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Abstract: Given a sequence (Xn) of random variables, Xn is said to be a near-record if Xn ∈ (Mn−1 −
a, Mn−1], where Mn = max{X1, . . . , Xn} and a > 0 is a parameter. We investigate the point process
η on [0, ∞) of near-record values from an integer-valued, independent and identically distributed
sequence, showing that it is a Bernoulli cluster process. We derive the probability generating
functional of η and formulas for the expectation, variance and covariance of the counting variables
η(A), A ⊂ [0, ∞). We also derive the strong convergence and asymptotic normality of η([0, n]), as
n→ ∞, under mild regularity conditions on the distribution of the observations. For heavy-tailed
distributions, with square-summable hazard rates, we prove that η([0, n]) grows to a finite random
limit and compute its probability generating function. We present examples of the application of our
results to particular distributions, covering a wide range of behaviours in terms of their right tails.
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1. Introduction

Outstanding achievements and world records in athletics events such as the 100 m
sprint always make headlines and arouse widespread admiration. Similarly, considerable
media attention and public concern are attached to record figures (often bad) relating to
the economy, the weather or healthcare systems. Crucial social questions arise when we
are faced with a steady flow of records, which are presented as ominous signs of dramatic
underlying phenomena. It is therefore unsurprising that the term “record” has become
such a constant in our modern everyday life and in a wide range of specialist domains.
The probabilistic theory and statistical analysis of record breaking data can be helpful in
assessing the seriousness of these issues.

The mathematical theory of records is well developed, especially for data generated
by independent and identically distributed (i.i.d.) random variables (r.v.) with a contin-
uous underlying distribution function. As is well known, in this setting, one can only
expect about log n record values among n observations, which means that records are
rare. The reader interested in the theory of records can consult the monographs [1–3]. For
statistical inference from record data, see [4].

Concepts of “quasi-records” emerged as natural extensions of records and have proven
to be worthwhile from a mathematical as well as an applied perspective. The general idea
of values close to records was translated into a variety of definitions that were theoretically
analysed and applied in widely different contexts. Near-records were introduced in [5]
for applications in finance, and their properties were analysed in [6,7]. In addition, the
related concept of the δ-record was introduced in [8] and later studied in [9–12]. These
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objects have practical applications in the case of negative δ, since δ-records are more
numerous than records. So, by considering samples of δ-records for statistical inference,
we address the problem of the scarcity of records while keeping the extremal nature of the
data. Indeed, it has been shown in [9] and in references therein that inferences based on
δ-records outperform those based on records only.

The main objects of interest in this work are near-records. An observation is a near-
record if it is not a record but is at a distance of less than a > 0 units from the last record; that
is, it falls short of being a record by less than a units. While the number of records in an i.i.d.
sequence of continuous r.v. grows with the logarithm of the number of observations, the
number of near-records grows at speeds depending on the distribution of the observations.
In fact, for heavy-tailed distributions, there are fewer near-records than records (in extreme
cases, only a finite number of near-records can be observed along the whole sequence),
while for light-tailed distributions, near-records outnumber records; see [13] for details.

Another interesting aspect of near-records is related to their values. It is well known
that record values of an i.i.d. sequence behave as the so-called Shorrock process [14],
which is a mixture of a non-homogeneous Poisson process and a Bernoulli process. In
the particular case of non-negative integer-valued r.v., k is a record value with probability
P(X1 = k|X1 ≥ k), and the events wherein {k is a record value} are independent.

In this paper, we focus on the process of near-record values for i.i.d. sequences of r.v.,
taking non-negative integer values. The case of continuous r.v., analysed in [13], showed
that near-record values follow a Poisson cluster point process, where records are the centres
of the clusters and near-records are the points in each cluster. The main characteristics of
this process, including its asymptotic behaviour, were derived from the properties of the
Poisson cluster process, which has been thoroughly studied in the literature. In the discrete
setting of the present paper, we prove that near-record values also behave as a cluster
process, with centres following a Bernoulli process. We fully characterise the process by
giving an expression for its probability generating functional. In particular, we find the exact
distribution of the number of times that k is a near-record, which turns out to be a mixture
of a point mass at 0 and a geometric distribution. We also characterise the distribution
of the total number of near-records for heavy-tailed distributions. Moreover, we study
the limiting behaviour of the number of near-records with values less than n, as n goes to
infinity, by giving laws of large numbers and central limit theorems. Rather than relying
on properties of cluster processes, as done in [13], here, we use a more direct approach
that consists of approximating the sequences under study by a sum of independent r.v. We
give several examples of applications of our results to particular families, ranging from
heavy-tailed distributions, with a finite number of near-records, to light-tailed ones, such
as the Poisson distribution.

The paper is organised as follows: notations and first definitions are presented in
Section 2. The process of near-record values is studied in Section 3, while in Section 4, we
consider the eventual finiteness of the total number of near-records, followed by asymptotic
results in Section 5. Finally, illustrative examples are shown in Section 6 and Appendix A is
devoted to technical results.

2. Notation and Preliminary Definitions

The sets of real and positive real numbers are denoted by R and R+, respectively.
The sets of positive and non-negative integers are denoted by N and Z+, respectively.
Sequences in R are indexed by N and are written in lower-case letters, between parentheses,
such as (xn), (yk), etc. All r.v. are assumed to be defined on a common probability space
(Ω,F ,P). The indicator r.v. of an event B ∈ F , taking the value 1 on B and 0 otherwise, is
denoted by 11B. The indicator function of A ⊆ R, equal to 1 on A and 0 on R \ A, is denoted
by 11A.

When referring to a geometric r.v. or distribution throughout the paper, we assume 0
as the starting value. The probability generating function (p.g.f.) of an r.v. X, taking values
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in Z+, is defined as ϕX(t) = E(tX) = ∑∞
k=0 tkP(X = k), for all t ∈ R, such that the series is

absolutely convergent.
Sequences of r.v. are also indexed by N and are written in upper-case letters, such

as (Xn), (Yk), etc. The convergence of deterministic sequences to a limit L is denoted
by xn → L or lim xn = L, and it is implicitly understood as n → ∞, unless otherwise
stated. The notation xn ∼ yn stands for xn/yn → 1. The same notation applies to random

sequences, where the mode of convergence (almost sure a.s.−→ or in distribution D−→) is
indicated over the arrow. The σ-algebra of Borel subsets of R+ is denoted by B+.

Definition 1. Let (Xn) be a sequence of r.v. and let a be a positive parameter. Then, for n ∈ N,

1. Xn is a record if Xn > Mn−1, and
2. Xn is near-record if Mn−1 − a < Xn ≤ Mn−1,

where Mn = max{X1, . . . , Xn}, with M0 = −∞, by convention.

From the above definitions, it is clear that a near-record is not a record, but it can take
the value of the current record. Other random sequences of interest related to records are
record times (Ln), defined as

Ln = min{k ∈ N | k > Ln−1, Xk > MLn−1},

for n ≥ 1, with L0 = 0, and record values (Rn), given by Rn = XLn = MLn , for n ≥ 1.
Additionally, we consider the set of record values as a point process on R, which can be
described by the random counting measure ξ, defined by

ξ(A) = card{n ∈ N | Rn ∈ A}, A ∈ B+. (1)

We also define In := ξ({n})—the indicator of the event for which a record takes the
value n.

Observe that record times Ln are the jump times of the sequence of partial maxima
and that record values Rn are the (strictly increasing) subsequence of partial maxima (Mn),
sampled at those jump times. However, without further probabilistic assumptions on (Xn),
it may happen that Ln = ∞, from some value of n on, which is equivalent to the existence
of a final record. Furthermore, we have to ensure that the counting measure ξ is boundedly
finite in the sense of being finite on bounded sets.

Similarly, the sequence (La
n) of near-record times is defined by

La
n = min{k ∈ N | k > La

n−1, Mk−1 − a < Xk ≤ Mk−1},

for n ≥ 1, with La
0 = 0, and near-record values (Ra

n) are given by Ra
n = XLa

n , for n ≥ 1.
We define the counting measure of near-record values by

η(A) = card{n ∈ N | Ra
n ∈ A}, A ∈ B+, (2)

and define the related r.v. η(n) = η([0, n]) and ηn = η({n}), for n ∈ Z+.
As for records, assumptions are needed in order to ensure that near-record times and

values are well defined. Additionally, in order to characterise η as a cluster point process,
we consider a classification of near-records in terms of their proximity to records.

Definition 2. (a) For m, n ∈ N, the n-th near-record value Ra
n is said to be associated to the m-th

record value Rm if Lm < La
n < Lm+1.

(b) For m ∈ N, the point process η(· | Rm) of near-record values associated to Rm is defined by the
random counting measure

η(A | Rm) = card{n ∈ N | Ra
n ∈ A, Lm < La

n < Lm+1}, A ∈ B+. (3)
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We state here the probabilistic assumptions regarding (Xn), which hold throughout
the paper. We assume that (Xn) is a sequence of i.i.d. r.v., taking non-negative integer
values, with pk := P(X1 = k), yk := P(X1 > k), k ∈ Z+. For convenience, we define pk = 0
and yk = 1 for k < 0.

In addition, let
rk =

pk
yk−1

= P(X1 = k |X1 ≥ k), k ∈ Z+, (4)

be the hazard or failure rates, and

qk =
yk

yk−a
= P(X1 > k |X1 > k− a), k ∈ Z+. (5)

Note that yk = ∏k
i=0(1− ri), k ∈ Z+.

In order to ensure that no final record exists and thus that all record times are well
defined, we assume that yk > 0, ∀k ∈ Z+. This, in particular, implies rk < 1, ∀k ∈ Z+. In
addition, to avoid unnecessary complications, we assume a ∈ N.

Example 1 (Records and near-records). Let us consider a near-record parameter a = 3 and
the following sequence of 17 observations: 2, 4, 3, 6, 1, 6, 7, 1, 7, 8, 6, 7, 2, 4, 5, 8, 12, . . . . See
Figure 1.

• The sequence of partial maxima is M1 = 2, M2 = 4, M3 = 4, M4 = 6, M5 = 6 . . . .
• For the record value sequence, we have R1 = 2, R2 = 4, R3 = 6, R4 = 7, R5 = 8,

R6 = 12.
• According to Definition 2, there are no near-records associated to R1, there is one

near-record (with value 3) associated to R2, one near-record (with value 6) associated
to R3, one near record (with value 7) associated to R4 and two near-records (with
values 6 and 7) associated to R5. Note also that, as X17 = R6 = 12 and a = 3, there will
be no near-records with value smaller than 10 after observation 17. Thus, η([0, 9]), the
number of near-records with value in the interval [0, 9], is equal to 5.

5 10 15

0
2

4
6

8
10

12

n (index of the r.v.)

V
al

ue
 o

f t
he

 r.
v.

Observation
Record
Near−record, a=3

Figure 1. Representation of the sequence given in Example 1. Red dots represent record observations,
while blue dots are near-record observations with parameter a = 3.

3. The Point Process of Near-Record Values

We recall that a point process N on R+ can be seen as a random measure and has a
probability generating functional (p.g.fl.) defined by GN [h] = E(exp(

∫
log h(x)N(dx))),

under appropriate conventions regarding the logarithm of 0, where h : R+ → [0, 1] is a
measurable function equal to 1 outside some bounded subset of R+ (such functions are
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referred to as “suitable”). Alternative formulas for the p.g.fl., in the form of a product–
integral or a product are given by

GN [h] = E
(

∏
x∈R+

h(x)N(dx)
)
= E

(
∏

x:N({x})>0

h(x)N({x})
)

. (6)

In this section, we show that the near-record process η is a discrete cluster process.
Indeed, since η(A) = ∑∞

m=1 η(A | Rm), A ∈ B+, process η can be seen as a superposition of
a denumerable family of point processes which, by Proposition 1 (c) below, are conditionally
independent. Moreover, since the r.v. Xn take values in Z+, we find that, for every bounded
A, η(A) ≤ LK+a, where K ∈ N is an upper bound of A, the process η is boundedly finite.

We characterise η by means of its p.g.fl. and compute its first moments and other
quantities of interest. To that end, we first present some useful results about records and
near-records.

Lemma 1. (a) The point process ξ of record values has its atoms in Z+, and the r.v. In are
independent Bernoulli, with E(In) = rn, n ∈ Z+.
(b) For any suitable function h,

Gξ [h] =
∞

∏
n=0

(1− rn(1− h(n))). (7)

Proof. For a proof of (a), see, for instance, Theorem 16.1 in [3]. To prove (b), from (a) and
the second formula in (6), we obtain, noting that h = 0 outside a bounded set, and using
the convention 00 = 1,

Gξ [h] = E
( ∞

∏
n=0

h(n)ξ({n})
)

= E
( ∞

∏
n=0

h(n)In
)

=
∞

∏
n=0

E
(

h(n)In
)

=
∞

∏
n=0

(
1− rn + rnh(n)

)
.

Proposition 1. (a) Let Sm = η(R+ | Rm) be the number of near-records associated to record
Rm, m ∈ N, according to Definition 2. Then,

P(Sm = s | Rm) = (1− qRm
)sqRm

, s ∈ Z+. (8)

That is, Sm is geometrically distributed, conditionally on Rm.
(b) Let La

n1
< · · · < La

nSm
be the near-record times associated to Rm. Then, conditionally on

Rm, Sm, the near-record values Ym,j := XLa
nj

, j = 1, . . . , Sm are i.i.d. with

P(Ym,1 = k1, . . . , Ym,Sm = kSm | Rm, Sm) =
Sm

∏
j=1

π(k j, Rm), (9)

where π(k, i) := pk
yi−a−yi

11(i−a,i](k), i, k ∈ Z+.

Moreover, conditionally on Rm, Sm, the r.v. Nm,k := η({k} | Rm) = ∑Sm
j=1 11{Ym,j=k}, for

k ∈ (Rm − a, Rm] ∩Z+, are multinomially distributed, with parameters Sm, π(k, Rm).
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(c) The σ-algebras Fm := σ{Rm, Sm, Ym,j, j = 1, . . . , Sm}, m ∈ N are independent, condition-
ally onR := σ{Rm |m ∈ N}.

Proof. (a) Note that the r.v. Xn, n > Lm, are independent and identically distributed
as X1. Define the subsequence (Xkn), with k1 = min{k > Lm |Xk > Rm − a} and
kn = min{k > kn−1 |Xk > Rm − a}, n ≥ 2. Then, conditionally on Rm, the sequence
(Xkn) is also i.i.d., but their common (conditional) distribution is P(X1 ≤ x |X1 >
Rm − a). Lastly, Sm is the number of terms Xkn up to (but no including) the first
Xkn > Rm. Hence, conditionally on Rm, Sm is geometrically distributed, as stated.

(b) The near-record values Ym,j are precisely the Xkn before the next record. So, condi-
tionally on Rm, Sm, they are i.i.d. with probabilities π(k, Rm). In addition, from the
arguments above, it is clear that the Nm,k are (conditionally) multinomial.

(c) Note that, since the (Xn) are i.i.d, the σ-algebras Gm = σ{Xk, Lm ≤ k < Lm+1}, m ∈ N
are independent, conditionally on R. Then, since the r.v. Sm, Ym,j, j = 1, . . . , Sm are
G-measurable, the result follows.

We compute below the p.g.fl. of the point process η(· | Rm), which is obtained from (6)
by taking the conditional expectation. That is,

Gη(· | Rm)[h] := E
( ∞

∏
k=0

h(k)η({k} | Rm)
∣∣∣Rm

)
. (10)

For h : R+ → [0, 1] measurable, A ∈ B+ and i ∈ Z+, let

αi(h) = 1
yi

i

∑
k=i−a+1

pk(1− h(k)), αi(A) = 1
yi

i

∑
k=i−a+1

pk11A(k). (11)

Additionally, let αi(n) = αi([0, n]), n ∈ Z+.

Proposition 2. For a suitable function h,

Gη(· | Rm)[h] =
1

1 + αRm
(h)

. (12)

Proof. Suppose Rm = i, for some m ∈ N. From (10) and (b) of Proposition 1, we get

Gη(· | Rm)[h] = E
(
E
( ∞

∏
k=0

h(k)η({k} | Rm)
∣∣∣Rm, Sm

)∣∣∣Rm

)
= E

(
E
( ∞

∏
k=0

h(k)Nm,k
∣∣∣Rm, Sm

)∣∣∣Rm

)
= E

(( ∞

∑
k=0

π(k, Rm)h(k)
)Sm ∣∣∣Rm

)
=

qRm

1−(1−qRm
)

∞
∑

k=0
π(k,Rm)h(k)

=
yRm

yRm−a−
Rm
∑

k=Rm−a+1
h(k)pk

= 1
1+αRm

(h) ,

where the third and fourth equalities, as shown above, follow from the expressions of the
p.g.f. of the multinomial and geometric distributions, respectively.
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Definition 3 (Definition 6.3.I in [15]). A (boundedly finite) point process N is a cluster point
process on R+, with the centre process Nc on R+ and component processes the family of point
processes {N(· | y) : y ∈ R+} if, for every bounded A ∈ B+,

N(A) = ∑
y∈R+

N(A | y)11{Nc({y})>0}. (13)

Definition 4. For i ∈ Z+, let ζi be the point process with p.g.fl. given by

Gζi [h] =
1

1 + αi(h)
,

where h is a suitable function and αi(h) is defined in (11).

Theorem 1. (a) The point process η of near-records is a cluster process on Z+, with the centre
process ξ and independent components processes {ζi, i ∈ Z+}.

(b) For a suitable function h,

Gη [h] =
∞

∏
i=0

1 + (1− ri)αi(h)
1 + αi(h)

. (14)

In particular, taking h(k) = t11A(k), t ∈ [0, 1] and A ∈ B+ bounded, we obtain the p.g.f. of
η(A), given by

ϕη(A)(t) =
∞

∏
i=0

1 + (1− ri)(1− t)αi(A)

1 + (1− t)αi(A)
. (15)

(c) For every bounded A, B ∈ B+,

1. E(η(A)) = ∑∞
i=0 αi(A)ri < ∞,

2. Var(η(A)) = ∑∞
i=0 α2

i (A)ri(2− ri) +E(η(A)) < ∞,
3. Cov(η(A), η(B)) = ∑∞

i=0 αi(A)αi(B)ri(2− ri), for A ∩ B = ∅.

Proof. (a) Observe that

η(A) =
∞

∑
m=1

η(A | Rm) =
∞

∑
i=0

ζi(A)Ii. (16)

So, according to Definition 3, η is a cluster point process, as asserted. Independence of
component processes follows from (c) in Proposition 1, because η(A | Rm) isFm-measurable,
for any m ∈ N.
(b) For h, a suitable function, let h̃ : Z+ → [0, 1] be defined as h̃(i) = Gζi [h] =

1
1+αi(h)

,

which is also a suitable function. From 6.3.6 in [15], we have Gη [h] = Gξ [h̃]. Therefore, by
Lemma 1 (b) and Proposition 2,

Gη [h] =
∞

∏
i=0

(
1− ri

(
1− 1

1 + αi(h)

))
=

∞

∏
i=0

1 + (1− ri)αi(h)
1 + αi(h)

=
∞

∏
i=0

(
ri

1 + αi(h)
+ 1− ri

)
.

For ϕη(A)(t) we replace h by t11A in (14) and get (15), noting that αi(t11A) = (1− t)αi(A).

(c1) Observe that η(A) = ∑k∈A ∑∞
m=1 η({k} | Rm) = ∑k∈A ∑∞

m=1 Nm,k and recall that Nm,k
is binomial, conditional on Rm, Sm, with parameters Sm, π(k, Rm), and that Sm is geometric,
conditional on Rm, with parameter qRm

.
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Moreover, Nm,A := ∑k∈A Nm,k is binomial, conditional on Rm, Sm, with parameters
Sm, π(A, Rm), where π(A, Rm) := ∑k∈A∩Z+

π(k, Rm), hence

E(Nm,A) = E(E(Nm,A | Rm, Sm))

= E(Smπ(A, Rm))

= E(E(Smπ(A, Rm) | Rm))

= E(π(A, Rm)E(Sm | Rm))

= E
(

π(A, Rm)
1−qRm

qRm

)
.

(17)

So, noticing that π(A, i) 1−qi
qi

= αi(A),

E(η(A)) = E
( ∞

∑
m=1

αRm
(A)

)
= E

( ∞

∑
i=0

αi(A)Ii

)
=

∞

∑
i=0

αi(A)ri, (18)

which is finite since αi(A) > 0 only for a finite set of i values.
(c2) From the computations above, it is clear that

E(η(A) | R) =
∞

∑
m=1

αRm
(A) =

∞

∑
i=0

αi(A)Ii.

Hence, the variance of the conditional expectation is

Var(E(η(A) | R)) =
∞

∑
i=0

α2
i (A)ri(1− ri).

We compute next the expectation of the conditional variance, namelyE(Var(η(A) | R)).
Observe that, because of the conditional independence of the η(A | Rn), n ∈ N, we have

Var(η(A) | R) =
∞

∑
m=1

Var(η(A | Rm) | R) =
∞

∑
m=1

Var(Nm,A | Rm).

Moreover,

Var(Nm,A | Rm) = E(Var(Nm,A | Rm, Sm) | Rm) + Var(E(Nm,A | Rm, Sm) | Rm)

= E(Smπ(A, Rm)(1− π(A, Rm)) | Rm) + Var(Smπ(A, Rm) | Rm)

=
1−qRm

qRm
π(A, Rm)(1− π(A, Rm)) +

1−qRm
q2

Rm
π2(A, Rm)

= αRm
(A)(1− π(A, Rm)) + αRm

(A)π(A,Rm)
qRm

= αRm
(A)

(
1 + π(A, Rm)

( 1−qRm
qRm

))
= αRm

(A)(1 + αRm
(A)).

Therefore, Var(η(A) | R) = ∑∞
m=1 Var(Nm,A | Rm) = ∑∞

i=0 αi(A)(1 + αi(A))Ii and so,
E(Var(η(A) | R)) = ∑∞

i=0 αi(A)(1 + αi(A))ri. Collecting terms from the expressions above
and using the formula Var(η(A)) = Var(E(η(A) | R)) +E(Var(η(A) | R)), we obtain

Var(η(A)) =
∞

∑
i=0

α2
i (A)ri(1− ri) +

∞

∑
i=0

αi(A)(1 + αi(A))ri

=
∞

∑
i=0

α2
i (A)ri(2− ri) +E(η(A)).

(19)
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(c3) The covariance Cov(η(A), η(B)), when A ∩ B = ∅, follows immediately from the
formula for the variance, noting that η(A ∪ B) = η(A) + η(B).

Corollary 1. For N ∈ Z+, the r.v. ηN (the number of near-records taking the value N) is
distributed as a mixture of a point mass at 0, with probability 1−c

1+d , and a geometric distribution,
with a success probability equal to 1

1+d . That is,

P(ηN = 0) =
1 + c
1 + d

, P(ηN = k) =
(d− c)dk−1

(1 + d)k+1 , k ≥ 1, (20)

where c = rN and d = rN/qN+a−1. Moreover,

E(ηN) = pN

N+a−1

∑
i=N

ri
yi

,

Var(ηN) = p2
N

N+a−1

∑
i=N

ri(2−ri)

y2
i

+ pN

N+a−1

∑
i=N

ri
yi

, (21)

Cov(ηN , ηN+1) = pN pN+1

N+a−1

∑
i=N+1

ri(2−ri)

y2
i

.

Proof. After simple computations, we obtain the p.g.f.,

ϕηN (t) =
N+a−1

∏
i=N

1 + pN
yi−1

(1− t)

1 + pN
yi
(1− t)

=
1 + c(1− t)
1 + d(1− t)

, (22)

which yields the probability mass function (p.m.f.) (20). Formulas in (21) follow from
Theorem 1 (c), observing that αi({N}) = pN

yi
11[N,N+a−1](i), for i, N ∈ Z+.

Remark 1. Note that αi(A) = 1
yi

∑k∈[i−a+1,i]∩A pk, which implies Cov(η(A), η(B)) = 0, if A
and B are at least a units apart; that is, if

min{|i− j| : i ∈ A, j ∈ B} ≥ a.

In fact, the r.v. ηN and ηM are independent if |M− N| ≥ a, due to the independence of the
r.v. In. In other words, the r.v. ηN are (a− 1)-dependent.

4. Finiteness of the Number of Near-Records

Theorem 2. If ∑∞
i=0 r2

i < ∞, then η(R+) < ∞ a.s; that is, the number of near-records in the
whole sequence (Xn) is finite a.s. Moreover, η(R+) has the finite expectation

E(η(R+)) =
∞

∑
i=0

αi(R+)ri (23)

and p.g.f. given by

ϕη(R+)(t) =
∞

∏
i=0

1 + (1− ri)(1− t)αi(R+)

1 + (1− t)αi(R+)
, (24)

with αi(R+) =
yi−a

yi
− 1.

Proof. From Proposition 1, we have

∞

∑
m=1

P(Sm > 0 | R) =
∞

∑
m=1

(1− qRm
) =

∞

∑
i=0

(
1− yi

yi−a

)
Ii.

Taking the expectation above, we obtain
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∞

∑
m=1

P(Sm > 0) =
∞

∑
i=0

(
1− yi

yi−a

)
ri

=
∞

∑
i=0

(
1−

i

∏
j=i−a+1

(1− rj)
)

ri

≤
∞

∑
i=0

i

∑
j=i−a+1

rjri

=
a−1

∑
j=0

∞

∑
i=j

ri−jri

≤ a
∞

∑
i=0

r2
i .

(25)

where the final term in the display above follows from the Cauchy–Schwarz inequality.
Therefore, by the Borel–Cantelli lemma, P(Sm > 0 i.o.) = 0, which yields the result.

In order to compute the p.g.f. of η(R+), we observe that η(n) a.s.−→ η(R+), and so,
by the monotone convergence theorem, ϕη(n)(t)→ ϕη(R+)(t), for t ∈ [0, 1]. Furthermore,
from (15), we have

ϕη(R+)(t) = lim
n→∞

∞

∏
i=0

1 + (1− ri)(1− t)αi(n)
1 + (1− t)αi(n)

=
∞

∏
i=0

1 + (1− ri)(1− t)αi(R+)

1 + (1− t)αi(R+)
. (26)

The interchange of the limit and product above is justified by the monotone conver-
gence theorem, after taking logarithms, since the sequence inside the product decreases
with n.

Finally, (23) is obtained, for example, from the derivative of ϕη(R+)(t) at t = 1− or as
the limit of E(η(n)). Finiteness follows from the bound 1− qi ≤ ∑i

j=i−a+1 rj, used in (25),
which implies qi → 1. Indeed, for sufficiently large i, we have qi ≥ 1/2 and

αi(R+) =
1
yi

i

∑
j=i−a+1

pj =
yi−a

yi
− 1 =

1− qi
qi
≤ 2(1− qi).

The conclusion αi(R+) < ∞ is obtained after arguing as in (25).

5. Asymptotic Behaviour

We now focus on the asymptotic behaviour of η(n). From Theorem 2, we know that if
∑∞

i=0 r2
i < ∞, then limn→∞ η(n) is finite a.s. In this section, we obtain laws of large numbers

and a central limit theorem for η(n) under the assumption ∑∞
i=0 r2

i = ∞.

Lemma 2. The random variables

Zi =
∞

∑
m=1

Sm11{Rm=i}, i ∈ Z+, (27)

are independent with p.g.f.

ϕZi
(s) = 1− ri +

qiri
1−(1−qi)s

, s ∈ [0, 1]. (28)



Mathematics 2022, 10, 2442 11 of 20

Proof. For simplicity, we prove pairwise independence since the argument extends easily
to the general case, but details are somewhat laborious. We compute the joint p.g.f. of Zi, Zj
as follows: for s, t ∈ [0, 1],

ϕZi ,Zj(s, t) = E(sZi tZj)

= E
(

s∑∞
m=1 Sm11{Rm=i} t∑∞

m=1 Sm11{Rm=j}
)

= E
(
E
( ∞

∏
m=1

sSm11{Rm=i} tSm11{Rm=j}
∣∣∣R))

= E
( ∞

∏
m=1

E
(

sSm11{Rm=i} tSm11{Rm=j}
∣∣∣R))

= E
( ∞

∏
m=1

qRm

1−(1−qRm
)s

11{Rm=i} t
11{Rm=j}

)
= E

(
qi Ii

1−(1−qi)s
qj Ij

1−(1−qj)t
+

qi Ii(1−Ij)

1−(1−qi)s
+

qj(1−Ii)Ij
1−(1−qj)t

+ (1− Ii)(1− Ij)
)

= qiri
1−(1−qi)s

qjrj
1−(1−qj)t

+
qiri(1−rj)

1−(1−qi)s
+

qj(1−ri)rj
1−(1−qj)t

+ (1− ri)(1− rj).

From the formula above, we get ϕZi ,Zj(s, 1) = ϕZi (s), as in (28). In addition, ϕZi ,Zj(s, t) =
ϕZi ,Zj(s, 1)ϕZi ,Zj(1, t), which implies the independence of Zi, Zj because the interval of conver-
gence of the p.g.f. of Zi can be extended from [0, 1] to [0, (1− qi)

−1).

Remark 2. Note that Zi in (27) is the number of near-records associated to i if i is a record value
and is equal to 0 otherwise. Indeed, (28) shows that Zi is distributed as a mixture of a point mass at
0 and a geometric random variable of parameter qi, with respective weights 1− ri, ri.

Our interest in the variable Zi arises from the following inequalities, which are
easily verified:

n

∑
i=0

Zi ≤ η(n) ≤
n+a−1

∑
i=0

Zi. (29)

The strategy of the proof is to establish the desired asymptotic results for the sum of
Zis, which are then transferred to η. For that purpose, we assume some minimal conditions
on the hazard rates rn, besides ∑∞

i=0 r2
i = ∞.

The following proposition gathers some useful facts about the variable Zi.

Proposition 3. (a) E(Zi) =
1−qi

qi
ri, Var(Zi) =

1−qi
q2

i
ri((1− qi)(1− ri) + 1).

(b) If ∑∞
i=0 r2

i = ∞ then ∑∞
i=0 E(Zi) = ∑∞

i=0 Var(Zi) = ∞.
(c) If either

(i) ∑∞
i=0 r2

i = ∞ and lim sup rn < 1 or
(ii) lim rn = 1 and lim 1−rn

1−rn−1
= 1

hold, then

(c1) lim E(Zn+k)

∑n
i=0 E(Zi)

= lim Var(Zn+k)

∑n
i=0 Var(Zi)

= 0, ∀k ∈ N,

(c2) Zn+k√
∑n

i=0 Var(Zi)

P−→ 0, ∀k ∈ N.

Proof. (a) The (factorial) moments of Zi are computed by differentiating the p.g.f. in (28).
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(b) From (a) we have

∞

∑
i=0

E(Zi) =
∞

∑
i=0

1−qi
qi

ri

≥
∞

∑
i=0

(1− qi)ri

=
∞

∑
i=0

(
1−

i

∏
j=i−a+1

(1− rj)
)

ri

≥
∞

∑
i=0

r2
i .

(30)

For the variance, we obtain from (a) and the divergence of expectations that

∞

∑
i=0

Var(Zi) ≥
∞

∑
i=0

1−qi
q2

i
ri ≥

∞

∑
i=0

1−qi
qi

ri = ∞.

(c) Suppose that (i) holds. Then, lim inf qn > 0, which implies that expectations E(Zn)
and variances Var(Zn) are bounded above. Hence, from (b), the limits in (c1) hold.

Suppose now that (ii) holds, then qn = ∏n
i=n−a+1(1− ri)→ 0, and also,

lim qn
qn+1

= lim ∏n
i=n−a+1(1−ri)

∏n+1
i=n−a+2(1−ri)

= lim 1−rn−a+1
1−rn+1

= 1,

hence
lim E(Zn+1)

E(Zn)
= lim (1−qn+1)qnrn+1

qn+1(1−qn)rn
= lim qn

qn+1
= 1. (31)

The same argument applies to prove that Var(Zn+1)/Var(Zn)→ 1 and so, claim (c1)
follows from Lemma A1. Finally, convergence in (c2) is obtained from (c1) and Markov’s
inequality, noting that, from (a), we have (E(Zn+k))

2 ≤ Var(Zn+k).

Theorem 3. If either

(i) ∑∞
i=0 r2

i = ∞ and lim supn rn < 1 or
(ii) limn rn = 1 and limn nβ(1− 1−rn

1−rn−1
) = 0, for some β ∈ (1/2, 1),

then
η(n)

E(η(n))
a.s.−→ 1.

Proof. By (29) and (c1) in Proposition 3, the result follows if we show that

∑n
i=0 Zi

∑n
i=0 E(Zi)

a.s.−→ 1. (32)

By the strong law of large numbers for sequences of i.i.d. r.v., (32) follows if we
prove that

∞

∑
n=0

Var(Zn)

(∑n
i=0 E(Zi))

2 < ∞. (33)

Suppose first that (i) holds. Note that Var(Zi) ≤ 2E(Zi)/qi, i ∈ Z+ and also that
lim infn qn > 0. Hence, there exists a positive constant γ such that qn > γ, for n ∈ Z+. So,

∞

∑
n=0

Var(Zn)

(∑n
i=0 E(Zi))

2 ≤ 2γ−1
∞

∑
n=0

E(Zn)

(∑n
i=0 E(Zi))

2 < ∞, (34)

where convergence in the right-hand side of (34) follows from Abel-Dini’s Theorem A1.
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On the other hand, if condition (ii) holds, then it is easy to see that qn → 0 and
limn nβ(1− qn

qn−1
) = 0. In addition, qnE(Zn) → 1 and q2

nVar(Zn) → 1. Therefore, (33) is
equivalent to

∞

∑
n=0

q−2
n

(∑n
i=0 q−1

i )
2 < ∞,

which follows from Proposition A1, thus proving the stated result.

Theorem 4. If either

(i) ∑∞
i=0 r2

i = ∞ and lim supn rn < 1 or
(ii) limn rn = 1 and limn

1−rn
1−rn−1

= 1,

then
η(n)−E(η(n))√

Var(η(n))
D−→ N(0, 1), (35)

where N(µ, σ2), µ ∈ R, σ > 0 stands for the normal distribution with expectation µ and
variance σ2.

Proof. First, we prove asymptotic normality for ∑n
i=1 Zi and then transfer the result to η(n).

To that end, we show that the following Lyapunov condition holds:

1
s3

n

n

∑
i=0

E(|Zi −E(Zi)|3)→ 0, (36)

where s2
n = ∑n

i=0 Var(Zi). Indeed, from the elementary inequality | a− b |3< a3 + b3, for
a, b ≥ 0, we get

E(|Zi −E(Zi)|3) ≤ E(Z3
i ) + (E(Zi))

3 = ri
(1−qi)

q3
i

(q2
i − 6qi + 6) + r3

i

(
1−qi

qi

)3
. (37)

Note first that Var(Zi) ≥ E(Zi). Moreover, if (i) holds, then lim inf qn > 0, and
from (37) above, we obtain E(|Zi − E(Zi)|3) ≤ KE(Zi), i ∈ N, where K > 0 is a generic
constant. So, the sequence in (36) is bounded above by K(∑n

i=1 E(Zi))
−1/2, which tends to

0, because of Proposition 3 (b).
If (ii) holds, then qn → 0, which implies E(|Zi−E(Zi)|3) ≤ K1q−3

i and Var(Zi) ≥ K2q−2
i ,

for sufficiently large i ∈ N, where K1, K2 > 0 are generic constants. Then, the Lyapunov
condition in (36) holds if

λn := ∑n
i=0 q−3

i

(∑n
i=0 q−2

i )
3/2 → 0.

From the Cauchy–Schwarz inequality, we have ∑n
i=0 q−3

i ≤ (∑n
i=0 q−2

i ∑n
i=0 q−4

i )1/2,
and so,

λ2
n ≤

∑n
i=0 q−2

i ∑n
i=0 q−4

i

(∑n
i=0 q−2

i )
3 =

∑n
i=0 q−4

i

(∑n
i=0 q−2

i )
2 → 0. (38)

Convergence to 0 in (38) is obtained from Lemma A2, since qn−1/qn → 1.
From the Lyapunov central limit theorem, we conclude that

∑n
i=0 Zi−∑n

i=0 E(Zi)
sn

D−→ N(0, 1),

which, by (29) and Proposition 3 (c2), implies that

η(n)−∑n
i=0 E(Zi)
sn

D−→ N(0, 1). (39)
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Now, taking expectations in (29), we have ∑n
i=0 E(Zi) ≤ E(η(n)) ≤ ∑n+a−1

i=0 E(Zi). In
addition, from (a) in Proposition 3, we have (E(Zn+k))

2 ≤ Var(Zn+k), and so

η(n)−E(η(n))
sn

D−→ N(0, 1), (40)

by (b) and (c1) in Proposition 3. To conclude the proof, we must show that

Var(η(n))
s2

n
→ 1. (41)

From Theorem 1 (c), we have Var(η(n)) = ∑∞
i=0 αi(n)ri(αi(n)(2− ri)+ 1), and noting that

αi(n) =


(yi−a − yi)/yi for i ≤ n,
(yi−a − yn)/yi for n < i ≤ n + a− 1,

0 for i > n + a− 1,

we obtain

Var(η(n)) =
n

∑
i=0

yi−a−yi
yi

ri
( yi−a−yi

yi
(2− ri) + 1

)
+

n+a−1

∑
i=n+1

yi−a−yn
yi

ri
( yi−a−yn

yi
(2− ri) + 1

)
. (42)

In addition, from Proposition 3 (a), we get

Var(Zi) =
1−qi

qi
ri

(
1−qi

qi
(1− ri) +

1
qi

)
=

yi−a−yi
yi

ri

(
yi−a−yi

yi
(2− ri)−

yi−a−yi
yi

+
yi−a

yi

)
=

yi−a−yi
yi

ri

(
yi−a−yi

yi
(2− ri) + 1

)
,

and, from (42), we have Var(η(n))− s2
n ≥ 0 and

Var(η(n))− s2
n =

n+a−1

∑
i=n+1

yi−a−yn
yi

ri
( yi−a−yn

yi
(2− ri) + 1

)
≤

n+a−1

∑
i=n+1

yi−a−yi
yi

ri
( yi−a−yi

yi
(2− ri) + 1

)
=

n+a−1

∑
i=n+1

Var(Zi).

From the inequalities above, (41) is a direct consequence of (c1) in Proposition 3.

6. Examples

In this section, we present some examples of application of our results to particular
distributions. For each distribution, we consider the r.v. ηN analysed in Corollary 1.
In particular, we give formulas for E(ηN), Var(ηN) and the correlation ρ(ηN , ηN+1). We
also study the asymptotic behaviour of η(n).

The distributions that we consider in this section are very different in terms of their
right tails. Example 2 is devoted to a heavy-tailed distribution, similar to the Zeta distribu-
tion (see Example 3.1 in [16]), which is the discrete counterpart of the Pareto distribution.
Example 3 deals with the geometric distribution, which has an exponential-like tail, while
Example 4 is about the Poisson distribution, which is light-tailed.
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Example 2 (Heavy-tailed distribution). Let pk = (k(k + 1))−1, hence yk = (k + 1)−1 and
rk = (k + 1)−1, k ∈ N. Then, from (21) we have

E(ηN) =
a

N(N+1) ,

Var(ηN) = a N2+3N+a
N2(N+1)2 ,

Cov(ηN , ηN+1) =
(a−1)(a+2N+1)
N(N+1)2(N+2) ,

ρ(ηN , ηN+1) =
(a−1)(a+2N+1)

a
√

(N2+3N+a)(N2+5N+a+4)
.

Note that ρ(ηN , ηN+1) ∼ 2(a−1)
a

1
N , as N → ∞, for every a ≥ 1. The p.m.f. of ηN can be

obtained from (20) by noting that c = 1
N+1 and d = N+a

N(N+1) .

Regarding the asymptotic behaviour of η(n), we observe that ∑∞
k=0 r2

k < ∞ and so,
from Theorem 2, η(n)→ η(R+) < ∞ a.s. We now compute the main characteristics of this
r.v. For the expectation, note that αi(R+) = i, for i < a, and αi(R+) =

a
i−a+1 , for i ≥ a. So,

from (23), we obtain

E(η(R+)) =
a−1

∑
i=0

i
i+1 +

∞

∑
i=a

a
(i+1)(i−a+1) = a.

It is interesting to see that the expected total number of near-records is equal to the
near-record parameter a. For the variance, we use (19) to obtain

Var(η(R+)) = E(η(R+)) +
a−1

∑
i=0

i2ri(2− ri) +
∞

∑
i=a

(
a

i−a+1

)
2
ri(2− ri),

which, after some algebra (see Appendix B), yields

Var(η(R+)) = a2 − 3a + 2
(

1 + 1
a

) a

∑
i=1

1
i + (a− 1)π2

3 . (43)

In addition, the p.g.f. of η(R+) is easily computed from (24) as

ϕR+
(t) =

a

∏
i=1

(
1− (i−1)(1−t)

i+(i−1)i(1−t)

) ∞

∏
i=a+1

(
1− a(1−t)

(i−a)i+ai(1−t)

)
. (44)

The p.m.f. of η(R+) can be obtained from (44). For instance, taking t = 0, we get

P(η(R+) = 0) = ϕR+
(0) =

∞

∏
i=1

(
1− min{a,i−1}

i2

)
.

Example 3 (Geometric distribution). The geometric distribution has pk = p(1− p)k, yk =
(1− p)k+1, rk = p, for k ∈ Z+, with p ∈ (0, 1). From (21), it is easy to see that

E(ηN) = p
(

1
(1−p)a − 1

)
,

Var(ηN) = p2
(

1
(1−p)2a − 1

)
+ p

(
1

(1−p)a − 1
)

,

Cov(ηN , ηN+1) =
p2

1−p

(
1

(1−p)2(a−1) − 1
)

.

Observe that none of the quantities above depend on N. The p.m.f. of ηN is given by
(20), with c = p, d = p

(1−p)a .
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Since rk = p, k ∈ Z+, hypothesis (i) of Theorems 3 and 4 holds, and so we have a
strong law of large numbers and a central limit theorem for η(n). For Theorem 3 note that
η(n) = ∑n

N=0 ηN and therefore,

η(n)
n

a.s.−→ p
(

1
(1−p)a − 1

)
.

For the central limit theorem, as shown in the proof of Theorem 4, we can replace
Var(η(n)) by ∑n

i=0 Var(Zi) in the denominator of (35). Since qi = (1− p)a, for i ≥ a, from
Proposition 3 (a), we get

σ2 := Var(Zi) =
1−(1−p)a

(1−p)2a p((1− (1− p)a)(1− p) + 1).

Therefore,
η(n)− p

(
1

(1−p)a − 1
)

n
√

n
D−→ N(0, σ2). (45)

Example 4 (Poisson distribution). The Poisson distribution has pk = e−λλk/k! for k ∈ Z+.
Although there is not a manageable form of yk and rk, the following bounds, taken from
[17], are useful:

λ
k+1 −

(
λ

k+1

)2
≤ 1− rk ≤ λ

k+1 , k ∈ Z+. (46)

Explicit expressions for the quantities in (21) can be written out, but they shed little
light on their dependence on λ and N. Instead, we analyse their asymptotic behaviour for
large N. By (46), rk → 1, so yk/yk−1 → 0. Therefore, ∑N+a−1

i=N ri/yi ∼ 1/yN+a−1 and

pN
yN+a−1

= rN
(1−rN)···(1−rN+a−1)

∼
(

N
λ

)a
,

as N → ∞. This immediately yields the asymptotic behaviour of the formulas in (21):

E(ηN) ∼
(

N
λ

)a
,

Var(ηN) ∼
(

N
λ

)2a
,

Cov(ηN , ηN+1) ∼
(

N
λ

)2a−1
,

and ρ(ηN , ηN+1) ∼ λ/N. Hence, as in Example 2, the correlation coefficient between ηN
and ηN+1 converges to 0 as N → ∞.

For the asymptotic behavior of η(n), note that (46) guarantees that limn rn = 1 and,
moreover, |rn − rn−1| ≤ C/n2 and 1− rn ≥ D/n, for all large enough values of n and
some positive constants C and D. Hence, condition (ii) in Theorem 3 holds, with β = 3/4,
and so does condition (ii) in Theorem 4. In order to apply Theorem 3 note that, since
E(ηN) ∼ (N/λ)a, we have E(η(n)) = ∑n

N=0 E(ηN) ∼ na+1

λa(a+1) and

η(n)
na+1

a.s.−→ 1
λa(a + 1)

.

For the central limit theorem, as in Example 3, the scaling sequence can be taken as
(∑n

i=0 Var(Zi))
1/2. Since qi = ∏i

j=i−a+1(1− rj)→ 0, we have Var(Zi) ∼ q−2
i ∼ (i/λ)2a, so

n

∑
i=0

Var(Zi) ∼
n2a+1

λ2a(2a + 1)
.
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In addition, from the proof of Theorem 4, the centring sequence in the central limit
theorem can be chosen as ∑n

i=0 E(Zi), which in turn can be replaced by ∑n
i=a q−1

i . Indeed,
for i ≥ a,

ei :=
∣∣∣E(Zi)− 1

qi

∣∣∣ = 1
qi
|ri − riqi − 1| ≤ 1 + 1−ri

qi
= 1 +

i−1

∏
j=i−a+1

1
1−rj

.

Thus, by (46), ∑n
i=0 ei ≤ n + Cna, for a given constant C > 0, which implies

∑n
i=0 ei

(∑n
i=0 Var(Zi))

1/2 → 0.

We can further replace ∑n
i=a q−1

i by na+1

(a+1)λa since, by (46), it can be shown that∣∣∣ 1
qi
−
(

i
λ

)a∣∣∣ < Cia−1,

for all i ≥ a and some constant C > 0. Therefore, we conclude

η(n)− na+1

(a+1)λa

na+1/2
D−→ N(0, σ2), (47)

where σ = 1
λa
√

2a+1
.

Remark 3. In Examples 3 and 4 above, we observe that the normalising sequences in the law of large
numbers and central limit theorem depend on the right-tail behaviour of the parent distribution of
the observations. This is also the case for the speed of convergence of η(n) to the normal distribution
in the central limit theorem, as shown in Figure 2. Convergence is very fast for the geometric
distribution, while it is much slower in the Poisson distribution (the distribution of η(30) in the
geometric distribution is closer to the normal than the distribution of η(100) in the Poisson).
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Figure 2. Smoothed histograms for simulated values of the normalised sequences η(n), given
in (45) and (47), with a = 3, different n values and 105 runs for each setting. Left panel: Geometric
distribution with parameter p = 0.5. Right panel: Poisson distribution with rate λ = 1.

7. Conclusions and Future Work

In this paper, we have studied the point process of near-record values from a sequence
of independent and identically distributed discrete random variables. Near-records arise
as a natural complement of records, with applications in statistical inference.



Mathematics 2022, 10, 2442 18 of 20

We have shown that this process is a Bernoulli cluster process and obtained its proba-
bility generating functional, as well as formulas for the expectation, variance, covariance
and probability generating functions for related counting processes.

We have given a condition for the finiteness of the total number of near-records along
the whole sequence of observations. This condition is provided in terms of convergence
of the squared hazard rates series. In addition, the explicit expression of its probability
generating function is obtained.

In the case where the total number of near-records is not finite, strong convergence
and central limit theorems for the number of record values in growing intervals are derived
under mild regularity conditions. Finally, we have presented examples of the application
of our results to particular families, which show that the asymptotics of near-record values
depends critically on the right-tail behaviour of the parent distribution.

Some interesting questions remain open, such as a more detailed analysis of the se-
quence η(n), including the law of the iterated logarithm and large deviations, or departures
from the i.i.d. hypothesis (e.g., linear trend model). They will be addressed in future work.
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Appendix A. Technical Results

In what follows, (xn), (yn) are sequences of positive numbers and Sn = ∑n
k=1 xk, for

n ∈ N.

Lemma A1 (Stolz-Cesàro). Suppose yn → ∞, then limn
xn+1−xn
yn+1−yn

= L implies limn
xn
yn

= L. In
particular, if xn+1/xn → 1 then xn/Sn → 0.

Proof. See, for instance, [18].

Lemma A2. If xn → ∞ and xn−1/xn → 1, then xn/Sn → 0 and ∑n
i=1 x2

i /S2
n → 0.

Proof. See lemma A1 in [19].

Theorem A1 (Abel-Dini). Suppose that Sn → ∞, then ∑∞
n=1

xn
Sa

n
< ∞ if and only if a > 1.
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Proof. See [20], page 441.

Proposition A1. Suppose that xn → ∞ and nβ
(
1− xn−1

xn
) → 0, for some β ∈ (1/2, 1), then

∑∞
n=1

x2
n

S2
n
< ∞.

Proof. The hypotheses imply that there exists C > 0 such that xn/Sn < Cn−β for all n ≥ 1
(see pages 2013–2014 in [16]). The conclusion follows from the convergence of the series
∑∞

n=1 n−2β for β ∈ (1/2, 1).

Appendix B. Computations of Var(η[0, ∞)) in Example 2

Note that Var(η[0, ∞)) = a + A − B + C − D, with A = 2 ∑a−1
i=0

i2
i+1 , B = ∑a−1

i=0

( i
i+1
)2,

C = 2a2 ∑∞
i=a

1
(i−a+1)2(i+1) and D = ∑∞

i=a
( a
(i+1)(i−a+1)

)2. We have

A = 2
a

∑
i=1

(
i− 2 + 1

i
)
= 2

(
a(a+1)

2 − 2a + H(a)
)
= a2 − 3a + 2H(a),

where H(n) is the n-th harmonic number. In a similar way for B we have

B =
a

∑
i=1

1− 2
a

∑
i=1

1
i +

a

∑
i=1

1
i2 = a− 2H(a) +

a

∑
i=1

1
i2 .

The sum in C can be computed via simple fractions as follows:

C = 2a2
∞

∑
i=a

(
1

a2(i+1) +
1

a(i−a+1)2 − 1
a2(i−a+1)

)
= −2

a

∑
i=1

1
i + 2a

∞

∑
i=1

1
i2 = −2H(a) + a π2

3 .

Finally, for D, we can split the sum and compute as follows:

D = a2
∞

∑
i=a

(
1

a2(i+1)2 +
2

a3(i+1) +
1

a2(i−a+1)2 − 2
a3(i−a+1)

)
=

∞

∑
i=a+1

1
i2 −

2
a H(a) + π2

6 .

Then, collecting the partial results above, Formula (43) is obtained.
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