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Featured Application: This work addresses the choice of the economically optimal type of battery
(lead-acid or Li-ion) to be used in photovoltaic or hybrid standalone energy systems. Factors that
encourage one or the other type of battery are identified.

Abstract: Standalone renewable energy systems usually incorporate batteries to get a steady energy
supply. Currently, Li-ion batteries are gradually displacing lead-acid ones. In practice, the choice is
made without previous comparison of its profitability in each case. This work compares the economic
performance of both types of battery, in five real case studies with different demand profiles. For each
case, two sets of simulations are carried out. In one of the sets, the energy demand is supplied by a
standalone photovoltaic system and, in the other one, by a standalone hybrid photovoltaic-diesel
system. Through optimization processes, the economic optimum solutions are obtained. In addition,
sensitivity analyses on various parameters have been carried out, seeking the influence in favor of
one or another type of battery. The results show that if the type of battery is changed, to achieve
the economic optimum the entire system must be resized. In some cases, the economic optimum
is reached with Li-ion and in others with lead-acid batteries, depending on the demand profiles.
Thus, both types of batteries can be profitable options in standalone energy systems, with a greater
tendency to lead-acid in fully photovoltaic systems and to Li-ion in hybrids. The price reductions
that would make Li-ion the only choice is quantified.

Keywords: Li-ion batteries; lead-acid batteries; electric energy storage; standalone photovoltaic
energy systems; hybrid energy systems; off-grid storage; microgrids

1. Introduction

On-site renewable electricity generation is widely used in rural areas, where the
electrical grid is weak, or it does not exist. Standalone energy systems usually include a PV
(photovoltaic) generator and battery storage. Wind turbines are used in places with high
wind speed during the whole year. In many cases, a hybrid system including PV, a fossil
fuel genset (diesel or gasoline) and battery storage can be the optimal solution. Auxiliary
components as the battery charge controller and inverter are required. The charge controller
avoids the overcharge of the battery, preventing from premature failure. It also controls the
battery discharge, preventing the over-discharge. Generally, the load is AC (alternating
current) type while the battery is DC (direct current), so an inverter (DC/AC converter) is
needed. Inverters used in standalone systems include battery over-discharge protection. If
the system includes a fossil fuel genset, then a battery charger (rectifier, AC/DC converter)
is used to charge the batteries. In many cases, the inverter and the battery charger are a
single device called inverter-charger or bi-directional inverter [1]. Regarding storage in
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standalone systems, lead-acid batteries have been widely used [2], although Li-ion batteries
can be competitive in some cases [3] as their cost have been reduced recently. Standalone
systems can be DC or AC coupled. DC coupled are usual in low power systems, while AC
coupled are used in middle and large power systems.

The sizing of a standalone renewable energy system is a critical process for the stability
of the supply. It includes the choice of the suitable components from both technical and
economic points of view. Choosing the economically optimal battery is one of the results
that can be obtained from a simulation and optimization process. However, the simulation
and optimization of hybrid standalone energy systems is a complex task, due to the high
number of variables, the time-dependence and the non-linearity of the components [4].
Heuristic optimization techniques, such as genetic algorithms, particle swarm optimization,
etc. have been used by different researchers [5]. Multiple optimization objectives have been
used [4,6], but the most common are the minimization of the cost and the minimization
of emissions [7]. Usually, a mono-objective optimization is performed, where the unique
objective is the minimization of the net present cost (NPC) or the Levelized Cost of Energy
(LCOE). Specific software tools are used for the simulation and optimization of hybrid
standalone systems [4,8].

The mono-objective economical optimization is usually done by simulating the per-
formance of different combinations of components and control strategies, looking for the
combination of lowest NPC or LCOE. After the simulation of each combination, if it meets
all the constraints, NPC is calculated [5], including the acquisition cost of all the compo-
nents, the replacement cost at the end of the components lifetime and the O&M (operation
and maintenance) cost.

The battery total cost (including its replacement during the system lifetime) is fre-
quently the highest cost in the NPC of the hybrid system. Therefore, in optimization
processes for hybrid standalone systems, the accurate estimation of the battery lifetime
is one of the most important issues. Great errors in the prediction of battery lifetime
would lead to great errors in the estimation of the NPC, making the optimization process
unreliable.

The aging factors of lead-acid batteries are charge and discharge rates, charge (Ah)
throughput, time between full charges, time at low state of charge (SOC), and partial
cycling. Several researchers have analyzed them [9,10]. Classical models widely used by
researchers to estimate the battery lifetime are the “equivalent full cycles model” and the
“rainflow model” [11]. The first one counts the charge (Ah throughput) cycled by the battery
since the start of its lifetime; when this value reaches the charge, the battery can cycle
(considering the cycle life shown in the manufacturer datasheet, obtained in standard tests),
the end of the battery lifetime is reached. The second model includes the effect of the depth
of discharge (DOD). Nevertheless, real operating conditions (current rate, temperature,
DOD, SOC, etc.) are commonly different from the laboratory conditions of the cycles shown
by the manufacturer datasheet, so a great error in lifetime prediction can be expected. In
some of these cases, especially in full PV systems, the lifetime estimation can be two or
three times greater than real lifetime [11]. A much more accurate lead-acid aging model
(and also more complex and with higher computational effort) is described by Schiffer
et al. [12], called “weighted Ah throughput model”. It is used by iHOGA software [13]. This
model includes Shepherd model [14] to calculate the battery voltage and Lander model [15]
for the estimation of corrosion depending on voltage and temperature. The model is based
on the application of weighting factors for the charge throughput of the battery to estimate
the lost capacity (considering the different stress factors for cycling and corrosion).

Regarding Li-ion batteries [16–18], they have higher cycle life, energy density and
energy efficiency, and lower maintenance compared to lead-acid batteries. LiFePO4 type
is the most used in off-grid systems. The most significant aging external factors of Li-
ion batteries are temperature, charge and discharge rate, and DOD [19]. In optimization
of hybrid standalone systems, Li-ion cell level aging models [20] are commonly used,
due to their simplicity. Electrochemical models are usually very complex, even the most
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simplified ones [19,21,22], thus they cannot be used in optimization due to excessive
calculation times [23]. “Calendar” aging occurs when a battery is not being used while
“cycle” aging occurs when the battery is under charge or discharge current [23]. Cycle aging
is affected by the total charge (Ah) throughput from the start of battery lifetime, the current,
the ambient temperature, and the SOC. Calendar aging main factors are temperature and
SOC [20]. Arrhenius kinetic-based aging models [20] are the most used cycle aging models.
For example, Wang et al. [24] model was obtained by doing many accelerated cycling tests
to commercial LiFePO4 cells, obtaining a capacity fade model which takes into account the
Ah throughput and temperature for different charge/discharge rates. Calendar aging has
been modelled by different researchers [20]. For example, Petit et al. [25] use an expression
based on Arrhenius law, considering temperature, time, and SOC. In this work, researchers
consider a condition to switch between calendar and cycle mode, assuming that cycle aging
only occurs when the battery is in charge mode and the current is above a given threshold
current. A recent study [26] proposed to use the model of Schiffer et al. [12] for lead-acid
batteries and, for Li-ion batteries, the model of Wang et al. [24] combined with the calendar
aging model of Petit et al. [25].

Lifetime aside, there are other characteristics of Li-ion batteries that outperform lead-
acid ones, such as lower maintenance costs, higher cycling efficiency, and greater allowed
depth of discharge. Against these advantages there is the fact that currently, its acquisition
price is higher. Therefore, the question is to determine in which cases it is profitable to pay
its highest price. In the context of standalone energy systems, this has been addressed for
specific cases in several studies, mainly located on geographical latitudes with very high
solar resource. Limiting the review to recent studies, the best results are equally divided
between Li-ion and lead-acid batteries, i.e., currently it is a match virtually tied. In [3], the
simulation of a hybrid microgrid located in Colombia obtained lower NPC and LCOE with
Li-ion batteries. In [27], the redesign of an existing rural microgrid located in a small island
in Thailand was addressed, proposing and comparing three hybrid solutions with Li-ion
batteries and one with lead-acid battery. The lowest cost was obtained with Li-ion batteries,
although at the expense of higher fuel consumption. In [28], the case study is located in
Tanzania and in the home solar system, Li-ion batteries obtained a lower LCOE. In [29], the
case corresponds to a small DC load located in India and the study resulted in the use of a
Li-ion battery. The four case studies of [30] are also located in India, where for both types
of battery, the proposed systems included the same generation power. Therefore, the effect
of battery type on system size was not considered. In [31], a case study in North Korea
offered better economic results with lead-acid batteries, although close to those of Li-ion
batteries. In [32], the case study is located in Malaysia and a lead-acid battery proved to be
the most profitable option.

In addition to standalone PV systems, the combined use of PV generation and batteries
is frequent in microgrids. A microgrid is a small energy distribution system with generation,
storage, loads and usually an EMS (Energy Management System), which depending on its
architecture and mode of operation can work connected to the network or disconnected
from it [33]. When it operates in islanded mode, the function and requirements of its
batteries are similar to those of standalone systems. Moreover, stationary lead-acid or Li-
ion batteries can operate as a buffer in those cases where it is necessary to charge the Li-ion
batteries of electric vehicles taking advantage of the stored energy of PV origin [34]. It is well
known that in electric vehicles, the characteristics of Li-ion batteries are much more suitable
than those of lead-acid ones but, in stationary systems, lead-acid batteries could be used
if its technical and economic performance is considered adequate. Another characteristic
that differentiates both types of batteries is the greater management complexity of Li-ion
batteries, which require additional electronics and management algorithms [35,36]. This
can lead to incompatibilities between batteries from different manufacturers and raise the
design and maintenance costs of the systems. The additional circuitry also drains small
currents that increase self-discharge.
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In summary, more than a controversy, currently the choice of one battery type or
another depends on each case that is addressed, and the criteria applied to make the
decision. In the absence of detailed studies, in practice general criteria or preferences are
applied that do not ensure the best choice, since both technologies offer acceptable results
in PV standalone systems. In fact, both lead-acid and Li-ion batteries are being installed in
new standalone renewable energy systems. The general expectation is that Li-ion batteries
will lower their prices and prevail. However, despite the increase towards mass production,
the price reduction of Li-ion batteries is not guaranteed. Its characteristics make it the
option for electric vehicles, which can dramatically increase its demand and hinder price
reductions. For this reason, it cannot be ruled out that in standalone renewable energy
systems, lead-acid batteries still have a future. As an alternative, the use of Li-ion batteries
recycled for a second life is also being considered in standalone systems [37] and other
stationary applications [38].

This work seeks to better understand the technical and, above all, economic implica-
tions of using Li-ion batteries instead of lead-acid in standalone renewable energy systems.
With this objective, the study presents various novelties. First, it focuses on the simultane-
ous study of five cases whose main difference is the consumption profile. Unlike previous
studies, the cases include agricultural, agro-food, and residential activities located on an
intermediate geographical latitude and, therefore, with a solar resource of medium magni-
tude. Their locations are close together, with similar irradiation and temperature profiles.
The results show that currently both types of batteries are competitive and, depending on
the case (and therefore the demand profile), the most profitable choice is different. Second,
it has been identified how the type of battery affects the sizing of the optimal system,
including the capacity of battery, the power of PV generator and, in hybrid systems, fuel
consumption. Thirdly, different behaviors are identified depending on the generation
system, whether it is full PV or hybrid. Finally, the sensitivity analyses show, among other
things, what reduction in the acquisition cost of Li-ion batteries would be necessary to
displace lead-acid batteries as the economically optimal solution in all cases studied.

2. Materials and Methods

Figure 1 shows the graph of the methodology used in the study. Its description is
detailed in the following sections: Section 2.1 Case studies and Section 2.2 Simulation,
optimization, and sensitivity analysis.
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2.1. Case Studies

Five case studies of existing electricity consuming facilities with different demand
profiles were selected. The five cases correspond to a winery, an irrigation pumping in
a vineyard, a pig farm, a single-family home and a second home for vacations. From
each of them, real data were obtained on their electricity consumption for 2019. Four of
the five cases are actually powered by the electricity grid, so the consumption records of
their respective remote-managed meters were obtained. The case of irrigation pumping
is actually powered by a diesel genset, so its consumption data were obtained from the
irrigation history of 2019. All data were obtained on an hourly basis. The basic consumption
data of the five cases are shown in Table 1. In summary, although none of the five cases is
currently being powered by a standalone PV generation system, their consumption data are
representative of their energy demand, and suitable to be used in simulations throughout
this study.

The geographic locations (Figure 2) of the five cases are at a similar latitude and not
very distant, all of them in the continental Mediterranean climate zone of Spain, so their
profiles of solar resource and temperature are similar (Table 1). The solar resource and
temperature data, on an hourly basis, were obtained from PVGIS [39].
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Table 1. Main characteristics of the five case studies.

Winery Irrigation
Pumping Pig Farm Single-Family

Home Second Home

Annual consumption (kWh) 53,345 64,125 216,446 5036 799
Maximum power 1 (kW) 41,073 45,000 59,000 3644 2474

Annual irradiation 2 (kWh/m2) 1633 1656 1734 1703 1674
Average annual temperature (◦C) 10.9 10.4 13.7 13.5 11.3

1 One-hour interval. 2 On horizontal plane.
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Figure 2. Location of the five case studies.

Figure 3 shows the graphs of demand throughout the year, for each of the five cases.
Case 1 (winery) presents a seasonal demand with its maximum in October (the harvest
season). Case 2 (irrigation pumping) presents demand only from June to September
(the irrigation season). The stability throughout this season is due to the fact that the
pumping was activated the same number of hours each day, except at the beginning and
end of the season, with a smaller number of hours. Case 3 (pig farm) shows a stable
demand throughout the year. Case 4 (single-family home) presents a seasonal demand,
greater during the cold season, due to the use of electric heating. Case 5 (second home)
presents a very low demand, except for some weekends and holiday periods when it
was inhabited.
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2.2. Simulation, Optimization, and Sensitivity Analysis

For each one of the five cases, two sets of simulations were carried out for its supply
by a standalone system. One set incorporated PV generation and storage in batteries. The
other set incorporated hybrid PV-diesel generation and storage in batteries. This made a
total of 10 groups of simulations, 5 with fully PV systems and 5 with hybrid systems.

The simulation and optimization processes were carried out with iHOGA software
(improved Hybrid Optimization by Genetic Algorithms) [7,13]. This software simulates
the technical and economic operation of the possible solutions of the system. Each possible
solution is a combination of the various elements that make up the PV or hybrid system.
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Once the necessary information is entered, iHOGA simulates all possible combinations
of components. Among them, it discards those that do not meet the technical conditions,
such as the satisfaction of demand. Among the technically acceptable solutions, economic
optimization consists of the search for the one that obtains the minimum NPC (Net Present
Cost) (1).

NPC =
N

∑
n=0

Cn

(1 + d)n (1)

where NPC: Net Present Cost [€]; Cn: cost in period n (investment, O&M, replacement, and
fuel costs) [€]; N: analysis period; d: annual discount rate.

The Levelized Cost of Energy (LCOE) (2) is also calculated, to compare the energy
production costs.

LCOE = NPC
/{ N

∑
n=1

[
Qn/(1 + d)n]} (2)

where LCOE: Levelized Cost of Energy [€/kWh]; Qn: energy in year n [kWh].
For each case study, iHOGA was provided with data on energy demand, ambient

temperature, and solar irradiation, all of them over a year, on an hourly basis. To calculate
the irradiation on the plane of the PV panels, the available surfaces in each case study were
taken into account (Table 2). Thus, the installation of the panels in coplanar mounting on
the roofs of the winery, the pig farm, and the two houses were simulated, with their actual
azimuths and tilts. In the case of irrigation pumping, the mounting on a fixed structure
on the ground was simulated, so the calculation of azimuth and tilt was included in the
optimization of the case itself.

Table 2. Orientation of the PV panels.

Winery Irrigation
Pumping Pig Farm Single-Family

Home Second Home

Mounting On the roof On the ground On the roof On the roof On the roof
Orientation Coplanar Optimal Coplanar Coplanar Coplanar

Azimuth −45◦ and 135◦ 0◦ −5◦ 5◦ −90◦ and 90◦

Tilt 20◦ 25◦ 20◦ 20◦ 20◦

In addition to the specific data of each case, iHOGA was supplied with technical data
and economic parameters. The technical data consist of the characteristics of the elements
that will be allowed to use to compose the systems. This includes PV panels, inverters,
batteries, diesel generators, etc. For each element, its electrical characteristics, efficiency,
lifespan, acquisition cost, operation, and maintenance costs, etc. were incorporated. All
of them correspond to commercially available elements, with the characteristics provided
by their manufacturers and the market prices in Spain in December 2020. These data
are shown in Table 3, Table 4, and Appendix A. The costs assumed by the owner of the
installation, which are higher than the price of the components, were used. They are shown
in Table 3. Regarding the acquisition cost intervals indicated for batteries, the lowest
prices per kWh correspond to the larger batteries, while the highest prices correspond
to the batteries of smaller capacity, which are those used in domestic systems (cases of
single-family home and second home). These data constitute a conservative scenario, in
whose election various reports were considered, for PV panels [40,41] and batteries [42,43].
The considered price of diesel is 0.7 €/L and its annual variation of +1.5%.
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Table 3. Economic parameters of the main components of the systems.

PV Panels Lead-Acid Batteries Li-ion Batteries

Acquisition cost 1 900 €/kWp 2 189–297 €/kWh 3 483–500 €/kWh 3

Annual variation of price −2.5% −2% −3%
Maximum price variation −30% −25% −50%

Variable O&M cost by year 1 €/kWp 0.5 €/kWh 0.2 €/kWh
1 Including price, transport and assembly; 2 PV panels also includes the proportional part of the fixing structure
and solar inverters; 3 Depending on the size of battery.

Regarding batteries, the operating parameters are indicated in Table 4, according to
their data sheets and the assigned design criteria. For the simulations of PV systems, it was
imposed that 100% of the demand must be satisfied and that the autonomy of the system
must be at least one day. This limited autonomy was chosen to intraday storage will be
the main function of the battery in the system, leaving aside in this study medium- and
long-term storage. In simulations of hybrid systems, the minimum autonomy condition
was not necessary, due to the presence of a diesel genset. The economic parameters, based
on the European Monetary Policy [44], for the simulation are shown in Table 5.

Table 4. Operating parameters of the batteries.

Lead-Acid Li-Ion

Maximum DOD allowed 80% 90%
Cycling efficiency 85% 95%

Design life 20 year 15 year

Table 5. Economic parameters.

Study Period Nominal
Interest Rate

Discount
Rate

Amount of
Loan

Loan
Interest

Duration of
Loan

25 years 3% 1.48% 80% 5% 7 years

All the loads are single-phase AC in the homes and three-phase AC in the winery,
pumping, and pig farm. In all cases, the architecture of the energy systems corresponds
to an AC bus, to which all the elements are directly or indirectly connected. Thus, the
PV panels are connected through a solar inverter and the battery through a battery bi-
directional inverter. In the simulations of hybrid systems, the diesel generator is connected
directly to the AC bus. Figure 4 shows the block diagram of PV systems and hybrid
systems.

The battery inverters are responsible for maintaining the parameters of the AC bus,
i.e., 230 V 50 Hz in single-phase or 400 V 50 Hz in three-phase. For three-phase, a cluster
formed by three synchronized inverters with 120◦ phase shifts between them is used. They
also manage the flow of power from the 48 V DC battery, charging or discharging it.

The PV modules are PERC (passivated emitter and rear cell) technology [45] and
polycrystalline silicon cells. The output of the PV strings, of DC with variable voltage and
current, is connected to the AC bus through a single-phase or three-phase solar inverter,
which incorporates a maximum power point tracker (MPPT).

For lead-acid batteries, individual 2 V cells of the OPzS type (vented tubular plate
flooded cells) were used. Each battery consists of 24 identical cells connected in series. The
simulation software chooses cells of higher or lower capacity. For Li-ion batteries (LiFePO4),
48 V modules were used that can be connected in parallel. Regarding battery degradation,
the model described by Schiffer et al. [12] was used for lead-acid batteries, because it was
identified as the most accurate in a study [11] prior to this one. For Li-ion batteries, the
models of Wang et al. for cycle aging [24] and Petit et al. for calendar aging [25] were used.
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Finally, for each one of the five cases, the simulation processes were carried out and
the optimal configuration was found for the two modalities, PV and hybrid systems. In
this way, it was identified, for each of the 10 systems, if the battery that is part of the
economically optimal solution was lead-acid or Li-ion, as well as the difference between
the NPCs and LCOEs obtained by both.

Beyond the results of the 10 optimal systems, several sensitivity analyses were per-
formed in front of various parameters. This allowed identifying the possible influence
of other scenarios on the baseline results. Among the parameters chosen for these analy-
ses were acquisition cost of Li-ion batteries, acquisition cost of PV generation, fuel price
inflation, and solar irradiation.
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3. Results

This section is organized in the following subsections: Section 3.1 Economic Optimum
Systems of the Five Cases and Section 3.2 Results of Sensitivity Analyses.

3.1. Economic Optimum Systems of the Five Cases

For each case study, two economic optimum PV systems were obtained, one of them
using a lead-acid battery and the other using a Li-ion battery. The one with the lowest NPC
is the absolute optimum, i.e., the type of battery it uses is the most profitable choice.

This section is organized as follows: Section 3.1.1 focuses on the components of the
optimal systems, Section 3.1.2 focuses on their energy balance and Section 3.1.3 focuses on
their costs.

3.1.1. Components of the Economic Optimum Systems

Table 6 shows the main technical characteristics of the economic optimum PV systems
for the five cases: battery lifetime, battery capacity, and PV generator power. For each case,
the first row shows the data of the optimum with lead-acid battery and the second row
shows those of the optimum with Li-ion battery.
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Table 6. Main characteristics of the economic optimum PV systems.

Case Battery Type Battery Lifetime
(Years)

Battery Capacity
(kWh)

PV Field
(kWp)

Winery Lead-acid 9.74 618.2 324
Li-ion 15 384 351.2

Irrigation
pumping

Lead-acid 12.7 986.4 192.4
Li-ion 15 322.5 359.2

Pig farm Lead-acid 9.5 1545.6 494
Li-ion 15 998.4 671.2

Single-family
home

Lead-acid 7.79 65.8 18.4
Li-ion 15 61.4 13.2

Second home
Lead-acid 7.9 32.9 5.6

Li-ion 15 15.3 6.8

Table 7 shows the main technical characteristics of the economic optimum hybrid
systems for the five case studies. As these systems include a diesel genset, the yearly fuel
consumption is added.

Table 7. Main characteristics of the economic optimum hybrid systems.

Case Battery Type
Battery

Lifetime
(Years)

Battery
Capacity

(kWh)

PV Field
(kWp)

Fuel Consumption
L/Year

Winery Lead-acid 9.15 197.2 99.6 3963.4
Li-ion 15 107.5 88.4 5280.1

Irrigation
pumping

Lead-acid 12.5 263 112 3200.3
Li-ion 15 19.9 112 6640.1

Pig farm Lead-acid 7.34 540.9 232.8 5612.2
Li-ion 15 430 222.4 6425

Single-family
home

Lead-acid 7.05 26.2 7.6 250.6
Li-ion 15 15.3 7.6 333.6

Second home
Lead-acid 8.03 5 4.4 64.7

Li-ion 15 3.9 4.4 61.1

In both PV and hybrid systems, the choice of the type of battery affected their economic
optimum, including not only the lifetime of the battery, but also its capacity and the size of
the PV generator. In hybrid systems, it also affected their fuel consumption.

Figure 5 shows the battery lifetimes of the optimum systems, both PV (a) and hybrid
(b). In all cases, the Li-ion batteries presented a lifetime of 15 years, which corresponds
to the design life specified by the manufacturer and, therefore, iHOGA took it as the
maximum limit before its replacement. Despite having a longer design life, lead-acid
batteries had a shorter lifetime, which differed in the five cases. As a result, the lifetime of
Li-ion batteries was superior in all cases, from +18% to +113%. However, comparing the
PV and hybrid systems for each case, the behavior was very similar. The cases in which
lead-acid batteries had shorter lifetimes were the two homes and the pig farm.

It is noteworthy that a change in the type of battery resulted in a different size of
the components of the system, affecting both storage and generation, On the one hand,
the Li-ion battery had a lower capacity than the lead-acid battery in all cases. Differences
were between −7% and −67% in PV systems and between −21% and −92% in hybrid
systems. Therefore, the variations in storage when the battery type changed showed
similar behaviors in the optimal PV and hybrid systems, although they reached a greater
magnitude in the latter. In this sense, it must be taken into account that in PV systems,
the battery must be able to supply all nighttime consumption. This is a lower limit for the
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battery capacity. In contrast, the presence of diesel generation makes that limit non-existent
in hybrid systems, allowing more flexibility to use a smaller battery.
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On the other hand, as shown in Figure 6a, in the PV optimum systems with Li-ion
battery, the PV generator had a higher size than that of the optimum with lead-acid, in four
of the five cases (+8% to +87%). The only case in which it decreased is the one (single-family
home) in which the battery reduction was the least. It must be taken into account that
the DOD of 90% allowed in the simulations of Li-ion batteries made their useful capacity
greater than in lead-acid batteries whose allowed DOD was 80%. Moreover, the higher
cycling efficiency of the Li-ion battery (95%) compared to the lead-acid (85%) played in
favor of the lower need for PV production. Both characteristics are shown in Table 4. In
consequence, the decrease in useful storage capacity was less than nominal. As a result,
the reduction in nominal capacity by 6.5% had not required an increase in PV generation,
but had even allowed its reduction.

Regarding the optimal hybrid systems, Figure 6b shows that the diesel gensets as-
sumed the change in production, while the PV generators barely changed (0% to −11%).
Thus, in four of the five cases, the fuel consumption increased (+15% to +108%). In the
same way that in the optimal PV systems, in the case where the reduction in the nominal
capacity of the battery is the smallest (this time, the second home) there was no increase in
production, i.e., its PV generation did not vary, and fuel consumption decreased (−6%).
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In summary, the effects of changing the battery type from lead-acid to Li-ion on the
size of the optimal system components were similar in PV and hybrid systems, despite the
latter requiring less storage capacity. This included a reduction in the nominal capacity of
the battery. If the higher DOD and the higher cycling efficiency of Li-ion batteries were
not enough to compensate for the lower storage, the production of energy increased from
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PV or diesel origin. It was also observed that the five case studies presented quantitatively
different behaviors in front of the change of type of battery. However, each case presented
a similar trend in optimal PV and hybrid system.

3.1.2. Energy Balance of the Economic Optimum Systems

To interpret the different battery capacity reductions in each case, it may be useful to
observe the changes in the internal energy balance of the system. Different internal energy
flows correspond to the different size of components of the lead-acid or Li-ion battery
optimal systems. This section pays attention to two relevant quantities in standalone
systems with storage and renewable generation: the energy cycled in the battery and
the excess energy. Due to the variability of the solar resource, in standalone PV systems,
storage is necessary to satisfy the demand of the loads at times when there is not enough
PV production. Thus, a part of the energy supplied to the loads comes from the battery,
where it has been cycled. When the solar resource is practically zero, all the energy must
be supplied from the battery. However, when the solar resource is present, the energy
comes to a greater or lesser extent from the PV generator, and can be complemented by
that from the battery. In addition, long-term storage in batteries is hardly feasible. Because
of all this, standalone PV systems often have a high amount of excess energy. When sizing
a standalone PV system, many different combinations of PV production and storage are
possible, among which there is an economically optimal one. When changing the technical
characteristics and/or the costs of the components of the system, as in this comparison with
the battery, the economic optimum varies. Consequently, the amounts of cycled energy and
excess energy are also affected. Organized in a similar way to the previous tables, Tables 8
and 9 show these significant parameters of the internal energy balance in the optimal PV
systems and hybrid systems for the five case studies.

Figure 7 shows the percentage differences in battery capacity and energy cycled in the
battery in the system, between the economic optimum systems with Li-ion and lead-acid
batteries. As shown in Figure 7a, in PV systems, relatively big variations in battery capacity
corresponded to proportionally small variations in cycled energy. Even with capacity
reductions, two of the cases showed slight increases in cycled energy. In four of the five
cases of hybrid systems, as shown in Figure 7b, the variations in energy cycled were also
relatively small, in comparison with the variations in the battery size. However, in the case
of irrigation pumping, the cycled energy was strongly reduced (−84%) but also to a lesser
extent than the battery capacity (−92%).

Table 8. Energy cycled and excess energy in economic optimum PV systems.

Case Battery Type Energy Cycled (kWh) Excess Energy (kWh)

Winery Lead-acid 26,862 368,503
Li-ion 26,727 405,595

Irrigation pumping Lead-acid 15,163 242,476
Li-ion 12,033 511,890

Pig farm Lead-acid 107,863 576,442
Li-ion 105,798 871,075

Single-family home Lead-acid 3290 23,881
Li-ion 3353 15,667

Second home
Lead-acid 892 6318

Li-ion 886 8044
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Table 9. Energy cycled and excess energy in economic optimum hybrid systems.

Case Battery Type Energy Cycled (kWh) Excess Energy (kWh)

Winery Lead-acid 24,801 79,101
Li-ion 23,199 68,080

Irrigation pumping Lead-acid 11,312 122,509
Li-ion 1769 133,489

Pig farm Lead-acid 103,249 159,843
Li-ion 102,120 151,833

Single-family home Lead-acid 3078 6983
Li-ion 2877 7366

Second home
Lead-acid 820 4833

Li-ion 840 4866
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Figure 8 shows the percentage differences in energy cycled in the battery and in
excess energy in the system, between the economic optimum systems with Li-ion and
lead-acid batteries. As shown in Figure 8a, in PV systems, small variations in cycled energy
corresponded to proportionally large variations in excess energy. On the contrary, in hybrid
systems there were no large variations in excess energy, as shown in Figure 8b. This was
because when reducing the battery capacity, there were periods when stored energy was
not available and had to be compensated with more power generation. Although in hybrid
systems this energy could come on demand from a manageable source (the diesel genset),
in PV systems it was required to increase the power of the PV generator, which means that
there was excess of energy the rest of the time.
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3.1.3. Costs (NPCs) of the Economic Optimum Systems

Table 10 shows the costs, in terms of NPC, of the optimal PV systems for the five case
studies. The total cost of the system is the sum of the costs of the battery, the PV generator,
and others (including ancillary items and financial costs). The latter are not shown in the
table, since they hardly varied and are not significant in this study. Table 11 shows the costs
of the optimal hybrid systems. It includes one more column with those of diesel generation
(diesel genset, O&M and fuel). A comparison of Tables 6, 7, 10 and 11 shows that in PV
systems the battery capacity was greater than in hybrid systems, with a greater weight in
the NPC of the system.

Figure 9 shows the NPCs of the optimal systems, both PV (a) and hybrids (b). They are
ordered in terms of their extra costs in PV systems when using a Li-ion battery compared
to using a lead-acid battery. Thus, in the pig farm, the NPC of the system had the greatest
increase, being more profitable to use a lead-acid battery. On the contrary, in the second
home, the NPC of the system had the greatest decrease, being more profitable to use a
Li-ion battery. This order is maintained in the graph of hybrid systems (b), although the
case of irrigation pumping would actually go from being the second to the third. This is
related to the fact that by far the largest reduction of Li-ion battery size was achieved in the
hybrid system of the irrigation pumping.

Table 10. NPCs of the economic optimum PV systems.

Case Battery Type System
NPC (€)

Battery
NPC (€)

PV Generator
NPC (€)

Winery Lead-acid 1 656,293 232,418 331,488
Li-ion 707,095 248,228 358,794

Irrigation pumping Lead-acid 1 590,150 302,244 199,378
Li-ion 673,719 208,677 366,824

Pig farm Lead-acid 1 1,223,833 587,058 502,147
Li-ion 1,487,218 643,730 680,034

Single-family home Lead-acid 1 68,077 34,681 24,704
Li-ion 69,679 40,589 19,484

Second home
Lead-acid 36,670 18,241 11,854

Li-ion 1 30,687 10,926 13,059
1 Absolute optimum.
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Table 11. NPCs of the economic optimum hybrid systems.

Case Battery Type System
NPC (€)

Battery
NPC (€)

PV Generator
NPC (€)

Diesel NPC
(€)

Winery Lead-acid 1 353,233 79,278 106,218 97,688
Li-ion 365,817 70,252 94,975 130,200

Irrigation
pumping

Lead-acid 1 350,180 82,788 118,667 76,717
Li-ion 353,574 14,377 118,667 132,072

Pig farm Lead-acid 1 726,707 252,836 239,935 111,629
Li-ion 769,218 277,890 229,494 153,535

Single-family
home

Lead-acid 1 46,070 16,927 13,862 7953
Li-ion 42,893 10,926 13,862 10,653

Second home
Lead-acid 25,189 5465 10,650 2951

Li-ion 1 23,386 3706 10,650 2867
1 Absolute optimum.

In the optimal PV systems, as shown in Figure 9a, the differences in system NPCs
ranged from −16% to +22%, and only in one case was the Li-ion battery the most profitable.
In the optimal hybrid systems, as shown in Figure 9b, the differences in system NPCs
ranged from −7.2% to +5.9%, and in two cases was the Li-ion battery the most profitable.
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All these NPC costs of the systems are the result of the combination of differences in
battery and generation costs, which contribute to the NPC of the system as a whole. In
summary, from the point of view of cost, again the five cases showed different behaviors
by changing the type of battery.

On the one hand, Li-ion battery systems used lower capacity batteries that also had a
longer lifetime, as shown in the previous section. Thus, as shown in Figure 9a for the PV
systems, the NPCs resulting from these batteries was close to or even lesser than that of
lead-acid, with differences between −40% to +17%. On the other hand, the costs (NPC)
of PV generators increased (+8% to +84%) due to their higher power, except in the case of
single-family home, whose PV power and NPC decreased (−21%), as already seen. Finally,
only in the case of the second house, the absolute optimal PV system included a Li-ion
battery, due to the combination of the largest reduction in the battery NPC and a small
increase in the PV generator NPC.

In the same way that in PV systems, in hybrid systems Li-ion batteries had lower
capacity and longer lifetime, obtaining NPC differences from +9.9% to −83%. As for the
generation, since the size of the PV generators is maintained in three cases or decreased
in two cases, with NPC differences from 0% to −11%. On the contrary, in four of the five
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cases, the higher fuel consumption by diesel genset caused their NPCs to increase, between
+33% and +72%. As an exception, for the reasons already explained, in the second home
the diesel NPC decreased slightly (−2.8%). Finally, in two of the five cases (single-family
home and second home), the absolute optimal hybrid system included a Li-ion battery.

3.2. Results of Sensitivity Analyses

To know the influence of some parameters on the results, the corresponding sensitivity
analyses were carried out. In addition to the price of Li-ion batteries, which is likely to
change in the near future, it was intended to identify whether other parameters influence
the comparative profitability of the two types of battery studied. Specifically, analyses were
made regarding acquisition cost of Li-ion batteries, acquisition cost of PV generation, fuel
price inflation, and magnitude of solar irradiation.

3.2.1. Sensitivity to Acquisition Cost of Li-Ion Batteries

For this analysis, the acquisition cost of Li-ion batteries was multiplied by factors
from 0.1 to 2, while the cost of lead-acid batteries was unchanged. Figure 10a shows the
results of the optimal PV system and Figure 10b that of the hybrid system, both for the
winery case. As expected, below a certain factor where the lines cross, the absolute optimal
systems contain a Li-ion battery, while above that factor, they include a lead-acid battery.
In the five case studies, the slope of the line of the NPC (with Li-ion battery) of the optimal
PV system is greater than that of the optimal hybrid system.
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based on the acquisition cost of Li-ion batteries: (a) PV system; (b) Hybrid system.

The value of the factor with which both types of battery obtained the same NPC of the
optimal system was different depending on the case study and the type of system (PV or
hybrid). These values are shown in Table 12. In the five case studies, this value was higher
for the hybrid system than for the PV. Consequently, the reduction in the acquisition cost
of Li-ion batteries necessary for their entry into the absolute optimum of hybrid systems
was less than that of PV systems.

Regarding the size of the battery, in the five cases, both PV and hybrid, the acquisition
cost of Li-ion batteries influenced their size (their capacity) in the optimal system. Figure 11
shows the graphs corresponding to the winery case. In both PV (a) and hybrid (b) systems,
as the acquisition cost of Li-ion batteries decreased, the capacity of the battery increased.
In addition, the decrease in capacity with the increase in cost tended to a limit, especially
in PV systems.
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Table 12. Factor applied to the acquisition costs of Li-ion batteries below which they entered into the
absolute optimal systems.

Case PV System Hybrid System

Winery 0.81 0.83
Irrigation pumping 0.69 0.79

Pig farm 0.64 0.86
Single-family home 0.96 1.30

Second home 1.59 1.60
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of Li-ion batteries: (a) PV system; (b) Hybrid system.

Variations in Li-ion battery acquisition cost were accompanied by variations in various
elements of the system. Figure 12a shows a graph corresponding to the PV system of the
winery case. The reduction in battery capacity, motivated by its increase in cost, was
accompanied by an increase in the power of the PV generator. On the contrary, the higher
the battery capacity, the lower the PV generation power. Thus, a lower production of the PV
generator was compensated by taking advantage of a part of the surplus energy, through a
battery with a higher capacity.
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By contrast, in the hybrid system of the same case (the winery), as shown in Figure 12b,
the reduction in battery capacity shown in Figure 11b was accompanied by a reduction in
the power of the PV generator, while the increase in energy production was assumed by the
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diesel genset. In other words, the increased production of the diesel genset compensated
for both the lower capacity of the battery and the lower power of the PV generator.

All these behaviors occurred in all case studies, to a greater or lesser extent. In PV
systems, these variations were limited, since a minimum of accumulation was required for
the operation of the system. Unlike PV systems, the presence of dispatchable generation
allowed greater flexibility to hybrid systems.

3.2.2. Sensitivity to Acquisition Cost of PV Generation

For this analysis, the acquisition costs of the elements of PV generation, such as panels
and inverters, were multiplied by factors from 0.1 to 2. As expected, in all cases, the higher
cost of the elements, the higher cost of the system.

Regarding PV systems, Figure 13a shows that in the irrigation pumping case, the NPC
line of optimal system with Li-ion batteries has a greater slope than that with lead-acid
ones, even crossing it, i.e., the system with Li-ion batteries was more sensitive to variations
in the acquisition cost of PV generation. Thus, in this case and in the interval studied,
lower acquisition cost for PV elements (panels and inverters) favored the presence of
Li-ion batteries over lead-acid batteries in the absolute optimum, and vice versa. However,
Figure 13b shows that in the case of the winery, this behavior was very attenuated, both
lines being virtually parallel, i.e., the acquisition costs of the PV elements (panels and
inverters) did not affect the type of battery present in the absolute optimum system of
the case and in the interval studied. The rest of the cases showed intermediate behaviors
between the two described. In none of the cases, the reduction in cost of PV elements
favored lead-acid batteries.
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With respect to hybrid systems, Figure 14a shows that in the irrigation pumping
case, both lines are virtually superimposed, keeping very little distance between them. In
fact, their NPCs in the base case differ only by 0.97%. Figure 14b refers to the case of the
Single-family home, where both lines are also virtually parallel. All other cases had the
same behavior. Thus, unlike optimal PV systems, in hybrid systems the type of battery
(lead-acid or Li-ion) present in the absolute optimum was not affected by the acquisition
costs of the PV generator.
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Figure 16 shows that in both pig farm (a) and winery (b) cases, the NPC line of opti-
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Figure 14. Sensitivity analysis of the NPC of the optimal hybrid systems with lead-acid and Li-ion batteries, based on the
acquisition cost of PV generation: (a) Irrigation pumping case; (b) Single-family home case.

Regarding the elements of the optimal systems, in the five cases both PV and hybrid,
the variation in the acquisition cost of the PV generator influenced their size. Figure 15
shows the graphs corresponding to the winery case, both PV (a) and hybrid (b), with Li-ion
batteries. The behaviors presented some similarities to those observed in the sensitivity
analysis on the cost of Li-ion batteries. In the PV system (a), as the acquisition cost of the PV
generator increased, its size tended to decrease and that of the battery to increase. Again, a
lower production of the PV generator was compensated by taking advantage of part of the
surplus energy, through a battery with a higher capacity.

However, as shown in Figure 15b, in the hybrid system, the decrease in the power of
PV generation was proportionally greater than in the PV system. Again, a higher output
from the diesel genset compensated for the lower output from the PV generator.
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Figure 15. Sensitivity analysis in optimal systems with Li-ion batteries for the winery case, based on the acquisition cost of
the elements of PV generation: (a) PV power and battery capacity in the PV system; (b) PV power and energy from diesel in
the hybrid system.

3.2.3. Sensitivity to Fuel Price Inflation

In the base scenario of the simulations, the inflation considered for the price of diesel
was 4%. For this analysis, scenarios from 0% to 8% were considered. This analysis only
makes sense on hybrid systems.

Figure 16 shows that in both pig farm (a) and winery (b) cases, the NPC line of optimal
systems with Li-ion batteries has a slightly greater slope than that with lead-acid ones, i.e.,
the system with Li-ion batteries was a little more sensitive to variations in the inflation
of diesel price. The rest of the cases showed similar behaviors. In none of the cases, the
reduction in cost of PV elements favored lead-acid batteries. Thus, in all cases and in
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the interval studied, lower inflation of diesel price slightly favored the presence of Li-ion
batteries over lead-acid batteries in the absolute optimum, and vice versa.
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inflation of diesel: (a) Pig farm case; (b) Winery case.

Figure 17a corresponds to the case of the winery and shows that the higher the
inflation of the fuel price, the higher the battery capacity in both the lead-acid and Li-ion
systems. As expected, the higher the cost of the fuel, the lower the consumption, which
was compensated by the higher power of the PV generator, as shown in Figure 17b. All
other cases had the same behavior.
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3.2.4. Sensitivity to Magnitude of Solar Irradiation

For this analysis, the solar irradiation on the surface of the PV panels was multiplied
by factors from 0.6 to 1.4.

Figure 18a shows the NPC of the PV optimal systems for the pig farm case. In it, the
line corresponding to the system with Li-ion batteries has a greater slope than that with
lead-acid batteries, i.e., the system with Li-ion batteries was more sensitive to variations in
the solar irradiation. Thus, in this case and in the interval studied, higher solar irradiation
favored the presence of Li-ion batteries over lead-acid batteries in the absolute optimum,
and vice versa. On the contrary, Figure 18b shows that in the hybrid systems, higher solar
irradiation favored the presence of lead-acid batteries. However, the sensitivity to the
variation of solar irradiation was not very high, so that in the interval studied, neither the
crossing of the lines nor the consequent change in the type of battery present in the absolute
optimum occurs. All other cases had the same behavior. This sensitivity analysis bears
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some similarity to that of the acquisition cost of the elements of the PV generator, since
both affect the cost of the PV generator necessary for a given energy production. However,
their magnitudes and ranges are different.
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4. Discussion

Five real cases with different consumption profiles have been studied, from an eco-
nomic point of view, through simulations of standalone energy systems. The results show
that in both 100% PV and PV-diesel hybrid systems, the use of lead-acid or Li-ion batteries
results in different sizing of the economic optimum system. In other words, if the type of
battery is changed, to achieve the economic optimum the entire system must be resized.
This different size of the system elements affects the capacity of the battery, the power of
the PV generator and, in hybrid systems, the fuel consumption. Consequently, for each
case, the optimum system (and its NPC) is different for each type of battery. A lower NPC
means a lower cost of the system throughout its lifetime, i.e., a higher profitability. Thus, of
both optimum systems, with a lead-acid or Li-ion battery, the one that presents the lowest
NPC should be considered the absolute optimum and the type of battery that it includes is
the best option from an economic point of view.

In all cases of this study, Li-ion batteries have shown a longer lifetime, between +18%
and +113% over lead-acid ones. This result is consistent with the estimate [26] that lithium-
ion battery lifetime can double that of lead-acid batteries. The cases in which lead-acid
batteries have shown a shorter useful life are both homes (single-family home and second
home), in accordance with the results of a previous study focused on their aging [11].
Consequently, it is in them where the improvement in terms of lifetime is greater when
changing to a Li-ion battery.

Furthermore, in all cases, the Li-ion battery has lower capacity than the lead-acid
battery in their optimum systems. This result is in accordance with a previous study [2]
based on the charge and discharge characteristics of both battery types. Differences in
capacity range between −7% and −92%. Both longer lifetime and less capacity, play in
favor of its profitability. However, in the cases studied, it has not been found that the
increase in lifetime or the reduction in capacity is enough for Li-ion batteries to displace
lead-acid ones. Moreover, its use entails differences in other costs of the system.

The behaviors observed in PV and hybrid systems show similarities, but relevant
differences. In PV systems the battery capacity reductions due to incorporating Li-ion
are between −7% and −67%, while in hybrid systems they are between −21% and −92%.
These battery capacity reductions are accompanied by changes in generation. In PV systems,
the power of PV generator changes, resulting in large changes in the amount of excess
energy. On the contrary, in hybrid systems the fuel consumption changes, while the power
of the PV generator and the excess energy hardly vary. It should be noted that generation is
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not always higher when using Li-ion batteries, since in some of the study cases reductions
in the power of the PV generator or in fuel consumption have been observed. Furthermore,
in four of the five case studies, both in PV and hybrid systems, the amount of energy cycled
in the battery has barely changed, despite the changes in battery capacity and generation.

With respect to the economic comparison of the optimum systems with both types
of battery in each case, differences are found between the studied cases. In PV systems
the differences in NPC range between −16% and + 22%, with the Li-ion battery being the
most profitable in one case. This corresponds to the second home. In hybrid systems, the
differences in NPC range from −7.2% to + 5.9%, with the Li-ion battery being the most
profitable in two cases. These correspond to the two homes studied, the second home and
the single-family home. In this sense, new studies are needed on how the demand profile
influences the economic performance of both types of battery. To sum up, in terms of
cost effectiveness, no single option has been found, as the two types of batteries currently
compete closely in standalone renewable energy systems. This is in accordance with other
recent studies, taken as a whole, refs. [3,27–32] and it poses tougher competition than just
three years ago, when Li-ion batteries were too expensive for power supply systems [17].

Regarding differences between PV and hybrid systems, in every one of the study
cases, in the hybrid system a more favorable bias has been obtained for the Li-ion battery
than in the PV system.

One of the questions of interest is how possible variations in the price of Li-ion batteries
are going to affect their profitability, displacing or not lead-acid batteries in standalone
renewable energy systems. With the base prices of the study, which correspond to the
current market, Li-ion batteries are the option with the lowest NPC in one of the five cases
of the PV systems and in two of the hybrid systems, all of them being houses. The analysis
has shown a strong sensitivity to the acquisition cost of Li-ion batteries, which with a
variation of −21% would be the economically optimal choice (in terms of system NPC) in
all hybrid systems studied and with a −36% in all PV systems.

Regarding how variations in the acquisition cost of Li-ion batteries affect the sizing of
the economic optimum system, some changes have been observed. In both PV and hybrid
systems, the lower the price of Li-ion batteries, the greater the battery capacity. In addition,
in optimal PV systems, the lower the price of Li-ion batteries, the lower the power of the
PV generator. On the contrary, in optimal hybrid systems, faced with reductions in the
price of Li-ion batteries, the power of the PV generator increases slightly while the fuel
consumption decreases strongly.

Sensitivity analysis on the acquisition cost of the PV generator elements has shown
that its reduction favors profitability of Li-ion batteries in PV systems and practically has
no effect over hybrid systems. In these, lower inflation in the fuel price favors profitability
of Li-ion batteries. Both reductions in the cost of the source of energy (PV or diesel) cause
slight reductions in battery capacity of the optimum systems.

5. Conclusions

This study has addressed the comparison of economic performance of lead-acid and
Li-ion batteries in standalone renewable energy systems. For five real case studies, their
energy supply has been simulated with a 100% PV system and with another PV-diesel
hybrid. The economic optimum in terms of NPC have been sought and sensitivity analyses
have been carried out on various parameters.

The results show that for each case, the use of a lead-acid or Li-ion battery results
in different dimensions of the economic optimum system. Battery capacity, PV generator
power and fuel consumption (in hybrid systems) are affected. As these changes also affect
the NPC of the system, the economic studies must consider them.

Regarding the economic comparison, of the ten systems studied (five PV and five
hybrids), in three of them the absolute optimum is obtained with Li-ion batteries and in
seven with lead-acid batteries. In two of the latter, the differences in NPC are less than or
equal to 2%. The differences in system NPC range from −16% to +22% in PV systems and
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from −7.2% to +5.9% in hybrid systems. On the one hand, the result of the comparison
as a whole is virtually a tie. On the other hand, the five case studies produce different
results. Furthermore, the results of each case keep similarities between both systems, PV
and hybrid, although attenuated by the presence in the latter of a dispatchable generation
(the diesel genset), i.e., currently, both lead-acid and Li-ion batteries compete for economic
profitability in standalone renewable energy systems. The best choice depends on each
case. Possible changes in the acquisition price can cause one or the other type to displace
the other in terms of profitability, in a generalized way.

The economic performance of Li-ion batteries, compared to lead-acid ones, is relatively
better in hybrid systems than in PV. Greater solar irradiation favors Li-ion batteries in
PV systems, but harms them in hybrid systems. In these, it would be favored by lower
inflation in fuel prices. Finally, a 21% reduction in the price of Li-ion batteries would make
them the economically optimal option in all hybrid cases and if 36% is reached in all PV
cases studied.

The limitations of the present study derive from the number of cases studied and their
nearby locations. Sensitivity analysis to the magnitude of solar irradiation can be useful in
this regard, but other effects of change of location are lacking, such as different temperature
data.

More studies are needed to advance in the identification and quantification of the
characteristics of each case that influence the economic performance of both types of
battery. Models should also be studied to in depth determine the maximum lifetime of
Li-ion batteries in standalone renewable energy systems, beyond the design life indicated
by the manufacturers.
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Appendix A. Components Data

Table A1. PV panel: General characteristics.

Manufacturer Model Efficiency Lifespan

CanadianSolar CS3W 18.11% 25 year

Table A2. PV panel: STC (Standard Test Conditions) electric parameters.

Pmax Vmp Imp Voc Isc NOCT Temp. Coefficient

400 W 38.7 V 10.34 A 47.2 V 10.90 A 42 ◦C −0.37%/◦C
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Table A3. Lead-acid batteries: general characteristics.

Manufacturer Model Positive
Plate Electrolyte Capacity

Range Self-Discharge

Hoppecke OPzS Tubular H2SO4 liquid 106–3220 Ah 3%/month

Table A4. Lead-acid batteries: Lifetime in cycles vs. DOD.

DOD 10% 20% 30% 40% 50% 60% 70% 80% 90%

Cycles 13,000 7500 5000 3800 3000 2500 2000 1500 1400

Table A5. Li-Ion batteries: general characteristics.

Manufacturer Model Cathode Module Capacity Self-Discharge [46]

BYD
LVS LiFePO4

3.84 kWh
2%/monthLVL 15.36 kWh

Table A6. Li-Ion batteries: Lifetime in cycles vs. DOD.

DOD 10% 20% 30% 40% 50% 60% 70% 80% 90%

Cycles 48,000 24,000 16,000 12,000 9600 8000 6860 6000 4500

Table A7. Battery inverters (by-directional): general characteristics.

Manufacturer Model Phase Nominal
Power Lifespan Charge

Efficiency

SMA

SI 4.4 I 3.3 kVA

15 year 98%
SI 6.0 I 4.6 kVA
SI 8.0 I 6.0 kVA

SI 8.0 cluster III 18 kVA
SI 8.0 multicluster III 36–90 kVA

Table A8. Battery inverters (by-directional): inverter efficiency vs. power output.

Power (%) 0 2 3 4 5 10 20 30 40 50 60 70 80 90 100

Efficiency (%) 10 30 50 70 85 93 94 94 94 94 93 93 93 92 92

Table A9. AC Generators: general characteristics.

Manufacturer Nominal
Power Cost O&M Cost A 1 B 1 Lifespan

Generic 1.9–82 kVA 800–14,000 € 0.14–0.42 €/h 0.246 0.08145 10,000 h
1 Fuel consumption (L/h) = Nominal power × B + Output power × A.
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