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Abstract. Fractal interpolation provides an efficient way to describe smooth or non-smooth

structure associated with nature and scientific data. The aim of this paper is to introduce

a bivariate Hermite fractal interpolation formula, which generalizes the classical Hermite

interpolation formula for two variables. It is shown here that the proposed Hermite fractal

interpolation function and its derivatives of all order are good approximation of the original

function even if the partial derivative of the original functions are non-smooth in nature.
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1. Introduction

The classical Hermite interpolation problem deals with the construction of suitable ap-

proximately function based on the functional values and its derivative values at prescribed

node points. The Hermite’s interpolation formula [20] provided an expression for a poly-

nomial which passes through given points with fixed derivative values at the grid points.

Spitzbart [19] proposed a generalization of Hermite’s interpolation formula in one variable,

and obtained a polynomial p(x) of degree n+
n∑
j=0

rj in x which interpolates to the values of

a function and its derivatives up to order rj at xj , j = 0, 1, . . . , n. The derivatives of classical

Hermite function are either smooth or piece-wise smooth and hence they are not ideal to

capture varying non-smoothness associated with the derivatives of original function. Fractal

interpolation technique defined via iterated function system (IFS) provides a efficient way to

capture varying non-differentiability associated in a given domain. This method constitute

an advance in the fact that all classical methods can be obtained as a particular case of

fractal function. This method is introduced first by Barnsley [2]. After that fractal interpo-

lation functions (FIFs) have been used widely in various field like computer graphics, image

processing, modelling of natural surfaces and so on. Barnsley and Harrington [4] proved

the existence of differentiable FIFs. Later on Navascués [16] constructed a family of fractal

function fα and depending on the scaling vector α, fα is smooth or non-smooth in nature.

The function fα retains some properties such as continuity and integrability of f . The pro-

cess of obtaining α-fractal function by using a continuous function determines an operator

Fα : C(I) 7→ C(I), f 7→ fα. This map links the theory of classical approximation and FIF
1
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( [15], [21], [22]). Assuming some conditions on the scaling factors, convergence of fα towards

f is obtained [14].

Interpolation of surface data nowadays plays crucial role in science and technology. To cover

the more complex geometry hidden within the construction, fractal surface technique is re-

quired. On the basis of construction of FIFs, fractal surfaces constructed via IFS were first

introduced by Massopust [12]. He considered the case when the domain is triangular and

the interpolation points are coplanar. A more general construction was studied by Geronimo

and Hardin [11]. Zhao [24] gave even more general construction of both affine and non-

affine fractal interpolation surfaces (FISs) using arbitrary contraction factors on triangular

domains. After that Xie and Sun [23] constructed FISs on rectangular grids with the help of

scaling factors and without using boundary condition. But this leads to attractor which are

not graph of continuous functions. Dalla ( [5], [9]) used co-linear data and proved that the

attractor is a continuous surface. All the construction mentioned above leads to self-similar

attractors. However, with the existing methods we cannot obtain fractal surfaces if there is

a set of functional values at all the grid points along with derivative values of various orders

in both directions. Thus our method will be useful to construct the fractal surfaces from a

set of bivariate Hermite data. Ahlin [1] considered a bivariate generalization of Hermite’s

interpolation formula. He developed a bivariate osculatory interpolation polynomial which

agrees with f(x, y) and its partial and mixed partial derivatives up to a specified order at

each of the nodes of a Cartesian grid. A bivariate generalization of Spitzbart’s formula is

given in [7], and it is useful for the cases where only functional values are given but no partial

derivation along x or y direction is given. In this paper we introduce a new construction

of fractal interpolation surfaces using the bivariate Hermite interpolation that gives rise to

smooth surfaces.

The paper is organized as follows: In Section 2 we first give a brief introduction of fractal

interpolation function and the classical bivariate Hermite interpolation formula. Then we

extend this interpolation formula using fractal procedures and obtained error bounds of bi-

variate Hermite FIF functions in Section 3. Finally we give some example and graph of the

interpolated function and its derivatives in both x and y direction in Section 4. Conclusion

is given in Section 5.

2. Backgrounds and preliminaries

In this section we shall review some relevance general material on fractal functions that

can be found in details ( [2], [3], [6], [18]).

2.1. Basic of FIF theory. Let ∆ := {x0, x1, . . . , xN} be a partition of a real compact

interval I = [a, b], satisfying a = x0 < x1 < · · · < xN = b. Let a set of data points

{(xn, yn), n ∈ NN∪{0}} be given, where Nk is the first k natural numbers, and In = [xn−1, xn].

Let Ln : I → In, n ∈ NN be contractive homeomorphisms such that

Ln(x0) = xn−1, Ln(xN ) = xn. (2.1)
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Let K = I × R and N continuous mappings, Fn : K → R satisfying

Fn(x0, y0) = yn−1, Fn(xN , yN ) = yn, |Fn(x, y)− Fn(x, y′)| ≤ |cn||y − y′|, (2.2)

where (x, y), (x, y′) ∈ K, cn ∈ (−1, 1), n ∈ NN . Let X be a complete metric space and

{wn : X → X; i = 1, 2, . . . , N} be a collection of continuous functions on X. Then {X;wn :

i = 1, 2, ..., N} is called an Iterated Function System (IFS) on X. Now define functions

wn : K → K as wn(x, y) = (Ln(x), Fn(x, y)) ∀ n ∈ NN . The following is a fundamental

theorem between the IFS and fractal functions.

Theorem 2.1. (Barnsley [2]) Let C(I), the space of all real-valued continuous functions on

a compact interval I, be endowed with the Chebyshev norm ‖g‖∞ := max{|g(x)| : x ∈ I} and

consider the closed metric subspace

Cy0,yN (I) := {g ∈ C(I) : g(x0) = y0, g(xN ) = yN}.

The following hold.

(1) The IFS {K;wn, n = 1, 2, . . . , N} has a unique attractor G which is the graph of a

continuous function f∗ : I → R satisfying f∗(xn) = yn for n = 0, 1, . . . , N .

(2) The function f∗ is the fixed point of the Read-Bajraktarević (RB) operator T on

Cy0,yN (I) as

(Tg)(x) = Fn
(
L−1
n (x), g ◦ L−1

n (x)
)
, x ∈ In, n ∈ NN .

The function f∗ appearing in the foregoing theorem is called a fractal interpolation function

(FIF) corresponding to {(xn, yn), n ∈ NN ∪ {0}}, and it is unique satisfying the functional

equation

f∗(x) = Fn(L−1
n (x), f∗ ◦ L−1

n (x)) ∀x ∈ [xn−1, xn], n ∈ NN . (2.3)

The most frequently used fractal functions are defined by the IFS

Ln(x) = anx+ dn, Fn(x, y) = αny + qn(x), (2.4)

where αn ∈ (−1, 1) is called the vertical scaling factor of the transformation wn, qn : I → R
are continuous functions satisfying

qn(x0) = yn−1 − αny0, qn(xN ) = yn − αnyN

due to conditions in (2.1) and (2.2). The factor α = (α1, α2, . . . , αN ) ∈ (−1, 1)N is called the

scale vector of a FIF and depending on the magnitude of scaling vector, it is possible to get

a wide variety of interpolants.

2.2. α-fractal functions. Let f ∈ C(I) be a continuous function. For the partition ∆ of I,

consider the case qn(x) = f ◦ Ln(x)− αnb(x), n ∈ NN , where b is defined through the linear

map L : C(I) → C(I), b = Lf , such that L is bounded with respect to the sup-norm and

satisfy Lf(x0) = f(x0) and Lf(xN ) = f(xN ).
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Definition 2.2. [16] Let fα be the continuous function defined by the IFS (2.3)-(2.4). fα is

the α-fractal function associated with f with respect to b, the partition ∆ and scale vector

α.

According to (2.3) and (2.4), fα satisfies the fixed point equation

fα(x) = f(x) + αn(fα − b) ◦ L−1
n (x), x ∈ In, n ∈ NN . (2.5)

The uniform distance between fα and f is bounded as (see for instance [16])

‖fα − f‖∞ ≤
|α|∞

1− |α|∞
‖f − b‖∞, (2.6)

where |α|∞ = max{|αn|;n ∈ NN}.
According to (2.6), if α = 0 or f = b, then fα = f . The existence of differentiable FIF is

guaranteed by the following proposition.

Proposition 2.3. [4] Let {(xn, yn)|n = 0, 1, 2, . . . , N} be the interpolation data with x0 <

x1 < · · · < xN . Let Ln(x) = anx+ bn, Fn(x, y) = αny + qn(x), for n = 1, 2, . . . , N . Suppose

for some integer s > 0, |αn| < asn and qn ∈ Cs[a, b], n = 1, 2, . . . , N . Let Fn,k(x, y) =
αny+qkn
akn

, y0,k =
qk1 (x0)

ak1−α1
, yN,k =

qk1 (xN )

akN−αN
, k = 1, 2, . . . , s. If Fn−1(xN , yN,k) = Fn(x0, y0,k)

for n = 2, 3, . . . , N and k = 1, 2, . . . , s, then {Ln(x), Fn,k(x, y)}n∈NN
determines a FIF f ∈

Cs[x0, xN ].

2.3. The bivariate Hermite interpolation formula. Recall the existence of the general-

ized bivariate Hermite interpolation formula by Chawla et al. [7].

Theorem 2.4. Suppose a set of values f
(k,l)
i,j , i = 0, 1, . . . ,m; j = 0, 1, . . . , n; k = 0, 1, . . . , ri; l =

0, 1, . . . , sj is generated from a function Φ, where f
(k,l)
i,j =

∂k+lφ(xi,yj)

∂xk∂yl
. Then the unique poly-

nomial HM,N (x, y) of degree M = m +
m∑
i=0

ri in x and of degree N = n +
n∑
j=0

sj in y such

that

∂k+l

∂xk∂yl
HM,N (xi, yj) = f

(k,l)
i,j , i = 0, 1, . . . ,m; j = 0, 1, . . . , n; k = 0, 1, . . . , ri; l = 0, 1, . . . , sj

(2.7)

is given by

HM,N (x, y) =
m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

Aik(x)Bjl(y)f
(k,l)
i,j , (2.8)

where Aik(x) and Bjl(y) are given as

Aik(x) =
pi(x)(x− xi)k

k!

ri−k∑
t=0

g
(t)
i (xi)(x− xi)t

t!
,

Bjl(y) =
qj(y)(y − yj)l

l!

sj−l∑
t=0

h
(t)
j (yj)(y − yj)t

t!
,
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pi(x) = (x− x0)r0+1 . . . (x− xi−1)ri−1+1(x− xi+1)ri+1+1 . . . (x− xm)rm+1,

qj(y) = (y − y0)s0+1 . . . (y − yj−1)sj−1+1(y − yj+1)sj+1+1 . . . (y − yn)sn+1,

and

gi(x) = [pi(x)]−1, hj(y) = [qj(y)]−1.

If ∂ri+sj Φ
∂xri∂ysj

, (i = 0, 1, . . . ,m; j = 0, 1, . . . , n) are non-smooth in nature, then HM,N is not

an ideal approximating surface for Φ. Thus we have constructed fractal version of HM,N in

the following using the α-fractal technique.

3. Generalization of Hermite function of two variables by fractal

interpolation

Navascués and Sebastián [17] constructed Hermite fractal function for one variable. In this

paper we shall be interested in the generalization of Theorem 2.4.

Theorem 3.1. Let a finite set of equidistant data : x0 < x1 < · · · < xm ; y0 < y1 < · · · < yn
and {f (k,l)

i,j , i = 0, 1, . . . ,m; j = 0, 1, . . . , n; k = 0, 1, . . . , ri; l = 0, 1, . . . , sj} be given. Let the

fixed vertical scaling factors αU , U = 1, 2, . . . ,m and βV , V = 1, 2, . . . , n be chosen such that

|αU | <
1

mp
, p = max{ri; i = 0, 1, . . . ,m}

and

|βV | <
1

nq
, q = max{sj ; j = 0, 1, . . . , n}.

Then for fixed i, j and any k = 0, 1 . . . , ri, l = 0, 1, . . . , sj, there exist fractal functions Aαik(x)

and Bβ
jl(y) such that

(Aαik)
(ξ)(xi) = (Aik)

(ξ)(xi), i = 0, 1, . . . ,m; ξ = 0, 1, . . . , p (3.1)

and

(Bβ
jl)

(η)(yj) = (Bjl)
(η)(yj), j = 0, 1, . . . , n; η = 0, 1, . . . , q. (3.2)

Proof. We will give here the construction of Aαik(x), the fractal perturbation of Ai,k(x). For

the equidistant data in x direction, consider aU =
xU−xU−1

xm−x0 = 1
m , U = 1, 2, . . . ,m. We will

define a suitable FIF Aαik(x) satisfying Proposition (2.3). Consider the IFS {(LU , F ikU );U =

1, 2, . . . ,m}, where LU (x) = x
U + bU satisfying (2.1) and F ikU (x, y) = αUy + qikU (x) such that

qikU (x) = Aik ◦ LU (x)− αUbik(x). (3.3)

We will choose bik(x) such that bik ∈ Cp(I) and (3.1) is satisfied. From (3.3),

f ikmξ =
(qikm)(ξ)(xm)

aξm − αm
=
A

(ξ)
ik (xm)−mξαmb

(ξ)
ik (xm)

1−mξαm
,

f ik0ξ =
(qik1 )(ξ)(x0)

aξ1 − α1

=
A

(ξ)
ik (x0)−mξα1b

(ξ)
ik (x0)

1−mξα1
.
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Using these end points in the join-up conditions F ikU−1,ξ(xm, f
ik
m,ξ) = F ikU,ξ(x0, f

ik
0,ξ), we have

αU−1

[
A

(ξ)
ik (xm)−mξαmb

(ξ)
ik (xm)

1−mξαm
− b(ξ)ik (xU )

]
= αU

[
A

(ξ)
ik (x0)−mξα1b

(ξ)
ik (x0)

1−mξα1
− b(ξ)ik (x0)

]
.

If all αU = α∗, the above condition gives

A
(ξ)
ik (xm)− b(ξ)ik (xm) = A

(ξ)
ik (x0)− b(ξ)ik (x0),

which is true if we consider bik as Hermite interpolated function with respect to x0, xm such

that

b
(ξ)
ik (x0) = A

(ξ)
ik (x0)

b
(ξ)
ik (xm) = A

(ξ)
ik (xm)

}
, ξ = 0, 1, 2, . . . , p. (3.4)

The IFS associated with (Aαik)
(ξ)(x) is {R2; (LU (x), F ikU,ξ(x, y)), U = 1, 2, . . . ,m}, where

LU (x) =
x

U
+ bU , F

ik
Uξ(x, y) = mξα∗x+mξ(qikU )(ξ)(x) = mξα∗x+A

(ξ)
ik (LU (x))−mξα∗b

(ξ)
ik (x).

(3.5)

Then from (3.3) and (3.4)

(Aαik)
(ξ)(x0) = f ik0ξ =

(qik1 )(ξ)(x0)

aξ1 − α1

=
1

aξ1 − α1

(
A

(ξ)
ik (L1(x0))

mξ
− α∗b(ξ)ik (x0)

)

=
1

1− α∗mξ

(
A

(ξ)
ik (x0)− α∗mξb

(ξ)
ik (x0)

)
= A

(ξ)
ik (x0).

Similarly, we have (Aαik)
(ξ)(xm) = A

(ξ)
ik (xm). For all other partition points U = 1, 2, . . . ,m−1,

(Aαik)
(ξ)(xU ) = F ikUξ

(
L−1
U (xU ), (Aαik)

(ξ) ◦ L−1
U (xU )

)
= mξα∗(Aαik)

(ξ) ◦ L−1
U (xm) +A

(ξ)
ik (xU )−mξα∗b

(ξ)
ik ◦ L

−1
U (xU )

= mξα∗(Aαik)
(ξ)(xm) +A

(ξ)
ik (xU )−mξα∗b

(ξ)
ik (xm) = A

(ξ)
ik (xU )

Aαik is the required Hermite fractal function in the x direction. Similarly the IFS for Bβ
jl is

given by {R2; (L∗V (y), F ∗jlV,η(y, z)), V = 1, 2, . . . , n}, where

L∗V (y) =
y

V
+ bV , F

∗jl
V,η(y, z) = nηβ∗z + nη(q∗jlV )(η)(y) = nηβ∗z +B

(η)
jl (L∗V (y))− nηβ∗b∗(η)

jl (y).

(3.6)

�

Definition 3.2. The generalized bivariate Hermite fractal interpolation function is defined

with the help of the Hermite functions Aαik(x) and Bβ
jl(y) as

Hαβ
M,N (x, y) =

m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

Aαik(x)Bβ
jl(y)f

(k,l)
i,j . (3.7)
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Remark 3.3. If we consider the scaling vectors α = 0 and β = 0, then Aαik = Aik and

Bβ
jl = Bjl and hence Hαβ

M,N = HM,N , and we obtain the classical bivariate Hermite function

as a particular case.

Let I, J be two compact intervals in R. For a fixed partition ∆, scaling vectors α, β we

can define an operator H on Cr(I × J) such that H(f) is the generalized bivariate Hermite

FIF for a fixed f ∈ Cr(I × J), where r = min(p, q).

Proposition 3.4. H is a bounded linear operator on Cr(I × J).

Proof. For given f, g ∈ Cr(I × J) and a real scalar c, we have

H(f + g) =

m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

Aαik(x)Bβ
jl(y)(f + g)

(k,l)
i,j = H(f) +H(g),

H(cf) =
m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

Aαik(x)Bβ
jl(y)(cf)

(k,l)
i,j = cH(f).

For a function f of two variables, consider the norm ‖f‖Cr(I×J) = max
i+j≤r

sup
x∈I,y∈J

∣∣∣ ∂i+jf
∂ix∂jy

∣∣∣.
Now,

‖ ∂
u+vH

∂ux∂vy
‖∞ = sup

x,y∈I

∣∣∣∣∣∣
m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

(Aαik(x))(u)(Bβ
jl(y))(v)f

(k,l)
i,j

∣∣∣∣∣∣ (3.8)

≤ ‖f‖Cr(I×J)

m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

‖(Aαik)(u)‖∞‖(Bβ
jl)

(v)‖∞.

Using IFS (3.5), we get the vertical scaling factor as mξα∗. Now using Proposition (2.3), for

ξ = 0, 1, 2, . . . , r,

‖(Aαik)(ξ) −A(ξ)
ik ‖∞ ≤

mξ|α∗|
1−mξ|α∗|

‖A(ξ)
ik − b

(ξ)
ik ‖∞

≤ mr|α∗|
1−mr|α∗|

‖Aik − bik‖Cr(I).

Thus

‖(Aαik)(ξ)‖∞ ≤
mr|α∗|

1−mr|α∗|
‖Aik − bik‖Cr(I) + ‖Aik‖Cr(I). (3.9)

Similarly, for the Hermite function in y direction

‖(Bβ
jl)

(η)‖∞ ≤
nr|β∗|

1− nr|β∗|
‖Bjl − b∗jl‖Cr(J) + ‖Bjl‖Cr(J). (3.10)
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Using (3.8), (3.9) and (3.10), we get the upper bound for the operator H as

‖H‖ ≤

(
mr|α∗|

1−mr|α∗|

n∑
i=0

ri∑
k=0

‖Aik − bik‖Cr(I) + ‖Aik‖Cr(I)

)
 nr|β∗|

1− nr|β∗|

m∑
j=0

sl∑
l=0

‖Bjl − b∗jl‖Cr(J) + ‖Bjl‖Cr(J)

 .

�

3.1. Upper bound of the error. We will use the following result to prove the error bound.

Theorem 3.5. [7] Let x0, x1, . . . , xm be m + 1 and y0, y1, . . . , yn be n + 1 distinct points in

[a, b] × [c, d]. Let f(x) ∈ C([a, b] × [c, d]) and suppose that all of its partial derivatives exist.

If we keep y fixed, then we can write f(x, y) as

f(x, y) =

m∑
i=0

ri∑
k=0

Aik(x)
∂k

∂xk
f(xi, y) +

λ(x)

(M + 1)!

∂M+1

∂xM+1
f(ξ, y),

where λ(x) = (x − x0)r0+1 . . . (x − xm)rm+1, min(x, x0, . . . , xm) ≤ ξ ≤ max(x, x0, . . . , xm).

Similarly, if we keep x fixed, then

f(x, y) =

n∑
j=0

sj∑
l=0

Bjl(y)
∂l

∂yl
f(x, yj) +

µ(y)

(N + 1)!

∂N+1

∂yN+1
f(x, η),

where µ(y) = (y − y0)s0+1 . . . (y − yn)sn+1, min(y, y0, . . . , yn) ≤ η ≤ max(y, y0, . . . , yn). Thus

f(x, y) =
m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

Aik(x)Bjl(y)
∂k+lf(xi, yj)

∂xk∂yl
+

λ(x)

(M + 1)!

n∑
j=0

sj∑
l=0

Bjl(y)
∂M+l+1f(ξ, yj)

∂xM+1∂yl

+
µ(y)

(N + 1)!

m∑
i=0

ri∑
k=0

Aik(x)
∂k+N+1f(xi, η)

∂xk∂yN+1
+

λ(x)µ(y)

(M + 1)!(N + 1)!

∂M+N+2

∂xM+1∂yN+1
,

which can be expressed as

f(x, y) = HM,N (x, y) +RM,N (x, y),

where HM,N (x, y) is the Hermite interpolated function of f and RM,N (x, y) is the error func-

tion.

Theorem 3.6. Let Φ ∈ Cr(I × J) be the original function approximated by the generalized

Hermite FIF Hαβ
M,N such that |α∗| < 1

mp for p = max{ri; i = 0, 1, . . . ,m} and |β∗| < 1
nq for

q = max{sj ; j = 0, 1, . . . , n}. Then

‖Φ−Hαβ
M,N‖Cr(I×J) ≤‖Φ−HM,N‖Cr(I×J)

+ ‖Φ‖Cr(I×J)

m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

[
‖A(u)‖∞

nr|β∗|
1− nr|β∗|

‖Bjl − b∗jl‖Cr(J)

+
mr|α∗|

1−mr|α∗|
‖Aik − bik‖Cr(I)

( nr|β∗|
1− nr|β∗|

‖Bjl − b∗jl‖Cr(J) + ‖Bjl‖Cr(J)

)]
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Proof. Now for u+ v = 0, 1, . . . , r,

‖
∂u+vHαβ

M,N

∂ux∂vy
−
∂u+vHM,N

∂ux∂vy
‖∞

≤
m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

‖f (k,l)‖∞‖(Aαik)(u)(Bβ
jl)

(v) − (Aik)
(u)(Bjl)

(v)‖∞

≤ ‖f‖Cr(I×J)

m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

(
‖(Aαik)(u) − (Aik)

(u)‖∞‖(Bβ
jl)

(v)‖∞

+ ‖(Aik)(u)‖∞‖(Bβ
jl)

(v) − (Bjl)
(v)‖∞

)
≤ ‖f‖Cr(I×J)

m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

( mr|α∗|
1−mr|α∗|

‖Aik − bik‖Cr(I)‖(B
β
ik)

(v)‖Cr(J)

+ ‖A(u)
ik ‖∞

nr|β∗|
1− nr|β∗|

‖Bjl − b∗jl‖Cr(J)

)
≤ ‖f‖Cr(I×J)

m∑
i=0

n∑
j=0

ri∑
k=0

sj∑
l=0

[(
‖A(u)

ik ‖∞
nr|β∗|

1− nr|β∗|
‖Bjl − bjl‖Cr(J)

)
+
mr|α∗|‖Aik − bik‖Cr(I)

1−mr|α∗|

( nr|β∗|
1− nr|β∗|

‖Bjl − b∗jl‖Cr(J) + ‖Bjl‖Cr(J)

)]
.

The upper bound of error follows from the triangle inequality

‖Φ−Hαβ
M,N‖Cr(I×J) ≤ ‖Φ−HM,N‖Cr(I×J) + ‖HM,N −Hαβ

M,N‖Cr(I×J).

�

The following proposition is useful to compute ‖Aik − bik‖∞, ‖Bjl − b∗jl‖∞.

Proposition 3.7. [8] Let h(t) ∈ Cs[t0, tM ] with s ≥ 2p + 2. Let ∆ be any partition of

[t0, tm], ∆ : t0 < t1 < · · · < tm, and let Φ(t) be the unique Hermite interpolation of h(t) such

that h(ξ)(tj) = φ(ξ)(tj) for all 0 ≤ j ≤ m, 0 ≤ ξ ≤ p. Then for all k with 0 ≤ k ≤ p

‖h(k) − φ(k)‖∞ ≤
‖∆‖2p+2−k

22p+2−2kp!(2p+ 2− 2k)!
‖h(2p+2)‖∞. (3.11)

Note: Taking h(t) = Aik(t), Φ(t) = bik(t) and k = ξ, we can find the bound ‖A(ξ)
ik − b

(ξ)
ik ‖∞

using (3.11).

4. Examples and graphs

Example 4.1. Consider m = 2, n = 2, ri = 1, sj = 1, I = [−2, 2], J = [−1, 1]. Then H5,5 is

a polynomial of degree 5 in x and degree 5 in y. The set of data points are given in Table 1.

Here a quadrilateral represents the values of (f, fx, fy, fxy) at (xi, yj) for i, j = 0, 1, 2. Using
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Table 1. Data values

x ↓| y → −1 0 1

−2 (4, 1, 2, 5) (−1, 0, 5, 8) (0, 5,−6,−3)

0 (18, 6, 0, 4) (6,−3, 1,−7) (−5,−9, 4, 2)

2 (22,−10, 10, 0) (11, 4,−4, 1) (10, 8, 3,−4)

Table 1, we can construct the basis functions as

A00(x) =
(3x+ 8)x2(x− 2)2

128
, A01(x) =

x2(x− 2)2(x+ 2)

64
, A10(x) =

(x+ 2)2(x− 2)2

16
,

A11(x) =
x(x− 2)2(x+ 2)2

16
, A20(x) =

x2(x+ 2)2(8− 3x)

128
, A21(x) =

x2(x− 2)(x+ 2)2

64
,

B00(y) =
y2(4 + 3y)(y − 1)2

4
, B01(y) =

y2(y − 1)2(y + 1)

4
, B10(y) = (y + 1)2(y − 1)2,

B11(y) = y(y + 1)2(y − 1)2, B20(y) =
y2(y + 1)2(4− 3y)

4
, B21(y) =

y2(y + 1)2(y − 1)

4
.

For the construction of fractal Hermite functions consider the uniform partition of I as

{−2, 0, 2} and hence aU = 1
2 , U = 1, 2 in the x direction and {−1, 0, 1} in the y direction with

a∗V = 1
2 , V = 1, 2. According to Theorem 3.1, we have to consider |αU | < 1

21
and |βV | < 1

21
.

Also, consider base functions using (3.4) as

b00(x) =
(4 + x)(x− 2)2

32
, b01(x) =

(2 + x)(x− 2)2

16
, b10(x) = (sinx− sin 2)2(sinx+ sin 2)2,

b11(x) = (ex − e2)2(ex − e−2)2, b20(x) =
(4− x)(x+ 2)2

32
, b21(x) =

(x− 2)(x+ 2)2

16
,

b∗00(y) =
(y + 2)(y − 1)2

4
, b∗01(y) =

(y + 1)(y − 1)2

4
, b∗10(y) = (ey − e)2(ey − e−1)2,

b∗11(y) = (sin y − sin 1)2(sin y + sin 1)2, b∗20(y) =
(y + 1)2(2− y)

4
, b∗21(y) =

(y − 1)(y + 1)2

4
.

In view of (3.5), the IFS for generalized Hermite fractal functions are

LU (x) = x
2 + bU

F ikU (x, y) = αUy +Aik ◦ LU (x)− αUbik(x)

}
, U = 1, 2, (4.1)

and

L∗V (y) = y
2 + b∗V

F ∗jlV (y, z) = βV z +Bjl ◦ L∗V (y)− βV b∗jl(y)

}
, J = 1, 2. (4.2)

Here we have chosen α = 0.2 and β = −0.3. With the above choice of scaling vectors

and the functions Aik, bik, Bjl, b
∗
jl and using IFS (4.1),(4.2), the fractal functions Aαik(x) and

Bβ
jl(y) are constructed. Using these Aαik(x) and Bβ

jl(y) and Definition (3.7) we have plotted

the generalized bivariate Hermite fractal functions (See Figure 1 ). Also we have chosen

α∗ = 0 = β∗ and plotted the second graph in Figure 1 which agrees with classical Hermite

bivariate functions. Next we have plotted the graph of both partial derivative function of the
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proposed function in x and y direction (See Figure 2 and Figure 3). It is clear from Figure

2 and Figure 3 that, for the value of α = 0 = β, fractal derivative functions agrees with the

classical derivative function.

Remark 4.2. Several authors (see for instance Massopust [12, 13] and Drakopoulos et

al. [10]) have proposed the construction of fractal surfaces through oriented simplices or

parallelepipeds. This is a very versatile and interesting model for the definition of non-

smooth surfaces, having fractal dimensions. However, in the case where there are prescribed

derivative values at the nodes, the polygonal model involves major technical difficulties that

complicate excessively the formulation. The approach described in this paper presents a

simple definition of a surface matching value conditions on the nodes, with the additional

advantage of being a generalization of the classical Hermite functions.

Figure 1. Bivariate Hermite fractal function for different values of α, β.

Figure 2. Partial derivative with respect to x of bivariate Hermite fractal

function for different values of α, β.

Figure 3. Partial derivative with respect to y of bivariate Hermite fractal

function for different values of α, β.
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5. Conclusion

The present paper described a method to construct bivariate Hermite fractal function.

The main advantage of the presented interpolation method is the constructibility, that is

the possibility of implementing the method for approximating non-smooth derivatives of the

original functions. Numerical examples are given to illustrate the feasibility of our method for

the best possible choice of the scaling factors. The roughness of fractal interpolated surface

can be adjusted with the scaling vectors. Using the same interpolation data we can obtain

various shape of bivariate FIF by varying values of scaling vectors. The proposed bivariate

Hermite FIF may be useful for surface modeling problem in computer graphics, CAGD and

data visualization when there is fractality hidden in the partial derivatives of the original

function.
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