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Abstract The Stirling numbers of the second kifth, k) satisfy
S(n,0) < --- < §(n,kn) > S(n,kn+1) > --- > §(n,n).

A long standing conjecture asserts that there exists Bo3 such thatS(n,k,) =
S(n,kn + 1). In this note, we give a characterization of this conjecioréerms of
multinomial probabilities, as well as sufficient conditsonn ensuring tha$(n, k) >

S(n, kn+1).

Keywords Stirling number of the second kindiniqgueness conjecturenultinomial
law

1 Introduction

For a fixed positive integar > 3, it is well known that the sequen¢g(n,k));_, of
Stirling numbers of the second kind is unimodakjmamely,

0=195(n,0) <--- < §(n,kn) > S(n,kn+1) >--->9(n,n)=1.

In 1973, Wegner [12] conjectured that there existsm® 3 such thatS(n,kn) =
S(n,kn+ 1). For the Stirling numbers of the first kind, such a propertg slhown by
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Erdds [5] in 1953. Up to our knowledge, the only specific tesoncerning Wegner’s
conjecture is the following (cf. Dobson [4], Mullin [8], ar@anfield and Pomerance
[3])
Theorem A. Let n> 3. Then, k.1 equals either kor ky + 1. If kg = kq.1, then
S(n,kn) > S(n, kn + 1).

On the other hand, denote by

E(x) =#{n<x:9(n,ky) = S(n,kn+1)}.

Canfield and Pomerance [3] showed that for any 0
E(x)=0 (x3/5+£) :

The same authors also verified that Wegner’s conjecturaésfar 3< n < 10°.

Our contribution to the problem is twofold. In first place, gie a characteri-
zation of such a conjecture in terms of multinomial proki&ibg (see Theorem 2 in
Section 3). In second place, we provide in Theorem 1 belovifecignt condition on
n guaranteeing th&(n,kn) > S(n,kn+ 1).

To this end, leh > 3. We consider the strictly increasing function

on(X) = (x+1) (1— )—1() , x>1, (1)

and denote by, the unique solution to the equatign(vn) = 1. We also consider
the auxiliary strictly increasing function

B log(x+1)
~log(1+1/(x—1))’

f(x) x> 1. (2)

Letk > 2 and denote byx| the integer part ok. Sincegm(x) > gm+1(X), X > 1, we
note that

{m>3:|vm] =k} ={m>3:gmk) <1< gmk+1)}
={m>3:f(k) <m< f(k+1)}. (3)

Together with the equivalence I+ y) ~ y asy — 0, this implies that
#H{m>3: [vn| =k} ~ f(k+1)— f(k) ~1+log(k+1), K— co.
With these notations, we state the first result of this note.
Theorem 1 Letn> 3. Then, k < |vn]. If kn=|vn], then
kn=[Va], n<m<[f(lvn]+1)], (4)

and

S(makm)>s(makf“+l)7 ngmgl_f(l_VnJ+l)J_l- (5)
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The assumptiok, = | v, | is meaningful and leads us to the problem of location
of kn. A first result in this direction goes back to Harper [6], whmwed thak, ~
n/logn, n— . More precise asymptotic results are due to Rennie and Ddhed,
Menon [7], and Canfield [2], among many others. More recemiyn-asymptotic
bounds fok, have been obtained. In this regard, Yu [14] gave

|V | —2<ky < [V ] 41, n>2, (6)

whereW(-) stands for the Lambert-W function, that is, the solutionhte équation
W(n)eV(™ = n. Finally, Wegner [13] showed that

r—L <k, < r+L n>1
" log(ra+1) ] = "= " T log(ra+1) | =

wherer, is the unique solution to the equation

<1 2—:n> (rm+121)log(rn+1)=n.

Denote byhn(x) = xe™*, x > 1. Sincegn(x) ~ hn(x), asx — «, we see that
On (eW(”)) ~ hp (eWm)) = 1, as follows from the definition ofV(n). This means
thatv,, ~ V(" asn — «. A more detailed analysis actually shows that
eV 1 <y, < VMg, n>3.

In accordance with (6), this means that the assumgioa | v,| makes sense (see
also Table 1 and the concluding remarks at the end of thig.note

n Vn kn | kn=[vn]
1000 | 19075187 | 189 no
1500 | 26851842 | 267 no
2000 | 34293881 | 342 yes
2500 | 41504015 | 414 no
3000 | 48538741 | 484 no
3500 | 55433514 | 553 no
4000 | 62212516 | 621 no
4500 | 68893213 | 688 yes
5000 | 75488769 | 754 yes
6000 | 88463384 | 883 no
7000 | 10119673 | 1011 yes
8000 | 11373010 | 1136 no
9000 | 12609336 | 1260 yes
10000 | 13830907 | 1382 no
20000 | 25501253 | 2549 no
30000 | 36569585 | 3656 yes
40000 | 47278314 | 4726 no

Table 1 Numerical values ob;, rounded to 8 significant digits, and valueslgf obtained by using the
Newton-Raphson method and the software Mathenf&ticBhe cases whek, = | v, | are highlighted.

To show Theorem 1, we use a probabilistic representati®rok) by means of a
multinomial law, which is close to the classical represtotan terms of occupancy
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problems (see Pitman [9] for more details). Indeed, we givEhieorem 2 (the main
result in this note) a closed form expression for the diffiesS(n,k) — S(n,k— 1) in
terms of multinomial probabilites and the functigi(x) defined in (1). This allows
us to characterize Wegner’s conjecture on the one hand agidda@ short proof of
Theorem 1, on the other.

2 Stirling numbers and multinomial laws

Let N be the set of positive integers afth = NU {0}. Unless otherwise stated,
we assume from now on thatk € N. Let (U;);j>1 be a sequence of independent
identically distributed random variables having the unifaistribution on0, 1]. Sun
[11] (see also [1]) gave the following probabilistic repeatation

S(n,k) = (E)E(Ul—i- UK 1<k<n, 7)

whereE stands for the mathematical expectation. We will alwayssiter Borel sets
B C [0,1], whose Lebesgue measure is denoted (). Define the random variable

S(B) = > 1s(U)),

where } means the indicator function of the #&tClearly,S,(B) has the binomial
law with parameteraandp= A (B), i. e,

P(S(B) =) = (T) Pl-p™'. 1=01...n

Let % be the family of partitions of0,1] into k Borel setsB;,.. ., By, with
A(Bj) =pj, i =1,2,...,k Finally, we consider the integer simplex

Do ={(l1,...,0) EN§: la+ -+ b =n}.
If (By,...,Bk) € %, then the random vectdB,(B1),...,S(Bk)) has the multi-
nomial law with parametens, py, ..., Pk, Namely,

|
P(Sh(B1) = l1,....Sh(By) = ) = ”'gk. Pl pk (01,00 € Dok (8)

l1) - 4]
The random vector§S,(Bs), ..., Si(Bk)), with n,k € N and(By,...,By) € %, are
defined on the same probability space. This coupling coctstru is the key tool
for giving closed form expressions f@n,k) — S(n,k — 1), since the probability
law of ($(B1),...,S(Bk)) depends orfBy, ..., By) only through the corresponding
Lebesgue measur@gBj) = p;. With this condition being fulfilled, we will be free
to choose the partitio(By, ..., Bx) € .
Denote

P¢={(B1,....B) € P A(Bj) =1/k j=1,2,....k},
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as well as
Dn’kz {(fl,...,fk) eAn,k 1>, 0> 1}.

Note that for(By,...,Bx) € &, we have from (8)
P(n,k):=P {S\(Bj) > 1} . 9
Jﬂl o PRy
With these ingredients, we give the following probabitis&presentation.

Lemmal If 1<k<nand(By,...,By) € Z, then

n

Sk = G PK).

Proof SinceIEUf =1/(¢+1), ¢ € Np, we have from (7) and (9)

S(n,k)) <> z 51 Eufl "EU

1 n!
Sk Aré.k L+l (h+1)! K ; gl

= —P(n k),

Where?j =/{j+1,j=1,....k The proof is complete. O

Let 2< k < n. In order to compar®(n,k) andP(n,k— 1), we consider the fol-
lowing coupling construction. Give(By,...,Byx) € &, we define(Ay,..., A1) €
Py, by decomposin@y as a disjoint union ok — 1 Borel set<Cj with

1

A(CJ) = mv

and set
Aj =BjuCj, j=1,....,k—1.

Observe thaB;NCj =0, j=1,...,k—1, and thus

1 .
A(AJ):A(BJ)'i'A(Cj):m, ji=1,...,k—1.

Finally, denote
k-1
E={SA)>1}, F—ﬂ{sn )> 1. (10)
j=1

j=1

In this setting, we give the following result.
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Lemma?2 Let2<k<n. Then

P(n,k) = <1 ﬂ”T(ki) P(n,k—1) — Q(n,k),

where g(-) is defined in (1) and
k-1
Q(nk) =P (Eﬂ <U{S1(B,-) = 0}> N{S(By) = 1}> :
j=1

Proof Denote the complement &f by
k
Fe= U{su(8)) =0}.
j=1

By constructionF C E. We thus have from (9) and (10)

P(n,k—1)=P(E) = P(ENF) + P(ENF°)
= P(F)+P(ENFN {S(Bi) = 0}) + P(ENF°N {Si(By) = 1})
=P(n,k) +P(EN{S\(Bx) =0})
k—1
+P (Em <U{Sn(Bj) =0}> N{S(Bx) = 1}>- (11)
=1

Again by construction, (1), and (9), we have

k—1
P(EN{S:(B) —0}) P (ﬂ{&(sn > 10 (8180 = 0})
j=1

1 n! gn(K)
== = P(n,k—1).
kn Dn.zk—l 0 b ! k41 ( )
This, in conjunction with (11), shows the result. O

3 The main result

Keeping the notations of the preceding sections, we statenain result.

Theorem 2 Letn> 3 and2 <k <n. Then

kn
S(n,k) = S(n.k—1) = 37 (1= an(k))P(n.k—1) — Q(n.k)). (12)
As a consecuence, Wegner's conjecture is true if and only if

Proof Identity (12) follows from Lemmas 1 and 2 and some simple cotations.
Characterization (13) follows by choosikg= kn+ 1 in (12). The proofis over. O
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Proof of Theorem 1

If S(n,k) > S(n,k—1), identity (12) implies that
(1—on(k))P(n,k—1) > Q(n,k) > 0.

By (1), this means that < v, and, a fortiorik, < |vn].

Suppose thakt, = |vn|. Again by (1), 1- gn(kn+ 1) < 0. Thus, condition (13)
is fulfilled andS(n,ks) > S(n,k, + 1). Finally, assume that<m< | f(|vn| +1)].
Using Theorem A, (3), and the first statement of Theorem 1,&te g

kn < km < [Vm] = [Vn] = kKn,

which shows (4). Statement (5) readily follows from TheorenThis completes the
proof. O

Concluding remarks

Numerical computations suggest tkaequals eithefv, | or [vn] — 1. If kn = |vn] —
1, characterization (13) becomes

(L=an([va]))P(n, [vn] —1) <Q(N, [Vn])- (14)

The difficulty in proving this inequality stems from the fabat both sides in (14)
are positive and, apparently, have the same order of matgiithis implies that a
very precise estimate 6J(n, | v,]) is needed in order to prove (or disprove) Wegner’s
conjecture.
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