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Abstract The Stirling numbers of the second kindS(n,k) satisfy

S(n,0)< · · ·< S(n,kn)≥ S(n,kn+1)> · · ·> S(n,n).

A long standing conjecture asserts that there exists non ≥ 3 such thatS(n,kn) =
S(n,kn + 1). In this note, we give a characterization of this conjecturein terms of
multinomial probabilities, as well as sufficient conditions onnensuring thatS(n,kn)>
S(n,kn+1).
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1 Introduction

For a fixed positive integern≥ 3, it is well known that the sequence(S(n,k))n
k=0 of

Stirling numbers of the second kind is unimodal ink, namely,

0= S(n,0)< · · ·< S(n,kn)≥ S(n,kn+1)> · · ·> S(n,n) = 1.

In 1973, Wegner [12] conjectured that there exists non ≥ 3 such thatS(n,kn) =
S(n,kn+1). For the Stirling numbers of the first kind, such a property was shown by
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Erdős [5] in 1953. Up to our knowledge, the only specific result concerning Wegner’s
conjecture is the following (cf. Dobson [4], Mullin [8], andCanfield and Pomerance
[3])
Theorem A. Let n≥ 3. Then, kn+1 equals either kn or kn + 1. If kn = kn+1, then
S(n,kn)> S(n,kn+1).

On the other hand, denote by

E(x) = #{n≤ x : S(n,kn) = S(n,kn+1)}.

Canfield and Pomerance [3] showed that for anyε > 0

E(x) = O
(

x3/5+ε
)
.

The same authors also verified that Wegner’s conjecture is true for 3≤ n≤ 106.
Our contribution to the problem is twofold. In first place, wegive a characteri-

zation of such a conjecture in terms of multinomial probabilities (see Theorem 2 in
Section 3). In second place, we provide in Theorem 1 below a sufficient condition on
n guaranteeing thatS(n,kn)> S(n,kn+1).

To this end, letn≥ 3. We consider the strictly increasing function

gn(x) = (x+1)

(
1−

1
x

)n

, x> 1, (1)

and denote byνn the unique solution to the equationgn(νn) = 1. We also consider
the auxiliary strictly increasing function

f (x) =
log(x+1)

log(1+1/(x−1))
, x> 1. (2)

Let k ≥ 2 and denote by⌊x⌋ the integer part ofx. Sincegm(x) > gm+1(x), x> 1, we
note that

{m≥ 3 : ⌊νm⌋= k} = {m≥ 3 : gm(k)< 1< gm(k+1)}

= {m≥ 3 : f (k) < m< f (k+1)}. (3)

Together with the equivalence log(1+ y)∼ y asy→ 0, this implies that

#{m≥ 3 : ⌊νm⌋= k} ∼ f (k+1)− f (k)∼ 1+ log(k+1), k→ ∞.

With these notations, we state the first result of this note.

Theorem 1 Let n≥ 3. Then, kn ≤ ⌊νn⌋. If kn = ⌊νn⌋, then

km = ⌊νn⌋, n≤ m≤ ⌊ f (⌊νn⌋+1)⌋, (4)

and

S(m,km)> S(m,km+1), n≤ m≤ ⌊ f (⌊νn⌋+1)⌋−1. (5)
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The assumptionkn = ⌊νn⌋ is meaningful and leads us to the problem of location
of kn. A first result in this direction goes back to Harper [6], who showed thatkn ∼
n/ logn, n→ ∞. More precise asymptotic results are due to Rennie and Dobson [10],
Menon [7], and Canfield [2], among many others. More recently, non-asymptotic
bounds forkn have been obtained. In this regard, Yu [14] gave

⌊eW(n)⌋−2≤ kn ≤ ⌊eW(n)⌋+1, n≥ 2, (6)

whereW(·) stands for the Lambert-W function, that is, the solution to the equation
W(n)eW(n) = n. Finally, Wegner [13] showed that

⌊
rn−

0.2
log(rn+1)

⌋
≤ kn ≤

⌊
rn+

0.4
log(rn+1)

⌋
, n≥ 1,

wherern is the unique solution to the equation
(

1−
1

2rn

)
(rn+1) log(rn+1) = n.

Denote byhn(x) = xe−n/x, x > 1. Sincegn(x) ∼ hn(x), asx → ∞, we see that

gn

(
eW(n)

)
∼ hn

(
eW(n)

)
= 1, as follows from the definition ofW(n). This means

thatνn ∼ eW(n), asn→ ∞. A more detailed analysis actually shows that

eW(n)−1< νn < eW(n)+1, n≥ 3.

In accordance with (6), this means that the assumptionkn = ⌊νn⌋ makes sense (see
also Table 1 and the concluding remarks at the end of this note).

n νn kn kn = ⌊νn⌋
1000 190.75187 189 no
1500 268.51842 267 no
2000 342.93881 342 yes
2500 415.04015 414 no
3000 485.38741 484 no
3500 554.33514 553 no
4000 622.12516 621 no
4500 688.93213 688 yes
5000 754.88769 754 yes
6000 884.63384 883 no
7000 1011.9673 1011 yes
8000 1137.3010 1136 no
9000 1260.9336 1260 yes
10000 1383.0907 1382 no
20000 2550.1253 2549 no
30000 3656.9585 3656 yes
40000 4727.8314 4726 no

Table 1 Numerical values ofνn rounded to 8 significant digits, and values ofkn, obtained by using the
Newton-Raphson method and the software Mathematicac© . The cases whenkn = ⌊νn⌋ are highlighted.

To show Theorem 1, we use a probabilistic representation ofS(n,k) by means of a
multinomial law, which is close to the classical representation in terms of occupancy
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problems (see Pitman [9] for more details). Indeed, we give in Theorem 2 (the main
result in this note) a closed form expression for the differenceS(n,k)−S(n,k−1) in
terms of multinomial probabilites and the functiongn(x) defined in (1). This allows
us to characterize Wegner’s conjecture on the one hand and togive a short proof of
Theorem 1, on the other.

2 Stirling numbers and multinomial laws

Let N be the set of positive integers andN0 = N∪ {0}. Unless otherwise stated,
we assume from now on thatn,k ∈ N. Let (U j) j≥1 be a sequence of independent
identically distributed random variables having the uniform distribution on[0,1]. Sun
[11] (see also [1]) gave the following probabilistic representation

S(n,k) =

(
n
k

)
E(U1+ · · ·+Uk)

n−k, 1≤ k≤ n, (7)

whereE stands for the mathematical expectation. We will always consider Borel sets
B⊆ [0,1], whose Lebesgue measure is denoted byλ (B). Define the random variable

Sn(B) =
n

∑
j=1

1B(U j),

where 1B means the indicator function of the setB. Clearly,Sn(B) has the binomial
law with parametersn andp= λ (B), i. e.,

P(Sn(B) = l) =

(
n
l

)
pl (1− p)n−l , l = 0,1, . . . ,n.

Let Pk be the family of partitions of[0,1] into k Borel setsB1,. . . , Bk, with
λ (B j) = p j , j = 1,2, . . . ,k. Finally, we consider the integer simplex

∆n,k = {(ℓ1, . . . , ℓk) ∈ N
k
0 : ℓ1+ · · ·+ ℓk = n}.

If (B1, . . . ,Bk) ∈ Pk, then the random vector(Sn(B1), . . . ,Sn(Bk)) has the multi-
nomial law with parametersn, p1, . . . , pk, namely,

P(Sn(B1) = ℓ1, . . . ,Sn(Bk) = ℓk) =
n!

ℓ1! · · ·ℓk!
pℓ1

1 · · · pℓk
k , (ℓ1, . . . , ℓk) ∈ ∆n,k. (8)

The random vectors(Sn(B1), . . . ,Sn(Bk)), with n,k ∈ N and(B1, . . . ,Bk) ∈ Pk, are
defined on the same probability space. This coupling construction is the key tool
for giving closed form expressions forS(n,k)− S(n,k− 1), since the probability
law of (Sn(B1), . . . ,Sn(Bk)) depends on(B1, . . . ,Bk) only through the corresponding
Lebesgue measuresλ (B j) = p j . With this condition being fulfilled, we will be free
to choose the partition(B1, . . . ,Bk) ∈ Pk.

Denote

P
∗
k =

{
(B1, . . . ,Bk) ∈ Pk : λ (B j) = 1/k, j = 1,2, . . . ,k

}
,
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as well as

Dn,k = {(ℓ1, . . . , ℓk) ∈ ∆n,k : ℓ1 ≥ 1, . . . , ℓk ≥ 1}.

Note that for(B1, . . . ,Bk) ∈ P∗
k , we have from (8)

P(n,k) := P

(
k⋂

j=1

{Sn(B j)≥ 1}

)
=

1
kn ∑

Dn,k

n!
ℓ1! · · ·ℓk!

. (9)

With these ingredients, we give the following probabilistic representation.

Lemma 1 If 1≤ k≤ n and(B1, . . . ,Bk) ∈ P∗
k , then

S(n,k) =
kn

k!
P(n,k).

Proof SinceEU ℓ
j = 1/(ℓ+1), ℓ ∈N0, we have from (7) and (9)

S(n,k)) =

(
n
k

)
∑

∆n−k,k

(n− k)!
ℓ1! · · ·ℓk!

EU ℓ1
1 · · ·EU ℓk

k

=
1
k! ∑

∆n−k,k

n!
(ℓ1+1)! · · ·(ℓk+1)!

=
1
k! ∑

Dn,k

n!

ℓ̂1! · · · ℓ̂k!
=

kn

k!
P(n,k),

whereℓ̂ j = ℓ j +1, j = 1, . . . ,k. The proof is complete. ✷

Let 2≤ k ≤ n. In order to compareP(n,k) andP(n,k−1), we consider the fol-
lowing coupling construction. Given(B1, . . . ,Bk) ∈ P∗

k , we define(A1, . . . ,Ak−1) ∈
P∗

k−1 by decomposingBk as a disjoint union ofk−1 Borel setsCj with

λ (Cj) =
1

k(k−1)
, j = 1, . . . ,k−1,

and set

A j = B j ∪Cj , j = 1, . . . ,k−1.

Observe thatB j ∩Cj = /0, j = 1, . . . ,k−1, and thus

λ (A j) = λ (B j)+λ (Cj) =
1

k−1
, j = 1, . . . ,k−1.

Finally, denote

E =
k−1⋂

j=1

{Sn(A j)≥ 1}, F =
k⋂

j=1

{Sn(B j)≥ 1}. (10)

In this setting, we give the following result.
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Lemma 2 Let 2≤ k≤ n. Then

P(n,k) =

(
1−

gn(k)
k+1

)
P(n,k−1)−Q(n,k),

where gn(·) is defined in (1) and

Q(n,k) = P

(
E∩

(
k−1⋃

j=1

{Sn(B j) = 0}

)
∩{Sn(Bk)≥ 1}

)
.

Proof Denote the complement ofF by

Fc =
k⋃

j=1

{Sn(B j) = 0}.

By construction,F ⊆ E. We thus have from (9) and (10)

P(n,k−1) = P(E) = P(E∩F)+P(E∩Fc)

= P(F)+P
(
E∩Fc∩

{
Sn(Bk) = 0

})
+P
(
E∩Fc∩

{
Sn(Bk)≥ 1

})

= P(n,k)+P
(
E∩

{
Sn(Bk) = 0

})

+P

(
E∩

(
k−1⋃

j=1

{Sn(B j) = 0}

)
∩{Sn(Bk)≥ 1}

)
. (11)

Again by construction, (1), and (9), we have

P
(
E∩

{
Sn(Bk) = 0

})
= P

(
k−1⋂

j=1

{Sn(B j)≥ 1}∩{Sn(Bk) = 0}

)

=
1
kn ∑

Dn,k−1

n!
ℓ1! · · ·ℓk−1!

=
gn(k)
k+1

P(n,k−1).

This, in conjunction with (11), shows the result. ✷

3 The main result

Keeping the notations of the preceding sections, we state our main result.

Theorem 2 Let n≥ 3 and2≤ k≤ n. Then

S(n,k)−S(n,k−1)=
kn

k!
((1−gn(k))P(n,k−1)−Q(n,k)) . (12)

As a consecuence, Wegner’s conjecture is true if and only if

(1−gn(kn+1))P(n,kn)< Q(n,kn+1). (13)

Proof Identity (12) follows from Lemmas 1 and 2 and some simple computations.
Characterization (13) follows by choosingk= kn+1 in (12). The proof is over. ✷
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Proof of Theorem 1

If S(n,k)> S(n,k−1), identity (12) implies that

(1−gn(k))P(n,k−1)> Q(n,k)> 0.

By (1), this means thatk< νn and, a fortiori,kn ≤ ⌊νn⌋.
Suppose thatkn = ⌊νn⌋. Again by (1), 1−gn(kn+1) < 0. Thus, condition (13)

is fulfilled andS(n,kn) > S(n,kn+1). Finally, assume thatn ≤ m≤ ⌊ f (⌊νn⌋+1)⌋.
Using Theorem A, (3), and the first statement of Theorem 1, we get

kn ≤ km ≤ ⌊νm⌋= ⌊νn⌋= kn,

which shows (4). Statement (5) readily follows from TheoremA. This completes the
proof. ✷

Concluding remarks

Numerical computations suggest thatkn equals either⌊νn⌋ or ⌊νn⌋−1. If kn = ⌊νn⌋−
1, characterization (13) becomes

(1−gn(⌊νn⌋))P(n,⌊νn⌋−1)< Q(n,⌊νn⌋). (14)

The difficulty in proving this inequality stems from the factthat both sides in (14)
are positive and, apparently, have the same order of magnitude. This implies that a
very precise estimate ofQ(n,⌊νn⌋) is needed in order to prove (or disprove) Wegner’s
conjecture.
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