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“If we assume we’ve arrived: we stop searching, we stop developing. ”
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Industrial digitalization and the seek for competitiveness has increased the
demand for efficient online application for optimization of control parame-
ters, quality prediction and defect prevention. This can be achieved through
Digital Twins, which provide the digital-physical integration of manufactur-
ing processes. To be suitable for industrial implementation, the virtual model

must be fast, robust and accurate.

Numerical simulations are very useful to gain a deeper understanding of
physical systems and create their corresponding interpretable models. How-
ever, the high computational cost hinders their direct implementation in in-
dustrial environments. Hence, this work aims to provide coupled strategies
of numerical simulation and data analysis that allow their integration in on-

line predictive applications.

Both tools can be combined using different levels of process-data utilization
to develop several process models. These approaches are tested using a rub-
ber compounding case. A theoretical model is presented that provides an
exhaustive comprehension of the process. Data-driven models are more ac-
curate but only feature-selected dimensionality reduction techniques allow
to preserve the physical interpretability. Two additional industrial problems
are assessed using hybrid models. Thus, the modelling of manufacturing
processes be tackled using different approaches and the combination of data-
based and physical models allows for the creation of accurate, fast and inter-

pretable models for industrial deployment.

In addition, the performance of models and computer simulation can be im-
proved by upgrading the coupling strategies among them. In this work, a
ROM implementation in a commercial CFD code leads to a robust and effi-
cient calculation of thermodynamic properties. The complex computation of
equations of state is replaced by an equivalent accurate ROM.

Moreover, the division of a manifold into smaller subdomains of particular
characteristics that are individually fit to a ROM increases the accuracy of the
global prediction. This can be done using knowledge-guided separation or
data-driven automatic division.

The selection of the design of experiments to generate the training dataset to
build a ROM with is also critical for the performance of the ROM. A sequen-
tial sampling algorithm is proposed for the efficient calculation of sampling
datasets. To achieve that, the available information of the response of the

system is included to compute the data point that should be sampled next.
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Chapter 1

Background and motivation

1.1 The role of numerical simulation in the Digital

Twin era

1.1.1 A historical perspective of numerical simulation

The beginning of modern numerical analysis dates back to World War I,
when computational simulations were required to the successful design of
the nuclear weapons at the Manhattan Project. Their design depended on
solving the complex calculations regarding the motion of neutrons. For that
purpose, the two mathematicians Jon Von Neumann and Stanislaw Ulam in-
vented the Montecarlo method and use it to simulate the behaviour of neu-
trons on ENIAC [17], one of the first digital computers [81, 84, 103].

Hence, though the first computer simulation was developed as a mathe-
matical tool in the nuclear physics field, it quickly expanded toengineering,
physics, chemistry, biology and climate sciences, among other disciplines
[15].

Even though numerical simulation is the only tool to study complex physical
problems, it did not become relevant until the ‘90s. The delay of its use was
mainly caused by the lack of both skilled people and computer resources. It
is important to remember that at the early stages of digital computers de-
velopment, the available programming languages were very limited and the
time and effort to develop and run a single computer simulation were enor-
mous [105]. In addition, the bibliography about the topic was limited, so
the fundamentals of computer programming was mainly based on their own
experience from practice or instructor’s experience, which prevented the in-
crease of experts in the field [88].
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The advances in computer technology were essential for the popularization
of numerical simulation as a problem-solving method. The increase of pro-
cessor speed and memory sizes along with the decrease of the size of the
components and the reduction of the costs facilitated the general access to
computers. Hardware progresses allowed the development of simulation
software systems that could perform numerical studies with affordable com-

putational resources and time [88].

Consequently, the revolution in digital computing led to the rapid growth
of numerical simulation techniques. Significant developments in simulation
methodologies such as the output analysis [87], the design of experiments
[38], optimization [35] or verification and validation [62] have been reported

since.

The general aim of computer simulations is to understand physical systems
and reproduce and study their behaviour. This concept includes the explo-
ration of the physical system itself and the interaction among the different
elements, as well as the calculation of the expected response of the system
under different physical scenarios [131]. Thus it constitutes a key tool of
scientific research. Unfortunately, its applicability in manufacturing is re-
stricted to the industrial design and the offline optimization of products and

processes.

When it is necessary to explore the dynamic of fluid systems, computer sim-
ulation becomes especially relevant. The complexity of the governing equa-
tions entails that the discretization of the corresponding differential equa-
tions and its posterior resolution using step-by-step methods of numerical
simulation are the only available tool to explore these fluid systems.

1.1.2 The emerging Digital Twin

The rapid development of computer technologies described in the previous
section also drove the digitalization of the manufacturing industry. Hence,
the advances in process automation and integration, data acquisition and
data communication promoted a closer connection between the physical world
and the virtual space. Nowadays, this physic-virtual connection is often re-
ferred by the Digital Twin term.

Many references agree to indicate that the concept of Digital Twin as a virtual
representation of physical entities was first introduced by Michael Grieves

in 2003 under the denomination of “Conceptual Ideal for Product Lifecycle
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Management” [44]. After a few different names, the first mention of Dig-
ital Twin originated in the Roadmap Report of NASA in 2010 as “an inte-
grated multiphysics, multiscale, probabilistic simulation of an as-built vehi-
cle or system that uses the best available physical models, sensor updates,
fleet history, etc” [42].

The term quickly expanded from the aerospace industry to other research
areas and production systems. Digital twins provide the efficient synchro-
nization between the physical world and their corresponding virtual models
demanded by the Smart Industry. The digital-physical integration of material
models and transformation processes allows the virtual prediction of the evo-
lution of the product along the manufacturing line. Thus, it becomes a pow-
erful method to ensure product quality and to prevent the appearance and
defects propagation. The combination of Digital Twins and the multi-source
data gathering, Internet of Things (IoT) systems, and Virtual and Augmented
reality (VR/AR) environments will result in highly effective manufacturing
planning and precise production control [98].

In the earlier years, although most papers proposed definitions of the Digi-
tal Twin closer to a high-fidelity model or multidisciplinary simulation, they
ommitted the real-time connection of the virtual model to the physical object.
As research on the topic evolved, the dynamic and bidirectional mapping to
the real process became more relevant [74]. This interactionenables the con-
trol of simulation-based engineering and applications in real-time. Digital
Twin shows, therefore, huge potential for enhancing manufacturing systems.

As the interest in Digital Twin grew, so did the diversity of understandings
of the concept. This led to a wide variety of definitions of Digital Twin. Mul-
tiple visions can be found in literature reviews across industries [66, 118, 89,
132]. The lack of a comprehensive and in-depth analysis of Digital Twin from
the perspective of concepts, technologies and industrial applications compli-
cates the establishment of a unified description in terms of boundary deter-
mination, implementation framework or protocols. Unfortunately, the dis-
agreements among experts across different scientific disciplines or industrial
sectors are an obstacle to the acceptance a common Digital Twin concept in
manufacturing. To address this, currently some standards for Digital Twin
are being developed, such as 15023247: Digital twin framework for manu-
facturing [106].

In this dissertation, the author has considered that the Digital Twin is de-
fined according to three different stages which are sorted according to the
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level of the process virtualisation. Moreover, they usually coincide with the
sophistication of the digital twins: physical, virtualised and twin thread.

The physical stage covers the real-time or near real-time applications of the
IoT in the manufacturing processes of the industry through the measure-
ments of sensors, gauges, RFID tags and readers, cameras, scanners, etc. At
this stage, the data that Digital Twin needs are usually of vast volume, high
velocity, and large variety, being difficult and costly to transmit to Digital
Twin in the cloud server. Thus, to reduce the network burden, Artifical In-
telligence (Al) and machine learning (ML) algorithms are ideal methods to
pre-process the collected data.

The virtualised stage of Digital Twin uses in near real-time the results of the
physics-based simulation models to augment the information about the man-
ufacturing processes. Contrary to the traditional computer simulation of the
process, the Digital Twin in this stage uses real-time data from the physical

system that is collected and recorded from the physical space via IoT sensors
[117].

After adequate treatment and processing through machine learning tech-
niques, data is converted into a data-driven corrective model. This the model
can be then incorporated into the Digital Twin to continuously improve its
accuracy, progressively filling the gap between the digital and the physical
worlds and transforming it into a smart Digital Twin. In this twin-thread
stage, the Digital Twin can recognize, analyze and support decision-making
through the implementation of Al and ML algorithms. Digital Twin in this
level represents an in-depth integration of new-generation artificial intelli-
gence technology and advanced manufacturing to obtain powerful learning

and cognitive capacities.

1.1.3 Digital Twin and numerical simulation

For an efficient representation of the real system, it is strongly recommended
that the Digital Twin is quick, accurate and physics-based [132].

As stated in the previous section, computer-based simulation models are
widely used in the stages of product and process design and offline opti-
mization. Numerical simulation allows designers to understand in depth the
physical behaviour of a product or a process, detect and correct errors and
malfunctions, predict and analyze virtual what-if scenarios, fine-tune the de-

sign of the system before it is built and thereby drastically reduce the number
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of physical prototypes and physical tests needed to design and prepare a new
product for production. Computer-aided design, dynamic simulation, fi-
nite element models, computational fluid dynamics models, and even multi-
domain models with fluid-structure, thermal-structure, and other types of
multiphasic interactions are routinely used to this effect. Multi-physics and
multi-scale simulations are the digital tools that provide the most accurate
and complete model of a physical system.

It is clear that the information generated by computationally expensive
physics-based simulations is highly valuable but the deployment of high-
fidelity simulations is unfeasible in an industrial environment where real-
time responses are required for decision-making. Nevertheless, that does
not mean that computer-based simulation models should be completely dis-

carded in the manufacturing industry.

The challenge is to integrate numerical simulation in the Digital Twin reduc-
ing the computational time to provide a fast and precise physics-based re-
sponse to a specific process in near-real-time. To instantaneously obtain the
ouptut of the system from a given set of input parameters, it is necessary to
have the solution for any value of the spatial coordinates, time, and material,

geometrical, and load parameters.

The pre-computing of all the possible solutions to a problem is however un-
feasible, as the number of scenarios increases exponentially with the number
of parameters and the range of parameter values. To reduce the processing
data Reduction Order Models (ROMs) are able to transform complex and
computationally costly Digital Twins into real-time applications that can be

integrated into production environments.

1.2 Model classification

The model update of a Digital Twin is always data-driven, since the inputs
are measured quantities from the physical system, like material properties,
boundary conditions or loads. The Digital Twin predictions must also be
directly equivalent to a measured quantity [96].

However, that does not mean that necessarily the Digital Twin model is data-
based. Thanks to the increasing sensorization of production systems and
the embracing of the Industrial Internet of Things (IloT), data amount and

availability from manufacturing processes grew. Consequently, data-based



Chapter 1. Background and motivation 6

models, also called black-box models, became more popular. They are solely
inferred from the relation among the system’s inputs and output, which elim-
inates the need for introducing knowledge of the process and its associated
costs (experts teams, advanced computer software). They are widely used in
manufacturing processes for optimization of control parameters [76, 68, 48,
43, 5], quality prediction of a processed material or manufactured product
[77, 75], among others.

The generation of data-driven models comprises three steps:

* Data collection: selecting the appropriate sensors in the process is criti-
cal for a successful data-driven model. If they are not already installed,
the mechanical integration of these sensors is also part of this stage, as
well as the selection of the communication technology from the sensors
to the data storage.

* Data processing: it refers to the development of a solid and reliable
infrastructure for data storage, communication and computation. This
step includes the determination of the location of data processing and
information providing, along with the selection of network protocols,
IIoT gateways and the definition of data security.

* Data analysis: it is usually necessary to perform some data transforma-
tion techniques over the collected data, such as data cleaning, filtering
or feature extraction, to prepare it or improve it before creating the data-

driven model using ML techniques.

The efficiency of the data-based models strongly depends on the quality of
the input data, which can be limited by the number or location of sensors,
the distorsion caused by signal noise or even the corruption due to pro-
cess malfunctions. In addition, they miss the causal relationships among the
involved process variables; thus they lack physical interpretability. Conse-
quently, these models are not extrapolative and they are only reliable within
the range of data.

On the other hand, physics-based models or white-box models are able to
simulate complex physical systems replicating the predominant phenomena,
allowing for a deeper understanding of the process. These models can pro-
vide the Digital Twin with physical interpretability, which means that it could

generate a robust prediction even in unlikely scenarios.

The development of a physics-based model is divided into three phases:
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* Understanding of the physical system: the real process or product is
thoroughly reviewed in order to identify the relevant mechanisms and

the critical scenarios.

* Model definition: the preliminary formulation of the model is estab-
lished, as well as the system parameters and boundaries. Also at this
stage, the required information, if it is available, is collected, such as
material specifications and datasheets of the product or different com-
ponents of the production systems.

* Model creation: the simulation method and simulation software is
firstly selected. A design of experiments is conducted and the corre-
sponding computer simulations are executed. Finally, a careful result
analysis is performed, which includes results visualization and inter-

pretation.

However, the requirements of the white-box models are exigent. They usu-
ally demand specific software, a team of experts and expensive computa-
tional resources, which hinders their implementation in industrial applica-
tions.

A summary of the characteristics of each model type is shown in Table 1.1.

TABLE 1.1: Main features of white-box and black-box models.

White-box Black-box
Knowledge-based Data-based
Theoretical analysis Statistical analysis
Computationally expensive Quick
Extrapolative and interpretable Restricted to domain range
Idealized by assumptions Data inaccuracies migh be unnoticed

A third type of model has emerged that combines data-driven and physics-
based models. They are denoted as hybrid or grey-box models and aim at
overcoming the limitations of their predecessors. Ideally, these models in-
clude general or partial physical information and thus are more extrapolative
and adaptative than data-based models while demanding fewer amounts of
data or process variables. They are easier to develop compared to physics-
based models and allow the construction of models even in the presence of
very complex physical phenomena [138, 125]. Moreover, due to their flex-
ibility and capabilities, hybrid models seem to be a promising approach to
create efficient and interpretable Digital Twins [56, 33, 102].
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Due to this flexibility, there is not a single strategy to generate hybrid mod-
els; a wide variety of procedures can be found in literature, depending on
the characteristics of every case [58, 134]. In particular, the combination of
physics-based models with the increasingly-popular ML techniques has been
deeply studied [47].

Hybrid physics-ML models can be formulated using different approaches
[130]; the most straightforward is to feed a ML model with the output of a
physics-based model to improve the predictions [57, 93]. Other hybrid mod-
els propose to replace one or more modules of the physical model with ML
models, especially if those are strongly based on hypothesis [92, 59, 27]. A
hybrid physics-ML model can also be based on combined predictions of a
physical model and a ML model, with careful handling of the corresponding
weights [122, 135]. Other types of hybrid models are also developed for in-
verse modelling or parametrization. Supervised ML has also been accepted
for constructing Reduced Order Models. A library of several representations
of a physical system under different conditions is generated through expen-
sive knowledge-based models and used to feed a ML-based surrogate model
[21, 116, 100].

1.3 Thesis outline

1.3.1 Objectives

The aim of this dissertation is to develop a systematic methodology to tackle
numerical simulation models aided by data analysis techniques, allowing for
the efficient management of a large volume of information and their appro-

priate integration in online computational tools.
This thesis focuses on the following aspects:
* The analysis of complex physical processes:

— Assessment of unit operations from the perspective of computer
simulation.

— Development of different model types (physics-based, data-based
and hybrid approaches) and comparison in terms of accuracy, effi-
ciency and simplicity.

* The development of specific tools to promote the performance of hy-
brid models based on computer simulations at different levels:
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— Data collection: optimizing the design of experiments.
— Code implementation.

— ROM enhancement based on clustering identification.

1.3.2 Contents

The outline of the Thesis is as follows:

¢ In Chapter 2: Strategies for online process data analysis, different ap-
proaches to model complex physical processes are developed using a

rubber mixing process as case of study:

— In Chapter 2.1. High-fidelity description of a mixing process, a simpli-
tied knowledge-based model of a Banbury mixer is described and
validated using a Computational Fluid Dynamics model.

— In Chapter 2.2. Data-driven analysis of mixing process, process data is
used to generate data-based and physically-informed data-driven

models, with emphasis in dimensionality reduction methods.

— In Chapter 2.3. Application to other processes, hybrid techniques are
applied to other popular material-transformation processes in in-

dustry.

* In Chapter 3: Strategies for building surrogate models, a set of tools
are developed to tackle common problems of the combination of com-

puter simulation and reduced order modelling.

— In Chapter 3.1. ROMs in CFD code, a robust implementation of
ROMs in a commercial software is developed using Equations of
State as test case.

— In Chapter 3.2. ROMs for complex manifolds, a method to split the
domain of the input space based on the manifold features is pre-
sented and tested, which significantly increases the accuracy of the

model.

— In Chapter 3.3. Optimal sequential DoE for ROM building, a novel
selection sampling is introduced to reduce the computational cost
of the construction of an efficient ROM.

* In Conclusions, the most relevant findings of this work are summa-
rized and discussed.
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1.4

Scientific production

The relevant findings derived from the work of this Thesis have been or will

be published by the author in the following journals and congresses, sorted

in chronological order.

Conference paper: Alfaro-Isac C., Izquierdo S., Baquedano G.
(2019). Data-driven modeling of semi-batch manufacturing: a rub-
ber compounding test case. IEE International Conference on In-
dustrial Informatics (INDIN). Helsiki, Finland. DOI: 10.1109/IN-
DIN41052.2019.8972310.

Conference paper: Alfaro-Isac C., Viejo 1., Izquierdo S. (2018). Data-
driven CFD simulation of an industrial semi-batch mixing process. In-
ternational Conference on Computational Fluid Dynamics (ICCFD).

Barcelona, Spain.

Article: Alfaro-Isac C., Izquierdo S., Sierra-Pallares J. (2020). Reduced-
order modelling of equations of state using tensor decomposition for
robust, accurate and efficient property calculation in high-pressure
fluid flow simulations. The Journal of Supercritical Fluids, vol. 165.
DOI: 10.1016/j.supflu.2020.104938.

Conference paper: Alfaro-Isac C., Izquierdo S., Sierra Pallares J. (2021).
Tensor decomposition for discontinuos manifolds: a case study on ther-
modynamic properties of water. Eccomas congress 2020 & 14th WCCM.

Online format.

Conference paper: Alfaro-Isac C., Juan-Alejandre A., Izquierdo S.
(2021). Tensor-decomposition based sequential design of experiments
for computer simulation. 10th International Conference on Adaptive
Modeling and Simulation (ADMOS). Online format.

Article: Alfaro-Isac C., Izquierdo S. Process as online rheometer (In

preparation).

In addition, the codes written for section 3.1 ROMs in CFD code and 3.3
Novel sequential DoE for ROM building will also be released as supplemen-

tary tools in the next version of TWINKLE library.
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Chapter 2

Strategies for online process data

analysis

In this section, different approaches are explored to model a batch manu-
facturing process, specifically a rubber compounding. Batch and semi-batch
processing are of significant relevance across diverse industrial sectors. Prod-
ucts manufactured through these processes include additives, agrochemi-
cals, dyestuffs, pharmaceuticals, certain polymers or food, among others [12,
13]. In this case, the target application is quality assessment; specifically, a
method to predict the final properties of a product manufactured by means

of a semi-batch process.

First, a theoretical approach to the system is presented using a set of differen-
tial equations. The validation of this model is performed through CFD sim-
ulation. The fitting of the experimental data to the equation system allows
the prediction of the material properties, but the main focus on this topic is
to gain a deep understanding of the physical process and the relation of the

measured process variables with the material properties.

Quality tests are usually performed offline in a laboratory. Hence, though
this procedure guarantees that test conditions are fully controlled, it is time-
consuming, and there is a significant delay in obtaining the results. In conse-
quence a large amount of resources, in terms of both energy and material, is

wasted if the product is going off specifications.

In addition, these samples are taken periodically and therefore this method
does not account for the variability of the material within the same batch, nor
the changes in material properties during the time between the sampling and
the availability of the results.
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On the other hand, the main advantages of on-process measurements are the
reduction on material wastage as well as on manual interventions, as they
can be set to provide an automatic response. On-process measurements can
be classified into in-line and on-line, whether they are mounted inside the
main process stream or are bypassed. The closer to the polymer processing,
the closer to the end-product material properties and the shorter the delay
is, allowing for real-time process monitoring. However, in-line rheometers
present important disadvantages such as interferences from the process to
the rheological characterization, and vice versa, and little to no control over

the test conditions.

Hence, the main objective is to develop on-process applications for the pre-
diction of the processed material properties. In order to do that, the process
data is used to construct and test several purely data-driven and hybrid mod-
els. The limitations and advantages in terms of accuracy and requirements
are discussed. Finally, two more case studies are presented: a multi-slit ex-

trusion die and a mixing process performed in a Brabender mixer.

2.1 High-fidelity description of a mixing process

Mixing is a complex process due to the diversity of concurrent phenomena. A
heterogeneous mixture of components is introduced into a mixer, where the
shearing forces produce the dispersion of the components aiming at obtain-
ing a homogeneous material. The shearing stress distribution depends on
the mixer geometry, particularly the shape of the blades, and the rheological
properties of the compounds. These properties can also change during the
process due to particle interaction induced by mechanical agitation (agglom-
eration, sedimentation, segregation, suspension) or even chemical reactions,

which could also affect the energy balance.

Hence, describing the behaviour of this system through numerical tech-
niques is not an easy task. In this work, a simplified theoretical description of
mixing is presented through a system of differential equations. In addition,
a CFD model is also developed to validate the analytical approach.

The source of the experimental data used for this work is a real industrial-
scale manufacturing process and has been provided by a private company, to
experience the limitations that arise in actual working conditions. Therefore

due to confidentiality reasons, experimental values are not displayed.
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2.1.1 Industrial mixing process description

Mixing is one of the most common unit operations in industrial process engi-
neering across many sectors, like chemical, pharmaceutical, minerals, food,
plastics, paper and metallurgical industries. The rubber compounding pro-
cess presented next describes an industrial case that takes place at a factory
that manufactures automotive sealing profiles.

The raw rubber is mixed with oils, reinforcing or protective materials, and
chemical additives, such as activators, accelerants and sulfurants, in an in-
ternal batch mixer at elevated temperature. Moreover, the constituents are

served in heterogeneus states: pellets, powder, flakes, liquid.

If the final mixture does not reach an uniform distribution of the diverse el-
ements, a deficient rubber batch is obtained. However, defects of the com-
ponding process are usually reported after performing a quality test of a
rubber sample in a laboratory, in a later stage of the process, such as rub-
ber extrusion, or in the final product. Therefore, the waste of material and
resources is not limited to the current batch or product, but also to the mate-
rial that is produced while the error was unnoticed.

The complete cycle, from raw material to quality test of the final product, is
depicted in the next figure 2.1 :

FIGURE 2.1: Main steps of mixing process

The first step, dosification (1), consists of feeding the raw materials into the
mixer. Nine different substances, in their required amount respectively, are
introduced. The actual weight of each one is also recorded, in case it differs
significantly from the ordered weight. The mean weight of each compound
is shown in Figure 2.2, where the error bars represent the standard deviation.

The mixing step (2) occurs in a Banbury mixer, characterized by its two coun-

terrotating spiral-shaped rotors. The factory worker states the mixer speed
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FIGURE 2.2: Process compounds.

and charge/discharge times, and readjust the composition if required. The
mixture is passed between calender rolls and sulphurated (3).

Multiple sensors are located inside to provide real-time information of the
process, like intensity, pressure and temperature. A supervisory control and
data acquisition (SCADA) system collects the mixing process variables ev-
ery 0.25 seconds from the different sensors. It also storages and organises
them in order to present them to the system operators. The process variables
recorded during the mixing (intensity, pressure, temperature, rotor speed,
gate position) and the calendering (cylinder speed) are depicted in Figure 2.3;
in particular, the mean and standard deviation of the available batch data.

The processed material is stored (4) until samples are taken to be tested. Fi-
nally, the analysis (5) is carried out offline, in a dedicated laboratory. A mate-
rial sample is analyzed in a moving die rheometer (MDR) and curing curve
parameters are obtained, such as minimum and maximum torque (ML and
MH), t5, t10, t50, t90 (time to reach 5%,10%, 50% and 90% of cure), tanD (ma-
terial damping) and tsl, ts2, ts5 (pre-curing or scorch time). Among them,
ML (minimum torque) is selected as the reference quality property, since it
is related to the viscosity of the processed material heated to vulcanization
temperature. In Figure 2.4, a typical MDR curve is depicted (from Zhang et
al. [61]).

Finally, if the processed material fulfils the quality requirements, it is stored
in the warehouse until it is used as raw material for other manufacturing

processes like injection or extrusion.

Therefore, for each batch, a serie of input variables must be specified and the
output variables are recorded along the process, as summarized in the Table
2.1.



Chapter 2. Strategies for online process data analysis

15

Intensity

—— Mean
StDev

Pressure

—— Mean
StDev

Time

(a) Intensity

Time

(b) Pressure

— Mean

StDev
3 2
& E
& g
= 2

—— Mean
StDev
Time Time
(c) Rotor speed (d) Temperature

.E\
g g
o E
2 5
[} °
2 £

= 5 —— Mean

StDev

Time Time
(e) Gate position (f) Cylinder speed

FIGURE 2.3: Collected process variables.

Here the first limitations can be identified. Since the available information is
restricted by the sensorization system, some variables that influence the final
properties of the material are not collected. For instance, while sulphuriza-
tion greatly affects rubber vulcanization, the amount of sulphur compound
added during the calendering stage is not measured. Another potential issue
refers to mixer maintenance: the mixer is not cleaned after every batch and
the waste material that is left after one or several cycles on the mixer affects

its efficiency, but it can not be determined.

2.1.2 Data cleaning

When the cycle is finished, the data is uploaded and can be accesed through
an online server. Before actually using the data, a cleaning stage is necessary
to eliminate those cycles where data is noticeable corrupt or incomplete.

Cleaning includes discarding cycles of empty or invalid material tests, as well
as empty records of process variables. Some of them also show inconsistent
time registers and are consequently removed.
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FIGURE 2.4: Representative MDR curing curve.

TABLE 2.1: Input and output variables for each process stage

Step Input Output

Dosification Ordered compounds weight Served compounds weight

.. Mixer speed Intensity
Mixing Gate position Temperature
P Pressure
Calendering Cylinder speed -
Storage - -
. Temperature .
Analysis Time Curing parameters

Unfortunately, the initial number of available cycles is drastically reduced
from 1996 to only 481 after the data cleaning. It must be stressed the impor-
tance of the data collection stage to ensure sufficient volume of good quality
data to construct reliable models.

2.1.3 Theoretical description

In this section, a simplified physical model of the mixer is described. By
applying the preservation laws to the mixing process, this model allows es-
timating the viscosity of the processed material through a set of ordinary
differential equations.
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The lack of information regarding the material properties of each component
of the mixture prevents a viscosity estimation based on the mixture formula-
tion. Hence, the rheological properties are approximated to a uniform rubber

modelled using a power-law equation:

n=Kiy"! (2.1)

Parameter n represents the flow behaviour index, while parameter K is the
flow consistency index of the power-law viscosity model. It varies with tem-
perature and pressure, according to an exponential Arrhenius and exponen-
tial relation, respectively, as follows:

1_1

K = Kt (17 ) thP 2.2)

The indexes a and B designate the viscosity dependence with temperature

and pressure.

The actual mixer is represented by two independent chambers with no ex-
change of forces or fluid through the central plane. Thus, it is considered
that the force applied by the impeller of one chamber does not affect the fluid
placed in the other.

Each chamber is composed of a single cylindrical cavity of radius Ry and
height L. Only the capacity (fluid volume) of the industrial mixer is provided.
However, the measurements of chamber radius and length are unknown.
The model mixer dimensions are estimated to fit half of the total fluid volume
in each chamber. In this approach, it is assumed that there is no free volume
inside the mixing chamber. The characteristic, spiral-shaped, blades of the
Banbury mixer are simplified and replaced in the model mixer by two radial
impellers of radius R;, height L and negligible thickness.

It is considered that the fluid within the impeller radius rotates at the same
speed as the impeller, w;. Fluid velocity between the tip of the impeller and
the mixer wall is calculated solving the Navier-Stokes equation and imposing
no-slip condition on the wall.

wi if0<r<R;
wi(r) = (2.3)

wWiRiRyw1 _ _wiR; LR,
RooR 7~ Ry—K if R; <r <Ry
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FIGURE 2.5: Model of a chamber of the mixer.

The application of the momentum balance to the mixer model demonstrates
that the power system consumption W,-nput is due to the power consumed by
the rotor impeller W,ot0r and the power dissipated by viscous effects Wfriction-

Moreover, power is equivalent to the product of voltage V and intensity I:

Winput =VI= Wrotor + Wfriction (2.4)

The power consumed by impeller rotation is derived from the variation of

kinetic energy in the mixer:

. L dw;
Whotor = _pRisz(ZRi + Rw)wi

On the other hand, the power lost by viscous dissipation effects is obtained

by integrating the shear stress in the control volume.

Wfriction = NLRkKw?Jrl (2.6)
where Ry represents:

R;

R, = RZ 4+ (——t
: l+(Rw_Ri

)" Ry — R;)? (2.7)
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The presented system of ordinary differential equations (ODE’s) describes
the causal relationships between the process variables (intensity, rotor speed,
pressure, temperature), the geometrical parameters (mixer length, chamber
radius, impeller radius) and the material properties (density, power-law co-

efficients).

It can be observed that for a single batch process, where the mixer dimensions
and rubber characterization are constant in time, the variation of pressure,
temperature or rotor speed causes a response in the power consumption of

the system in form of intensity change.

dl . dWl’OtOT’ dwfriction

- a T ar 28)
dwrotor . Lo o , dwi o
T, =76 Ri Rw(ZRl + Rw)( T, ) (2.9)
deﬂCtion n dwl- dP o dT

For each cycle, the process data from the physical mixer is collected through
the sensorization system and the mixer dimensions are estimated based on
the fluid capacity. To validate this approach, the viscosity of the processed
material is required. However the only available measurements are the tests
performed at the MDR, from which ML can be considered a as relative mea-
sure of the viscosity of the non-vulcanized compound. Thus, the viscosity
can be related to the experimental ML value, through the rheometer constant,
K, heom.

11
ML = KyeomKtest = Kreoprea(m_T_”‘)+ﬁPt€St (2.11)

Experimental data from compounding process is fitted to the ODE’s model
so the power-law parameters can be optimized and material characteriza-
tion is completed. Six parameteres should be determined: density (p), pre-
exponential index (K,), power-law index (1), temperature («) and pressure-
dependence (B). The reference temperature (T,) is set to room temperature.
However, there is no experimental values of density and thus this parameter
can not be validated. Hence, density is selected as approximated standard
rubber density value (1000 kg/ md).
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FIGURE 2.6: Algorithm for the calculation of the theoretical
model.

Least-squares optimization is applied to minimize the difference among ex-
perimental and calculated intensity, which results in the determination of K,
«, B and n. The characterization from a similar rubber is used to set the initial

values, except the pressure-dependence index, which is found in bibliogra-
phy [49].

214 Simplified CFD

The flow inside the mixer is simulated using Ansys Polyflow. The aim is
to validate the ODE’s model by imposing the process temperature, pressure
and rotor speed to calculate the intensity in each instant and compare it with
the analytical intensity.
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The geometry consists of two tangential counter rotating rotors of the same
size (R;, Ry, L) as the ODE’s mixer model, as depicted in Figure 2.7.

FIGURE 2.7: Mixer mesh for CFD model

The fluid volume is initialized at constant temperature, calculated as mean
initial temperature from experimental data, and adiabatic conditions are im-
posed at mixer walls. Rotor speed is constant and equal to the initial value
of mean experimental rotor speed. It is assumed that the fluid sticks to the
walls and the rotor surfaces and that the mixer is fully filled. The material
properties are set to the mean values of Ky, «,  and n obtained from the
optimization of the ODE’s system.

Since a simulation of the full mixing cycle is computationally very expen-
sive, only the first five revolutions are calculated. The interpolation scheme
is mini-elements for velocity with linear pressure, Picard iterations on vis-
cosity and quadratic elements for temperature. The selected solver is AMF
direct solver with the secant iterative process and implicit Euler method for

transient integration.

2.1.5 Results

A system of ordinary differential equations (ODE’s) that model the flow be-
haviour during a mixing process is developed. The system is optimized to
determine a value of K, «, B and n for each data batch. This calculation is
performed for the available data of 481 batches and the resulting mean and

standard deviation for each parameter are shown in Table 2.2.

The only way to validate the rheological model is to relate it to ML experi-
mental values using Equation 2.11. For each batch, a set of values of n, K,
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TABLE 2.2: Results of ODE’s optimization

Parameter Mean St. deviation Relative st. deviation

Ky 137283.85 19463.67 14.18%
x 106.73 46.55 43.62%
B 5.00E-08 1.32E-23 0%

n 0.2 2.78E-17 0%

« and B are calculated and the flow consistency index K can be determined
usign Equation 2.2. Assuming that all the MDR measurements are performed
using the same conditions, a linear relationship is expected among the com-
puted viscosity and the experimental ML-value through the rheometer con-

stant Kjeometer-

1 =— Linear Regression . 3 * . .,
e Values .'°t % . .
68% Conf.int. o o'F o *p o0 %’
L L, .

ML

Ktest

FIGURE 2.8: Kiest vs ML.

In Figure 2.8, paired values K.t - ML for each batch are represented. The
linear fit a shows a significant Y-intercept. It is reasonable to consider that
the rheometer has a working range and that the offset is related to the lower

working limit of the instrument.

On the other hand, the mixing simulation, carried out using the same op-
erational parameters and the mean fitted material model, provides the cal-
culated torque to be compared to the experimental and analytically calcu-

lated results. The experimental intensity, the calculated intensity using the
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fitted parameters and the numerically-computed intensity using finite ele-

ment methods are shown in Figure 2.9.

o "™ ¢ Data
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FIGURE 2.9: (a) Experimental and fitted intensity (full cycle);
(b) experimental data, analytically-calculated data and CFD
simulation results.

In Figure 2.9 (a), the experimental and predicted intensity using the fitted
parameters for a sample batch is compared. Considering the numerous hy-
pothesis and simplifications, the predicted intensity is in reasonable aggree-
ment. In Figure 2.9 (b), the intensity calculated through CFD simulation is
compared to experimental data and ODE’s-determined intensity. The real
process experiences a transitory phase, but the same steady value is reached

for the current operating conditions.

2.2 Data-driven analysis of mixing process

The development of data-driven models is supported by the intensive sen-
sorization of manufacturing processes that supply large volumes of process
data. However, it is rarely the case that a data-based model is constructed
directly from process data without any additional transformation.

In particular, due to the dynamic, non-stationary character of batch pro-
cesses, the data collected from them are usually presented in the form of time-
series values, which results in a high-dimensional forecast problem. The so-
called curse of dimensionality can hinder the efficiency and reliability of the
data-driven model and prevent a proper industrial implementation.

Two approaches are explored to reduce the size of the problem: feature ex-
traction, which is data-driven, or feature selection, which can be guided by



Chapter 2. Strategies for online process data analysis 24

knowledge or data. After the dimensionality reduction step, two multivari-
ate regression methods are also tested and compared regarding their preci-
sion and robustness. The combination of a physically-driven feature selec-
tion and a machine learning algorithm represents hybrid modelling, while
feature extraction or data-based feature selection and multivariate regression

are purely data-driven models.

2.2.1 Data preparation

As described in Section 2.1.1 Industrial mixing process description, the sen-
sorization system collects six time-dependent variables: intensity, pressure,
rotor speed, cylinder speed, temperature and gate position. For each batch a
data matrix is recorded, where the rows represent the timestamps or lectures
and the columns show the process variables. To ensure that all data matrices
have the same length it is considered that the cycles have the same duration,
which corresponds to 79 lectures. Moreover, after the data cleaning (Section
2.1.2), data from 481 cycles are available. Process data variables for all cy-
cles are grouped and organized to build a three-dimensional tensor of shape
(lectures, process variables, cycles).

On the other hand, the dosification matrix contains the served weight of each
of the nine compounds for each cycle. The output of the system is the quality
measurement (ML), which is represented by a single value for every batch.
Hence, it is necessary to perform a transformation over the process data to fit

it to the dosification and the output dimensions.

The solution is to flatten the process-data tensor in the time-axis to create
a matrix where rows correspond to the number of cycles and the columns
are variables at a certain lecture. This unfolding technique is common when
dealing with time-series data collected from batch processes and can be ob-
served in several works [45, 136, 78, 121]. After appending the served weight
of each compound for each cycle, the resulting matrix has 481 cycle rows
and 483 features, as depicted in Figure 2.10. It constitutes the input to the
data-based model.

Although batch and semi-batch are transient processes, the evolution of their
variables is collected at discrete time points; therefore for the building of a
data-driven model they can be considered as steady cases where every time
instant acts as a new dimension of input data. This observation will be re-

ferred to as “batch time”.
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FIGURE 2.10: Input data reconstruction

2.2.2 Data filtering

Manufacturing data collected via sensors is usually affected by random vari-
ations or fluctuations that cause interferences in the received signal. Filtra-
tion methods aim at reducing the signal noise and smooth time transition.
Two popular techniques are tested on the mixer process data: Kalman filter
and Gaussian filter.
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FIGURE 2.11: Kalman filter for (a) intensity and (b) presure.

e Kalman filter

From an estimation of the process noise variance and the measurements
noise variance this technique predicts the next data lecture of a dynamic
system. The effect of Kalman filtering on the process intensity and pres-
sure is depicted in Figure 2.11.
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FIGURE 2.12: Gaussian filter for (a) intensity and (b) presure.

e Gaussian filter

In this case, a standard deviation is provided for the Gaussian kernel,
which weights each data lecture according to a Gaussian distribution
to calculate the filtered lecture. Gaussian filters smooth time transitions
and reduce noise. An example of Gaussian-filtered intensity and pres-
sure is shown in Figure 2.12.

2.2.3 Dimensionality reduction

The dimension of the input data matrix after the transformation described in
Section 2.2.1 Data preparation is 483. The number of features is larger than
the number of samples, which prevents the data-based model from achiev-
ing a good fit and adversely affects the final accuracy of the prediction. In
addition, the computational cost of building multivariate regression models

raises with increasing dimensions.

Hence, two different approaches are explored to deal with the curse of di-
mensionality: feature extraction and feature selection [97]. Feature extraction
focuses on maintaining the topology of the original data by projecting it into
a lower-dimensional space. The most popular methods for feature extraction
are based on Principal Component Analysis (PCA) [65]. On the contrary, fea-
ture selection preserves the interpretability of the data. Several generalized
techniques are found in the literature to apply feature selection to a wide
range of problems [46, 67, 20]. An alternative is to select features based on
knowledge-guided process-specific criteria [16].
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2.2.3.1 Feature extraction

Principal Components analysis is an efficient method to reduce the dimen-
sionality of a dataset while retaining the maximum information [53]. It trans-
forms an initial set of variables, which might be linearly dependant, into a
new set of uncorrelated “reduced components”. This is achieved by project-
ing the dataset into a lower-dimensional space in the directions of the data

that explain the maximum amount of variance.

In addition, the reduced components are ranked in order of importance. That
means that the first component contains the largest variance of the dataset.
However, since the resulting reduced components are a linear combination
of the initial variables, they lack physical meaning.

The input data for the feature extraction is the resulting dataset after the
data transformation performed in Section 2.2.1 Data preparation, which is
composed of the time-dependant process variables and the dosification in-
formation. In addition, two filtering methods, Kalman and Gaussian fil-
ter, have been applied to the process variables. Hence, PCA is calculated
on three datasets: the raw input data, Kalman-filtered data and Gaussian-
filtered data.
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FIGURE 2.13: PCA variance accumulation with increasing re-
duced dimensions.

The increase of total explained variance with the number of reduced compo-
nents is shown in Figure 2.14. It can be noted that for an equal number of
reduced components, Kalman-filtered data maintains the most information,
followed by the Gaussian-filtered set. The optimal number of reduced com-
ponents is set to 21, which accounts for 96.9% of explained variance in the

Kalman-filtered dataset and 82.5% in the raw dataset.



Chapter 2. Strategies for online process data analysis 28

0.20 H
0.15 - e i * Intensity
* v ® Rotor Speed
— 010 % o e { ¢ Cylinder intensity
S 0.05 1 ¢ '., d : * Gate position
E 0.00 t======== LR o ety * Pressure
) o glateerilc, Temperature
g —0.05] O fo 3% °
= B e sl * % L0 e Components
Q —-0.10 1 "* C 5 :-\ 1 ® e a . .
] LA
-0.15 1 —
0.20 i

©-0.20 -0.15 -0.10 —0.05 0.00 0.0 010 015 0.20

Dimension 0

FIGURE 2.14: Weights of the two first dimensions of PCA

In Figure 2.14, the weights of the first two principal components are depicted,
coloured by groups of variables. The largest weights correspond to the most
relevant variables. The represented distribution is considerable inhomoge-
neous to raise conclusions, but it can be observed that only two compounds

are significantly far from the origin, which corresponds to D and B.

2.2.3.2 Feature selection

Feature selection methods are suited to convert a high dimensional dataset
into a reduced dataset that preserves the interpretability of the variables. In
the current case of study, the input dataset includes two different types of in-
puts: the flattened batch time-series and the compounds information. Hence,
feature selection is performed separately in each category. For the batch time-
dependent variables five proposals for feature selection are presented next:

1. Integral of intensity

The theoretical model developed in Section 2.1.3 Theoretical descrip-
tion allowed to gain valuable comprehension of the mixing system.
One of the main conclusions is that the material properties are intrin-
sically related to the amount of transferred momentum. This measure-
ment could be represented as the integral value of intensity along the
batch time (see Figure 2.15 (a)). Thus, all the features of the batch time-
series type could be compressed into a single variable.

2. Variance sorting
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FIGURE 2.15: Feature selection: (a) Integral of intensity and (b)
variance sorting.

PCA aims at finding the axis to maximize the variance based on the
assumption that a larger variance is equivalent to more information
from the system. Instead of projecting the high-dimensional data, in
this approach, the lectures of every time-dependent variable are ranked
according to their variance (see Figure 2.15 (b)). In addition, the theo-
retical model inferred that only four process variables are related to
the final material properties (intensity, pressure, temperature and rotor
speed). Hence, the remaining variables (gate position, cylinder inten-
sity) are not included in this procedure. The dimensionality is reduced

to the m variables with the largest variance.
Statistical moments

In this method, the probability distribution function (PDF) is calculated
for each batch time series. This PDF can be approximated to a distribu-
tion characterized by the main four statistical moments: mean, vari-
ance, skewness and kurtosis. This approach is illustrated for the inten-
sity of a batch in Figure 2.16. Thus, the 79 lectures of each batch can be
reduced to 4.

Backward elimination

This procedure is based on the importance of the integral of intensity
that is previously discussed. Instead of using the final integrated value,
this method aims to select the lectures of each variable that can best
represent the corresponding integral. To achieve that, the mean of each
lecture is first calculated for every process variable. Then, the integral
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of the process variable is computed using the 79 timestamps. From
there, lectures are progressively removed. The criterion is to discard
the timestamps so that the calculation of the integral without it would
result in the least variation from the original integral value. As in the
case of (b), it only applies to the four specific process variables. Hence,
if the user demands that n lectures are required for a proper estimation
of the integral, the selected variables would be 4n. In Figure 2.17 (a),
this approach is applied to the mixer intensity, with n = 5.

5. Angle method

The hypothesis in this approach is that the evolution of the system is
marked by the time instants where rapid changes occur. Thus, this
method aims at collecting the lectures where each process variable
shows sudden variations. In practice, this is calculated by determin-
ing the angle formed by the current, previous and next lecture for the
mean of the timestamps of each process variable. Hence, the n non-
consecutive lectures with the largest angle are selected for each batch
time series. As in the case of (b) and (d), only four process variables
are considered. This approach is depicted in Figure 2.17 (b), using the

mixer intensity, with n=5.

— PDF —— Estimated distribution
....... PDF

Frequency
Probability

Intensity | Intensity
(a) (b)

FIGURE 2.16: Feature selection: statistical moments: (a) his-
togram and PDF; (b) fit of the PDF to a Gaussian distribution.

Regarding compound data, it is not possible to perform a knowledge-based
selection since the material properties of each substance are undisclosed. The
proposed approach is to select those compounds that most contribute to im-
proving the material quality prediction. To achieve that, sequential feature
selection (SFS) [20] is used. The simplest feature selection, which corresponds
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FIGURE 2.17: Feature selection: (a) backward elimination (n=5)
and angle method (n=5).

to the integral of intensity method, is used as the zero subset. Linear regres-
sion is performed and the mean squared error of the real and predicted val-
ues is calculated. Then, each compound is individually added to the zero
subset and the corresponding regression and prediction are determined; the
feature that scores best is permanently appended as part of the new sub-
set. This selection proceeds iteratively until a performance-sorted list of com-

pounds is obtained.

The results of the SFS of compound data are shown in Figure 2.18. This pro-
cedure shows that the largest decrease in MSE is when adding compound D.
MSE is improved slightly with the next addition (B) and remains stable for
the rest. Therefore, compound D is selected as the most influential regarding

the final properties of the material (ML).

From the described feature-selected techniques, five models are developed
for batch time-series reduction. For reliable comparison to feature extraction,
it is advisable to build models of similar dimensionality. Therefore, the vari-
ance sorting method uses the m points with the largest variance across all the
process variables with m = 20. On the other hand, the backward elimination
and angle method restricted the dimensions to n lectures of each variable,

where n = 5.

To include the contribution of the compound data to the model, SBS was
applied and the best compound (D) is included in each one of the five models.
The summary of the characteristics of each model is presented in Table 2.3.
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FIGURE 2.18: Feature selection: sequential feature selection of
compounds.

TABLE 2.3: Description of feature selection methods

Feature selection Description Dimensions
Integral of intensity (II) Integration 1
Variance sorting (VS) Top m variance-sorted m
process lectures
Statistical moments (SM) Statistical moments 4n
Backward elimination (BE) Top n lectures . 4n
for every process variable
Angle method (AM) Top n lectures 4n

for every process variable

2.24 Multivariate regression

Multivariate regression is applied to PCA-reduced and feature-selected in-

put data aiming at achieving the best predictive model of the output vari-

able (ML). The models are tested using cross-validation [37]. This technique

consists of dividing the samples into k groups of the same size and using
(k —1)/k sets to train the model (training dataset) and 1/k to evaluate it (test
dataset). This procedure is repeated k times to subsequently exchange the

training and test sets. The global score of the model is obtained by averaging

the metric of every iteration. The selected metric to determine the prediction

quality of each model is the mean squared error. Two different regression

methods are evaluated:

* Gaussian regression (GR), where the kernel is a combination of the Ra-

tional Quadratic Kernel plus the White Kernel.
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TABLE 2.4: Data-based predictive models: main features

Model Interpretability Dimensions
(1) PCA None 71
(2) 1 + 1 compound Momentum balance )

+ Compound analysis
Variance analysis

+ Compound analysis

(4) SM + 1 compound Statistical moments calcu.lation 25
+ Compound analysis
Reduced integral calculation
(5) BE + 1 compound (momentum balance) 4n + 1 (21)
+ Compound analysis
System dynamics

+ Compound analysis

(3) VS + 1 compound m + 1 (21)

(6) AM + 1 compound 4n + 1 (21)

* Artificial Neural Network (ANN): The architecture is composed of
three dense layers of decreasing output dimensionality. This design
follows the general rules of building a feed-forward neural network,
which consists of a structure with one hidden layer whose number of
nodes is equivalent to the average of the nodes of the input and output
layers. The activation function for the first two is softplus and linear for
the last one. The selected optimizer is Adam and the mean squared er-
ror is chosen as loss function. The ANN is implemented through Keras
Python library [60].

2.2.5 Results

For the described models, three quantitative parameters are reported:
® The number of dimensions (d)
¢ The volume of data required to construct each one (v).

* The accuracy, calculated as the mean squared error (MSE) of real and
predicted values of a test data set, for the neural network regression
(ANN) and the Gaussian regression (GR).

The results for the five dimensionality-reduction models combined with the
two multivariate regression methods are summarized in Table 2.5.

The most accurate model overall is PCA + ANN. Among feature selected
models, method (5) Backward elimination shows the best results for both



Chapter 2. Strategies for online process data analysis 34

TABLE 2.5: Data-based predictive models: results

Model Data volume Dimensions ANN MSE (%) GR MSE (%)
(1) PCA 483 21 0.89 1.64
(2)II+1 comp 80 2 2.16 1.76
(3) VS + 1 comp m +1(21) m +1(21) 1.58 1.86
(4) SM + 1 comp 475 25 1.72 1.74
(5) BE + 1 comp 4n +1(21) 4n +1(21) 1.44 1.67
(6) AM +1comp 4n+1(21) 4n + 1 (21) 1.55 1.79

Gaussian regressor and neural network. It must be noted that the neural
network yields a higher accuracy for all the reduction models except for (2)
Integral of Intensity. The reason is that since there are only two input dimen-
sions, the intermediate layer size is also set to two, which seems to adversely
affect the performance of the method. A comparison of the MSE results is

depicted in Figure 2.19.

EANN BEGR

MSE [%]

FIGURE 2.19: Results of multivariate regression.

The efficiency of the models can be also evaluated regarding the required
data volume and dimensions to obtain the output prediction, see Figure 2.20.
It means that despite that the PCA-based method shows the largest accuracy,
it requires all the input variables to perform the dimensionality reduction.
On the contrary, model (5) Backward elimination shows also a great precision
but it only needs 21 variables to directly feed the regression, which represents

a significant simplification.

In conclusion, regarding the accuracy of the model, the best result corre-
sponds to the combination of feature extraction (PCA) and artificial neural
network (ANN) regression model. However, if interpretability of data is to
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FIGURE 2.20: Requirements of (a) data volumen and (b) dimen-
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be preserved, feature-selected is recommended and backward elimination
showed the best performance, model (5). From industrial perspective, any
of the feature-selected models described in this work could be easily imple-
mented in the process control system.

Finally, considering that these models are designed to be applied to indus-
trial environments, where models can be rebuilt using more data as they are
continuously being collected, robustness of both methods for training sets of
increasing sizes is a concerning issue.
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FIGURE 2.21: Increasing training data using (a) ANN and (b)
Gaussian regression.

In order to check it, the best scored case among feature-selected models,
model (5), is chosen as case study. The procedure is as follows. Eleven sam-
ples are blindly selected to make the test set, leaving 470 samples as train-
ing set. Two models are built using ANN and Gaussian regression on this

training set and tested with the separated test set, calculating the accuracy of
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every model through MSE. Then 10 samples are randomly removed from the
training set and models are built again using the new smaller training set.
This process continues iteratively until reaching a training set of just 10 sam-
ples. To check if the differences in the results are influenced not only by the
number of samples of the training size but also by the data contained within
the sample itself, the procedure is repeated again, so that the randomly-
removed samples would be different (the test set remains the same). The
results are shown in Figure 2.21. Differences with previous results presented
in Table 2.5 are due to not using cross-validation on this test.

It is observed that Gaussian regression is more convenient than neural net-
works, since the latter do not show stable tendencies when working with

different number of dimensions or samples.

2.3 Application to other processes

The rubber compounding case described in the previous section shows sev-
eral approaches to develop on-process predictive models of material proper-
ties. In this section, two additional industrial working cases are presented.
The first example is a slit extrusion die, where the viscosity is calculated by
integrating the Navier-Stokes equations and assuming a power-law model;
next, the rheometry for a compounding process carried out in a Brabender
mixer is described through differential analysis.

2.3.1 Multi-slit extrusion die

In this case the aim is to develop an on-line predictive model for the rheo-
logical characterization of the extruded material. A slit die is coupled to an
extrusion line and a fraction of the polymer flow is derived from the main
flow. Two devices are tested: a four-slit and a three-slit designs. Each one
has the same lenght (32 mm) but decreasing diameter (3-6mm); for varying
rotational speeds at the inlet the mass of extruded rubber is measured.

Assuming a power-law viscosity model for this fluid, as it is developed in
[29]:

m AP\Y" 54
— — R n 2.12
Q=31 <2LK> @12)
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FIGURE 2.22: (a) Four-slit and (b) three-slit extrusion die with
slit radious from 3 to 6 mm.

where Q is the volumetric flow; AP is the pressure drop between the outlets
and the inlet; n and K correspond to the power-law parameters, flow-index
and viscous constants, respectively; while L and R are the geometric param-
eters, length and radius. Therefore, the relation between two channels of

different radius and their corresponding volumetric flow is defined as:

<@> — (l) (2.13)
Qr Kir \ R;

For the four-slit extrusion die, six pairs of channels can be analyzed through
equation 2.13; for the three-slit die, three pairs can be compared. Firstly, the
volumetric flow ratio is calculated; in order to do so, the density of the fluid

must be previously obtained. Assuming that the viscous parameter is con-

stant, K; = Kjj, the flow-index n can be determined for each pairing accord-

ing to:
1
= 2.14
e (2.14)
where
logQu
- 3 e (2.15)
OgR_I

For each pair of channels an estimation of 7 is calculated. To check if the
shear rate influences the flow index, for each die the corresponding mean

shear rate is computed using the following equation:
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. 3n+14Q
 4n 7R3

(2.16)

The viscous parameter, K, is determined using equation 2.13 with the n value
obtained in the previous step. A system of equations can be constituted by
as many statements as considered pairs of channels, where 7 is constant. For
the four-slit die, six equations could be usable but only four are necessary to
solve it. For the three-slit die, three equations are obtained. A value of K is
obtained for every die and the final value is calculated as the average of the
estimated K.

This procedue is applied to two different materials, A and B. The experi-
mental test is repeated five times for material A and six for material B. The

nomenclature regarding channel pairings is specified in Table 2.6.

TABLE 2.6: Channel pairing

Relation RadiusI[m] RadiusII[m]

1 0.006 0.005
2 0.006 0.004
3 0.006 0.003
4 0.005 0.004
5 0.005 0.003
6 0.004 0.003

Material A is tested using the four slit die, while material B is passed through
the three slit die. Hence, only relations 1,2 and 4 can be used to power-law

parameters determination of material B.

The flow-index n and its corresponding mean shear rate are calculated using
equations 2.13 and 2.16 respectively. In Figure 2.23, the mean shear rate is
plotted against the flow-index for each relation specified in Table 2.6 to check
if the flow-index is influenced by the shear rate.

It is observed that the results of relation 1, which corresponds to the largest
slits, are noticeably different in both cases. On the other hand, relations 3
to 6 agree in similar values of flow-index while showing that flow-index is
independent of the shear rate. Therefore these data are used to proceed the
calculations, discarding relations 1 and 2. The final value is obtained as the
average flow index of relations 3 to 6 for material A, and relation 4 for mate-
rial B.
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FIGURE 2.23: Mean shear rate vs flow-index for each pairing
for material (a) A and (b) B.

Regarding viscous parameter, K, for each relation defined in Table 2.6 a spec-
ification of equation 2.13 is defined. In consequence, for each test a system
of as many statements as existing relations can be solved. This means, for
material A there are five sets of six equations each and for material B there
are six sets of three equations. Therefore, a value of K is calculated for every
channel and test; the average for each die is shown in Table 4.

TABLE 2.7: Results of extrusion die rheological model

Slit radius [mm] K, material A K, material B

3 153781.0 -

4 148091.3 137424.1
5 145874.8 137380.6
6 166774.6 162851.3

It can be observed that for both materials, the value of K for radius 6 mm
differs greatly from the rest of the obtained parameters. This conclusion is
in agreement with the previous remarks regarding the flow-index determi-
nation, where the largest slits were associated to significant errors. The final
values of K are calculated as the mean of the estimated viscous parameter

excluding channel of radius 6 mm, and summarized in Table 2.8.

The viscosity flow curve for both materials is depicted in Figure 6, according
to the determined power-law parameters.
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TABLE 2.8: Rheological characterization of A and B

Material Flow index, n Viscous parameter, K

A 0.156 149249.0
B 0.107 137402.4
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FIGURE 2.24: Viscosity of material A and B.

Thus this methodology allows to determine in-situ the rheological model of
the processed material by simply coupling a device to an extruder and ana-
lyzing the outflows; nor sophisticated instruments neither complex calcula-

tions are required to obtain a precise characterization in short time.

The sources of uncertainties in the measures have the origin in two assump-
tion made. First, the flow is considered uniform, but in the wider slits there
are significat flow disturbances at the entrance. In addition, the pressure
drop is assumed to be the same for all the channels, but it is actually larger
in the slits with small diameters. Hence, the resulting K reported in Table 2.7
moderately increases for the smallest and the largest dies.

Both four and three-slit extrusion dies have been calculated and validated by
CFD in an internal report.

2.3.2 Brabender mixer

This case consists of a compounding process, specifically the production of
a material composed by a mixture of propylene, additives and wood fibers.
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The material is processed in a laboratory-scaled Brabender mixer. The pro-
duction is non-continuous and the torque is measured and recorded during
the mixing process. Thus, a relationship between this torque and the rheol-
ogy is sought.

In the low-frequency regime, as it is the case, the rheology is shear-
dominated, therefore the material can reasonably be modeled using a vis-
coplastic model. The rheological model chosen to fit the experimental data is
the Bird-Carreau [19] constitutive model:

7= 1o + (10 — 1je0) (1 + A22) T 2.17)

However, in order to perform the fit, the steady-state shear viscosity is
needed. Since the experimental set up prevents direct viscosity measure-
ments, the steady shear viscosity as a function of the shear rate is estimated
from dynamic data via Cox-Merz relation [19]. According to this empirical
rule, the modulus of the complex viscosity can be obtained from oscillatory
properties in the low frequency and low shear rate regime as the ratio be-
tween the loss modulus and the frequency.

1m0 = 1" (@) = \/n2(w) + 7"2(w) (2.18)

where 77 represents the steady-state shear viscosity, #* is the complex viscos-
ity, 7’ stands for dynamic viscosity and 7" refers to the elastic contribution.
The rheometer used is DMA (cone-plate rheometer).

To relate the geometry of the mixing equipment to the material viscosity, the
mixing process is simulated using the commercial solver ANSYS PolyFlow.
The geometry of the Brabender mixer is accurately reproduced using the
CAD software available in the ANSYS WorkBench, namely the Design Mod-
eler application. The simulation set up is specified next. The geometry is
2D and is discretized using mixed quadrilateral and triangular elements for
a total number of 13,500 elements. The physical mixer, the geometry and the
computational mesh are depicted in Figure 2.25.

Since it is a rotating case, mesh superposition technique (MST) is adopted.
The surfaces are meshed separately and the rotor mesh is superimposed to
the stator mesh. The cams of the mixer rotate counterclockwise with angular
velocity ratio 2/3. The angular velocities of the cams are 90 rpm and 60 rpm
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FIGURE 2.25: (a) Brabender mixer; (b) CAD geometry; (c) mesh
superposition.

for the left and right cam respectively. The flow is assumed to be fully de-
veloped in time; therefore a complete (periodic) rotation of the whole mixer
is simulated and then the flow fields are reused for successive rotations. The
simulation time is 2 s, which corresponds to 3 rotations of the left cam and 2
of the right one. The mixer is fully filled and the fluid sticks to the walls and
to the surfaces of the rotors. Isothermal conditions are imposed.

The experimental data is introduced into the PolyMat module of the
PolyFlow software, performing the automatic fitting. The resulting coeffi-
cients found for the Bird-Carreau model in this case are: 77, = 6500 Pas, g

= 80 Pas, A = 10 Pas and n = 0.55 Pas. The comparison of experimental data
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and the Bird-Carreau model is illustrated in Figure 2.26.
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FIGURE 2.26: Experimental data from DMA vs Bird-Carreau
model.

The simulation, carried out using the same operational parameters as the ex-
periment and the fitted material model, provides the numerically-calculated
torque. In order to validate the results of the simulation, the numerically
predicted torque on the rotors is compared with the experimental one in the
same conditions. Both cases are reported in Figure 2.27.
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FIGURE 2.27: Torque (a) numerically computed from mixing
simulation; (b) experimental vs total computed torque’s mean.

In Figure 2.27 (a) the torque corresponding to left and right rotors are shown;
the total torque is given by the sum of the torque on the two rotors. In Fig-
ure 2.27 (b), the initial transitory phase of experimental torque is due to the
inhomogeneous dispersion of the wood fibers at the beginning of the test.
After 3 minutes of mixing, the torque reaches a steady value, which corre-
sponds to well-mixed conditions. This value (around 12 Nm) matches the

total numerically-computed torque; therefore the experimental data is very
well recovered.
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The high computational cost of the CFD simulation hinders the applicabil-
ity of this approach as on-process predictive model. The implementation of
this method in an industrial environment could only be possible via reduced
order modelling. To achieve that, a full cycle should be simulated for differ-
ent viscosity parameters and calculate the corresponding torques. A ROM
that can accurately correlate the mixer torque and the viscosity represents
an efficient tool for on-process in-line prediction of the processed material
properties.

2.3.3 Conclusions

In the previous sections, three cases of material processing, one extrusion and
two compoundings, have been presented. They all have in common that the
applied methodologies seek to obtain the rheological characterization of the
processed material, through the determination of the corresponding param-
eters of the selected model. However, these methologies are adapted to each
case depending of individual assesement. The main differences are summa-
rized in Table 2.9.

TABLE 2.9: Description of cases of material processing

Case Modelling approach Process location Onprocess variables
(A) Ml.ﬂtl-SI.It Analytic flow Online Rubber flow
extrusion die
(B) Brabender mixer CFD Offline Torque
(C) Banbury mixer Integral Inline Batch time-series

Cases A and C are onprocess, which presents two main advantages: as the
characterization is performed in real-time, the measurements are taken un-
der operating conditions and avoids material waste if the product is off-
specifications. In addition, case C is located inline; it means that is takes place
simultaneously to the process, the production line does not need to stop, no
human intervention is required and the bypassed material of an online mea-

surement is saved.

Among the three cases, case C would represent the simplest for deployment,
since there is no sensor system which is commonly found in any industrial
environment. However, since the characterization relies completely on pro-

cess data, there is a biggest risk that the recorded data is distorted by noise.
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Chapter 3

Strategies for building surrogate

models

Reduced order models are the mathematical tool that allows to connect
computationally-expensive numerical simulations with the Digital Twin to
generate efficient and accurate predictive applications to improve industrial
processes. The most direct and simple approach is to use a set of computer
simulations to construct a ROM. However, ROMs can also be used to replace
a part or parts of a numerical simulation to reduce the computational cost or

to simplify that section of the high-fidelity model.

In any of those circumstances, before calculating a ROM is necessary to ac-
quire the data to feed the model by performing a design of experiment. If
the ROM is constructed from expensive numerical simulations, an efficient
sampling strategy is essential for the optimal usage of the computational re-

sources.

Additionaly, in complex physical systems diverse mechanisms can coexist
and the consequence is that the behaviour of the system can change very
rapidly. In those situations a single ROM can fail to capture all the relevant

dynamics.

In this section these problems are tackled. First, a ROM implementation in
a CFD code is developed and tested for introducing equations of state in
transcritical flow simulation. Next, a method to perform different ROMs in
restricted subdomains of the same system to increase the global accuracy of
complex cases is presented. Finally, an efficient sequential design of experi-

ments is proposed and tested.

In this chapter, the computational tools are developed using only TWINKLE
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library [137]. TWINKLE performs model reduction through Galerkin projec-
tion. Its main advantage is that it is focused in efficient ready-to-use reduced
order model calculation and evaluation, and data analysis. In addition, a sig-
nificant advantage of this library is that the results of the ROM can be com-
pressed into a single text file, which facilitates its implementation in different

codes.

3.1 ROMs in CFD code

The implementation of ROMs in CFD calculations to model a part or a sub-
component of the system is useful in different situations, besides the saving
of computational resources. If the theoretical base of a concrete phenomena
is strongly based on hypothesis, it can be advantageous to use experimental
values to construct a ROM that replaces the analytical approach. Another ex-
ample is when the differences of the scale of the mechanisms are very large:
a ROM can represent microscale effects on a macroscale level. ROMs can also
be very beneficial in multiphysics simulation; for instance, a computer model
with fluid-structure interactions are usually highly demanding but one of the
components might be replaced by a ROM that represents its behaviour.

In the first part of this section, the determination of thermodynamic prop-
erties in a commercial CFD sofware via TWINKLE is described. To achieve
that, several ROMs are calculated for the presented working cases of pure
fluids and mixtures and an interface to introduce TWINKLE library as a user-
defined function in the CFD software is developed. As a result, a more robust
and transferable implementation of the complex equations of state is accom-
plished. This work was previously published [2], but the ROM interface has
not been released at the present time. Next, a TWINKLE implementations in
a open-source code is discussed.

Because of the interchangeability capabilities of the TWINKLE library, both
the commercial and the opern-source codes that link the ROM file to the CFD
software can be adapted to any other simulation. To achieve that, it is only
necessary to replace the name of the ROM file and the number of input di-
mensions to fit the expected dimensions in the computer simulation.
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3.1.1 EOS in Ansys Fluent

Equations of state (EOS) play a very important role in chemical engineer-
ing technology since thermodynamic fluid properties with low uncertainties
are needed for a variety of industrial and scientific applications [114]. In the
last twenty years, we have seen the integration of relatively complex EOS in
commercial, open-source and in-house computational fluid dynamics (CFD)
codes for a variety of applications [90, 14, 111]. This is an important tech-
nological challenge in the modelling and simulation of transcritical flows,
where the use of equations of state is mandatory due to the enormous varia-

tion of thermodynamic properties when the Widom line is crossed [7].

3.1.1.1 Strategies for coupling EOS and CFD codes

A key aspect of the combination of EOS models and CFD codes is the com-
putational implementation of thermodynamic properties calculations to be
used by the CFD code. The traditional way is to use an ad hoc implementa-
tion of such EOS algorithms for computing density, heat capacity, enthalpy,
etc. which is tested versus other already available implementation. Very
often, the programming language employed is different in both implemen-
tations. Typically, very high-level programming languages are used in an
early stage of research of a particular problem -prior to the set-up of the CFD
problem- like MATLAB, Python, Visual Basic or Process Simulators like AS-
PEN PLUS or HYSYS. Normally, in this stage only global mass and energy
balances are needed.

When micro-scale information is demanded, a CFD simulation needs to be
performed and such high-level implementation needs to be translated to C
or C++ code, which are normally the languages used for computing in CFD.
This is not a trivial task, and needs to be done carefully because of the ap-

pearance of numerical problems and other issues is often unavoidable.

The EOS implementation for thermodynamic properties calculations in a
CFD code needs to be robust since every function coded will be required
to be called millions of times during a typical calculation. A single failure in
a single function can cause the premature end of the CFD simulation with the
additional loss of data. Besides, some EOS models are notoriously difficult
to implement, such as multiparameter EOS [9] and associating fluid theory
EOS [120]. In those cases, it is sometimes cumbersome to write robust, ac-

curate and efficient density computation routines due to the non-linearity of
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the problem [8]. Because of that, many researchers advocate the use of cu-
bic EOS, which are easy to work with and a cover very important range of
applications [123]. Some open-source and commercial CFD codes have some
EOS routines already implemented, such as OpenFOAM [127] and ANSYS
Fluent, which has a bridge to connect with the REFPROP library [69].

Existing research recognises the importance of this problem. For the analysis
of supercritical mixing layers, Bellan’s group wrote some of the first codes in-
tegrating EOS and CFD [90, 85, 10]. In those works, the Peng-Robinson EOS
[95] with van der Waals mixing rules is implemented in a FORTRAN Direct
Numerical Simulation CFD code. The problem under consideration was the
binary mixing of nitrogen and heptane, considering heptane is a surrogate
of rocket fuel. Later, Meng and Yang developed a preconditioning scheme
for the same problem based on partial mass properties and applied it with
the SRK EOS [83]. The same authors [82] studied liquid oxygen injection in
supercritical hydrogen streams also using a direct simulation with that pre-

conditioning scheme.

In the chemical engineering community, many authors have addressed the
problem of implementing EOS and CFD using different approaches. Most
of the papers devoted to this issue develop an ad hoc implementation of the
EOS. For instance, Sierra-Pallares et al. implemented the Peng-Robinson EOS
with different mixing rules for the computational study of different applica-
tions of high—pressure technology as hydrothermal flames [110], supercriti-
cal antisolvent precipitation [109, 107], nanoparticle synthesis [111, 112] and
hydrothermal drilling [108]. In all of the above, ANSYS Fluent software was
used, and the EOS was implemented through User Defined Functions (UDF).
Raghavan and Ghoniem used the Peng-Robinson EOS along with the Predic-
tive Peng-Robinson 78 (PPR78) approach [52] to perform a direct numerical
simulation of water — decane mixing at high-pressure with OpenFOAM soft-
ware [99].

Other authors have opted for the implementation of wrappers of existing
libraries. Vaquerizo and Cocero [124] developed a software bridge to con-
nect the ASPEN PLUS thermodynamic property engine with ANSYS Fluent.
Both codes were linked through a complex routine involving Visual Basic,
MATLAB and C languages, allowing the complete ASPEN PLUS engine to
be used by Fluent. In that paper, the IAPWS [126] and Peng-Robinson EOS
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were shown as test cases. Unfortunately, such implementation is not open-
source and depends mainly on commercial software. Additionally, the au-
thors do not specify if it is possible its use in a parallel computation. Very
recently, Fadiga et al. [34] have developed CoolFOAM, which is a wrapper
of CoolProp library for OpenFOAM for compressible fluid flow simulation
of single component flows.

Other works deal with the problem in a completely different way, approach-
ing the EOS with a reduced order model (ROM). In this methodology, the
different thermodynamic properties to be included in the CFD calculation
are pre-computed using available software(commercial, open source or in-
house codes) and then approximated by a reduced-order model, which is
capable of reproducing the data accurately and fast. Several techniques are
available, ranging from the use of deep neural networks to high order poly-
nomial functions. Traxinger and Pfitzner used the Peng-Robinson EOS to
train a deep neural network ROM able to reproduce with high accuracy den-
sity, enthalpy and heat capacity of nitrogen at high-pressure for a range of
pressure and temperature [41] ideal for its use in a simulation of transcritical
flow. Cardoso et al. [18] used a polynomial ROM to replicate the results of
Sierra-Pallares et al [109] study of supercritical antisolvent precipitation. In
this case, density data for the mixture was fitted using polynomials in the
range of temperature and pressure for the problem under study.

Thus, ROM can be considered a data-driven approach to the problem of
thermodynamic properties calculations. The ROM methodology is promis-
ing since it avoids the use of an ad hoc implementation of the EOS in the
CFD code, allows for a direct density computation (non-iterative) and the
ROM can be generated with state-of-the-art thermodynamics software, with-
out further modification. In addition, the implementation in the CFD code
can be unique for different EOS models and very often be much faster than
the original EOS code. However, to the authors” knowledge, only the above-
referenced papers deal with this problem and for very concrete cases. Thus,
the specific objective of this paper is to present a novel methodology for ro-
bust, accurate and efficient EOS implementation in CFD codes using ROM
for high-pressure, multicomponent transcritical flows. Our idea is based on
the use of tensorial networks to approach the EOS data, which is generated
using available libraries and later implemented in a CFD code using a uni-
versal wrapper. Several strategies can be found when facing tensor decom-

position; among them, the most widely applied are Tucker Decomposition
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and Canonical Polyadic Decomposition. Both methods are non-intrusive, it
means, they are performed on data and the system’s equations are not af-
fected [1, 22]. The TWINKLE library used in this work falls into the second

category.

3.1.1.2 Tensor decomposition as reduced order model

As stated in the previous section, TWINKLE library is employed for ROM
calculation. Since it is a non-intrusive approach, a design of experiments

(DOE) must be previously performed.

Universal ROM file to be
ROM linked to CFD or process
simulator

TWINKLE
library

Density CP - | Property X I

IH

Training data: Equations of state

FIGURE 3.1: TWINKLE library to computer simulation

The corresponding EOS is calculated for an interval of pressure and temper-
ature according to the operating conditions defined in the next section if it is
a pure fluid case; and component fraction or fractions for multi-component
examples. Once the data is obtained, the computational parameters and dis-
cretization net is set and the reduced order model is computed using TWIN-
KLE library. The outcome is a single file containing the ROM’s results (terms,
discretization net, shape functions and weighting coefficients) in a simple
format, which allows for universally plugging to any CFD or simulation soft-

ware (see Figure 3.1).

For each case, the dataset is designed as a full factorial using the same num-
ber of levels for each input variable, and evaluated for each output variable.
Data on which the decomposition is to be performed is calculated using the
Open Source CoolProp library [9] and an in-house thermodynamic code. The
generation of thermodynamic data is very straightforward and fast using a
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standard workstation, even for a large number of components. Regarding
ROM calculation, the computational parameters remain the same for all case
studies. Global and term tolerances are set to 0.001 and the maximum num-
ber of terms in which decompose the data is 5; the rest are left to default
values. On the other hand, the discretization net is specific to each case: the
simplest option is to set a uniform net of equally spaced points. To balance
ROM’s efficiency and precision, it is important not to exceed the minimum

number of discretization points that provides a model of sufficient accuracy.

This strategy works well in most cases. However, even if decreasing the step
size of the uniform discretization net it does not reach the required precision,
it is necessary to adapt the discretization net to the manifold. The subspaces
where the model fails are identified and the discretization net is refined on
those. For instance, in the cases under study, they correspond to intervals
close to critical temperatures and pressures.

3.1.1.3 Implementation in a commercial CFD solver

The calculation of thermodynamic properties in a CFD simulation is carried
out because of the need of certain properties when computing with the con-
servation equations. The energy equation can be formulated in a variety of
forms. In this paper we use the ANSYS Fluent © 2019R3 real-gas implemen-
tation, that make use of the energy equation based on enthalpy. Following
Bird et al [11], the energy equation for multicomponent systems can be writ-
ten as follows:

DH _ Dp
P =—(Voa) = (t: Vvt o) 3.1)

where

(3.2)

i‘m

N
q=—kVT+ Z

excluding Soret and Dufour effects. In the above equations, p is the fluid
density, H is the enthaply, v stands for the velocity vector , q for the heat flux
vector, T is the viscous stress tensor, H is enthaly per unit mass or partial
molar quantity, k is the fluid thermal conductivity and j, is the mass flux and
M, molecular weight of of component a , respectively.
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Enthalpy and temperature are related by the constant pressure heat capacity

definition,

oH

a—T)p (3.3)

Thus, expressions for density, enthalpy, heat capacity and partial molar en-
thalpy are on demand. The last term in Eq. 3.2 is zero for single-component
flows and often neglected in multicomponent flows computation. In addi-

tion, derivatives of density and enthalpy are also necessary:

dp op oH
(a_T)P,yi/ (%)T,}/i/ (g)T,yi (3.4)

Other quantities are needed only in a post-processing step, such as speed
of sound and entropy. The implementation of real-gas thermodynamics in
ANSYS Fluent is carried out using the template shown in Figure 3.2. It is
worth noting here that transport properties are also included in the template,
and need to be properly computed.

UDF_EXPORT RGAS_ Functions RealGasFunctionList =

{
ANYNAME Setup, /* Setup initialize */
ANYNAME density, /* density */
ANYNAME enthalpy, /* sensible enthalpy */
ANYNAME entropy, /* entropy */
ANYNAME specific heat, /* specific heat */
ANYNAME mw, /* molecular weight */
ANYNAME speed of sound, /* speed_of sound */
ANYNAME viscosity, /* viscosity */
ANYNAME thermal conductivity, /* thermal conductivity */
ANYNAME rho t, /* drho/dT |const p */
ANYNAME rho p, /* drho/dp |const T */
ANYNAME enthalpy t, /* dh/dT |const p */
ANYNAME enthalpy p /* dh/dp |const T */
ANYNAME enthalpy prime /* enthalpy */
bi

FIGURE 3.2: Template for coding real-gas thermodynamics in
ANSYS Fluent

3.1.1.4 Test cases

To show the viability of the method, we have extracted from literature differ-
ent single-phase flows of different substances (single-component and multi-
component) as shown in Table 1. All of the cases under study correspond to

trans-critical or supercritical flows, where the use of an EOS is mandatory.
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The maximum property variation is often found close to the critical point,

thus providing a good stress test to the methodology proposed.

Nitrogen, heptane and water (cases A, B and C) are selected to test the capa-
bility of the method to deal with single-component flows of different molec-
ular complexity. Nitrogen is a non-associating fluid with relatively smooth
property variation. On the other hand, water is a self-associating fluid with
an enormous property variation, and heptane is considered to have a com-
plexity between both nitrogen and water. On the side of mixtures, nitrogen
+ heptane is expected to behave smoothly, but CO; pairs show a much more

nonlinear behavior.

TABLE 3.1: Test cases studied in this work

Case Operating Inlet 1 Inlet 2 Reference
pressure (bar) Fluid T(K) Fluid T(K)
A 40 N2 105 N2 300 [91]
B 60 Heptane 720 Heptane 300 [50]
C 250 Water 723 Water 298 [108]
D 60 N2 1000 Heptane 600 [90]
E 100 CcO2 308 Acetone 308
[28]
F 200 CO2 308 Ethanol 308
Acetone
+
G 120 CcO2 308 Ethanol 308
(50/50)

Walls

Mass flow
inlets:

Inlet 2 — Mass flow
Inlet 1 e [ S outlet

FIGURE 3.3: The computational domain used in this work for
simulating the test cases
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A sketch of the computational domain and boundary conditions used for
simulation is depicted in Figure 3.3. The computational domain used in this
work for simulating the test cases. An axis-symmetric domain is employed
to ensure fast computation. Mesh is refined close to the mixing point if both
inlets 1 and 2.

The calculation of thermodynamic properties using reduced order models
considers a different approach depending on the number of components of
the test case. For single-component flows, the real gas functions computed
via ROM are density, enthalpy, entropy, specific heat, speed of sound, viscos-
ity, thermal conductivity and derivatives of density and enthalpy. In other
words, all the quantities listed in the implementation of real-gas thermody-
namics shown in Figure 3.2, except molecular weight. For mixtures, only
density and enthalpy are modeled using TWINKLE and the heat capacity is
obtained through numerical derivation.

TABLE 3.2: Test cases: Training data, discretization type and
number of points.

Case Fluid (s) Training data Discretization Points
A N2 CoolProp Uniform 200
Multi-parameter .

B Heptane EOS [6] Uniform 50
P: 39

C Water Adapted T 41

D N2+ Heptane Peng-Robinson EOS Uniform 200

with van der Waals
E  CO2 + Acetone mixing rules Uniform 200
(BIP =0) [14]
F  CO2 + Ethanol Uniform 200
C CO2 + Ethanol Uniform 50
+ Acetone

A crucial aspect of ROM set-up is the discretization net, especially when vari-
ables present strong non-linearities within the defined space. A too coarse
discretization will not be able to properly gather these features and the model
would reproduce the function with poor precision. On the contrary, an ex-
cessively refined net slows both ROM calculation and evaluation, which is
disadvantageous in terms of efficiency. For each test case, different sized
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uniform nets are set (see Table 3.2). As general procedure, a very coarse dis-
cretization is initially designed and tested. Then, the number of discretiza-
tion points is progressively increased until the corresponding ROM results
are accurate enough.

Obviously, this threshold precision is user-defined. For single-component
test cases, it is considered that uniform 50-points discretization net provided
a high precision ROM for heptane (B), but 200 points are required to reach
a similar accuracy in the nitrogen case (A). However, regarding water, even
an extremely refined uniform net could not reproduce the sudden property
changes around pseudo-boiling temperature and an alternative strategy is
adopted.

9e-+04
Be+04
Te+04
Be-+04
Se-+04

4e+04

Pressure [Pa]
Heat capacity [J/kg K]

3e+04

2e+04

le+04

Temperature [K] Temperature [K]

(a) (b)
FIGURE 3.4: Water discretization net: (a) exact of 50 points and
(b) and adapted

As introduced in the previous section, it consists on increasing the density
of discretization points within the intervals of greater variations to better
capture the associated non-linearity. As consequence, an non-uniform dis-
cretization net refined on those subspaces is obtained, an approach denomi-
nated adapted discretization (see Appendix A). A comparison between uni-
form and adapted discretization net for water heat capacity is illustrated in
Figure 3.4.

Referring to mixtures, it has to be considered that the number of dimensions
increases by one, including one component fraction (cases D, E, F) in the
ROM; or by two, fractions of two components (case G). Since the case com-
plexity increases exponentially with dimensionality, to balance precision and

efficiency a lower number of discretization points is preferred in those cases.
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3.1.1.5 ROM prediction of thermodynamic properties

ROM calculation is performed for several thermodynamic properties on data
acquired through multi-parameter equations based on Helmholtz energy
function (HEOS).To assess the prediction accuracy, Mean Absolute Percent-
age Error (MAPE) is computed between EOS calculated and ROM predicted
values.

Selected properties (density, heat-capacity and speed of sound) in single-
component test cases are calculated suing HEOS data as training set. The
results are summarized in Figure 3.5 (a); while Figure 3.5 (b) shows of all

ROM-calculated functions in multi component examples (density and en-
thalpy).

020 5

A N2 Hl D: N:+Heptane
I B: Heptane Il E: CO:2+Acetone
o1 | HEE C: water *] = F: coz+Ethanol

Il G: CO:+Acetone+Ethanol

MAPE [%]
o
s

=
o
o

a0 0
Density [kg/m?3] Heat capacity [J/kg K] Speed of sound [m/s] Density [kg/m?] Enthalpy [J/kal
(a) (b)

FIGURE 3.5: Comparison of test data and ROM predictions for
density and heat capacity of water for P=250 bar.

In average, heptane presents the best results, even though the discretization
net is coarse. Nitrogen is considered to be the least complex and the dis-
cretization net is the most refined, but heat capacity error is higher because

the operating pressure in this example is closer to nitrogen’s critical pressure.

Covering all variables, the worst scores belong to water, whose modeling rep-
resents a challenge due to its characteristics, as described in Test cases. How-
ever, all MAPE are below 0.2%. Therefore, in general for single-components
substances ROM’s prediction accuracy shows an almost perfect fitting. More-
over, across the different thermodynamic properties and single-component
test cases this overall trend can also be observed.

In Figure 3.5 (b), on the side of multi-component cases, the discretization
net had to be designed using few discretization points to avoid incurring a

high computational cost when calculating and evaluating the corresponding
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ROM. The analyzed errors are larger than in single-component cases; never-
theless, they remain under 5%. It is remarkable that the most complex case,
case (G), which consists of three components, shows an excellent accuracy.
This is due to the fact that an increased number of components might act as
a smoother of thermodynamic functions.

A direct comparison between the test data and the predicted data for water
density and heat capacity for constant pressure P=250 bar and a temperature
interval of 500 to 800 K is depicted in Figure 3.6. In each column the ROM
is calculated from the same data generated using HEOS but different dis-
cretization nets: uniform (exact) of 200 points and adapted. The coefficient
of determination (R?) values are also shown along with each model.
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FIGURE 3.6: Comparison of test data and ROM predictions for
density and heat capacity of water for P=250 bar.

The density is accurately predicted in all three cases, even around the se-
vere drop, with a R? of 1.0. Regarding the heat capacity, it presents a sharp
peak at pseudo-boiling temperature that the model built using a uniform dis-
cretization net, even a fine one, fails to predict. This is the reason why an al-
ternative net that could include this characteristic feature is developed. The
improvement is significant when both net approaches are compared, since
the adapted discretization score is almost perfect.
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Designing an adapted discretization requires a comprehensive manifold ex-
ploration; therefore, it would not a suitable option to apply by default. How-
ever, the resulting model benefits from higher precision, simplicity and ef-
ticiency, which overcomes the drawbacks in cases as the hereby presented

water heat-capacity modelling.

3.1.1.6 CFD simulation of flows with reduced order models for thermo-
dynamic properties
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FIGURE 3.7: Comparison of contours for water (Case C); (a)

Density, (b) Temperature and (c) Heat capacity. Half - supe-

rior image is the result with the full EOS implementation (REF-

PROP in this case) and half-inferior is the result obtained with
the ROM
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Once the ROM is properly trained and its accuracy is evaluated, the ROM
model is implemented in the commercial CFD solver ANSYS Fluent 19R3
using the template provided in Figure 3.2. In this section, we compare the
results obtained for the most representative flows obtained. Regarding the
pure component flows, the most interesting to check is water, due to the com-

plexities found in its fitting and explained above.

Figure 3.7 shows the results for a simulation of hot water injection into a
subcritical co-flow, similar to those found in [108]. Under these conditions,
the jet experiments a massive decrease in temperature, with an enormous
gradient and a very steep change in heat capacity. As shown by the figure, the
ROM is able to predict extremely well every contour of density, temperature

and heat capacity in terms of location and value.

This is better visualized in Figure 3.8, where MAPE in different quantities is
represented for the whole domain. Even in this very complex scenario, the
deviation is quite low in temperature (less than 1%) which correspond to the
peak in heat capacity found at the operating pressure of the simulation.

For the case of multi-component flows, contours of injection of carbon diox-
ide in a co-flow of ethanol (Case F) are shown in Figure 3.9. Again, the com-
parison is very satisfactory, and basically the output of both simulations is
identical. It is worth to remark here this is a very complex case, in the same
range of complexity as water even, due to the extreme non-linear behaviour
of the mixture. Here, both fluids are injected at the same temperature which
is 313 K, but due to the enormous impact of enthalpy of mixing areas with a
heavy cooling and a heavy heating are found in the computational domain.
This greatly affects the density distribution, which is correctly predicted by
the ROM.

Figure 3.10 shows the MAPE between the EOS and the ROM in mass fraction
(a), density (b) and temperature (c). It is clear the ROM is very accurate
and almost identical to the result the EOS is giving. Maximum deviation is
below 1% for all the quantities of interest. This is an important result, since
the coding necessary to use one equation of state or another is always the
same. The pairs analysed in Cases E, F and G are representative of the fluids
under consideration in the supercritical anti-solvent (SAS) process. With this
methodology, it is very easy to tackle a CFD simulation with a complex EOS
such as SAFT, PC-SAFT and others with the same codebase, changing only
the training data, and obtaining extremely accurate results without worrying

about numerical issues. The implementation is very stable, fast and accurate.
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FIGURE 3.8: Mean absolute percentage error (MAPE) between
EOS and ROM for case C. (a) MAPE in Density, (b) MAPE in
Temperature, (c) MAPE in Heat Capacity

3.1.1.7 Conclusions

It is possible to obtain a robust, fast and accurate ROM of thermodynamic
models based on equations of state of arbitrary complexity via the use of a
Canonical Polyadic Decomposition based on a Galerkin projection, with a
convenient definition of the thermodynamic intervals and training data.

The ROM implementation of thermodynamic properties solves the issue of
finding the density from the EOS in each iteration, making a linearization of
the non-linear problem in an alternative and extremely accurate way, provid-
ing MAPE below 1% for pure fluids and 5% for the mixtures under analysis.
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superior image is the result with the full EOS implementation
(Peng-Robinson equation with van der Waals mixing rules) and
half-inferior is the result obtained with the ROM

When introduced in a commercial CFD code such ANSYS Fluent, ROM inter-
face is satisfactory and universal, making possible the use of different equa-
tions of state in different problems with very small changes in the original
codebase.Also, it is possible to scale-up the number of components or con-
ditions just changing the training data. This research opens the door to the
use of very complex equations of state very easily and efficiently without the
need of complete programming of an ad hoc interface for each equation of
state.
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FIGURE 3.10: Mean absolute percentage error (MAPE) between
EOS and ROM for case F. (a) MAPE in mass fraction of CO2, (b)
MAPE in Density, (c) MAPE in Temperature.
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3.1.2 ROM implementation in OpenFOAM

An OpenFOAM [51] implementation of the TWINKLE library has been also
recently developed [36]. The case consists of the simulation of a rubber in-
jection process on a mould with micro-textured walls for industrial seal pro-

duction.

To include the physical texture, which are dimples of 100 y m of diameter and
30 u m of height in the computational mesh of the seal model would incur
unaffordable computational costs. Hence, a set of microscale CFD simula-
tions of the flow around the dimples are performed under different operating
conditions.

From this study, a ROM is constructed that can calculate the equivalent shear
stress of a textured wall as a function of the flow velocity, the distance from
the wall and the temperature. This ROM is introduced into the macroscale
seal model to impose the equivalent wall shear stress that reproduces the
effect of the textured mould surface in a flat wall.

While the authorship of the OpenFOAM library that implements the ROM in
the CFD simulation belongs to M. Garcia-Camprubi, this author contributed
to analysing the data from the microscale simulations and calculating the best
ROM from them.
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3.2 ROMs for complex manifolds

When building the reduced-order modelling of physical systems, some char-
acteristics of the output manifold topology can prevent the model from
achieving high accuracy.

In this section, an unsupervised learning strategy to deal with this type of
manifolds unsupervisedly is provided. First, an introduction to the problem
is presented, as well as a description of the developed methodology. This
procedure is first demonstrated over a case study. Then, this novel method-
ology is applied to a test case. In both cases, the results are compared to the

supervised approach. Finally, the main conclusions are summarized.

3.2.1 Introduction

Tensor decomposition is a reduced-order modelling method that yields ex-
plainable models with tuneable accuracy in most cases. However, when the
output manifold presents certain particularities, such as discontinuities or
very steep gradients, this technique fails at reproducing the manifold topol-
ogy around it. These manifold characteristics usually correspond to a signif-

icant physical change in the system’s behaviour.
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FIGURE 3.11: Example of 3D manifold presenting discontinuity
and its model (a) Water density (b) Prediction of water density;
(c) mean squared error of water density ROM.

An example is depicted in Figure 3.11 (a), where water density is calculated
as a function of pressure and temperature. The response surface shows a
large discontinuity across a wide range of the input variables, separating
high and low-density values. In this case, the physical interpretation is that
this gap represents the gas-liquid phase change. A ROM built from this
database fails at predicting the output, mostly underpredicting the higher
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density values and overpredicting the lower ones (see 3.11 (b)). The largest
deviations, represented as the mean squared error (MSE) in Figure 3.11
(c), mainly trail the manifold discontinuity, proving to be the source of the
model’s lack of accuracy.

Other examples of manifolds where different dynamics of the system are rep-
resented simultaneously in the same output space would be the flow magni-
tudes under different sonic regimes (supersonic, subsonic); or the properties

or quality of a manufactured material under process malfunctions.

Reduced-order models aim at identifying and describing the main mecha-
nisms of a physical system. However, the behaviour of the system can differ
significantly depending on the subspace determined by the input variables,
and calculating a single ROM for an entire domain can fail at representing
the diversity of the system’s dynamics, as shown in the previous example.
Hence, it is required to develop a specific strategy to deal with manifolds

with complex characteristics

A valid strategy is to divide the manifold into two or more clusters to group
data whose underlying physics are similar and therefore calculate one ROM
for each group that fits each system’s response. This manifold division can
be performed in a supervised or unsupervised way, before reduced-order
modelling. The supervised separation is feasible when there is a clear under-
standing of the system’s behaviour and features, and the data can be classi-
fied accordingly.

On the other hand, the unsupervised division must be constructed on the
data itself, without a preliminary classification. For that purpose, applying a
clusterization method is a suitable approach. It allows identifying the princi-

pal mechanisms directly from data in an unsupervised way.

Clustering

FIGURE 3.12: Clustering as preprocessing for reduced-order
model calculation.
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This methodology has been successfully developed in several works [54, 4]
and applied to numerous fields, such as aerodynamics [115, 129], sensor
placement [55], elastic-viscoplastic material behaviour prediction [101] and
multiphasic flows [3]. It must be noted that most of them employ distance-

based "k-means" algorithm as clustering method.

However, for certain manifold cases, such as the ones presented along this
section, the data can be separated based on the knowledge of the physical
system but a clusterization method fails at automatically identifying these

groups in its primary representation.

The purpose of performing a dimensionality reduction step as preprocessing
is to project the current data to a more meaningful space in an unsupervised
way. Although a well-tuned clustering algorithm would probably be able to
group the data successfully, the advantage of performing a non-supervised

separation would be lost.

The novelty of this work is to perform a manifold learning technique over
the original data that projects it into a lower dimensionality where the data
groups are evident and therefore ready for unsupervised classification via

clustering.

Projection Clustering Reverse projection

FIGURE 3.13: Dimensionality reduction and clustering.

The workflow is illustrated in Figure 3.13. The data is represented as three-
dimensional for better visualization but this methodology can be applied to
any n-dimensional space. The data is projected to a lower dimension, where
the separation among groups is clear enough so the clusterization can cap-
ture it. Finally, the labelled data is depicted in its original representation.

The selected dimensionality reduction technique for this study is t-
distributed Stochastic Neighbor Embedding (t-SNE). This method performs
a nonlinear dimensionality reduction based on the probability distribution of
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the data points. It was originally developed as a visualization tool [79], but
its capabilities to infer the implicit structures of high dimensional datasets
have proved to be useful in assisting cluster analysis in different fields [70],
such as geology [6], [73], chemical physics [119] and genomics [64, 80].

Because t-SNE does not preserve distances, it is not appropriate to use a
distance-based clustering algorithm, such as k-means. Therefore DBSCAN,
which is density-based, is a more suitable choice. In addition, unlike k-
means, the number of clusters does not need to be specified in advance, so
DBSCAN is free to recognize as many clusters, and consequently system’s

dynamics, as it is required.

3.2.2 Case study: proof of concept

AsuaQ

FIGURE 3.14: Water density dataset as function of pressure and
temperature, colored by density.

In this section, a case study is presented so the strategies of complex mani-
fold modelling are illustrated. It consists of water density obtained from the

corresponding pressure and temperature.

The density data is generated using the Open Source CoolProp library [9],
which is based on Helmholtz energy formulations. The dataset is designed
as a full factorial of 100 levels. The temperature range is from 298 K to 800 K
and the pressure range goes from 1107 Pa to 3 - 107 Pa.
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As it can be observed in Figure 3.14, there is an abrupt change in density in
a wide range of temperature and pressure. This discontinuity stands for the
physical phase change between liquid and solid. It starts in the triple point,
where solid, liquid and gas phases coexist in thermodynamic equilibrium
(although the solid phase is not represented) and ends in the critical point,

above which only one phase exists.

In this example, the discontinuity stands for a simple and well-known phys-
ical phenomenon, but there are many cases where it is not easy to locate it
by associating it to the process under study, because it is more complex, or
several events are happening simultaneously, among other reasons. There-
fore, it is advisable to develop a methodology that can identify the manifold
complexities with little to no knowledge of the process.

In the following sections, two different strategies are applied to the water
density database to split it and obtain two models that can accurately repro-

duce the manifold represented in Figure 3.14.

3.2.21 Knowledge-based manifold division

Liquid phase
Vapour
Gaseous phase

Compressible liquid
Supercritical fluid

[ By] Ausuag
[gw By] Aysus g

(a) (b)

FIGURE 3.15: Water density (a) divided by phases; (b)
knowledge-based division.

When the manifold complexities correspond to simple, easy-identifiable phe-
nomena, it is possible to split the database according to the process knowl-
edge. In the current case, water density varies abruptly in the liquid-gas
phase change, so data can be divided considering the different thermody-

namic phases.
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Within the given temperature and pressure range, the five thermodynamic
phases can be found, as depicted in Figure 3.15 (a). The corresponding phys-
ical phase is also provided by the CoolProp library [9].

Because the discontinuity is placed in the limit of vapour and liquid phase,
it is not necessary to split the database into five sets but only two. The first
set consists of liquid phases, referred to as compressible liquid and liquid
phase; while the second one groups gas phases (vapour and gaseous phase)
and supercritical phase (see Figure 3.15 (b)). The supercritical phase could be
associated with any set because it is located beyond the discontinuity. How-
ever, it is decided to proceed with this classification to smooth the density

variation at high pressures.

By dividing the domain into two groups of training datasets of their corre-
sponding ROMs it is therefore implied that a previous step to calculate a
new sample, this point must be first classified. It means, for a given value of
temperature and pressure, it is sorted if it belongs to liquid phases (dataset
1) or gas and supercritical phases (dataset 2), and then calculate the density

accordingly.
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FIGURE 3.16: ROM results (a) single ROM on original dataset;
(b) ROM on phase-divided dataset.

Once the dataset is separated, each group is modelled using TWINKLE and
two ROMs are obtained. In both cases, TWINKLE parameters are set to five
terms and a uniform discretization of 20 points, while the term and global
tolerances remain at 0.001. It must be noted that a distinct and customized

configuration for each model could be required in more complex cases.

The results of calculating a single ROM over the complete dataset and two
ROMs on a phase-divided dataset are compared in Figure 3.16. A test set,
different to the training set used to feed the ROMs in each case, is predicted
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and the results of the real density values vs the ROM-calculated values are
plotted.

It can be observed that when trying to model the water density using only
one ROM (Figure 3.16 (a)) for higher values of density that belong to liquid
phase, part of them are underpredicted, being mistakingly associated with
gas density. On the other hand, for lower densities corresponding to the gas
phase, even close to zero, the model often predicts a larger density, such as
water-liquid density.

This is due to the difficulty of compressing the behaviour of the boundary of
the liquid-gas phase change using a single ROM. The ROM fitting that aims
at modelling that discontinuity becomes so ill that even negative values of
density are predicted.

However, using two ROMs individually trained with the phased-divided
datasets the results show a great improvement (Figure 3.16 (b)). The ROM
does not have to capture the liquid-gas limit because it has been already iden-
tified. The liquid-phase ROM (ROM 1) perfectly predicts the interval of the
highest water density, while the gas and supercritical phase ROM (ROM 2)
shows a great fitting with small disturbances that correspond to the super-
critical area close to the compressible liquid. The overall mean squared error
decreases by 98.85% compared to the single ROM approach.

It is proven in this section that dividing the manifold along the discontinu-
ity results in better modelling. In this case, the physical understanding of
the dataset guides the segregation. It is indubitable that grouping the data
according to their thermodynamic phase promotes the ROM performance,
avoiding the problem of modelling around a large discontinuity that leads to

unrealistic results.

3.2.2.2 Automatic manifold division

As shown in the previous section, it was demonstrated that by dividing the
manifold using our physical understanding of the data, the model’s perfor-
mance greatly increases. In that case, the knowledge of the system leads the
segregation. This section aims to find a method that can perform the same

separation automatically.

The proposed methodology consists of two steps. Firstly, a non-linear di-
mensionality reduction is applied to the dataset. The aim is that the data
will be separated by the complexities of the manifold when projected into a
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lower dimension. The selected algorithm is t-Distributed Stochastic Neigh-
bor Embedding (t-SNE). As with other manifold learning techniques, it aims
at finding non-linear structures in data from data itself but this one is espe-
cially suited to extract clustered groups of samples based on local structures.

Before the projection, all features are scaled.

Once the data is projected onto a lower dimension using t-SNE, it is required
to identify and classify the potential resulting groupings. Among the wide
variety of clustering methods, density-based spatial clustering (DBSCAN) is
the most suitable, because it is based on point packing and therefore can find
non-linear divided clusters. In addition, DBSCAN does not need to previ-

ously specify the number of clusters in the data.

Risusq

(a) (b)

FIGURE 3.17: From original dataset (a) to t-SNE 2D projection
(b)

The described procedure is applied to the water density database. The first
step is to scale all the features (pressure, temperature, density) to the same
range. Next, the three-dimensional scaled data is transformed into a two-
dimensional manifold through t-SNE. To do that, the TSNE function from the
Scikit-Learn library [94] is used. Two important parameters must be speci-
tied: the number of components and perplexity. The number of components
is the dimensionality of the output space, set to 2 in this case. The perplexity
refers to the number of close neighbours considered for each point; since it
is a relatively large dataset, this value is set to 50. The rest of the parameters

remain with the default values.

The result of applying t-SNE to the water density data is illustrated in Figure
3.17. The 3D dataset is projected onto 2D space and the algorithm effectively

interprets the discontinuity as a data division and expands it to effectively
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separate the data into two groups. One of the drawbacks of t-SNE is the high
computational cost; in this case, of only three dimensions, the computational

time is 43 s.
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FIGURE 3.18: From clustered 2D projection (a) to clustered 3D
original dataset (b).

In the next step, DBSCAN is performed using the homonymous algorithm
from Scikit-Learn library [94] to capture the resulting groups after the t-SNE
projection. In this case, although the number of clusters is not specified in
advance, the algorithm successfully identifies two separated clusters. To re-
construct the original space, each data point is classified and the labels are
assigned to the original data. The clustering and final result are depicted in
Figure 3.18.

If the clusters obtained from knowledge-guided division (Figure 3.15 (b)) and
automatic separation (Figure 3.18 (b)) are compared, it is observed that the
division is similar but not identical. Atlow pressures, the automatic method
places the limit in the liquid-gas phase change, therefore in agreement with
the phase division. However, at high pressures, on the knowledge-guided
method the boundary is set between the supercritical and the compressible
liquid phases, the automatic method places the limit at higher temperatures,

within the supercritical area.

Finally, TWINKLE is performed on the cluster-divided data using the same
configuration as in 3.2.2.1 Knowledge-based manifold division and two mod-

els are obtained as a result, one for each dataset.

A test set, different to the training set, is evaluated to compare the predictive
capabilities of the single ROM and the automatically-divided ROM’s. It must
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FIGURE 3.19: ROM results (a) single ROM on original dataset;
(b) ROM on automatically-divided dataset.

be noted that for each new sample to be predicted, it must be classified in one
of the datasets (1 or 2) in order to apply the correct ROM. In the knowledge-
based approach, it is as simple as finding which phase the new point belongs
to. Nevertheless, in this procedure, it is necessary to train a classification
algorithm over the labelled data that can assign the corresponding ROM to a

new sample.

The results of the test’s set prediction using a single ROM over the origi-
nal dataset and the automatically-divided ROM’s over the clustered data set
are depicted in Figure 3.19 (a) and (b) respectively. The automatic separa-
tion shows a close to perfect fitting between real data and predicted data.
The mean squared error decreases by 99.76%, slightly better than in the
knowledge-based approach.

It is concluded that an automatic separation can be successfully performed,
without any preliminar knowledge of the physics of the system, to obtain effi-
cient ROMs that are trained using each resulting clustered data set. The com-
putational cost of dividing the dataset in the automatic separation is larger
than the knowledge-based approach but the results are slightly more accu-

rate.

3.2.3 Test case

In this section, the aim is to model the specific heat capacity of water as a
function of pressure and temperature. Both knowledge-guided and auto-
matic approaches, as respectively described in the previous section, are ap-
plied and compared.
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FIGURE 3.20: Water specific-heat dataset as function of pres-
sure and temperature, colored by specific-heat.

The challenge of this case is that this manifold presents a steep peak that
corresponds to the critical point, as depicted in Figure 3.20. The dataset is
generated through the CoolProp library [9] and using the same specifications
as in the previous case study presented in 3.2.2 Case study: proof of concept;
it means, a full factorial of 100 levels of temperature in the range of 298 to 800

K and pressure range of 1 - 107 Pa to 3 - 107 Pa.
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FIGURE 3.21: (a) Water specific-heat phases (b) Knowledge-
based manifold division.

The water specific-heat phases are depicted in Figure 3.21 (a), where it is
shown that the critical point is located the intersection between the five
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phases. The dataset is divided into two groups according to the phase sep-
aration performed in the water density case: the first contains liquid (liquid
phase and compressible liquid) phases; the second covers vapour, gaseous
and supercritical areas, as shown in Figure 3.21 (b).
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FIGURE 3.22: Specific heat results of (a) single ROM on original
dataset; (b) ROM on phase-divided dataset.

Next, TWINKLE runs using the single original data set and the two
knowledge-guided datasets to obtain one general model and two phase-
divided models. In both cases, the dataset is divided: 80% is used as ROM
training data and the remaining 20% as test data. The model is calculated
using five terms and a uniform discretization of 20 points for each input vari-
able.

The results of evaluating the test set over the two obtained ROMs are very
similar; therefore this phase separation fails at improving the model’s accu-
racy. As observed in Figure 3.22, the higher values of the specific heat are
severely underpredicted in both cases. This means that the models are not
able to properly capture the large gradients surrounding the critical point.

It is observed in Fig 3.21 (b) that the manifold peak is mostly classified into
the second group. In the water density case, this classification was chosen
based on the fact that the manifold complexity was located in the liquid-gas
phase change. However, in this dataset, where the critical point affects all
phases, it could be advantageous to use another classification.

A different knowledge-based division is attempted, where the supercritical
phase is separated from its former group. Consequently, three different clus-
ters are obtained: liquid and compressible liquid (1); vapour and gas (2) and
supercritical phase (3).

The ROMs are calculated on the three clusters respectively using the same
specifications as in the previous case. The results of evaluating the separated
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FIGURE 3.23: (a) Phase-based division in three clusters (b)
ROM results.
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test set show a significant improvement compared to the two-group phase-
division and the global R? reaches 87%. Figure 3.23 illustrates the new phase-

guided division and the corresponding results.

Isolating the supercritical phase allows better modelling of that area, al-
though a relevant underprediction of the highest values of specific heat is
still observed in groups 2 and 3. Although the final results are moderately
accurate, it is obvious that strong supervision is required. For each case, it is
necessary to evaluate the manifold to identify their complexities and adapt

the knowledge-based division in consequence.

(b) (©)

FIGURE 3.24: (a) Water specific-heat data; (b) t-SNE projection;
(c) DBSCAN over t-SNE projection.

The automatic division method developed in Section 3.2.2.2 is also evalu-
ated using the water specific-heat dataset. The process is illustrated in Fig-
ure 3.24. The original 3D data (Figure 3.24 (a)) is projected to two dimensions
using t-SNE (Figure 3.24 (b)). The algorithm successfully finds the manifold
peak and aims at splitting the data following the highest specific-heat values.
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However, as pressure decreases, the data becomes more uniform. Therefore,
the projected data is not completely divided and DBSCAN fails at identifying
separated clusters (Figure 3.24 (c)).

(a) Iteration 1: t-SNE  (b) Iteration 1: DBSCAN

(c) Iteration 2: t-SNE  (d) Iteration 2: DBSCAN

f f

(e) Iteration 3: t-SNE  (f) Iteration 3: DBSCAN

FIGURE 3.25: Automatic division iterative process.

The result of applying the automatic division to the water specific-heat
dataset, consisting of a data projection using t-SNE and data grouping
through DBSCAN is promising but incomplete.

The next step is to perform the automatic division once again over the pro-
jected data. It means, t-SNE is applied to the outcome of the first run of
t-SNE, using the same parameters except for the output dimension, which is
kept to two. The purpose is to emphasize the separation that was observed
in the first projection until the DBSCAN clustering recognizes more than one

group of data.
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The iteration process is depicted in Figure 3.25. It is shown that the data is
progressively separated with each projection until the DBSCAN can differen-
tiate each group. Three iterations are required and three clusters are finally
classified.
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FIGURE 3.26: (a) Automatic division in three clusters (b) ROM
results.

The resulting clusters are identified in their original dimension in Figure 3.26
(a). Please note that while the automatic method on the water density case
performed a similar separation than the knowledge-guided division, in this
case, the highest values of specific heat are grouped. It means, the data sur-
rounding the critical point is set as a separated cluster, but it does not cor-
respond to the supercritical phase. However, except for cluster 3, the data
corresponding to clusters 1 and 2 seem to follow the phase-based separation
in two groups that was tested at the beginning of this section (see Figure 3.21

(b)).

The three automatically-divided datasets are used to train their respective
ROMs, and the results of the real and predicted data are depicted in Fig-
ure 3.26 (b). Compared to the results of the knowledge-guided separations,
where the highest values of the specific heat were severely underpredicted,
this approach ensures better modelling of the manifold peak and the accu-
racy prediction reaches 99.5%.

3.2.4 Conclusions

In this section, a methodology to perform an automatic separation of man-
ifolds with complexities is developed and tested. This procedure enhances
the efficiency of tensor decomposition as a reduced order model when the
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divided groups are trained individually vs training a single model using the
original dataset. This approach outperforms supervised knowledge-based

clustering. In addition, it can be applied to any n-dimensional space.

As the main disadvantage, it is required that the number of samples is sig-
nificant since in a manifold of poor density a division could be mistakenly

assigned to an empty area instead of manifold complexity.
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3.3 Novel sequential DoE for ROM building

Reduced-order modelling aims at approximating the response of complex
physical systems at minimum computational cost, avoiding running expen-
sive high-fidelity simulations. Nevertheless, they usually require a compre-
hensive sampling to yield significant accuracy. In this section, a novel sam-
pling algorithm is proposed whose purpose is to achieve the best model per-
formance using the minimum number of samples. The method is described
and applied to two test cases. The results are compared to two classical tech-
niques of designs of experiments.

3.3.1 Design of experiments in computer simulation

The data to train a ROM with can be obtained from experiments or calculated
using analytical equations or computer simulations. Regardless of the source
of the data, a correct selection of the samples is essential to the success of the
resulting model.

For that reason, the first step to building a ROM is to perform a design of ex-
periments (DoE), which must guarantee a good training dataset in terms of
both quality and quantity. It implies that data amount is sufficient and that
samples are placed in such distribution that the model can appropriately cap-
ture the response of the system in detail. In this study, the term “experiment”
in the design of experiments refers to the execution of a computer simula-
tion model or analytical model. Therefore, unlike physical experimentation,

problems such as noise or bias do not need to be addressed.

The optimum size of the training dataset can not be determined beforehand
and it depends on other aspects, like data distribution and ROM configura-
tion parameters. Usually, the ROM’s performance will benefit from increas-
ing the amount of data until certain maximum accuracy for that given setting

is reached and more data will no longer improve it.

It is also impossible to estimate the best sampling distribution on a com-
pletely new case. That is why most classical DoE relies on the most intuitive
criteria, which is space-filling. Factorial designs (full or fractional) [31] and
central composite designs provide structured sampling distributions (grid
designs)[86]. However, the number of samples required to complete them
increases exponentially with the number of dimensions [23]. Thus random
designs, such as Latin Hypercube or Montecarlo samplings, have become in-
creasingly common. Latin Hypercube and Stratified Montecarlo designs are
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stratified random samplings, that ensures more even distribution and avoid

cluster generation compared to pure chaotic selections [38].

These sampling techniques are denoted as static, because they create the sam-
pling dataset at once before any function evaluation is performed. Then each
sample is calculated and from the set of input values and their response a
surrogate model is built, as depicted in Figure 3.27 (a). Thus, no information
about the output of the system contributes to determining the sample selec-
tion. Most static DoE’s aim at uniformly covering the input space, which is
known as space exploration. However, some methods are based on statisti-
cal criteria, usually for Gaussian process models, which allows a preliminary
estimation of the model parameters. Some examples are maximum entropy

designs or Mean Squared Prediction Error Designs [104, 38].

In the previous sections of the present chapter, it is assumed that the data
to feed the ROM is sufficient and easily available. However, when the input
data is generated through computer simulations, the amount of cases to run
is generally limited by the available resources. High-fidelity simulations that
aim at numerically replicating physical systems, usually involving several
phenomena, are computationally expensive. Despite recent advances in dig-
ital computing, these simulations might take days to complete, depending
on the complexity of the system. In this context, it is necessary to select a
DoE that provides the maximum information using the minimum number of

samples.

This goal is only achievable using a dynamic DoE that includes the response
of the system and evolves accordingly, as opposed to the static DoE’s de-
scribed above. This type of DoE begins with an initial set of samples that are
evaluated and used to train a surrogate model. If the model results do not
meet the stop criteria, the training dataset is updated with a new sample or
samples and the process is repeated (see Figure 3.27 (b)). This type of dy-
namic sample selection is known as adaptive DoE, sequential DoE or active

learning.

The new sample is determined based on the information generated in the
previous iterations. The increasing collection of function evaluations allows
placing sample points in complex regions, such as non-linear areas, steep

slopes or discontinuities, which is known as exploitation.
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FIGURE 3.27: (a Static DoE (b) Sequential DoE.

If the initial sampling dataset contains a large number of homogeneously-
distributed samples, the sequential DoE might rely only on exploitation cri-
teria [32] or exploration criteria, such Voroni-based or Delaunay-based se-
quential design [26]. However, most adaptive designs aim at balancing ex-
ploration and exploitation simultaneously.

Different strategies have been developed in the last few years to select the
next design point in sequential DoE. Crombecq et al. [25, 24] combined
Voroni tessellations and local linear approximations (LOLA) as exploration
and exploitation criteria respectively to create the LOLA-Voroni design of ex-
periments. Some examples of applications of the LOLA-Voroni algorithm are
found in the literature [30, 128].

Singh et al. [113] roposed a modification for adapting the ratio of exploration
and exploitation components. It consists in adding a tuning parameter that
weighs both functions according to three different balancing schemes.

Garud et al. [39] presented a smart sampling algorithm for unidimensional
functions based on optimizing a crowding distance metric with a departure
function. The first evaluates sample distribution while the second measures
the quality of the surrogate model. The same author improved this technique
by implementing Delaunay triangulation as an exploration method, allowing
to choose the most promising subregion based on the local quality of the
model [40].

Liu et al. [71] focused on developing an adaptive sampling for kriging by
equilibrating an exploration term, based on the prediction variance, and an
exploitation term, based on the maximum prediction error of the model,

through a balance factor. Kleijnen et al. [63] also use the variance of the
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predicted output of the kriging model calculated for several candidates, pre-
viously selected by a space-filling DoE.

The main drawback of these variance-based DoE’s is that they are model-
dependent. Thus, some works propose a similar approximation but replac-
ing the Kriging model variance estimation with the prediction variance cal-
culated using the cross-validation error. For instance, Eason et al. [32]
presented this approach along with an artificial neural network as surro-
gate model, while Wang et al. [133] combined LOO (leave-one-out) cross-
validation with Voroni diagrams as exploration criteria to create the Voroni-
CV sampling algorithm.

These are representative examples that summarize the main approximations
to exploration and exploitation criteria definition; however, extensive refer-
ences can be found in literature reviews [72, 23, 38].

In this work, a new approach for sequential sampling is presented. The ex-
ploitation criteria of the sequential DoE presented in this work is based on a
function that estimates the gradient around the sampled regions. A distance
function penalizes the gradient-based function to avoid local oversampling,

accounting for space exploration.

3.3.2 Methodology of novel sequential DoE

The sequential DoE presented in this work starts with an initial sample set
and increases progressively by adding a new sample in each iteration. The
new sample is selected by balancing the space-filling and the variations of
the response surface. Thus it is ensured that there are no empty areas in
the sampling domain and that enough information is provided where rapid
changes occur.

The workflow of the algorithm is represented in Figure 3.28. Next, each step
of the process is described in depth.

1. To begin with, the specifications of the dataset must be defined. In par-
ticular, the number of dimensions of the input space and the limits of
each dimensién. It must be reminded that the output is univariate and
that the accuracy of the ROM prediction is only guaranteed within the
domain bounds.

2. An initial sampling set must be generated. It must include the input
space boundaries, which corresponds to a 2-level full factorial, and at
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least one internal sample. Therefore, the minimum size of this sampling
set must be 2" + 1, being n the number of input dimensions. However,
an initial dataset of too few samples slows the search for the optimal
design points during the first iterations, since even the sequential DoE
has too little information to work with. A full factorial of 3 or 4 lev-
els is recommended to obtain a preliminary space exploration. On the
other hand, if the input space dimensionality is high, it is more feasi-
ble to combine a 2-level full factorial with a Latin Hypercube sampling
or any other design of experiments. In addition, an irregular sampling
distribution is advantageous for the sequential DoE performance dur-
ing the first iterations.

3. Once that the initial sampling set is defined, for each sample x; the cor-
responding real response of the output variable f(x;) is calculated. The
final training dataset (), is constituted by the initial set of samples and
their output.

4. A distance function F; over the dataset (), is computed to account for
the space exploration criteria. The distance among existing samples is
calculated based on the euclidean norm. Therefore, the value of this
function is maximum in the intermediate points among samples and
zero in the samples themselves. Thus, the DoE avoids placing a new

sample over an existing one.

5. A surrogate model Sy is calculated using the complete dataset (). Re-
garding the definition of the TWINKLE parameters, they can be mod-
ified for each case as long as they are consistent through all the DoE
iterations. The discretization net is designed through the adapted dis-
cretization method (see Appendix A).

6. The algorithm loops over all the internal sampling points of the training
dataset (). For each inner sample P;, a new dataset (); is created, where

sample P; is removed from ().

7. A new surrogate model S; is built using the reduced training dataset
;. The ROM configuration is the same as in Sy.

8. The objective function Z; is defined as the product of the distance func-
tion F; and the difference function |Sy — S;| among the two surrogate
models. This difference function evaluates the effect of placing a new

sample point in the area surrounding P;, representing sampling space
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10.

11.

12.

exploitation. By weighing it with the distance function, it is balanced
with the exploration criteria.

The objective function Z; is maximized to find the sample point x; that
best equilibrates exploration and exploitation as defined by this proce-
dure. Thus, if the difference function is greater than the distance func-
tion, it would correspond to a point close to P; but where the gradient
of the response surface is large, so it is advantageous to place a sample
to better model an area with rapid changes. Where the distance func-
tion is larger than the difference function, it indicates that there is an

extensive space fraction that is empty and it is convenient to fill it.

A sample candidate x; is determined under the premise of removing P;.
The process is repeated consecutively for all inner sample points, from
steps 6 to 10. For each iteration, a sample candidate x; is calculated. Fi-
nally, a list of sample candidates and their scores in the objective func-
tion Z;(x;) is obtained.

Through all sample candidates x;, the selected next sample point x4y
is the sample candidate x; whose score value in the objective function
Zi(x;)) is maximum. The output of this design point X, is calculated
and both the sample and its evaluation are added to the ROM training
dataset.

Finally, the stop criteria are checked. The user must specify these
stop criteria beforehand and adapt them according to the case circum-
stances. If the computational resources are limited, the DoE can stop
generating new points if a fixed number of new samples is reached. If
the model quality is essential, the DoE can stop if the ROM computed
using the current dataset (including the new sample point) accomplish
sufficient accuracy. If the stop criteria are not met, the last dataset (), is
updated adding the sample x,,,» and its output. The procedure is then
started over from step 4 with the new data set .
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FIGURE 3.28: Flow chart of sequential DoE algorithm.
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3.3.3 Test cases

The efficiency of the presented sequential design of experiments is evaluated
using two analytical test functions: Rosenbrock and Easom functions. The
performance of the obtained sampling dataset are compared to other two
sampling techniques: full factorial and Latin hypercube sampling.

3.3.3.1 Rosenbrock function

The Rosenbrock function is a popular test problem for optimization algo-
rithms. Although the function is defined for n dimensions, in this work the

two-dimensional form is used:

fx1,x2) = 100(x2 — x3)2 4 (1 — x1)? (3.5)

The domain range is set to [-5,5] for x; and x;. The Rosenbrock function is

represented in Figure 3.29.

(a) (b)

FIGURE 3.29: (a) Rosenbrock function (b) Rosenbrock function
contours.

The initial sampling set is generated using a Full Factorial with four lev-
els. The three-dimensional representation, the two-dimensional function
contours and the distance function for this initial sampling are depicted in
Figure 3.30.

The algorithm starts to calculate new sample points according to the de-
scribed methodology. In Figure 3.31 the results of 20 samples dataset is
shown, it means, after adding four samples using the sequential procedure.
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After the addition of 9 points, it can be observed in Figure 3.32 has located
the large gradients at the lowes and highest values of x;.
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FIGURE 3.32: Rosenbrock function: 25 samples (a) 3d (b) Con-
tours (c) Distance.
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This tendency becames more clear in Figure 3.33, where 19 samples have
been added through the sequential sampling to obtain a total of 35 points.
All of them, except one, have been placed from -4 to -2 and from 2 to 4 in x;.

With 50 samples, the shape of the function highly ressembles the original
representation, see Figure 3.34.
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FIGURE 3.33: Rosenbrock function: 35 samples (a) 3d (b) Con-
tours (c) Distance.

FIGURE 3.34: Rosenbrock function: 50 samples (a) 3d (b) Con-
tours (c) Distance.

This final dataset of 50 samples is selected to be compared to other techniques
of design of experiments: full factorial and Latin hypercube sampling. The
starting dataset for the three methods is a full factorial of four levels. For the
strictly full factorial procedure (FF), sampling datasets are generated using 5,
6 and 7 levels.

The Latin hypercube sampling is used to internally fill a domain that in this
case is initiated with a full factorial of four levels (FF+LHS). Because it is a
random design, it would not be appropriate to run the sampling once. Hence,
this design of experiments is repeated 10 times and the accuracy results are
averaged.

The obtained sampling datasets are evaluated using a test set that consists of
a full factorial of 250 levels. The mean absolute error (MAE) and the maxi-
mum error are computed for models of increasing number of samples. The
results are shown in Figure 3.35.

It can be observed that the MAE decreases faster with the number of samples
for the smaller datasets. From 28 sampling points, the sequential and the LHS
methods report similar absolute errors. However, the maximum errors of the
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FIGURE 3.35: (a) Mean absolute error (b) Maximum error.

LHS are significantly higher. The full factorial design shows the opposite
tendency: the maximum errors are similar to the sequential technique, but
the absolute errors are higher. Overall, the sequential algorithm shows the

best performance.

It must be noted that 10 LHS were calculated and only the average values
are reported. That means that there are more and less accurate LHS and to
provide an estimation of that dispersion, the FF+LHS is represented with the
standard deviation of the MAE in Figure 3.36.

—FF +LHS
——FF + Seq
..... FF + LHS, Std. Dev.

16 20 24 28 32 36 40 44 48 52

Number of samples

FIGURE 3.36: MAE of sequential sampling and LHS with stan-
dard deviation.

It is shown that for the smaller datasets the LHS could be as precise as the se-
quential sampling, but it could also present a noticeable worse performance,
depending on the obtained LHS. Thus, a deterministic approach such as the
sequential method is advantageous to ensure the robustness of the sampling.
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3.3.3.2 Easom function

The Rosenbrock function presented moderate variations in the response sur-
face across the specified domain. However, when exploring a completely
new case, it could be possible that the region with the largest changes is lo-
cated in a concrete subdomain. In that situation, space-filling DoEs are espe-
cially unfavourable. To represent this situation using an analytical function,
the sequential DoE is tested for the Easom function, which is formulated as
follows:

f(x1,x7) = —cos(x1)cos(x2)exp(—(x; — )2 + (x2 — 7)?) (3.6)

The domain boundaries are set to [-10,10] for x1 and x,. The test function for
this case is represented in Figure 3.37.

10.0

f(x1%7) -
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FIGURE 3.37: (a) Easom function (b) Easom function contours.

The initial sampling is design as a full factorial of 5 levels, as depicted in
Figure 3.38. It must be observed that a ROM trained over this dataset would
ignore the peak of the function and the prediction accuracy would be very
poor.

The evolution of the sequential algorithm is illustrated next. After adding 10
sampling points through the sequential algorithm the peak has been already
noticed, see Figure 3.39.

The modelling of the peak improves with increasing sampling points, as de-
picted in Figure 3.40 and 3.41.
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FIGURE 3.38: Easom function: initial sampling (a) 3d (b) Con-
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FIGURE 3.39: Easom function: 35 samples (a) 3d (b) Contours
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FIGURE 3.40: Easom function: 45 samples (a) 3d (b) Contours
(c) Distance.

The resulting sampling dataset is compared to FF and FF+LHS samplings as
described in the previous test function. In this case, the initial dataset is a FF
of 5 levels. The results of mean absolute error (MAE) and maximum error

are reported in Figure 3.42.

The observations are similar to the previous case: regarding MAE, the se-
quential algorithm provides a more efficient sampling using few samples
compared to the LHS. The reason why FF is with at 36 and 49 samples is be-

cause the uniform distribution coincidentally places a sampling point close
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FIGURE 3.42: (a) Mean absolute error (b) Maximum error.

to the function minimum.

The surpassing performance of the sequential algorithm compared to space-
filling DoE is clear in Figure 3.42 (b). The maximum error decreases signifi-

cantly after approximately five samples are added sequentially.

The robustness of LHS is also checked in this test function. The results of
the standard deviation of the MAE show the opposite tendency that in the
Rosenbrock function: the dispersion increases with larger training datasets.
This is probably a consequence of the randomization in LHS: with 55 sam-
pling points some LHS will have capture the peaks but others will miss it,
thus reporting high errors.

3.3.4 Conclusions

A novel sequential sampling strategy is developed to maximize the efficiency
of the design of experiments step in surrogate modelling. As opposed to tra-
ditional space-filling criteria, this method includes the output of the system



Chapter 3. Strategies for building surrogate models 94

~ —FF +LHS
) —FF + Seq.
_____ FF + LHS, Std. Dev.

Number of samples

FIGURE 3.43: MAE of sequential sampling and LHS with stan-
dard deviation.

to identify the regions of the input domain that require a deeper examina-
tion. To avoid local oversampling, the exploitation criteria is balanced with a

distance-based function.

A significant advantage of this procedure is that both the sequential sampling
and the reduced order modelling run using the TWINKLE library. Thus the
need for additional libraries or other dependencies is eliminated and it can

be easily coupled to any computer simulation software.

The resulting training datasets generated using the sequential sampling
are evaluated and compared to two popular designs of experiments: full-
factorial and Latin hypercube sampling. The selected test functions are the
Rosenbrock and the Easom function. In both cases, the surrogate models con-
structed from sequentially-calculated samples outperforms the full-factorial
and LHS-based models, especially with small training datasets.
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Chapter 4

Conclusions

This Thesis has presented several strategies to promote the applicability of
numerical simulations in industrial environments from two different per-

spectives.

In the first part (Chapter 2), the development of predictive models for batch
manufacturing processes is addressed using different approaches. The main
features of each model are discussed using a rubber compounding process as

a case study.

* A simplified theoretical model of the mixer is defined using a system
of ordinary differential equations. A CFD simulation is performed for

validation.

* A set of data-based models are proposed combining feature-extracted
and feature-selected dimensionality reduction techniques and multi-

variate regression methods.

* Two additional cases of material processing are assessed to illustrate
the differences between modelling with on-line, in-line and off-line data

sources.
The most relevant conclusions are listed next:

* The accuracy of the theoretical approach is severely limited by two as-
pects: the formulated hypothesis for simplicity and incomplete infor-
mation of the process. However, the model provides useful insight
into the mixing process and the causal relationship among the process
variables. This information can be leveraged for feature-selected data-

driven models.

* Feature-extracted dimensionality reduction results in more accurate
models. Nevertheless, models based on feature selection have physical
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interpretability and are less data-intensive, which leads to more robust

industrial implementations.

* The described methodologies can be used for the development of pre-
dictive models in other industrial processes, but each case must be care-
fully studied to efficiently adapt them to the particularities of each case.
Specifically, the modelling approach highly depends on the availability
of the process data and the process location.

The second part (Chapter 3) is focused on enhancing the coupling of surro-
gate modelling and numerical simulations through the development of dif-
ferent tools.

* A ROM implementation in a commercial CFD code is created for the
determination of thermodynamic properties of several pure fluids and
mixtures. This approach provides a robust and accurate coupling
of equations of state into CFD simulations. The ROM interface pro-
grammed in this work is universal and can be easily used in different
problems.

* A strategy to improve the accuracy of ROMs of complex manifolds is
provided. It consists of dividing the domain and fitting a separated
model to each region. These complexities represent particular dynam-
ics of a physical system. Hence, a knowledge-based separation is suit-
able to achieve a successful domain split. In addition, a data-based
division is proposed that outperforms the physical-guided separation.
Both approaches are tested to model the density and specific heat of
water.

* A novel sequential sampling method is designed for the efficient gen-
eration of training datasets for surrogate modelling. This procedure
achieves accurate ROM using fewer samples than the traditional space-
filling design of experiments. The algorithm is tested using two analyt-
ical functions: Rosenbrock and Easom function. The results show that
the sequential approach outperforms other popular techniques (full fac-
torial and Latin hypercube sampling).
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Appendix A

Adapted discretization

TWINKLE is based on the idea that a problem of N variables can be de-
composed into a product of one-dimensional functions. In the mathematical
implementation, these functions are piece-wise linear functions. These one-
dimensional functions are discretized at several points, where each function
is evaluated. The combination of every list of discretization points in each

dimension represents the discretization net.

ThIS discretization can be generated in different ways. The default op-
tion is to set the same number of discretization points for every dimension,
which results in a uniform discretization grid. The number of discretization
points for each dimension can also be specified, which divides every one-
dimensional function into sections of equal length. The concrete values of
each variable can also be provided, which is used to create a non-uniform
discretization net. Finally, the discretization points can be set equal to the
sampling points.

The uniform discretization option works well in cases where the response
of the system is smooth and widespread across the domain. However, if a
subregion presents rapid changes, a uniform discretization will only be suc-
cessful if a discretization point is placed in or near that section. However, if
the discretization is coarse and the steep slopes are far from any discretiza-
tion points, the ROM will fail in capturing the real behaviour of the system

and the accuracy will decrease, even with a large training dataset.

A discretization net adapted to the topology of the problem could deal with
local steep gradients. In addition, it could reduce the required number of
discretization points, which would accelerate the ROM evaluation. The time
saving is not significant in a single evaluation, but it could be noticeable if

the ROM is implemented in a node of a computational mesh, in which case
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to solve the problem it would have to run thousands of iterations over every

node in the domain.

In this work, an algorithm to create an adapted discretization net is proposed.
The aim is to place more discretization points in the sections with larger gra-
dients in the one-dimensional functions. To ensure that the function is suf-
ficiently sampled, the distance among the discretization points is also con-
sidered. The discretization points are defined sequentially: in each iteration,
the next point is determined. An optimal discretization net usually requires
a different number of discretization points in each dimension. Hence, the
algorithm is prepared to calculate the next discretization point across all the
variables.

The methodology is tested using the water heat capacity dataset as a func-
tion of temperature and pressure. The pressure range is set to 2.45E07 Pa to
2.55E07 Pa and the temperature range is 298 to 800 K. Under these specifica-
tions, the dataset presents a large peak at the critical temperature, as depicted
in Figure A.1.
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FIGURE A.1: Water heat capacity.

First, it is attempted to create a ROM from the described dataset using a uni-
form discretization. The training data is generated using a full factorial of
1000 levels. Three uniform discretizations are tested, using 50, 100 and 200
discretization points. It can be observed in Figure A.2 that, even refining the
discretization net, the model fails at predicting the higher values of the heat
capacity, placed at the peak. The maximum error for 200 discretization points
is 17%.
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FIGURE A.2: ROM prediction using uniform discretization nets
of (a) 50 points (b) 100 points and (c) 200 points.
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Hence, the adapted discretization method is applied to this case to improve
the accuracy of the model. First, an initial discretization net is defined. In this
case, a uniform discretization net of eight points is set. Since the peak corre-
sponds to a physical phenomenon, the critical region is identified. Thus, an
extra discretization point is added, corresponding to the critical temperature
(647 K). The discretization net over the domain is shown in Figure A.3.
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FIGURE A.3: Initial discretization net.

First, the dataset is decomposed into one-dimensional functions (fld)
through the TWINKLE library using the initial discretization previously pro-
vided. Hence, the temperature function consists of 9 points and 8 for the
pressure. A distance function based on the euclidean norm is calculated for
each variable. The value of this function is maximum at the intermediate
distance of the furthest points and zero at the existing points. The distance
function for the initial decomposition of the temperature is illustrated in Fig-
ure A.4.
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FIGURE A.4: Distance function for the temperature discretiza-
tion.

Then, a difference function is computed for each internal discretization point
of every variable. To achieve that, the discretization points of the individual
one-dimensional functions are used to obtain a function S0. The function Si is
calculated from all the discretization points except one internal point, which
is removed. The difference function is the absolute difference between SO
and Si. In Figure A.5 an example of a difference function is found. In this
case, the discretization point T= 656.57 K is eliminated from the temperature
function to generate Si. It can be observed that the difference function is

only quantitatively relevant between the previous and the next discretization

point of the one that was removed.
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FIGURE A.5: Difference function for the temperature discretiza-
tion.

Next, an objective function is defined as the product of the distance func-
tion and the difference function. The value of the one-dimensional function
that achieves the maximum score of the objective function corresponds to the
next proposed discretization point, see Figure A.6. It must be noted that this
result is based on one extracted discretization point and one variable. Hence,
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this procedure must be repeated for all internal discretization points of every
variable. The proposed discretization points for each case is saved along with
the corresponding value of the objective function. Finally, the discretization
point that has the highest score in the objective function across all the inter-
nal points of every dimension is set as the final next discretization point and
it is added to the list of discretization net. The process is repeated until a
certain number of calculated discretization points are reached or the ROM'’s
performance does not improve with finer discretization nets.
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FIGURE A.6: Objective function and next proposed discretiza-
tion point for temperature variable and extracted 656.57 K.

The improvement of the water heat-capacity model with increasing adapted
discretization points is shown in Figure A.7. For every addition to the dis-
cretization net, the model is evaluated using the training dataset. The relative
and maximum relative error decreases while R? increases greatly for the first
15 iterations and stabilizes after. The stop condition was that the maximum
relative error should be below 5 %. This is achieved after 42 iterations. The
final number of discretization points of the temperature and pressure are 46
and 13, respectively, as depicted in Figure A.8.

The results of the adapted discretization are compared to the best uniform
discretization in Figure A.9. The maximum error has decreased from 17.1 %
to 4.7 %. In addition, the number of discretization points has been reduced

from 200 in each dimension to 46 and 13, representing a 75 % and 94 % of
reduction.
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