On the uniqueness conjecture for the maximum Stirling numbers of the second kind

José A. Adell • Daniel Cárdenas-Morales

the date of receipt and acceptance should be inserted later

Abstract The Stirling numbers of the second kind $S(n, k)$ satisfy

$$
S(n, 0)<\cdots<S\left(n, k_{n}\right) \geq S\left(n, k_{n}+1\right)>\cdots>S(n, n) .
$$

A long standing conjecture asserts that there exists no $n \geq 3$ such that $S\left(n, k_{n}\right)=$ $S\left(n, k_{n}+1\right)$. In this note, we give a characterization of this conjecture in terms of multinomial probabilities, as well as sufficient conditions on n ensuring that $S\left(n, k_{n}\right)>$ $S\left(n, k_{n}+1\right)$.

Keywords Stirling number of the second kind \cdot uniqueness conjecture \cdot multinomial law

1 Introduction

For a fixed positive integer $n \geq 3$, it is well known that the sequence $(S(n, k))_{k=0}^{n}$ of Stirling numbers of the second kind is unimodal in k, namely,

$$
0=S(n, 0)<\cdots<S\left(n, k_{n}\right) \geq S\left(n, k_{n}+1\right)>\cdots>S(n, n)=1 .
$$

In 1973, Wegner [12] conjectured that there exists no $n \geq 3$ such that $S\left(n, k_{n}\right)=$ $S\left(n, k_{n}+1\right)$. For the Stirling numbers of the first kind, such a property was shown by

This work is partially supported by Research Project PGC2018-097621-B-I00. The second author is also supported by Junta de Andalucía Research Group FQM-0178.

José A. Adell
Departamento de Métodos Estadísticos. Universidad de Zaragoza. 50009 Zaragoza. Spain
E-mail: adell@unizar.es
D. Cárdenas-Morales

Departamento de Matemáticas. Universidad de Jaén. 23071 Jaén. Spain.
Tel.: +34-953212144
Fax: +34-953212200
E-mail: cardenas@ujaen.es

Erdős [5] in 1953. Up to our knowledge, the only specific result concerning Wegner's conjecture is the following (cf. Dobson [4], Mullin [8], and Canfield and Pomerance [3])
Theorem A. Let $n \geq 3$. Then, k_{n+1} equals either k_{n} or $k_{n}+1$. If $k_{n}=k_{n+1}$, then $S\left(n, k_{n}\right)>S\left(n, k_{n}+1\right)$.

On the other hand, denote by

$$
E(x)=\#\left\{n \leq x: S\left(n, k_{n}\right)=S\left(n, k_{n}+1\right)\right\} .
$$

Canfield and Pomerance [3] showed that for any $\varepsilon>0$

$$
E(x)=O\left(x^{3 / 5+\varepsilon}\right)
$$

The same authors also verified that Wegner's conjecture is true for $3 \leq n \leq 10^{6}$.
Our contribution to the problem is twofold. In first place, we give a characterization of such a conjecture in terms of multinomial probabilities (see Theorem 2 in Section 3). In second place, we provide in Theorem 1 below a sufficient condition on n guaranteeing that $S\left(n, k_{n}\right)>S\left(n, k_{n}+1\right)$.

To this end, let $n \geq 3$. We consider the strictly increasing function

$$
\begin{equation*}
g_{n}(x)=(x+1)\left(1-\frac{1}{x}\right)^{n}, \quad x>1 \tag{1}
\end{equation*}
$$

and denote by v_{n} the unique solution to the equation $g_{n}\left(v_{n}\right)=1$. We also consider the auxiliary strictly increasing function

$$
\begin{equation*}
f(x)=\frac{\log (x+1)}{\log (1+1 /(x-1))}, \quad x>1 \tag{2}
\end{equation*}
$$

Let $k \geq 2$ and denote by $\lfloor x\rfloor$ the integer part of x. Since $g_{m}(x)>g_{m+1}(x), x>1$, we note that

$$
\begin{align*}
\left\{m \geq 3:\left\lfloor v_{m}\right\rfloor=k\right\} & =\left\{m \geq 3: g_{m}(k)<1<g_{m}(k+1)\right\} \\
& =\{m \geq 3: f(k)<m<f(k+1)\} \tag{3}
\end{align*}
$$

Together with the equivalence $\log (1+y) \sim y$ as $y \rightarrow 0$, this implies that

$$
\#\left\{m \geq 3:\left\lfloor v_{m}\right\rfloor=k\right\} \sim f(k+1)-f(k) \sim 1+\log (k+1), \quad k \rightarrow \infty .
$$

With these notations, we state the first result of this note.
Theorem 1 Let $n \geq 3$. Then, $k_{n} \leq\left\lfloor v_{n}\right\rfloor$. If $k_{n}=\left\lfloor v_{n}\right\rfloor$, then

$$
\begin{equation*}
k_{m}=\left\lfloor v_{n}\right\rfloor, \quad n \leq m \leq\left\lfloor f\left(\left\lfloor v_{n}\right\rfloor+1\right)\right\rfloor, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(m, k_{m}\right)>S\left(m, k_{m}+1\right), \quad n \leq m \leq\left\lfloor f\left(\left\lfloor v_{n}\right\rfloor+1\right)\right\rfloor-1 . \tag{5}
\end{equation*}
$$

The assumption $k_{n}=\left\lfloor v_{n}\right\rfloor$ is meaningful and leads us to the problem of location of k_{n}. A first result in this direction goes back to Harper [6], who showed that $k_{n} \sim$ $n / \log n, n \rightarrow \infty$. More precise asymptotic results are due to Rennie and Dobson [10], Menon [7], and Canfield [2], among many others. More recently, non-asymptotic bounds for k_{n} have been obtained. In this regard, Yu [14] gave

$$
\begin{equation*}
\left\lfloor e^{W(n)}\right\rfloor-2 \leq k_{n} \leq\left\lfloor e^{W(n)}\right\rfloor+1, \quad n \geq 2 \tag{6}
\end{equation*}
$$

where $W(\cdot)$ stands for the Lambert-W function, that is, the solution to the equation $W(n) e^{W(n)}=n$. Finally, Wegner [13] showed that

$$
\left\lfloor r_{n}-\frac{0.2}{\log \left(r_{n}+1\right)}\right\rfloor \leq k_{n} \leq\left\lfloor r_{n}+\frac{0.4}{\log \left(r_{n}+1\right)}\right\rfloor, \quad n \geq 1
$$

where r_{n} is the unique solution to the equation

$$
\left(1-\frac{1}{2 r_{n}}\right)\left(r_{n}+1\right) \log \left(r_{n}+1\right)=n
$$

Denote by $h_{n}(x)=x e^{-n / x}, x>1$. Since $g_{n}(x) \sim h_{n}(x)$, as $x \rightarrow \infty$, we see that $g_{n}\left(e^{W(n)}\right) \sim h_{n}\left(e^{W(n)}\right)=1$, as follows from the definition of $W(n)$. This means that $v_{n} \sim e^{W(n)}$, as $n \rightarrow \infty$. A more detailed analysis actually shows that

$$
e^{W(n)}-1<v_{n}<e^{W(n)}+1, \quad n \geq 3
$$

In accordance with (6), this means that the assumption $k_{n}=\left\lfloor v_{n}\right\rfloor$ makes sense (see also Table 1 and the concluding remarks at the end of this note).

n	v_{n}	k_{n}	$k_{n}=\left\lfloor v_{n}\right\rfloor$
1000	190.75187	189	no
1500	268.51842	267	no
2000	342.93881	342	yes
2500	415.04015	414	no
3000	485.38741	484	no
3500	554.33514	553	no
4000	622.12516	621	no
4500	688.93213	688	yes
5000	754.88769	754	yes
6000	884.63384	883	no
7000	1011.9673	1011	yes
8000	1137.3010	1136	no
9000	1260.9336	1260	yes
10000	1383.0907	1382	no
20000	2550.1253	2549	no
30000	3656.9585	3656	yes
40000	4727.8314	4726	no

Table 1 Numerical values of v_{n} rounded to 8 significant digits, and values of k_{n}, obtained by using the Newton-Raphson method and the software Mathematica ${ }^{\circledR}$. The cases when $k_{n}=\left\lfloor v_{n}\right\rfloor$ are highlighted.

To show Theorem 1, we use a probabilistic representation of $S(n, k)$ by means of a multinomial law, which is close to the classical representation in terms of occupancy
problems (see Pitman [9] for more details). Indeed, we give in Theorem 2 (the main result in this note) a closed form expression for the difference $S(n, k)-S(n, k-1)$ in terms of multinomial probabilites and the function $g_{n}(x)$ defined in (1). This allows us to characterize Wegner's conjecture on the one hand and to give a short proof of Theorem 1, on the other.

2 Stirling numbers and multinomial laws

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Unless otherwise stated, we assume from now on that $n, k \in \mathbb{N}$. Let $\left(U_{j}\right)_{j \geq 1}$ be a sequence of independent identically distributed random variables having the uniform distribution on $[0,1]$. Sun [11] (see also [1]) gave the following probabilistic representation

$$
\begin{equation*}
S(n, k)=\binom{n}{k} \mathbb{E}\left(U_{1}+\cdots+U_{k}\right)^{n-k}, \quad 1 \leq k \leq n \tag{7}
\end{equation*}
$$

where \mathbb{E} stands for the mathematical expectation. We will always consider Borel sets $B \subseteq[0,1]$, whose Lebesgue measure is denoted by $\lambda(B)$. Define the random variable

$$
S_{n}(B)=\sum_{j=1}^{n} 1_{B}\left(U_{j}\right)
$$

where 1_{B} means the indicator function of the set B. Clearly, $S_{n}(B)$ has the binomial law with parameters n and $p=\lambda(B)$, i. e.,

$$
P\left(S_{n}(B)=l\right)=\binom{n}{l} p^{l}(1-p)^{n-l}, \quad l=0,1, \ldots, n
$$

Let \mathscr{P}_{k} be the family of partitions of $[0,1]$ into k Borel sets B_{1}, \ldots, B_{k}, with $\lambda\left(B_{j}\right)=p_{j}, j=1,2, \ldots, k$. Finally, we consider the integer simplex

$$
\Delta_{n, k}=\left\{\left(\ell_{1}, \ldots, \ell_{k}\right) \in \mathbb{N}_{0}^{k}: \ell_{1}+\cdots+\ell_{k}=n\right\} .
$$

If $\left(B_{1}, \ldots, B_{k}\right) \in \mathscr{P}_{k}$, then the random vector $\left(S_{n}\left(B_{1}\right), \ldots, S_{n}\left(B_{k}\right)\right)$ has the multinomial law with parameters n, p_{1}, \ldots, p_{k}, namely,

$$
\begin{equation*}
P\left(S_{n}\left(B_{1}\right)=\ell_{1}, \ldots, S_{n}\left(B_{k}\right)=\ell_{k}\right)=\frac{n!}{\ell_{1}!\cdots \ell_{k}!} p_{1}^{\ell_{1}} \cdots p_{k}^{\ell_{k}}, \quad\left(\ell_{1}, \ldots, \ell_{k}\right) \in \Delta_{n, k} \tag{8}
\end{equation*}
$$

The random vectors $\left(S_{n}\left(B_{1}\right), \ldots, S_{n}\left(B_{k}\right)\right)$, with $n, k \in \mathbb{N}$ and $\left(B_{1}, \ldots, B_{k}\right) \in \mathscr{P}_{k}$, are defined on the same probability space. This coupling construction is the key tool for giving closed form expressions for $S(n, k)-S(n, k-1)$, since the probability law of $\left(S_{n}\left(B_{1}\right), \ldots, S_{n}\left(B_{k}\right)\right)$ depends on $\left(B_{1}, \ldots, B_{k}\right)$ only through the corresponding Lebesgue measures $\lambda\left(B_{j}\right)=p_{j}$. With this condition being fulfilled, we will be free to choose the partition $\left(B_{1}, \ldots, B_{k}\right) \in \mathscr{P}_{k}$.

Denote

$$
\mathscr{P}_{k}^{*}=\left\{\left(B_{1}, \ldots, B_{k}\right) \in \mathscr{P}_{k}: \lambda\left(B_{j}\right)=1 / k, j=1,2, \ldots, k\right\},
$$

as well as

$$
D_{n, k}=\left\{\left(\ell_{1}, \ldots, \ell_{k}\right) \in \Delta_{n, k}: \ell_{1} \geq 1, \ldots, \ell_{k} \geq 1\right\}
$$

Note that for $\left(B_{1}, \ldots, B_{k}\right) \in \mathscr{P}_{k}^{*}$, we have from (8)

$$
\begin{equation*}
P(n, k):=P\left(\bigcap_{j=1}^{k}\left\{S_{n}\left(B_{j}\right) \geq 1\right\}\right)=\frac{1}{k^{n}} \sum_{D_{n, k}} \frac{n!}{\ell_{1}!\cdots \ell_{k}!} . \tag{9}
\end{equation*}
$$

With these ingredients, we give the following probabilistic representation.
Lemma 1 If $1 \leq k \leq n$ and $\left(B_{1}, \ldots, B_{k}\right) \in \mathscr{P}_{k}^{*}$, then

$$
S(n, k)=\frac{k^{n}}{k!} P(n, k)
$$

Proof Since $\mathbb{E} U_{j}^{\ell}=1 /(\ell+1), \ell \in \mathbb{N}_{0}$, we have from (7) and (9)

$$
\begin{aligned}
S(n, k)) & =\binom{n}{k} \sum_{\Delta_{n-k, k}} \frac{(n-k)!}{\ell_{1}!\cdots \ell_{k}!} \mathbb{E} U_{1}^{\ell_{1}} \cdots \mathbb{E} U_{k}^{\ell_{k}} \\
& =\frac{1}{k!} \sum_{\Delta_{n-k, k}} \frac{n!}{\left(\ell_{1}+1\right)!\cdots\left(\ell_{k}+1\right)!}=\frac{1}{k!} \sum_{D_{n, k}} \frac{n!}{\widehat{\ell_{1}!\cdots \widehat{\ell}_{k}!}}=\frac{k^{n}}{k!} P(n, k),
\end{aligned}
$$

where $\widehat{\ell}_{j}=\ell_{j}+1, j=1, \ldots, k$. The proof is complete.
Let $2 \leq k \leq n$. In order to compare $P(n, k)$ and $P(n, k-1)$, we consider the following coupling construction. Given $\left(B_{1}, \ldots, B_{k}\right) \in \mathscr{P}_{k}^{*}$, we define $\left(A_{1}, \ldots, A_{k-1}\right) \in$ \mathscr{P}_{k-1}^{*} by decomposing B_{k} as a disjoint union of $k-1$ Borel sets C_{j} with

$$
\lambda\left(C_{j}\right)=\frac{1}{k(k-1)}, \quad j=1, \ldots, k-1
$$

and set

$$
A_{j}=B_{j} \cup C_{j}, \quad j=1, \ldots, k-1
$$

Observe that $B_{j} \cap C_{j}=\emptyset, j=1, \ldots, k-1$, and thus

$$
\lambda\left(A_{j}\right)=\lambda\left(B_{j}\right)+\lambda\left(C_{j}\right)=\frac{1}{k-1}, \quad j=1, \ldots, k-1
$$

Finally, denote

$$
\begin{equation*}
E=\bigcap_{j=1}^{k-1}\left\{S_{n}\left(A_{j}\right) \geq 1\right\}, \quad F=\bigcap_{j=1}^{k}\left\{S_{n}\left(B_{j}\right) \geq 1\right\} \tag{10}
\end{equation*}
$$

In this setting, we give the following result.

Lemma 2 Let $2 \leq k \leq n$. Then

$$
P(n, k)=\left(1-\frac{g_{n}(k)}{k+1}\right) P(n, k-1)-Q(n, k),
$$

where $g_{n}(\cdot)$ is defined in (1) and

$$
Q(n, k)=P\left(E \cap\left(\bigcup_{j=1}^{k-1}\left\{S_{n}\left(B_{j}\right)=0\right\}\right) \cap\left\{S_{n}\left(B_{k}\right) \geq 1\right\}\right) .
$$

Proof Denote the complement of F by

$$
F^{c}=\bigcup_{j=1}^{k}\left\{S_{n}\left(B_{j}\right)=0\right\}
$$

By construction, $F \subseteq E$. We thus have from (9) and (10)

$$
\begin{align*}
& P(n, k-1)=P(E)=P(E \cap F)+P\left(E \cap F^{c}\right) \\
& =P(F)+P\left(E \cap F^{c} \cap\left\{S_{n}\left(B_{k}\right)=0\right\}\right)+P\left(E \cap F^{c} \cap\left\{S_{n}\left(B_{k}\right) \geq 1\right\}\right) \\
& =P(n, k)+P\left(E \cap\left\{S_{n}\left(B_{k}\right)=0\right\}\right) \\
& +P\left(E \cap\left(\bigcup_{j=1}^{k-1}\left\{S_{n}\left(B_{j}\right)=0\right\}\right) \cap\left\{S_{n}\left(B_{k}\right) \geq 1\right\}\right) . \tag{11}
\end{align*}
$$

Again by construction, (1), and (9), we have

$$
\begin{aligned}
P\left(E \cap\left\{S_{n}\left(B_{k}\right)=0\right\}\right) & =P\left(\bigcap_{j=1}^{k-1}\left\{S_{n}\left(B_{j}\right) \geq 1\right\} \cap\left\{S_{n}\left(B_{k}\right)=0\right\}\right) \\
= & \frac{1}{k^{n}} \sum_{D_{n, k-1}} \frac{n!}{\ell_{1}!\cdots \ell_{k-1}!}=\frac{g_{n}(k)}{k+1} P(n, k-1) .
\end{aligned}
$$

This, in conjunction with (11), shows the result.

3 The main result

Keeping the notations of the preceding sections, we state our main result.
Theorem 2 Let $n \geq 3$ and $2 \leq k \leq n$. Then

$$
\begin{equation*}
S(n, k)-S(n, k-1)=\frac{k^{n}}{k!}\left(\left(1-g_{n}(k)\right) P(n, k-1)-Q(n, k)\right) . \tag{12}
\end{equation*}
$$

As a consecuence, Wegner's conjecture is true if and only if

$$
\begin{equation*}
\left(1-g_{n}\left(k_{n}+1\right)\right) P\left(n, k_{n}\right)<Q\left(n, k_{n}+1\right) . \tag{13}
\end{equation*}
$$

Proof Identity (12) follows from Lemmas 1 and 2 and some simple computations. Characterization (13) follows by choosing $k=k_{n}+1$ in (12). The proof is over.

Proof of Theorem 1

If $S(n, k)>S(n, k-1)$, identity (12) implies that

$$
\left(1-g_{n}(k)\right) P(n, k-1)>Q(n, k)>0 .
$$

By (1), this means that $k<v_{n}$ and, a fortiori, $k_{n} \leq\left\lfloor v_{n}\right\rfloor$.
Suppose that $k_{n}=\left\lfloor v_{n}\right\rfloor$. Again by (1), $1-g_{n}\left(k_{n}+1\right)<0$. Thus, condition (13) is fulfilled and $S\left(n, k_{n}\right)>S\left(n, k_{n}+1\right)$. Finally, assume that $n \leq m \leq\left\lfloor f\left(\left\lfloor v_{n}\right\rfloor+1\right)\right\rfloor$. Using Theorem A, (3), and the first statement of Theorem 1, we get

$$
k_{n} \leq k_{m} \leq\left\lfloor v_{m}\right\rfloor=\left\lfloor v_{n}\right\rfloor=k_{n}
$$

which shows (4). Statement (5) readily follows from Theorem A. This completes the proof.

Concluding remarks

Numerical computations suggest that k_{n} equals either $\left\lfloor v_{n}\right\rfloor$ or $\left\lfloor v_{n}\right\rfloor-1$. If $k_{n}=\left\lfloor v_{n}\right\rfloor-$ 1, characterization (13) becomes

$$
\begin{equation*}
\left(1-g_{n}\left(\left\lfloor v_{n}\right\rfloor\right)\right) P\left(n,\left\lfloor v_{n}\right\rfloor-1\right)<Q\left(n,\left\lfloor v_{n}\right\rfloor\right) \tag{14}
\end{equation*}
$$

The difficulty in proving this inequality stems from the fact that both sides in (14) are positive and, apparently, have the same order of magnitude. This implies that a very precise estimate of $Q\left(n,\left\lfloor v_{n}\right\rfloor\right)$ is needed in order to prove (or disprove) Wegner's conjecture.

References

1. J.A. Adell, A. Lekuona, Explicit expressions and integral representations for the Stirling numbers. A probabilistic approach, Adv. Difference Equ. (2019), A398.
2. E.R. Canfield, On the location of the maximum Stirling number(s) of the second kind, Studies in Applied Math. 59 (1978), 83-93.
3. E.R. Canfield, C. Pomerance, On the problem of uniqueness for the maximum Stirling number(s) of the second kind, Integers 2 (2002), A1. Corrigendum: 5 (2005), A9.
4. A.J. Dobson, A note on Stirling numbers of the second kind, J. Combinatorial Theory 5 (1968), 212214.
5. P. Erdős, On a conjecture of Hammersley, J. Lond. Math. Soc. 28 (1953), 232-236.
6. L.H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Stat. 31 (1967), 410-414.
7. V.V. Menon, On the maximum Stirling numbers of the second kind, J. Combin. Theory A 15 (1973), 11-24.
8. R. Mullin, On Rota's problem concerning partitions, Aequationes Math. 2 (1969), 98-104.
9. J. Pitman, Probabilistic bounds on the coefficients of polynomials with only real zeros, J. Combin. Theory Ser. A 77 (1997), 279-303.
10. B.C. Rennie, A.J. Dobson, On Stirling numbers of the second kind, J. Combin. Theory 7 (1969), 116-121.
11. P. Sun, Product of uniform distributions and Stirling numbers of the first kind, Acta Math. Sin. (Engl. Ser.) 21 (2005), 1435-1442.
12. H. Wegner, Über das Maximum bei Stirlingschen Zahlen zweiter Art, J. Reine Angew. Math. 262/263 (1973), 134-143.
13. H. Wegner, On the location of the maximum Stirling number(s) of the second kind, Result. Math. 54 (2009), 183-198.
14. Y. Yu, Bounds on the location of the maximum Stirling numbers of the second kind, Discrete Math. 309 (2009), 4624-4627.
