Biedermann et al., 2014). Therefore, the increase in the bulk susceptibility at LT is also used as 

indicator of the contribution of the paramagnetic fraction to the total RT-AMS (Lüneburg 

et al., 1999). With this procedure, the paramagnetic sub-fabric can be isolated from the total 

magnetic fabric (Lüneburg et al. 1999; Parés and Van der Pluijm 2002b; Martín-Hernández and 

Ferré, 2007; Oliva-Urcia et al. 2010c). To prevent instrument drift caused by the cold sample, a 
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thermal protection around the measuring coil of the KLY-3S Kappabridge is used (Issachar et al. 

2016).  

Curves of temperature variation of magnetic susceptibility (κ-T) were performed from 

−195 °C to 700 °C in a KLY-3S Kappabridge combined with a CS-L cryogenic apparatus and a 

CS-3 furnace (AGICO company) in order to determine the magnetic mineralogy in 14 samples. 

The measurements were done in argon atmosphere to minimize mineral reactions with oxygen 

during heating, and data were processed with Cureval 8.0 software (Chadima and Hrouda, 2009). 

4. Structural data and outcrop description 

Several splays of the fault system were analysed to determine if different degrees of 

segmentation have implications in kinematics and deformation. Along strike, two different zones 

can be distinguished: i) the northern sector, where the fault system consists of minor, segmented 

fault arrays and ii) the central and southern sectors, where fault displacement is distributed in up 

to 13 splays (Fig. 2b); in this area, transfer zones or relay ramps are expected. 

4.1 Northern sector of the Baza Fault 

In the northernmost sector of the studied area of the Baza fault system the total 

displacement of the fault is concentrated in two fault strands, exposed in the Cañada del Gallego 

outcrop. In this exposure, a 50 m wide fault zone is limited by two N-S, east dipping major fault 

planes that bring the Pliocene red silts and marls in the footwall in contact with the Pleistocene 

carbonate silts in the hangingwall (Fig. 3a, b). In general, the fault zone is poorly exposed with 

the exception of the two main fault planes, where incipient brittle SC structures (Fig. 3c) are 

compatible with the dip-parallel slickensides observed in discrete shear planes, indicating pure 

normal kinematics for both fault planes (Fig. 4a). Although small drag folds are present close to 

the main fault planes, bedding remains horizontal or shows shallow dips towards the E in both 

hangingwall and footwall. 

Towards the South, the total throw of the Baza fault system is distributed in several N-S, 

East-dipping splays. In this sense, La Tejera (Fig. 3e) and Cueva Gil (Fig. 3f) outcrops lie on 
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different splays of the fault system, with apparently lower fault throws than in the Cañada del 

Gallego outcrop. For this reason, fault zones developed in both outcrops are also narrower than 

in Cañada del Gallego outcrop, and strain is strongly localized in a 1 m wide zone in both outcrops, 

showing well-developed, brittle SC structures (Fig. 3d, f). In Cueva Gil outcrop, Pliocene red silts 

and marls appear in both blocks of the fault. Meanwhile, in La Tejera outcrop the Pleistocene silts 

are in contact with the Pliocene silts. As in the Cañada de Gallego outcrop, kinematic indicators 

(incipient brittle SC structures and slickensides) agree with a normal component in both splays 

(Fig. 4a). Although dynamic analysis for these northern outcrops were not performed because of 

the scarce number of fault planes observed and measured, the presence of N-S normal faults with 

dip-parallel striae (Fig. 4a) is consistent with the regional ENE-WSW extension direction 

described in previous works (Galindo Zaldívar et al., 1999; Sanz de Galdeano and López-Garrido, 

2000; Marín-Lechado et al., 2005). 

In thin sections from these outcrops, normal brittle SC structures are observed along the 

XZ sections of the strain ellipsoid, with phyllosilicate grains clearly visible and their basal planes 

oriented parallel to shear bands and foliation planes (Fig. 3c, d). In the Cañada del Gallego 

outcrop, SC structures are better developed in the eastern fault plane (Bz17 AMS site, Fig. 3a) 

than in the western one (Bz20, Fig. 3b). The absence of deformational structures along the YZ 

section of the strain ellipsoid is compatible with simple shear deformation and also with the 

interpretation of a normal movement for this fault. In the hangingwall of the Baza fault in the 

Cañada del Gallego outcrop (Bz18), basal planes of phyllosilicates are contained on bedding 

surfaces. 

 

4.2 Central sector of the Baza Fault; El Carrizal trench  

Unlike previously described outcrops, El Carrizal trench shows a complex, 7 m wide fault 

zone developed between two N-S, E-dipping strands of the Baza fault system, which tend to 
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coalescence at this point (Fig. 5a). The trench, perpendicular to the main fault slip surfaces, 

comprises the whole fault zone, the footwall and the hangingwall. 

At the footwall, where white carbonate silts and brown detrital Pliocene rocks crop out, a 

set of synthetic and antithetic minor fault planes are arranged in horst and graben geometry with 

decimetric to metric throws and millimetric shear zones (Fig. 5a, b). These faults delimit 

extensional horses having relatively low internal deformation and bedding planes are preserved 

practically undisturbed within them (Fig. 5b). However, hydroplastic, striated surfaces with 

millimetric to centimetric throws are frequent (i.e. Fig. 5d). Within the fault zone, the most-

brecciated, fault core corresponds with the main western fault plane, and a 7 m wide damage zone 

appears between this plane and the eastern fault plane (Fig. 5a, c). Lithologically, the fault core 

is a mixture of silts from the footwall and brown clays injected from the hangingwall. The role of 

the clay smear in the geometry and development of the Carrizal fault zone is described in Medina-

Cascales et al. (2019). Within the damage zone, major synthetic and minor antithetic faults delimit 

small-sized horses showing stronger internal deformation, although bedding can still be 

recognized (Fig. 5c, g, h). The damage zone comprises alternating carbonate silts and clays. 

Observations in thin sections indicate that bedding surfaces are present within horses (Fig. 

5d, e, h, g) and only in fault zones (Fig. 5f) have they been apparently obliterated by the tectonic 

overprint. The different orientation of thin sections, (vertical N-S and E-W), allow us to complete 

the observations under the naked eye, which are critically conditioned by the E-W orientation of 

the trench wall. Several normal faults showing millimetric throw are observed both in N-S and E-

W sections in samples collected from horses, suggesting that the total normal heave of the fault 

is distributed not only in E-W displacement, which can be even absent (Fig. 5e), but also in N-S 

displacements. In these samples, basal planes of phyllosilicates are parallel to bedding planes 

(Fig. 5e). Attending to fault zones, deformational structures are scarce and thin sections are 

characterized by cataclastic bands without clear kinematic indicators (Fig. 5f), especially in 

comparison with the northernmost outcrops where SC structures are present (Fig. 3c, d). 
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Minor faults and hydroplastic fractures within the fault zone and the footwall show a main NW-

SE direction oblique to the mapped trace of the fault system and also to the two main splays 

analysed in the trench (Fig. 4b). Nevertheless, they show a higher dispersion in their strike 

(reaching WNW-ESE and N-S directions) and dip (synthetic or antithetic). Striae on fault surfaces 

and hydroplastic fractures show a best fit in a NE trend although they also show horizontal NW-

SE rakes evidencing a higher complexity in the strain distribution in comparison with the 

previously described outcrops. These fault planes fit in orientation with the main fault sets 

identified in Medina-Cascales et al. (2019) in the Carrizal trench. Strikingly, bedding planes strike 

oblique (NW-SE) to the trace of the Baza fault (N-S), dipping shallowly towards the NE both in 

the footwall and the fault zone. 

Taking into account the strong dispersion in fault strikes and rakes of striae observed in 

the trench, especially in comparison with the northern sector, paleostress analysis was performed 

in order to check their compatibility with the regional ENE-WSW extension direction. 

Hydroplastic faults show similar orientations indicating that there is no bias related to the size of 

the faults and thus validating structural and dynamic considerations obtained from the 

hydroplastic fractures. The result obtained by the Right Dihedra method shows a vertical σ1 which 

agrees with the extensional regime. However, the extension direction or σ3 is not accurately 

defined by this method, since nearly 90% (28 out of 30) of the faults are explained by a σ3 that 

ranges from NNE-SSW to E-W (Fig. 4c), with a maximum in N050E. Fortunately, Etchecopar’s 

method (25 out of 30 faults explained) strongly constrains the orientation of σ3 to NNE-SSW 

(N024E ±014°), which, however, does not fit with the regional ENE-WSW extension direction 

(Fig. 4c). 

4.3 Southern sector of the Baza Fault 

The Southern sector of the studied area of the Baza fault system is characterized by the 

occurrence of several fault splays (Fig. 2b). Piedras Rodadas outcrop lies on one of these splays, 

keeping similarities with the Carrizal trench since kinematic indicators are not compatible with a 

pure dip-slip fault movement. The single fault plane strikes N160E, dipping 40° to the E and striae 
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on its surface show a rake of 55° N (Fig. 3g). Deformational patterns such as SC structures are 

absent in the sheared zone, and both in the hangingwall (Pleistocene carbonate silts) and footwall 

(Pliocene carbonate silts) bedding remains horizontal.  

 

5. Magnetic mineralogy and LT-AMS 

The 14 temperature-dependent magnetic susceptibility curves show hyperbolic shapes 

both at low temperature and at the initial stages of the heating curves, suggesting a dominance of 

the contribution of paramagnetic phases (phyllosilicates) to the total magnetic susceptibility (Fig. 

6a, b, c). Sharp decreases of susceptibility around the Curie temperatures associated with possible 

ferromagnetic phases are absent. In heating curves, strong increases in the magnetic susceptibility 

are observed in the cooling paths in most samples, associated to neoformation of magnetite during 

the heating run (Fig. 6a, c).  

The comparison between AMS measurements at low (around 77k) and room temperature 

corroborates the paramagnetic behaviour of the samples, since high km-LT/km-RT ratios were 

obtained in all sites, ranging between 3.06 and 3.84 (Fig. 6d) (3.8 is the value for a perfect 

paramagnetic component, see Lüneburg et al., 1999, Parés and van der Pluijm, 2002b; 2014). 

Furthermore, the orientation of LT-AMS overlaps in most sites the orientation of the RT-AMS 

(Fig. 6e). Only Group 9 (samples collected at 5 cm from fault planes in the Carrizal Trench) shows 

different orientation of kmax axes, changing from a northerly orientation of kmax axes at RT to a 

NW orientation of kmax axes at LT. Therefore, a small contribution from ferromagnetic minerals 

to define magnetic lineations cannot be totally discarded, even when this site shows the highest 

km-LT/km-RT ratio. 

The importance of these results (i.e. dominance of contribution of paramagnetic phases, 

mainly phyllosilicates) lies on the straightful interpretation of RT-AMS magnetic ellipsoids in 

terms of magnetic lineation as a tectonic indicator of the extensional direction (see Cifelli et al., 

2005) and as strain marker in fault zones. 
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6. Magnetic properties  

6.1 Northern sector of the Baza Fault 

The average scalar parameters per site are shown in Table 1 and per outcrop in Fig. 7. 

Outcrop-averaged bulk susceptibility values are 155 (standard deviation, e.: 30), 139 (e.: 32) and 

172 (e.: 18)*10-6 SI in samples collected in fault zones at Cañada del Gallego, Cueva Gil and La 

Tejera, respectively, which fit within typical paramagnetic ranges (Rochette, 1987). Corrected 

degree of anisotropy (Pj) values are lower in the Cañada del Gallego outcrop (Pj: 1.030; e.: 0.010), 

than in Cueva Gil (Pj: 1.060; e.: 0.016) and La Tejera (Pj: 1.059; e.: 0.009). No correlation 

between Km and Pj is observed per site or outcrop (Fig. 7a). Shape parameter (T) is positive at 

all sites ranging between 0.105 and 0.790, indicating oblate shapes of the magnetic ellipsoid. 

In the northern sector of the studied area there is a strong relationship between the 

observed structures and AMS data. In general, triaxial ellipsoids were obtained in all sites in the 

Cañada del Gallego, Cueva Gil and La Tejera outcrops (Figs. 8a, b, c). In Cañada del Gallego, 

samples collected within the fault zone (Bz 17, 19, 20; Fig. 8a) show their kmin axes perpendicular 

to the fault surfaces but not always well clustered (Bz 17; Fig. 8a), whereas in samples located in 

the hangingwall, up to 4 m far from the eastern fault plane B (Bz 18; Fig. 8a), kmin axes are 

perpendicular to the horizontal bedding plane and the kmax axes are strongly clustered around a 

horizontal NW-SE trend. Within the fault zone, kmax axes show different orientation in each site: 

i) well clustered and parallel to the dip of the fault planes and therefore parallel to the transport 

direction of the normal fault (Bz17), ii) the average of the kmax axes is parallel to the strike of the 

fault plane (Bz20, located in the sheared footwall, Fig. 3a, b), and iii) following a girdle 

distribution with kint axes on the fault plane (Bz19). 

In contrast to the Cañada del Gallego outcrop, Cueva Gil and La Tejera outcrops show 

constant, well-grouped AMS axes both within fault zones and outside the fault zones blocks. All 

sites collected in fault zones (Bz13, 14, 16a, b, c; Fig. 8b, c) show kmin axes perpendicular to the 
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fault planes with slight deviations, especially in the Cueva Gil outcrop (Bz16; Fig. 8b). In the 

footwall, kmin axes are perpendicular to the horizontal bedding plane (Bz15). Attending to the 

orientation of magnetic lineations, kmax axes are parallel to the dip of N-S trending fault surfaces, 

consistent with the observed striae/transport direction in all sites. Similarly to the Cañada de 

Gállego hangingwall, the results from the footwall in La Tejera outcrop show kmax axes contained 

in the bedding plane and showing a horizontal, WNW-ESE trend (Bz15; Fig. 8c). These results 

indicate the heterogeneous deformation of brittle fault zones and emphazise the need for analysing 

several sites per outcrop to obtain complete and reliable information. 

 

6.2 Central sector of the Baza Fault; El Carrizal trench  

The 523 specimens from El Carrizal trench were firstly classified by lithologies, based 

on their different magnetic susceptibility and scalar parameter values (Figs. 7d, e; Table 1). In the 

footwall of the main fault (see location in Figs. 9a, b), the dark clays and sands (Groups 1-4) have 

relatively high magnetic susceptibility and Pj values (Km: 55*10-6 SI;  Pj: 1.022; Fig. 7d and 

Table 1 for standard deviations), different from the low magnetic susceptibility and Pj values 

(Km: 26*10-6 SI; Pj: 1.015; Fig. 7d) of white carbonate silts (Groups 5-8). These values also differ 

from the values of the samples collected in the western main fault trace (Km: 93*10-6 SI; Pj: 

1.015; Fig. 7d), from a cataclastic mixture of carbonate silts from the footwall and dark clays from 

the hangingwall (Fault 1 in Fig. 9b). On the other hand, the samples from the fault zone (Fig. 9b) 

show a homogeneous lithology (light brown sand and clays), and specimens were grouped based 

on their location in the different horses (Gr 9, 10, 10b, 11, 12 and 13), which are delimited by the 

main fault surfaces. Bulk susceptibility values of these samples (90*10-6 SI) are similar to the 

ones obtained in samples from the main fault (Fault 1) and minor fault traces (Fault 2, 3, 4, 5) but 

Pj values are higher (1.022; Figs. 7d, e, f). See Table 1 and for scalar parameters in faults 2, 3, 4, 

5. 
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Groups 1 to 4 (Fig. 9a) are characterized by oblate ellipsoids with a strong clustering of 

kmin axes perpendicular to the NNE-dipping bedding planes and a girdle distribution of kmax and 

kint axes within the bedding plane (typical sedimentary fabric), although a weaker clustering of 

kmax axes with a N orientation can be observed. Groups 5 to 7 and group 8 (Fig. 9a) show triaxial 

ellipsoids, with a weaker dispersion of kmin and kmax axes showing a clear N-S trend, close to the 

dip of the bedding (subhorizontal in Fig. 9a since AMS data were restored to horizontal bedding).  

Samples collected from Fault 1 show kmin axes perpendicular to the fault plane and 

magnetic lineations tend to be slightly scattered, but parallel, to the strike of the N-S fault plane 

(Fig. 9a). Within the fault zone, the samples collected from individual fault planes (Fig. 9b) show 

kmin axes perpendicular to the fault plane, whereas kmax axes show different patterns: i) girdle 

distribution with kint axes on the planes of faults 2 and 5; ii) parallel to fault strike, although 

slightly scattered, in the NW-SE fault 4 and iii) dip-parallel in the N-S fault 3, which is in 

agreement with the E-W-trending magnetic lineation observed in its footwall (Gr10b). 

All the horses within the fault zone (Gr 9-13, Fig. 9b) are characterized by oblate 

ellipsoids with stronger clustering for kmin than for kmax axes. The kmin axes cluster around the 

poles of the bedding planes. In general, kmax axes are scattered, together with kint axes, within the 

bedding planes (Gr 9, 10, 12 and 13), and only in two groups kmax axes are well-grouped: i) Gr10b 

shows magnetic lineations in a E-W trend and ii) Gr11 shows magnetic lineation with a NW-SE 

trend.  

Taking into account that kmax axes show in general a girdle distribution within the horses, 

which is the typical situation of an undisturbed sedimentary fabric, specimens were secondly 

classified based on the distance from main fault planes in order to investigate its influence in the 

orientation of the magnetic lineation (Fig. 10). We arbitrarily chose this distance according to 

sampling density and lithon size. Samples from Gr1-4 (light brown clay) collected at less than 10 

cm from fault planes show a better clustering (kmax conf. ang.: 22/10) of the magnetic lineation in 

a N-S direction, whereas samples collected farther from the fault show a girdle distribution of 

kmax and kint axes (kmax conf. ang.: 69/14). The clustering of the magnetic lineation is also observed 
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in Gr9 or Gr13 (fault zone) among the specimens collected at less than 5 cm from minor fault 

planes (Fig. 10), showing a well-clustered N-S or NE-SW magnetic lineation, respectively. In 

Gr5-7 (white carbonate silts), where N-S magnetic lineations were previously observed, kmax axes 

remain in this direction in the samples collected closer than 10 cm to fault planes. Finally, other 

groups (i.e. Gr10) do not show any change in the magnetic lineation as a function of distance (Fig. 

10). Looking at Km, Pj or T values of the two groups of samples collected close to or far from 

fault planes (Fig. 10), it is clear that scalar values show no significant change, even when there 

are changes in the clustering of the magnetic lineation between the two groups. 

6.3 Southern sector of the Baza Fault; Piedras Rodadas outcrop 

In this outcrop, bulk susceptibility values per site range between 45 and 85*10-6 SI, and 

Pj values show large variations, ranging between 1.007 and 1.070 (Figs. 7a, b and Table 1). AMS 

ellipsoids are characterized by oblate and prolate-triaxial distributions in the footwall and the fault 

zone-hangingwall, respectively (Fig. 8d). Within the footwall, kmin axes are perpendicular to 

bedding planes in Bz1 and Bz2 and they are contained within them in Bz5, where kmin axes show 

a horizontal N-S trend. In these sites, kmax axes orientation is not well defined, being scattered 

within the bedding planes in Bz1 and Bz2 or with a E-plunging trend in Bz5. Attending to the 

fault zone, prolate ellipsoids were obtained in the three collected sites (Bz3, 4, 6), with vertical 

disposition of kmax axes and girdle distribution of kmin and kint axes, which is not consistent with 

the orientation of fault or bedding planes. In the hangingwall, where bedding plane remains 

horizontal and apparently undisturbed, kmax axes fit with the pole of the fault plane, and kmin axes 

show two clusters that fit either with the strike or the dip of the fault plane. 

 

6.4 Footwall of the Baza fault system 

In all sites sampled in the footwall of the Baza fault system (Fig. 8e), kmin axes are 

perpendicular to bedding planes. In four sites, kmax axes are clearly grouped on the bedding planes 

and parallel to the regional ENE-WSW extension direction (Bz10a, Bz10b and Bz11) or to a NE 
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direction (Bz8). The other site shows a sedimentary fabric with girdle distribution of kmax and kint 

axes on the horizontal bedding plane (Bz9). 

8. Discussion 

8.1 Kinematics of the Baza fault from the structural and AMS study 

The combination of structural and AMS studies presented in this work highlights that  the 

kinematics and fault zone architecture of normal fault zones strongly depends on the  degree of 

segmentation and the type of linkage between fault segments. Particularly, in the Baza fault 

system, our results show two different sectors; the northern sector (Cañada del Gallego, Cueva 

Gil and La Tejera outcrops) and the central and southern sectors (El Carrizal trench and Piedras 

Rodadas outcrops) each having lower and higher degree of fault segmentation, respectively (Fig. 

11). 

In the northern sector, where the fault system shows a low degree of segmentation, structural and 

AMS analyses indicate pure, normal displacement for all studied fault splays, based on the 

predominance of magnetic lineations parallel to the dip-plunging striae and to the transport 

direction inferred from normal SC structures (Figs. 3, 4a and Figs. 8a, b, c). The dip-slip, top-to-

the E displacement is compatible with the ENE-WSW regional extension direction (Galindo 

Zaldívar et al., 1999; Sanz de Galdeano and López-Garrido, 2000; Marín-Lechado et al., 2005). 

Attending to fault zone architecture, the absence of oblique fault planes within fault zones and 

fault-parallel drag folds in footwalls and hangingwalls lead us to interpret these outcrops located 

in the northern sector as isolated faults lacking relay ramps o transfer zones (Fig. 11). When 

comparing the qualitatively higher displacement of the two fault splays exposed in the 

northermost Cañada del Gallego outcrop with the single fault splays observed in the Cueva Gil 

and Tejera outcrops, we also see a correlation with the width of the sheared zones, being 50 m 

and 1 m thick, respectively. The high variability of magnetic lineation orientation in the Cañada 

del Gallego outcrop suggests that deformation is more heterogeneously distributed within wider 

fault zones than in narrower ones, where strain is strongly localized and magnetic lineation is in 
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all cases parallel to the transport direction (i.e. the Cueva Gil and Tejera outcrops), in spite of 

their lower displacement.  

In the central sector of the Baza fault system, in the Carrizal outcrop, structural and AMS 

analysis indicate that the kinematics and architecture of the deformed zone in the Carrizal outcrop 

(central sector) keep significant similarities with relay ramps described in previous works: i) relay 

ramps usually show oblique structures transferring the displacement between splays, including 

minor strike-slip components (e.g. Larsen, 1988; Peacock and Sanderson, 1991; 1994; Giba et al., 

2012; Rotevant et al., 2009; Fossen et al., 2010; Fossen and Rotevant, 2016; Fig. 4b); ii) faults 

showing displacements along the dip direction of the ramp are frequent in case of breached relay 

ramps (see Fig. 8c, d in Ferril and Morris, 2001; see also Trudgill and Cartwright, 1994; Rotevant 

et al., 2007; Fig. 5d, e, h, g), and iii) bedding dip is oblique or parallel to the fault cut-offs (Ferril 

and Morris, 2001; Fossen and Rotevant, 2016 and references therein; Fig. 4b). All these structural 

patterns were recognized in the Carrizal trench through structural and microstructural 

observations, and therefore, the deformed zone limited by the two main fault splays (fault zone 

in Fig. 5a) is interpreted as a transfer zone or relay ramp (Fig. 11).  

The results obtained from AMS and from paleostress analysis also point to interpret this 

outcrop as a relay ramp. Local stress perturbations within relay ramps are widely documented, 

including an increase of the Coulomb stress close to fault tips (e.g. Willemse, 1996; Crider and 

Pollard, 1998; Gupta and Scholz, 2002; Finzi and Langer, 2012) and a change in the extension 

direction from fault-perpendicular to oblique or parallel to the strike of the splays within the relay 

ramp (e.g. Peacock and Sanderson, 1994; Ferrill and Morris, 2001). In lithons showing clustered 

magnetic lineations (kmax axes) in the Carrizal trench, they are parallel to the strike of the fault 

splays, suggesting that a N-S, local extension direction could control their development. 

Furthermore, paleostress analysis also point to a fault-parallel local extension direction within the 

fault zone (NNE, approaching the perpendicular to the regional, ENE-WSW extension direction). 

These results indicate that: i) stress deflections within relay ramps entail changes in the strain 

ellipsoid with an elongation of the petrofabric elements parallel to the dip of the ramp, and ii) the 
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usefulness of the AMS method to identify petrofabric variations in low-strained rocks in 

extensional contexts, particularly in relay zones. 

 In the southernmost studied sector, Piedras Rodadas outcrop, the Baza fault system is 

segmented into several fault splays showing complex links between them. Kinematic indicators 

show that the displacement of the studied splay is not compatible with a pure normal, dip-slip 

movement as it occurs in the Carrizal trench. Bedding planes in the footwall and hangingwall 

remain horizontal and no oblique structures that could be interpreted as transfer structures within 

relay ramps have been observed. Unfortunately, AMS data are difficult to interpret since there is 

no clear correlation between the orientation of deformational structures and magnetic axes 

orientations. Therefore, this outcrop can be interpreted either as relay ramp or as isolated splay. 

Our data confirm that the Baza fault system represents a strongly-segmented, large, 

normal fault as stated by previous works (Alfaro et al., 2008; García-Tortosa et al., 2008, 2011) 

validating the use of the selected methodology (combination of structural and AMS studies) to 

successfully analyse them. Our results also point to the high sensitivity of AMS data to detect 

different degrees of linkage and different fault zone architectures: fault zones related to an isolated 

fault vs. relay ramps between different fault strands (Fig. 11). 

 

8.2 Development of magnetic fabrics in the Baza Fault: a test for the application of AMS to 

extensional contexts 

In extensional settings, where the development of the magnetic fabric is not masked by 

subsequent compressional stage, it is crucial to define the transition from a sedimentary fabric to 

tectonic fabric, either extension- or sheared-related fabric. In simpler extensional scenarios, 

magnetic lineations, defined by the common axis of differently oriented basal planes of 

phyllosilicates, are parallel to the extension direction (Cifelli et al., 2005 and references therein). 

However, in complex settings, as the fault system studied here, different magnetic ellipsoid 

orientations can be observed in relation to the tectonic overprint. Accordingly, magnetic fabrics 
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evolve from sedimentary (no clustering of magnetic lineation) in low-strained extensional horses 

(i.e. Carrizal trench), to tectonic (clustered magnetic lineation parallel to extension direction), 

close to fault planes (i.e. Carrizal trench and fault blocks in the northern outcrops), and finally to 

magnetic lineations conditioned by shear processes within fault zones (i.e. northern outcrops). 

Furthermore, the Pj vs T diagram (Fig. 7b) reflect this different tectonic overprint, showing the 

classical evolution previously described in compressional settings (e.g. Parés and van der Pluijm., 

2004; Debacker et al., 2004; 2009; Pueyo-Anchuela et al., 2012). This means a transition from 

sedimentary to shear-related fabrics: in Piedras Rodadas and El Carrizal trench, where 

sedimentary and extension-related magnetic fabrics are predominant, Pj and T values are 

significantly lower than in the northern outcrops, where shear-related fabrics are associated with 

higher Pj and T (Figs. 7b, c). 

 

8.2.1 Development of clustered magnetic lineations in weak deformed sediments 

If we consider the clustering of the magnetic lineations in extensional-related fabrics 

observed within the horses in the Carrizal trench (Fig. 12a), two factors seem to control their 

development: i) the rheology of the different lithologies and ii) the distance to fault planes. 

Materials containing a significant sandy fraction (Gr1-4 in the footwall and Gr9-13 in the fault 

zone) show fabrics whose kmax axes show a girdle distribution on the bedding plane, whereas 

white carbonate silts (Gr5-8) develop well clustered, N-S oriented kmax axes (Fig. 9). Considering 

that strain is similar within each horse and that ferromagnetic minerals are not contributing 

critically to the RT-AMS (k-T analysis and LT-AMS indicate paramagnetic dominance), the 

scattering in the magnetic lineation can be related to the presence of coarser, sandy fractions, since 

they can inhibit the development of the intergrain folding or kinking of phyllosilicates, which is 

the responsible of the development of kmax axes parallel to stretching direction (as shown in Cifelli 

et al., 2005). Medina-Cascales et al. (2019) also point the different role in strain development of 

clay and sandy levels in the Carrizal trench, prone to develop ductile and brittle deformation style, 

respectively. In addition, a direct relationship between distance to fault planes and clustering of 
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magnetic lineations can be inferred in the Carrizal trench. The clustering of the magnetic 

lineations near fault planes in several AMS groups (Fig. 10) suggests that strain localises at a 

distance of around ≈10 cm and that fault slip is one of the factors that controls the development 

of clustered magnetic lineations in non-consolidated, weakly-deformed sediments. This strain 

localization is probably enhanced by clay injections and smears in the surrounding areas to fault 

planes (Medina-Cascales et al., 2019). Furthermore, sites collected in the footwall or hangingwall 

in La Tejera and Cañada del Gallego are at 2 and 4 m, respectively, from the fault planes, and 

they also show clustered magnetic lineations, therefore influenced by nearby faults (Fig. 8a, c). 

In the Carrizal trench, the clustering of magnetic lineation does not imply a systematic, 

distinguishable change in Pj or T values (Fig. 10, 11), indicating that the intergranular folding or 

kinking responsible for the change in orientation change only produced a weak perturbation in 

petrofrabic elements inherited from sedimentation. 

8.2.2 Magnetic lineations conditioned by shear processes 

The results obtained in the Baza fault indicate that shear-related deformation induces the rotation 

of the basal plane of phyllosilicates within fault rocks (Fig. 3c, d and Fig. 5f), and consequently 

kmin axes change from perpendicular to bedding plane (depositional pattern) to perpendicular to 

fault planes (tectonic pattern). In the Carrizal trench, this change is translated into a noticeable 

decrease of Pj and T values in comparison with the ones obtained in the surrounding, extensional 

horses (Fig. 7e, f and Fig. 12b). This indicates that the superimposition of different anisotropy 

ellipsoids (linked to bedding, fault or incipient foliation planes) entails a reduction in the ordering 

of the petrofabric elements in the early stages of shearing (Marcén at al., 2018b). Attending to the 

orientation of the magnetic lineation, a strong variability is observed when deformational 

structures are incipient and kinematic indicators are scarce (i.e. Faults 1-5 in the Carrizal trench; 

Fig. 5f), making difficult their straightforward interpretation. Fortunately, the northern outcrops 

(i.e. Cañada del Gallego, Cueva Gil and La Tejera) show clear kinematic indicators (Fig. 3a-f; 

Fig. 4a) and therefore magnetic intersection lineations and parallel-transport lineations are 

distinguishable (Fig. 12c). In the Cañada del Gallego outcrop, a correlation exist between strain 
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and these different orientations: weakly deformed rocks in the footwall of fault A (Bz20 site; Fig. 

3b) provide intersection lineations and lower Pj values than strongly sheared rocks in fault B 

(Bz17 site), where a transport-parallel magnetic lineation is observed (Fig. 12c). Between both 

sites (close to fault B), magnetic lineation shows a girdle distribution, intermediate Pj and higher 

T values (Bz19 site; Fig. 12c) that can be interpreted as an oblate ellipsoid between the two 

elongated end-members. Following this interpretation, we can assume that the bulk finite strain 

is the direct responsible for the different magnetic lineation orientations in the Baza fault. 

Ferromagnetic contribution defining parallel-transport magnetic lineations (Oliva-Urcia et al., 

2009; Casas-Sainz et al., 2017; Román-Berdiel et al., 2018) is non-significant. Finally, Cueva Gil 

and La Tejera outcrops show narrow fault zones where strain is strongly concentrated and 

deformational structures are better developed than in Cañada del Gallego. Consistently with the 

hypothesis that strain controls magnetic lineations orientation in the Baza Fault, all sites show 

triaxial ellipsoid having kmax axes parallel to the transport direction and higher Pj and T values 

than the ones observed in the Cañada del Gallego site (Fig. 12c). 

 

9. Conclusions 

In this work, five outcrops were analysed to determine the kinematics and architecture of the Baza 

fault system, a seimogenic structure of the Betic Cordillera, through a combination of structural 

and AMS analyses. The results obtained indicate the presence of a strongly-segmented, large-

scale, normal fault system whose kinematics and architecture depend on the linkage between 

adjacent splays. In the case of isolated faults, their kinematics is compatible with a normal 

displacement, based on a predominance of magnetic lineations (kmax axes) parallel to the top-to-

the E, dip-slip transport direction. Deformational patterns (SC structures and striae) and 

microstructural observations, also agree with the ENE-WSW regional extension. Conversely, 

linking segments developed relay ramps and oblique structures. In these cases, kinematic 

indicators suggest transference of displacements between adjacent splays conforming the relay 
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zone. A local extension direction nearly parallel to the dip direction of the ramp is obtained from 

paleostress analysis and tracked by magnetic lineations. 

From the methodological point of view, the detailed study of the Carrizal trench (523 samples), 

has been crucial to obtain clues about the transition from sedimentary to extension- and shear-

related fabrics within normal fault zones. Lithology and distance to fault planes are the two main 

factors that control the development of clustered magnetic lineations in extension-related 

magnetic fabrics. The transition from sedimentary to shear-related fabrics is connected to the 

rotation of basal planes of phyllosilicates from parallel-to-bedding to parallel-to-fault-planes, a 

process that entails a noticeable decrease in the Pj and T values of the shear-related samples, and 

the coexistence of magnetic lineations parallel and perpendicular to the transport direction. The 

development of each type of magnetic lineation, parallel or perpendicular, is directly related to 

the higher or lower, respectively, amount of shear, which is strongly dependent on the localisation 

of shear strain in narrow fault zones, rather than on the total displacement of the fault. 
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Table captions 

Table 1. Summary of magnetic scalar and directional data and structural patterns. 

n, number of samples; Km, average value of magnetic susceptibility (E-6 SI); Pj, corrected degree 

of anisotropy; T, shape parameter; e, standard deviation; kmax, kmin, mean orientations (D/I, 

declination/inclination); conf. angl., confidence angles; Pole S0 /F, pole to bedding or to fault in 

sites collected in hanging and footwall or within fault zone respectively  (T/P, trend/plunge); In 

grey colour, sites collected in hanging or footwall, separated from sites collected within fault 

zones, in without colouring. 
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Fig. 1. Sketch showing the relation between deformation and magnetic fabrics. a) Sedimentary 

fabrics, showing magnetic foliation parallel to bedding surfaces and girdle distribution of 

magnetic lineations. b) Extension-related fabrics, with clustered magnetic lineations parallel to 

the local extension direction. c) Shear-related fabrics, with magnetic foliations parallel to fault or 

foliation planes and magnetic lineations parallel or perpendicular to the transport direction. 

Fig. 2. a) Geological sketch of the studied sector of the Betic Cordillera. BB: Baza sub-basin; GB: 

Guadix sub-basin. b) Geological map of the Baza Fault, showing the location of the studied 

outcrops. c) Geological cross section of the Carrizal trench. Modified from Castro et al. (2018). 

Fig. 3. Photographs showing four of the studied outcrops of the Baza fault system and the 

locations of the AMS sites. a) Cañada del Gallego outcrop; overall view of the fault zone, where 

the total displacement is concentrated in the single fault zone shown. B) Location of the Bz20 

AMS site at the footwall in the Cañada del Gallego outcrop, just in contact with the western main 

fault plane (Fault A in Fig. 3a). c, d) Photomicrographs of thin sections representative of the fault 

rocks collected from Cañada del Gallego (c) and Cueva Gil (d) outcrops. Thin-section 

photographs were taken from XZ section with crossed (c) and parallel (d) polarizers, ×2.5 lens. 

e) La Tejera outcrop, with the studied fault splay and a detailed photograph of the observed SC 

structures. f) Fault zone in the Cueva Gil outcrop and SC structures developed within the narrow 

deformed zone. g) Piedras Rodadas exposure, with a photograph of the striated fault plane. 

Fig. 4. Stereoplots showing structural data. Lower hemisphere, equal-area projections. a) 

Orientation of fault planes and their striae of the three northernmost studied outcrops. b) 

Orientation of bedding planes, fault planes and their striae measured on the Carrizal trench. c) 

Results of the paleostress analysis performed in the Carrizal trench. Numbers indicate the number 

of faults compatible with a specific σ3 orientation, determined by the Right Diehdra method; 

Kamb contours, contour interval 2%. Results of the Etchecopar method is shown by red (σ3) and 

blue (σ1) stars. 
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Fig. 5. a) Interpreted panorama of the Carrizal trench. The two main fault planes, the footwall, 

the core fault zone and the hangingwall are indicated. b) Detailed image of the lithology and 

structure observed in the footwall. Bedding planes remain practically undisturbed. c) Detailed 

image of the materials and structure observed in the fault zone, where bedding planes are 

stretched. d, e) Photographs of thin sections in two different orientations (shown on the photos) 

in samples collected from AMS Group 2 in the footwall. The absence of displacements in vertical, 

E-W orientations is noticeable. f) Photograph of the deformational patterns observed in Fault 1. 

Notice the absence of clear kinematic indicators both in the core and damage zones. g, h) 

Photographs of thin sections along two different orientations (shown on the photos) in samples 

collected from AMS Group 9 in the fault zone. Both thin sections show displacements. 

Fig. 6. a, b, c) Temperature-dependent magnetic susceptibility (K–T) curves in three different 

outcrops. Paramagnetic behaviour dominates in all curves. d) Ratio between the magnetic 

susceptibility at low and room temperature (LT/RT). E) Comparison of results from the different 

methods used for subfabric separation: RT-AMS (orange symbols) and LT-AMS (black symbols). 

Lower hemisphere, equal-area projections. 

Fig. 7. Diagrams showing the bulk magnetic susceptibility vs. corrected degree of anisotropy (a, 

d) and the corrected degree of anisotropy vs. shape parameter (b, e) by samples for all sites (a, b) 

and for the Carrizal trench, separated by lithology and structural criteria (d, e). In c) and f), 

histograms with the corrected degree of anisotropy vs. % of samples are shown. In b) and c), lines 

with arrow indicates the evolution of the parameters in function of increasing strain. 

Fig. 8. Equal-area, lower-hemisphere projections of the magnetic ellipsoids for all sites, with the 

exception of the Carrizal Trench. 

Fig. 9. a) Detailed image of the Carrizal trench footwall and the AMS data obtained, with the 

main structures and the location of the collected AMS samples and groups. B) AMS data and 

groups and main structural features for the core of the fault zone of the Carrizal trench. Samples 
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collected in fault zones are indicated by yellow dots, and samples collected within extensional 

horses are red dots. Lower hemisphere, equal-area projections. 

Fig. 10. Second classification of the samples collected in the Carrizal trench as a function of the 

distance to fault planes. Histograms show the corrected degree of anisotropy vs. % of samples 

and diagrams show the corrected degree of anisotropy vs. shape parameter as a function of the 

distance to fault planes. 

Fig. 11. Sketch of the Baza fault system, evidencing the different degree of segmentation of the 

structure, the AMS results and their interpretation. Double-arrows indicate the local extension 

direction (black) and the orientation of magnetic lineation (blue).  Not to scale. 

Fig. 12. Evolutionary model from sedimentary to shear-related magnetic fabrics in the Baza fault. 

a) Transition from sedimentary to extension-related fabrics controlled by lithology and structural 

criteria. b) Transition to shear-related fabric entails strong variability of the magnetic lineation 

orientation and a noticeable reduction on the Pj and T values. c) Progressive development of 

shear-related fabrics defines constant, magnetic lineation parallel to transport direction instead of 

the combination of parallel and perpendicular magnetic lineations, accompanied by an increase 

of Pj and T values. 
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Table 1. Summary of magnetic scalar and directional data and structural patterns. 

Site n Km e Pj e T e kmax 
(D/I) 

conf. 

angl. 

kmin 
(D/I) 

conf. 

angl. 

Pole S0 
/F (T/P) 

Striae 

(T/P) 

Cañada del Gallego outcrop (N:37,589851°, W: 2,785631°) 

Bz20 11 106 22 1.013 0.004 0.303 0.310 179/13 46/17 285/48 20/15 252/55 085/35 

Bz19 23 144 28 1.031 0.006 0.770 0.089 069/73 86/08 266/17 12/06 286/25 085/64 

Bz18 35 31 3 1.028 0.004 0.052 0.004 302/03 04/04 143/87 06/04 000/90 - 

Bz17 48 172 12 1.035 0.007 0.105 0.237 058/27 08/07 219/62 28/07 265/44 085/45 

Cueva Gil outcrop (N: 37.541857°, W: 2.794474°) 

Bz16a 35 123 29 1.052 0.010 0.587 0.132 086/30 10/05 293/57 10/05 259/21 063/68 

Bz16b 28 160 19 1.077 0.015 0.119 0.286 085/32 13/07 316/44 15/08 259/21 063/68 

Bz16c 28 139 32 1.052 0.005 0.790 0.101 084/43 14/06 310/36 08/06 259/21 063/68 

La Tejera outcrop (N:37,537411°, W: 2,795047°) 

Bz15 36 164 28 1.061 0.012 0.149 0.430 102/05 10/08 265/85 13/10 000/90 - 

Bz14 34 173 13 1.061 0.008 0.743 0.106 032/86 22/12 268/01 12/07 277/12 077/75 

Bz13 17 171 26 1.056 0.008 0.465 0.207 119/24 11/06 274/64 15/08 292/46 105/41 

Piedras rodadas outcrop (N:37,478791°, W: 2,783454°)   

Bz7 48 57 10 1.070 0.032 0.210 0.350 223/59 06/03 316/02 47/03 000/90 - 

Bz6 31 45 4 1.007 0.002 0.076 0.312 048/71 09/07 157/06 30/07 250/50 030/32 

Bz5 24 85 14 1.010 0.003 0.215 0.363 089/47 33/07 353/06 15/06 355/74 - 

Bz4 25 46 11 1.004 0.002 0.076 0.425 260/70 24/12 144/05 34/12 250/50 030/32 

Bz3 8 82 13 1.038 0.010 0.192 0.459 083/80 35/04 350/01 20/04 250/50 030/32 

Bz2 7 66 3 1.011 0.003 0.204 0.317 076/10 62/20 183/60 29/20 355/74 - 

Bz1 8 61 4 1.009 0.003 0.377 0.487 034/20 27/09 201/69 10/08 355/74 - 

Baza fault system - Footwall (N:37,507389°, W: 2,794500° and N:37,503347°, W: 2,787977°)   

Bz11 32 797 117 1.023 0.007 0.454 0.210 248/12 28/08 119/72 12/08 113/80 - 

Bz10-1 23 853 106 1.035 0.017 0.049 0.494 251/17 13/05 146/40 12/05 144/80 - 

Bz10-2 21 926 109 1.041 0.524 0.011 0.297 266/17 16/05 113/72 09/05 144/80 - 

Bz9 16 232 32 1.011 0.003 0.531 0.219 022/00 59/07 115/82 14/06 000/90 - 

Bz8 16 429 177 1.007 0.003 0.409 0.326 051/04 46/07 176/83 09/07 000/90 - 

El Carrizal trench (N:37,520184°, W: 2,792893°)   

Gr1-4 96 55 26 1.022 0.007 0.689 0.194 349/04 48/13 165/86 15/12 182/61 - 

Gr5-7 95 26 17 1.016 0.007 0.264 0.344 009/05 28/14 189/85 31/14 206/77 - 

Gr8 17 39 8 1.018 0.490 0.257 0.257 002/20 25/12 185/71 20/07 250/57 - 

Gr9 59 86 19 1.022 0.008 0.759 0.156 103/05 51/09 236/84 13/08 214/77 - 

Gr10a 51 88 17 1.027 0.014 0.757 0.234 157/03 72/10 274/84 18/10 190/74 - 
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Gr10b 14 105 9 1.020 0.007 0.715 0.158 090/09 32/13 211/74 14/05 180/77 - 

Gr11 10 115 23 1.024 0.004 0.831 0.151 128/17 28/09 261/66 16/09 200/60 - 

Gr12 13 119 19 1.016 0.008 0.513 0.490 194/03 36/09 305/83 10/09 196/62 - 

Gr13 33 72 27 1.017 0.006 0.674 0.227 234/04 63/12 354/83 13/10 202/66 - 

Fault 1 33 93 27 1.014 0.008 0.660 0.265 335/21 36/13 221/46 17/12 234/50 - 

Fault 2 43 92 28 1.013 0.005 0.653 0.230 100/15 70/16 218/59 21/14 223/56 - 

Fault 3 22 95 23 1.011 0.003 0.631 0.188 130/04 36/14 228/60 21/14 254/47 077/42 

Fault 4 24 90 21 1.018 0.007 0.616 0.291 083/32 35/12 257/58 12/08 273/40 - 

Fault 5 13 100 20 1.015 0.006 0.691 0.215 350/30 82/11 228/42 13/10 - - 

n, number of samples; Km, average value of magnetic susceptibility (E-6 SI); Pj, corrected degree of anisotropy; T, 
shape parameter; e, standard deviation; kmax, kmin, mean orientations (D/I, declination/inclination); conf. angl., 
confidence angles; Pole S0 /F, pole to bedding or to fault in sites collected in hanging and footwall or within fault 
zone respectively  (T/P, trend/plunge); In grey colour, sites collected in hanging or footwall, separated from sites 
collected within fault zones, in without colouring. 
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Highlights 

 

- First AMS study applied to large-scale, pure normal fault zones in brittle deformation 

contexts. 

- Characterization of different fault zone architectures along the fault system. 

- Changes and evolution of AMS ellipsoid related to different tectonic overprint. 

- Stress and strain perturbation within relay ramps revealed by AMS data. 

- Contribution to define the overall kinematics of the seismogenic Baza Fault System. 
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