TESIS DE LA UNIVERSIDAD
| 2022 90
DE ZARAGOZA

Victoria Mingote Bueno

Representation and Metric
Learning Advances for Deep
Neural Network Face and Speaker
Biometric Systems

Miguel Artiaga, Antonio

IS5N 2254-T606

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

«2s Universidad
A0l Zaragoza

1542

Tesis Doctoral

REPRESENTATION AND METRIC LEARNING
ADVANCES FOR DEEP NEURAL NETWORK FACE
AND SPEAKER BIOMETRIC SYSTEMS

Autor

Victoria Mingote Bueno

Director/es

Miguel Artiaga, Antonio

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Tecnologias de la Informacion y
Comunicaciones en Redes Moviles

2022

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

PROGRAMA DE DOCTORADO EN TECNOLOGIAS DE LA
INFORMACION Y COMUNICACIONES EN REDES MOVILES

Ph.D. Thesis

Representation and Metric Learning
Advances for Deep Neural Network
Face and Speaker Biometric Systems

Victoria Mingote Bueno

Thesis Advisor
Dr. Antonio Miguel Artiaga

DEPARTAMENTO DE INGENIERIA ELECTRONICA Y COMUNICACIONES

ESCUELA DE INGENIERIA Y ARQUITECTURA

March 2022

Universidad Zaragoza

A MI FAMILIA Y AMIGOS.

A TODOS LOS QUE HAN ESTADO AHI.

Abstract

The increasing use of technological devices and biometric recognition systems in people
daily lives has motivated a great deal of research interest in the development of effective
and robust systems. However, there are still some challenges to be solved in these systems
when Deep Neural Networks (DNNs) are employed. For this reason, this thesis proposes
different approaches to address these issues.

First of all, we have analyzed the effect of introducing the most widespread DNN ar-
chitectures to develop systems for face and text-dependent speaker verification tasks. In
this analysis, we observed that state-of-the-art DNNs established for many tasks, includ-
ing face verification, did not perform efficiently for text-dependent speaker verification.
Therefore, we have conducted a study to find the cause of this poor performance and we
have noted that under certain circumstances this problem is due to the use of a global
average layer as pooling mechanism in DNN architectures. Since the order of the pho-
netic information is relevant in text-dependent speaker verification task, whether a global
average pooling is employed, this order is neglected and the results achieved for the ver-
ification performance metrics are too high. Hence, the first approach proposed in this
thesis is an alignment mechanism which is used to replace the global average pooling.
This alignment mechanism allows to keep the temporal structure and to encode the ut-
terance and speaker identity in a supervector. As alignment mechanism, different types
of approaches such as Hidden Markov Model (HMM) or Gaussian Mixture Model (GMM)
can be used. Moreover, during the development of this mechanism, we also noted that
the lack of larger training databases is another important issue to create these systems.
Therefore, we have also introduced a new architecture philosophy based on the Knowl-
edge Distillation (KD) approach. This architecture is known as teacher-student archi-
tecture and provides robustness to the systems during the training process and against
possible overfitting due to the lack of data. In this part, another alternative approach
is proposed to focus on the relevant frames of the sequence and maintain the phonetic
information, which consists of Multi-head Self-Attention (MSA). The architecture pro-
posed to use the MSA layers also introduces phonetic embeddings and memory layers
to improve the discrimination between speakers and utterances. Moreover, to complete
the architecture with the previous techniques, another approach has been incorporated
where two learnable vectors have been introduced which are called class and distillation
tokens. Using these tokens during training, temporal information is kept and encoded
into the tokens, so that at the end, a global utterance descriptor similar to the supervector
is obtained.

iii

iv

Apart from the above approaches to obtain robust representations, the other main
part of this thesis has focused on introducing new loss functions to train DNN architec-
tures. Traditional loss functions have provided reasonably good results for many tasks,
but there are not usually designed to optimize the goal task. For this reason, we have
proposed several new loss functions as objective for training DNN architectures which
are based on the final verification metrics. The first approach developed for this part is
inspired by the Area Under the ROC Curve (AUC). Thus, we have presented a differen-
tiable approximation of this metric called aAUC loss to successfully train a triplet neural
network as back-end. However, the selection of the training data has to be carefully done
to carry out this back-end, so it involves a high computational cost. Therefore, we have
developed several approaches to take advantage of training with a loss function oriented
to the goal task but keeping the efficiency and speed of multi-class training. To imple-
ment these approaches, the differentiable approximation of the Detection Cost Function
(aDCF) and Cost of Log-Likelihood Ratio (CLLR) verification metrics have been employed
as training objective loss. By optimizing DNN architectures to minimize these loss func-
tions, the system learns to reduce errors in decisions and scores produced. The use of
these approaches has also shown a better ability to learn more general representations
than training with other traditional loss functions. Finally, we have also proposed a new
straightforward back-end that employs the information learned by the matrix of the last
layer of DNN architecture during training with aDCF loss. Using the matrix of this last
layer, an enrollment model with a learnable vector is trained for each enrollment identity
to perform the verification process.

Resumen

El aumento del uso de dispositivos tecnoldgicos y sistemas de reconocimiento biométrico
en la vida cotidiana de las personas ha motivado un gran interés en la investigacion y el
desarrollo de sistemas eficaces y robustos. Sin embargo, todavia existen algunos retos
que resolver en estos sistemas cuando se emplean redes neuronales profundas. Por esta
razon, esta tesis propone diferentes enfoques para abordar estas cuestiones.

En primer lugar, hemos analizado el efecto de introducir las arquitecturas de redes
neuronales profundas mas extendidas para desarrollar sistemas para tareas de verifi-
cacion de caras y locutores dependientes del texto. En este analisis, hemos observado
que las redes neuronales profundas del estado del arte establecidas para muchas tareas,
incluyendo la verificacion de caras, no funcionan de forma eficiente para la verificacion
de locutores dependientes del texto. Por lo tanto, hemos realizado un estudio para en-
contrar la causa de este pobre rendimiento y hemos notado que este problema se debe
al uso de la capa de promediado global como mecanismo de agrupacion en las arquitec-
turas de redes neuronales profundas. Dado que el orden de la informacién fonética es
relevante en la tarea de verificacion del locutor dependiente del texto, si se emplea una
agrupacion de promediado global, este orden se descuida y los resultados obtenidos para
las métricas de rendimiento son demasiado altos. Por lo tanto, el primer enfoque prop-
uesto en esta tesis es un mecanismo de alineamiento que se utiliza para reemplazar el uso
del promediado global como mecanismo de agrupacién. Este mecanismo de alineamiento
permite mantener la estructura temporal y codificar la frase y la identidad del locutor en
un supervector. Como mecanismo de alineamiento, se pueden utilizar diferentes tipos de
planteamientos como los modelos ocultos de Markov o los modelos de mezcla de Gaus-
sianas. Ademas, durante el desarrollo de este mecanismo, también observamos que la
falta de bases de datos de entrenamiento mas grandes es otro problema importante para
crear estos sistemas. Por lo tanto, también hemos introducido una nueva filosofia de
arquitectura basada en el enfoque de destilaciéon de conocimiento. Esta arquitectura es
conocida como arquitectura profesor-estudiante y proporciona robustez a los sistemas
durante el proceso de entrenamiento y contra un posible sobreajuste debido a la falta de
datos. En esta parte, se propone otro enfoque alternativo para centrarse en los instantes
relevantes de la secuencia y mantener la informacion fonética, dicho enfoque consiste en
la auto-atencion multi-cabezal. La arquitectura propuesta para utilizar las capas de auto-
atencion multi-cabezal también introduce incrustaciones fonéticas y capas de memoria
para mejorar la discriminacion entre locutores y expresiones. Ademas, para completar la
arquitectura con las técnicas anteriores, se ha incorporado otro enfoque en el que se han

Vi

introducido dos vectores aprendibles que se denominan tokens de clase y de destilacion.
Utilizando estos tokens durante el entrenamiento, se mantiene la informacioén temporal
y se codifica en los tokens, de manera que al final se obtiene un descriptor global de los
enunciados similar al supervector.

Ademas de los enfoques anteriores para obtener representaciones robustas, la otra
parte principal de esta tesis se ha centrado en la introduccién de nuevas funciones de pér-
dida para entrenar arquitecturas de redes neuronales profundas. Las funciones de pérdida
tradicionales han proporcionado resultados razonablemente buenos para muchas tareas,
pero no suelen estar disefiadas para optimizar la tarea objetivo. Por esta razon, hemos
propuesto varias funciones de pérdida nuevas como objetivo para entrenar arquitecturas
de redes neuronales profundas que se basan en las métricas finales de verificacion. El
primer enfoque desarrollado para esta parte se inspira en el Area Bajo la Curva ROC.
Asi que hemos presentado una aproximacion diferenciable de esta métrica denominada
aAUC loss para entrenar con éxito una red neuronal de tripletes como back-end. Sin em-
bargo, la seleccion de los datos de entrenamiento tiene que ser cuidadosamente realizada
para llevar a cabo este back-end, por lo que esto supone un alto coste computacional. Por
lo tanto, hemos desarrollado varios enfoques para aprovechar el entrenamiento con una
funcién de pérdida orientada a la tarea objetivo pero manteniendo la eficiencia y veloci-
dad del entrenamiento multiclase. Para implementar estos enfoques, se han empleado
como objetivo de entrenamiento la aproximacion diferenciable de las siguientes métricas
de verificacion, la funcion de coste de deteccion (aDCF) y el coste de la relacion de log-
verosimilitud (CLLR). Al optimizar las arquitecturas de redes neuronales profundas para
minimizar estas funciones de pérdida, el sistema aprende a reducir los errores en las de-
cisiones y las puntuaciones producidas. El uso de estos enfoques también ha demostrado
una mejor capacidad para aprender representaciones mas generales que el entrenamiento
con otras funciones de pérdida tradicionales. Por ultimo, también hemos propuesto un
nuevo back-end sencillo que emplea la informacion aprendida por la matriz de la altima
capa de la arquitectura de redes neuronales profundas durante el entrenamiento con la
aDCF loss. Utilizando la matriz de esta ultima capa, se entrena un modelo de inscripcion
con un vector aprendible para cada identidad de inscripcion para realizar el proceso de
verificacion.

List of Figures

List of Tables

List of Acronyms

I Introduction and Theoretical Background

1 Introduction

2

1.1
1.2
1.3
1.4
1.5

Motivation........ ..o
Biometrics
Thesis Objectives,
Structure of the Thesis

Collaborations and Research Stays

State-of-the-art Face and Voice Recognition

2.1

2.2

2.3

State-of-the-art Face Recognition
2.1.1 EarlyBeginnings............................
2.1.2 The 19805-2000S.vuiuuieeenieeannn.
2.1.3 The 20008-2012S.vvveieeiii e
214 The2012sandonwards
State-of-the-art Speaker Recognition
2.2.1 EarlyBeginnings.............,
2.22 The 19805-2000S.vuvuiieennieeannn..
223 The 20005-2012S.......ovviuiieeeniieeann..
224 The2012sandonwards
State-of-the-art Language Recognition

vil

Contents

XV
xxiii

XXX1

viii Contents

23.1 EarlyBeginnings i 26

2.3.2 The 19808-2000S.ot ttte ettt e 26

2.3.3 The 20008-2012S\ttt e ettt 27

234 The2012sandonwards ...t 28

3 Biometric Recognition Systems 31

3.1 Introduction 32

3.2 DataProcessingo 33

3.2.1 FaceProcessing i 33

3.2.2 Audio Processing........... ... 34

3.23 Video Processing il 36

3.3 Representation Methods Reviewo .. 36

3.3.1 Hidden MarkovModel i 36

3.3.2 Gaussian Mixture Modelol 37

3.3.3 From Representation Models to Vectors 38

3.3.4 Convolutional Neural Network 39

3.3.5 Residual Neural Network 42

3.4 Back-end Approaches Review 43

3.4.1 Cosine Similarity e 44

3.4.2 Weighted Gaussian Back-end............... 44

3.4.3 Probabilistic Linear Discriminant Analysis...................... 45

3.4.4 Support Vector Machineso oL 45

3.4.5 Neural Network Back-end............. 46

3.5 Score Normalization oo 46

3.6 Calibration........... ..ot 46

3.7 Decision Making 47

3.8 Performance Metrics.uuiuiiii i 48
3.8.1 Receiver Operating Characteristic Curve and Detection Error Trade-

off Curve 49

3.8.2 Area Under ROC Curve and Equal ErrorRate 50

3.8.3 Detection Cost Function 51

3.8.4 Log-Likelihood Ratio Cost, 51

3.8.5 Diarization ErrorRate il 52

3.9 Experimental Framework i 52

Contents ix

3.9.1 Face Verification Datasets, 52
3.9.2 Text-Dependent Speaker Verification Datasets 53
3.9.3 Language Verification Datasets 54
3.9.4 Multimodal Diarization Datasets.........................oo.... 54
II Representation Learning 57
4 File Level Representation using Deep Neural Network Embeddings 59
41 Motivation 59
4.2 Baseline Architecture for Face Verification............................. 60
4.3 Results of Face Verification Baseline Systems........................... 62
4.4 Baseline Architecture for Text-Dependent Speaker Verification 62
4.4.1 1D Convolution Layer 64
442 Random Erasing i 65

4.5 Results and Analysis of Text-Dependent Speaker Verification Baseline
SYStEIMS . .. 66
5 Deep Neural Network Supervectors 69
51 Motivation. 69
5.2 Alignment Mechanism i 70
5.2.1 Hidden Markov Model Alignment Mechanism 71

5.2.2 Gaussian Mixture Model with Maximum A Posteriori Alignment
Mechanism 73
5.3 Deep Neural Network based on Alignment 74
5.4 Experimentsand Results i 75
5.4.1 Experimental Setup......... i 75

5.4.2 Analysis of the Training Data and the Number of States using
HHM Alignment with RSR2015-Part Iand PartIT................ 77

5.4.3 Comparing Global Average Pooling with GMM as Alignment Pool-

ing Mechanism with RSR2015-Part Tand Part Il 83
5.5 Conclusions. 90
6 Knowledge Distillation with Teacher-Student Architectures 91
6.1 Motivation 91

6.2 Knowledge Distillation............ ... o i i 93

X Contents
6.3 Proposed Knowledge Distillation Approach 95
6.4 Teacher-Student Architecture.......... L 96
6.5 ExperimentsandResults 97
6.5.1 Experimental Setup......... 97
6.5.2 Results using a Single Network versus the use of a Teacher-Student
Architecture 98
6.5.3 Analysis of Different Alternatives of Training Teacher-Student
with RSR2015-Partl 101
6.6 ConcluSions.ttt 101
7 Multi-head Self-Attention Mechanisms with Memory Layers 103
7.1 Motivation 103
7.2 Multi-head Self-Attention Mechanism 105
7.3 Memory Layer e 106
7.4 Phonetic Embeddings 107
7.5 Residual Network Architecture combined with Multi-head Self-Attention
and Memory Layers i 108
7.6 Experimentsand Results i 110
7.6.1 Experimental setup........... ... i 110
7.6.2 Analysis the Effect of using Positional Embeddings or Phonetic
Embeddings using RSR2015-Part II and DeepMine-
Part 1 .. 110
7.6.3 Results with RSR2015-Part Io i iiiiiii., 111
7.6.4 Results with DeepMine-Part 1coiiiiio... 112
7.7 ConclUuSIONS.t 113
8 Class and Distillation Tokens for Multi-head Self-Attention Systems 115

8.1 Motivation 115
8.2 Representation using Class Token............... ..o ... 117
8.3 Knowledge Distillation with Tokens................ 121
8.4 Class and Distill Tokens for Teacher-Student Architecture............... 122
8.5 ExperimentsandResults 123

8.5.1 Experimental Setup........... ... i 123

852 ClassTokenStudy......... i i 123

8.5.3 Effect of Knowledge Distillation using Tokens 125

Contents xi

8.5.4 Analysis of Class Token Self-Attention Representations.......... 128
8.6 Conclusions. 129
IIT Metric Learning 131
9 Analysis of Different State-of-the-art Training Loss Functions for Verifi-
cation Systems based on Deep Neural Networks 133
9.1 Motivation 133
9.2 State-of-the-art Loss Functions for Training DNNs 134
9.2.1 Cross-Entropy Loss.o 135
9.2.2 CE Loss combined with Ring Loss 136
9.23 Angular Softmax Loss i 136
9.24 Triplet LoSS . .o .v vttt 137
10 Optimization of the Area Under the ROC Curve for Training Deep Neural
Networks 139
10.1 Motivation. ... 140
10.2 Triplet Neural Network 140
10.2.1 Optimization of the Area Under the ROC Curve................. 141
10.2.2 Triplet Training Method 143
10.3 Experiments and Results in Speaker Verification........................ 144
10.3.1 System Description............ ..o i 146
10.3.2 Experimental Setup.......... i 147
10.3.3 Results with RSR2015-PartI.......... 147
10.3.4 Results with RSR2015-PartIl c..ii.a.. 149
10.3.5 Analysis of Applying a Triplet Neural Network with aAUC Loss
asBack-end. 150
10.4 Experiments and Results in Language Verification 152
10.4.1 System Description.......... o i i 152
10.4.2 Baseline Results with NISTLRE 2009........................... 155
10.4.3 Results using Neural Network Approaches with Different LRE
datasets 156
10.4.4 Limitations of the Triplet Neural Network Back-end............. 157
10.5 Experiments and Results in Face Verification........................... 157

10.5.1 System Description..........o i i 157

xii Contents
10.5.2 Results using WideResnet with MOBIO 158
10.5.3 Results using Pre-trained FaceNet with MOBIO 159
10.6 ConCluSIONS. oottt 160
11 Approximated Detection Cost Function as Training Objective Loss 163
11,1 Motivation 163
11.2 Approximated Detection Cost Function Loss 165
11.2.1 Relationship between aDCFand CELoss 166
11.2.2 Efficient Implementation............ ..., 168
11.2.3 Cosine Distance Layer il 169
11.3 System Employed for Training with aDCF Loss 169
11.4 Experimentsand Results i i 170
11.4.1 Experimental Description, 170
11.4.2 aDCF Parameters @, ¥, B .. ovonn e 171
11.4.3 Last Layer and Ring Loss Studyooio... 173
11.4.4 Comparison with State-of-the-Art Loss Functions 176
11.4.5 Impact of the Score Normalization 183
11.5 Conclusions. 185
12 Training Enrollment Models by Network Optimization 187
12.1 Motivation 187
12.2 Training Enrollment Model......... il 189
12.3 Supervector Neural Network combined with Enrollment Back-end as Sys-
BOIM 192
12.4 Experiments and Results i 192
12.4.1 Experimental Setup.......... ... 192
12.4.2 Results with RSR2015-PartIl 193
12.4.3 Analysis of the Detection Cost Function Evolution during the En-
rollment Phase 194
12.5 Conclusions.oiu 196

13

Multimodal Diarization Systems by Training Face Enrollment Models as
Identity Representations 197

13.1 MoOtIVAtiON . . o oottt e e 198
13.2 Face Enrollment Models. i 199

Contents xiii

13.3 Face Subsystem 202
13.3.1 Video Processingcoouuiiiiiiiiiii i, 203
13.3.2 Embedding Extraction i 203
13.3.3 Training Face Enrollment Models 204
1334 Clusteringooiiiiiii e 205
13.3.5 Tracking and Identity Assignment Scoring 205

13.4 Speaker Subsystem 205
13.4.1 Audio Processing............oouuiiiiiii i 206
13.4.2 Embedding Extraction i i 207
13.4.3 Clusteringointiin i 207
13.4.4 Identity Assignment Scoringl 207

13.5 Experimentsand Results i 208
13.5.1 Analysis of Training Enrollment Models for Face Subsystem 208

13.5.2 Effect of aDCF Parameters y, ff for Training Face Enrollment Models 209

13.5.3 Summary of Face and Speaker Results 210

13.6 CoNCIUSIONSot 212

14 Log-Likelihood Ratio Cost as Training Objective Loss 213

14.1 Motivationot 213

14.2 Log-Likelihood Ratio Cost LoSSouvviiiiiii i 214
14.3 Residual Network Architecture combined with Multi-head Self-Attention

and Memory Layers using CLLRLosst 216

14.4 Experimentsand Results il 218

14.4.1 Experimental Setup.......... ... i 218

14.4.2 Results with RSR2015-Part Il 218

14.5 Conclusions.ttt 221

IV Conclusions 223

15 Conclusions and Future Work 225

15.1 ConcCluSiONS.o 225

15.1.1 Representation Learning 226

15.1.2 MetricLearning i 227

15.2 Award and Research Contributions. 228

xiv Contents
1521 AWard. ..o 229

15.2.2 Journal Articleso 229

15.2.3 Conference Papers ...ttt 229

15.3 FutureResearch 230

V Appendix 233
A Detailed Architectures 235
A1l Introductioni.iiiii e 235
A2 Architectures Part IT 235
A2.1 Baseline Systems 235

A.2.2 Architectures based on Alignment Mechanism 236

A.23 Architectures with Multi-head Self-Attention and Memory Layers 238

A3 Architectures Part Il 241
A.3.1 Triplet Neural Network as Back-end Network................... 241

A.3.2 Convolutional Neural Networks for Metric Learning Loss Functions 242

A.3.3 Residual Neural Networks with Multi-head Self-Attention and Mem-
ory Layers for Metric Learning Loss Functions 243

References 245

1.1
1.2
1.3
1.4
1.5

31

3.2
3.3
3.4
3.5

3.6

3.7

3.8

3.9

List of Figures

Example of analysis and cataloguing multimedia content. 5
Example of a biometric recognition system for a secure access. 5
Biometric modalities. 6
Types of face and voice recognition............... oL 7

Conceptual map of this thesis showing the two stream of research devel-
opedinparallel. 13

Components and phases of a biometric recognition system, the dashed

lines indicate the blocks that are optional in this kind of system. 32
Data processing in function of the kind of data available................. 33
Audio feature extraction pipeline. i 35
CNN architecture example. i 39

Convolutional layer example [210]. In this example, the filter of size 3x3
is applied to the input data to capture temporal and spatial dependencies,
and the relevant features of data of each region are extracted as output. .. 40

Pooling layer example using maximum method [210]. This type of layer
operates on each feature map to obtain the maximum value, so that the
dominant features are kept and the size of the representation in the output
isreduced. ... 41

Residual block [79]. This block has a skip connection that allows infor-
mation to flow more easily from one layer to the next layer which helps
to reduce the effect of vanishing gradients. 43

Decision errors based on the decision threshold (Q) for speaker verifica-
tion systems. Different possible cases depending on the amount of each
type of error. (a) Case where FAR is equal to FRR. (b) The number of FRR
are greater than FAR. (c) Greater number of FAR than FRR............... 49

(a) Left: Example of ROC curve and AUC of this curve. (b) Right: Ex-
ample of DET curve, EER operating point, and also different application
operating points. 50

XV

XVi

List of Figures

4.1
4.2
43

4.4

4.5

4.6

5.1

5.2

5.3

54

55

5.6

5.7

Baseline system for face verification. o Lo 61
Baseline system for speaker verification............... oL 63

Operation with 1D Convolution layers, (a) general pipeline of this oper-
ation; (b) example of how k context frames from input are multiplied by
the weight matrix W and the output is equivalent to a linear combination
of convolutions. i 64

1D Random FErasing transformation applied over input sample after the
feature extractor and the padding and normalization transformations. 65

Matrix of cosine similarity with the first female speaker pronouncing the
first ten phrases.. 67

Matrix of cosine similarity with more embeddings where problems to dis-
tinguish between two different female speakers pronouncing the same
phrase are shown. 67

Examples of alignment for the different existent approaches. (a) Left:
HMM alignment. (b) Center: GMM alignment. (c) Right: DNN Posteriors
alignment. 71

Process of alignment, the input signal x is multiplied by an alignment
matrix A to produce a matrix with vectors sp which are then concatenated
to obtain the supervector. i 72

Process of alignment with GMM, the input signal x is multiplied by an
alignment matrix A to produce a matrix with vectors sc which are then
concatenated to obtain the supervector. Note that we use the C to refer
at the components of the GMM. i .. 73

The architectures developed to check the effectiveness of our proposed
alignment mechanism, 5.4(a) the architecture type A is trained for multi-
class classification using a traditional global average pooling mechanism.
In 5.4(b) the architecture type B, the acoustic features are aligned directly
to obtain the supervector. The supervector is composed of Q vectors sg
for each state or component. 5.4(c) the architecture type C is trained for
multiclass classification using the alignment mechanisms................ 76

Results of EER% varying train percentage where standard deviation is
shown only for both gender independent results. (a) average embeddings;
(b) neural network supervectors. 84

Detection Error Trade-off (DET) curve for female+male results on RSR2015-
Part I of the best systems for each pooling configuration................. 84

Visualizing Mean embeddings vs Neural Network Supervectors for 1 phrase
from male+female using t-SNE, where female is marked by cold color
scale and male is marked by hot colorscale............................. 85

List of Figures xvii
5.8 Visualizing Mean embeddings vs Neural Network Supervectors for 30
phrases from female using t-SNE. Each phrase is marked by one different
colorscale. 85
5.9 Detection Error Trade-off (DET) curve for female+male results on RSR2015-
Part II of the best systems for each pooling configuration. 87
5.10 DET curves for female+male results on RSR2015-Part I of the different
approaches employed for the backbone and alignment mechanism. 88
5.11 DET curve for female+male results on RSR2015-Part II of the different
approaches employed for the backbone and alignment mechanism. 89
6.1 Ensemble models of several intermediate models to obtain the final pre-
dIiCtion. ... 93
6.2 Original Knowledge Distillation approach. 94
6.3 Proposed Knowledge Distillation approach. 95
6.4 (a) Left: Teacher-student training phase, where the dashed line indicates
the process of backpropagation of the gradients from each network. (b)
Right: Teacher-student testing phase, where the last layers are replaced
by a cosine similarity to compare the embeddings extracted from the stu-
dent network. 97
6.5 DET curve for female+male results on RSR2015-Part I of the different sys-
tems for each pooling configuration. L 99
6.6 DET curve for female+male results on RSR2015-Part II of the different
systems for each pooling configuration. 100
6.7 Detection Error Trade-off (DET) curve for female results on RSR2015-Part
I of the three systems with GMM+MAP as alignment mechanism. 102
7.1 Multiple dot-product attention. i 105
7.2 MSA layer alternates originally with a FF layer but in this thesis, we have
proposed to replace with a Memory layer. 106
7.3 Memory layer which uses the output of the dot attention to select the
closest stored values and produce a vector to add extra information to
concatenate with theinput......... i 107
7.4 (a) Left: Similarity of a positional embedding comparing with itself. (b)
Right: Similarity of a phonetic embedding comparing with itself. 108
7.5 Architecture for ResBlock, MSA and Memory layers network, composed
of a backbone, a pooling and a embedding extraction.................... 109

XViil

List of Figures

8.1

8.2

8.3

8.4

8.5

8.6

9.1

10.1

10.2

Process of alignment, the input signal x is multiplied by H alignment
matrices Ay to produce H matrices with vectors sy_7,; which are then

concatenated to obtain the supervector.

Evolution of the number of vectors in the token matrix that are available
for sampling from the beginning of the training process (iteration 1) to the
final iteration (iteration N,). In each iteration, the dark vectors represent

the enabled class tokens, while the light vectors are the disabled tokens.. .

Example of the sampling steps in iteration n of the training process. In
Step 1, the available vectors of the token matrix in that iteration are de-
fined and the random indices of batch size (b) are calculated. In Step 2,

the class tokens are selected and added to the input of MSA layer.

Teacher-student architecture used to create the system, where the dashed
line indicates the process of backpropagation of the gradients of both loss
functions. Both networks are employed to train while for testing, the

student network is the only onewused. oL

Visualizing two examples of different phrases of RSR2015-Part II which
are pronounced by the same speaker. In both cases, three representations
are presented. The figure on top shows the spectrogram of each phrase.
In the middle, the attention weights learnt by the class token for each
of the 16 heads in the last MSA layer are depicted. Finally, the plot on
bottom is the sum of the rows of the previous weight attention matrix.

Visualizing two examples of the same phrase of DeepMine-Part 1 which
are pronounced by different speakers. In both cases, three representations
are presented. The figure on top shows the spectrogram of each phrase.
In the middle, the attention weights learnt by the class token for each
of the 16 heads in the last MSA layer are depicted. Finally, the plot on

bottom is the sum of the rows of the previous weight attention matrix. . ..

Triplet loss learning process. i,

Triplet neural network, the examples are grouped in triplets by the triplet
selection to train the network and evaluated the two pairs of embeddings
to optimize the objective function, where x is the anchor and e is its em-
bedding from back-end network, x* is the positive example and e" is its
embedding, and x~ is the negative example and e~ is its embedding. Be-
sides, sp(p;) is the cosine similarity from anchor-positive pair, and ss(p;)

Representation of unit step and sigmoid functions, where the sigmoid

function can be seen as a good approximation of the unit step function. ..

117

118

119

122

. 128

129

137

143

List of Figures xix

10.3

10.4

10.5

10.6

10.7
10.8

10.9

11.1

11.2

11.3

114

11.5

11.6

11.7
11.8

The architectures developed to check the effectiveness of our proposed
back-end, 10.3(a) the architecture type C is trained for multiclass classifi-
cation using the alignment mechanisms. In 10.3(b), the architecture type
D is trained to optimize the back-end network. 146

DET curves for female+male results on RSR2015-Part I of the best back-
bone networks combined with the differentlosses. 149

DET curves for female+male results on the RSR2015-Part II of the best
backbone networks combined with the different losses. 149

Visualizing Average embeddings vs Neural Network Supervectors vs Em-
beddings from aAUC architecture for 30 phrases from female using t-SNE.
Each phrase is marked by one different color scale. The examples used
for this representation are from the test set, and they have not been seen
during the training process.ciiiiiiiiiiii i 151

Training evolution of real AUC vs aAUC.ccoiiiiiiiiiinnena.. 151

The language recognition system, composed of a front-end, backbone,
selection of one back-end option, and calibration. 153

The architectures developed to check the effectiveness of our proposed
back-end in the case of face verification, 10.9(a) the architecture type C is
trained for multiclass classification. In 10.9(b), the architecture type D is
trained to optimize the back-end network. 158

Interpretation of the last layer of the neural network as a matrix of weights
which models each identity. 167

aDCF learning process using the sigmoid functions trained with target
and non-target examples. 168

Cosine layer is equivalent to a feature norm followed by a linear layer
with weight normalization without bias............ 169

The architectures developed to check the effectiveness of our proposed
loss, 11.4(a) the architecture type C is trained for multiclass classification
using the alighment mechanisms. In 11.4(b), the architecture type D is
trained to optimize the back-end network. L 170

DET curves for female+male results on RSR2015-Part I varying the pa-
rameter values of aDCF loss y and f, and using the best & value in each

DET curves for female+male results on RSR2015-Part II varying the pa-
rameter values of aDCF loss y and f, and using the best « value in each

Evolution training aDCF with different « values and exact DCF. 179

DET curves for female+male results on RSR2015-Part I using different
loss functions. 182

XX

List of Figures

11.9

12.1

12.2

12.3

12.4

12.5

13.1

13.2

13.3

13.4

13.5

14.1

14.2

DET curves for female+male results on RSR2015-Part II using different
loss functions. 184

Embedding dictionary from the last layer in the training phase, where
each row represents one of the N train speakers and D is the dimension
oftheembedding. 190

(a) Left: Training phase, where the last layer can be seen as an embedding
dictionary of the training identities. (b) Right: Enrollment phase, where
an enrollment model is trained for each target identity. (c) Bottom: Test-
ing phase, where test data is compared with each enrollment model and
the verification scores are obtained.ol 191

(a) DET curves for female results of the three back-ends. (b) DET curves
for male results of the three back-ends. 194

DCF evolution in one of the phrases (Phrase 046) from the evaluation
data which individually has a great performance during the training of
the enrollment model......... 195

DCF evolution in one of the phrases (Phrase 054) from the evaluation
data which has one of the worst performance during the training of the
enrollment model. 195

Training face enrollment models using target and non-target embeddings
for each enroll or target identity. oL 200

Block diagram of face system where the steps of tracking and identity
assignment are remarked with dashed lines. 202

(a) Left: Example of Embedding Extraction and Training Enrollment Model

ID1, where the dashed line indicates the two steps of the process. (b)
Right: Example of Embedding Extraction and Training Enrollment Model

ID2, where the dashed line indicates the two steps of the process. 204

Evolution of the DERY% results in function of the different parameter con-
Agurations. 210

Evolution of the different types of errors (MISS%, FA%, ID%) for each dif-
ferent y, f parameter configurations. i 211

Graphical example of the main idea behind how DNNs are optimized by
minibatch using CLLR loss. In this example, the target and non-target
scores distributions are shown and the contribution of two target and
non-target scores to each cost of CLLR loss can be observed. 216

Architecture for ResBlock, MSA and Memory layers network, composed
of a backbone, a pooling and a embedding extraction.................... 217

List of Figures Xxi

14.3 DET curves for female+male results using the different loss functions
evaluated. 221

144 DET curves for female+male results using the different loss functions
evaluated with normalization (snorm). 221

31

3.2

4.1

4.2

5.1

5.2

53

5.4

5.5

5.6

List of Tables

Decision hits and errors types.o i 47

Probabilities of hits and errors rates.o.uun ... 48

Experimental results on MOBIO [244] eval set, showing AUC%, EER%,
minCLLR, minDCF08, and minDCF10. These results were obtained to
compare the baseline systems for face verification. 62

Experimental results on RSR2015-Part I [124] eval set, showing AUC%,
EER%, minCLLR, minDCF08, and minDCF10. These results were obtained
by training with bkg+dev subsets to compare the baseline systems for
text-dependent speaker verification............ol 66

Experimental results on RSR2015-Part I [124] eval set, where EER% and
minDCF10 are shown. These female results were obtained by training
only with a bkg subset and by varying the number of states of the HMM.. 78

Experimental results on RSR2015-Part I [124] eval set, where EER% and
minDCF10 are shown. These male results were obtained by training only
with a bkg subset and by varying the number of states of the HMM. 79

Experimental results on RSR2015-Part I [124] eval set, where EER% and
minDCF10 are shown. These female+male results were obtained by train-
ing only with a bkg subset and by varying the number of states of the HMM. 80

Experimental results on RSR2015-Part I [124] eval set, showing EER% and
minDCF10. These female results were obtained by training with bkg+dev
subsets and by varying the number of states of the HMM. 81

Experimental results on RSR2015-Part I [124] eval set, showing EER% and
minDCF10. These male results were obtained by training with bkg+dev
subsets and by varying the number of states of the HMM. 82

Experimental results on RSR2015-Part I [124] eval set, showing EER% and
minDCF10. These female+male results were obtained by training with
bkg+dev subsets and by varying the number of states of the HMM. 83

xx1il

XX1V

List of Tables

5.7

5.8

5.9

6.1
6.2

6.3

6.4

7.1

7.2

7.3

Experimental results on RSR2015-Part II [124] eval set, showing EER%
and minDCF10. These results were obtained by training with bkg+dev

subsets and by varying the number of states of the HMM.

Experimental results on RSR2015-Part I [124] eval set, showing AUC%,
EER%, CLLR, minCLLR, actDCF10 and minDCF10. These results were ob-
tained by training with bkg+dev subsets to compare the global average
pooling networks and the neural networks with GMM alignment tech-

DIQUE. .« .ttt ettt

Experimental results on RSR2015-Part II [124] eval set, showing AUC%,
EER%, CLLR, minCLLR, actDCF10 and minDCF10. These results were ob-
tained by training with bkg+dev subsets to compare the global average
pooling networks and the neural networks with GMM alignment tech-

TQUE. e ettt e ettt e e e et e e e e e e e e e

Teacher and Student Losses for the two alternatives.....................

Experimental results on RSR2015-Part I [124] eval set, showing AUC%,
EER%, CLLR, minCLLR, actDCF10 and minDCF10. These results were ob-
tained by training with bkg+dev subsets to compare the different neural

networks with both alignment techniques................

Experimental results on RSR2015-Part II [124] eval set, showing AUC%,
EER%, CLLR, minCLLR, actDCF10 and minDCF10. These results were ob-
tained by training with bkg+dev subsets to compare the different neural

networks with both alignment techniques.

Experimental results on RSR2015-Part I [124] eval set, showing EER%,
CLLR and minDCF10. These female results were obtained by training
with bkg+dev subsets to compare the three systems with GMM+MAP
as alignment mechanism and the different configuration layers for each

SYSEEIML. . oo e

Experimental results on RSR2015-Part II [124] evaluation set, showing
EER%, minDCF08, and minDCF10. These results were obtained with bkg
subset and comparing the use of positional or phonetic embeddings with

the feed-forward layer in the architecture.

Experimental results on DeepMine-Part 1 [233] evaluation set, showing
EER%, and minDCF08. These results were obtained with bkg subset and
comparing the use of positional or phonetic embeddings with the feed-

forward layer in the architecture. L.

Experimental results on RSR2015-Part II [124] evaluation set, showing
EER%, minDCF08, and minDCF10. These results were obtained with bkg
subset and varying the use of feed-forward layer or memory layer in the

architecture, and the sizes of memory layer.

38

89

100

101

111

112

List of Tables

XXV

7.4

8.1

8.2

8.3

8.4

10.1

10.2

10.3

10.4

Experimental results on DeepMine-Part 1 [233] evaluation set, showing
EER%, and minDCF08. These results were obtained with train set and
varying the use of feed-forward layer or memory layer in the architecture,

and the sizes of memory layer. L

Experimental results on RSR2015-Part II [124] eval subset, showing EER%,
minDCF08 and minDCF10. These results were obtained by training with
bkg subsets to compare the different approaches to obtain the representa-
tions: average or sampling strategies. The case of having a single vector

and repeat it corresponds with the experiments with R=1................

Experimental results on DeepMine-Part 1 [233] eval subset, showing EER%,
minDCF08 and minDCF10. These results were obtained by training with
train set to compare the different approaches to obtain the representa-
tions: average or sampling strategies. The case of having a single vector

and repeat it corresponds with the experiments with R=1................

Experimental results on RSR2015-Part II [124] eval subset, showing EER%,
minDCF08 and minDCF10. These results were obtained by training with
bkg subset to compare the use of a teacher-student architecture for the
different approaches to obtain the representations: average or sampling
strategies. The case of having a single vector and repeat it corresponds

with the experiments with R=1.......... oo

Experimental results on DeepMine-Part 1 [233] eval subset, showing EER%,
minDCF08 and minDCF10. These results were obtained by training with
train set to compare the use of a teacher-student architecture for the
different approaches to obtain the representations: average or sampling
strategies. The case of having a single vector and repeat it corresponds

with the experiments with R=1............

Experimental results on RSR2015-Part I [124] eval set, showing AUC%,
EER%, CLLR, minCLLR, actDCF10 and minDCF10. These results were ob-
tained by training with bkg+dev subsets to compare the best backbone

neural network with both alignment techniques using the different losses.

Experimental results on RSR2015-Part II [124] eval set, showing AUC%,
EER%, CLLR, minCLLR, actDCF10 and minDCF10. These results were ob-
tained by training with bkg+dev subsets to compare the best backbone

neural network with both alignment techniques using the different losses.

Comparison of different traditional back-end techniques on the LRE09
[235] eval data in terms of showing EER% and minCLLR. Audio files con-

tained 8 seconds of speech.

Comparison of PLDA and the triplet neural network approaches on the
LREO09 [235], the LRE15 [237] and the LRE17 [238] eval data in terms of

showing EER% and minCLLR. i,

113

148

150

156

XXVi

List of Tables

10.5

10.6

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

Experimental results on MOBIO [244] eval set, showing AUC%, EER%,
minCLLR, minDCF08, and minDCF10. These results were obtained by
training with train set to compare the different losses. 159

Experimental results on MOBIO [244] eval set, showing AUC%, EER%,
minCLLR, minDCF08, and minDCF10. These results were obtained by
training with train set to compare the different losses. 160

Experimental results on RSR2015-Part I [124] eval subset, showing EER%,
minDCF10 and actDCF10. These female results were obtained by training
with bkg subset and sweeping of the parameter values in aDCF loss with
normalization (SNOIM).ttt e 172

Experimental results on RSR2015-Part I [124] eval subset, showing EER%,
minDCF10 and actDCF10. These male results were obtained by training
with bkg subset and sweeping of the parameter values in aDCF loss with
normalization (SNOIIM).ttt 173

Experimental results on RSR2015-Part I [124] eval subset, showing EER%,
minDCF10 and actDCF10. These female+male results were obtained by
training with bkg subset and sweeping of the parameter values in aDCF
loss with normalization (snorm). i, 174

Experimental results on RSR2015-Part II [124] eval subset, showing EER%,
minDCF10 and actDCF10. These female results were obtained by training
with bkg subset and sweeping of the parameter values in aDCF loss with
normalization (SNOIIM).ttt e 176

Experimental results on RSR2015-Part II [124] eval subset, showing EER%,
minDCF10 and actDCF10. These male results were obtained by training
with bkg subset and sweeping of the parameter values in aDCF loss with
normalization (SNOTM).ttt e 177

Experimental results on RSR2015-Part II [124] eval subset, showing EER%,
minDCF10 and actDCF10. These female+male results were obtained by
training with bkg subset and sweeping of the parameter values in aDCF
loss with normalization (snorm). 178

Experimental results on RSR2015-Part I [124] eval subset, showing EER%,
minDCF10 and actDCF10. These results were obtained by training with
bkg subset to analyze the behaviour using a complementary loss with
normalization (SNOTM).ttt i 179

Experimental results on RSR2015-Part II [124] eval subset, showing EER%,
minDCF10 and actDCF10. These results were obtained by training with
bkg subset to analyze the behaviour using a complementary loss with
normalization (SNOTMY).t 180

List of Tables XxVii

11.9

Experimental results on RSR2015-Part I [124] eval subset, showing EER%,
minDCF10 and actDCF10. These results were obtained by training with
bkg subset to compare the different loss functions with normalization
(SIIOTIN). .ottt 181

11.10 Experimental results on RSR2015-Part II [124] eval subset, showing EER%,

minDCF10 and actDCF10. These results were obtained by training with
bkg subset to compare the different loss functions with normalization
(STIOTINL). .« .ottt et e e e et e e e 183

11.11 Results in terms of EER% and minDCF10 for RSR2015-Part I and Part

IT [124] eval subset (female and male) with and without normalization
(STIOTINL). .« ottt ettt 184

11.12 Average improvement of aDCF vs. CE+RL/A-Softmax without normal-

12.1

13.1

13.2

13.3

13.4

13.5

ization (snorm) in terms of minDCF10 by phrase on RSR2015-Part I and
PartIT [124] eval subset. 185

Experimental results on RSR2015-Part II [124] eval set, showing EER%,
CLLR, minCLLR, actDCF10 and minDCF10. These results were obtained
by training with bkg subset to compare the approach proposed with the
two alternatives as initialization and the cosine baseline. 193

Experimental results on RTVE 2020 Multimodal Diarization test set, show-
ing DER%. These results were obtained to compare the back-end approach
proposed and the cosine baseline. oL 209

Experimental results on RTVE 2020 Multimodal Diarization test set, show-
ing DER%. These results were obtained by sweeping of the parameters of
aDCF loss function and by different number of training epochs. 209

Experimental results on RTVE 2020 Multimodal Diarization test set, show-
ing DER% and Decomposition of the DER% results in Miss (MISS%), False
Alarm (FA%) and Identity (ID%) Errors. These results were obtained by
sweeping of the parameters of aDCF loss function. 210

Experimental results on RTVE 2020 Multimodal Diarization development
and test sets, showing DER%. These DER% values were the result of the
improvements introduced in this work, and the reference results for both
modalities are also presented. il 211

Decomposition of the DER% results in Miss (MISS%), False Alarm (FA%)
and Identity (ID%) Errors for the development and test sets in both modal-

XXVviii

List of Tables

14.1

14.2

Al
A2

A3

A4

A5

A6

A7

A8

A9

A.10

Experimental results on RSR2015-Part II [124] eval set, showing EER%,
minDCF08, minDCF10, and minCLLR. These results were obtained by train-

ing with bkg subset to compare the approach proposed with different loss
fUNCHIONS. . .. oo 219

Experimental results on RSR2015-Part II [124] eval set, showing EER%,
minDCF08, minDCF10, and minCLLR. These results were obtained by train-

ing with bkg subset to compare the approach proposed with different loss
functions with normalization (snorm). 220

Topology for WideResnet architecture for face verification baseline. 236

Topology for WideResnet architecture for text-dependent speaker verifi-
cation baseline. i 236

Topology for CNN architecture for text-dependent speaker verification
baseline. 236

Topology for CNN architecture with one convolutional layer combined
with alignment mechanism for text-dependent speaker verification. SC
indicates the number of HMM states or GMM components, and N is the
number of classes. ... 237

Topology for CNN architecture with three convolutional layers combined
with alignment mechanism for text-dependent speaker verification. SC
indicates the number of HMM states or GMM components, and N is the
number of classes. 237

Topology for CNN architecture with four convolutional layers combined
with alignment mechanism for text-dependent speaker verification. SC
indicates the number of HMM states or GMM components, and N is the
number of classes. 238

Topology for CNN architecture combined with alignment mechanism for
teacher neural network for text-dependent speaker verification. SC in-
dicates the number of HMM states or GMM components, and N is the
number of classes. 238

Topology for CNN architecture combined with alignment mechanism for
student neural network for text-dependent speaker verification. SC in-
dicates the number of HMM states or GMM components, and N is the
number of classes. 238

Topology for ResBlock, MSA and Memory layers architecture for text-
dependent speaker verification. N is the number of classes. 239

Topology for ResBlock, MSA and Memory layers architecture for teacher
neural network for text-dependent speaker verification. N is the number
Of ClasSes. . ..ot 239

List of Tables XXiX

A1l

A.12

A.13

A.14

A.15

A.16

A.17

A.18

A.19

A.20

A.21

A.22

Topology for ResBlock, MSA and Memory layers architecture for student
neural network for text-dependent speaker verification. N is the number
of Classes.o 240

Topology for ResBlock, MSA and Memory layers architecture with class
token for teacher neural network for text-dependent speaker verification.
N is the number of classes. i 240

Topology for ResBlock, MSA and Memory layers architecture with class
and distillation tokens for student neural network for text-dependent speaker
verification. N is the number of classes. 241

Topology for Triplet Neural Network for back-end network for face and
text-dependent speaker verification. SC indicates the number of HMM
states or GMM components. i 241

Topology for Triplet Neural Network for back-end network for language
verification. 241

Topology for CNN architecture combined with alignment mechanism and
aDCEF loss for teacher neural network for text-dependent speaker verifi-

Topology for CNN architecture combined with alignment mechanism and
aDCF loss for student neural network for text-dependent speaker verifi-

Topology for CNN architecture combined with alignment mechanism and
A-Softmax loss for teacher neural network for text-dependent speaker
Verification. 242

Topology for CNN architecture combined with alignment mechanism and
A-Softmax loss for student neural network for text-dependent speaker
Verification.ttt 243

Topology for ResBlock, MSA and Memory layers architecture with CLLR
loss for text-dependent speaker verification. 243

Topology for ResBlock, MSA and Memory layers architecture with aDCF
loss for text-dependent speaker verification. 244

Topology for ResBlock, MSA and Memory layers architecture with A-
Softmax loss for text-dependent speaker verification. 244

AER
Al
ANN
ASM
ASR
AUC
BDK
CE
CLLR
CNN
DCF
DCT
DER
DET
DNN
DTW
EBGM
EER
EM
FA
FA
FAR
FB

FF
FFT
FM
FN
FNM
FP
FPR
FR
FRR
GMM

Assignment Error Rate
Artificial Intelligence
Artificial Neural Network
Active Shape Models
Automatic Speech Recognition
Area Under the ROC Curve
Bayesian Dark Knowledge
Cross-Entropy

Cost of Log-Likelihood Ratio
Convolutional Neural Network
Detection Cost Function
Discrete Cosine Transform
Diarization Error Rate
Detection Error Trade-off
Deep Neural Network
Dynamic Time Warping
Elastic Bunch Graph Matching
Equal Error Rate
Expectation Maximization
Factor Analysis

False Alarm

False Alarm Rate

Filter Bank

Feed-Forward

Fast Fourier Transform

False Match

False Negative

False Non-Match

False Positive

False Positive Rate

False Rejection

False Rejection Rate
Gaussian Mixture Model

XXX1

List of Acronyms

Xxxii Chapter List of Acronyms

GRU Gated Recurrent Units

H Entropy

HMM Hidden Markov Model

ICA Independent Component Analysis
JFA Joint Factor Analysis

KD Knowledge Distillation

KLT Karhunen-Loeve Transform

LBP Local Binary Patterns

LDA Linear Discriminant Analysis

LFW Labeled Faces-in-the Wild

LLR Log-Likelihood Ratio

LPC Linear Predictive Coding

LR Logistic Regression

LRE Language Recognition Evaluation
LSTM Long Short-Term Memory

MAP Maximum A Posteriori

MFCC Mel-Frequency Cepstral Coeflicients
MFM Max-Feature Map

MOBIO Mobile Biometrics

MSA Multi-head Self-Attention

NAP Nuissance Attribute Projection
NIST National Institute of Standards and Technology
NLP Natural Language Processing

PCA Principal Component Analysis
PDF Probability Density Function

PIN Personal Identification Number
PLDA Probabilistic Linear Discriminant Analysis
PLP Perceptual Linear Predictive

RBF Radial Basis Function

RE Random Erasing

ReLU Rectified Linear Units

ResNet Residual Neural Network

ROC Receiver Operating Characteristic
RTVE Radio Television Espafiola

SAD Speech Activity Detection

SCPD Speech Change Point Detection
SDC Shift Delta Cepstrum

SdSv Short-duration Speaker Verification
SIFT Scale Invariant Feature Transform
SGD Stochastic Gradient Descent

SGLD Stochastic Gradient Langevin Dynamics
SRE Speaker Recognition Evaluation
STFT Short-Time Fourier Transform

SVM Support Vector Machine

xxxiii

TDNN
TFA
TMFA
TN
TNR
TP
TPR
TVM
UBM
VAD
ViT
vQ
WGB

Time Delay Neural Network
Tied Factor Analysis

Tied Mixture of Factor Analysis
True Negative

True Negative Rate

True Positive

True Positive Rate

Total Variability Modelling
Universal Background Model
Voice Activity Detector
Vision Transformer

Vector Quantizer

Weight Gaussian Back-end

Part 1

Introduction and Theoretical
Background

Introduction

1.1 Motivation 1.4 Structure of the Thesis
1.2 Biometrics 1.5 Collaborations and Research Stays
1.3 Thesis Objectives

1.1 Motivation

During the last decades, the evolution of systems is leading to a more natural and in-
tuitive human interaction with technology. Technology has become a crucial part of
day-to-day life since mobile phones, cameras, laptops, and other technological devices
are widely used by many people in their daily lives to create content and keep connected
to each other. Besides, nowadays, the vast majority of services are accessed through
smart machines based on systems with Artificial Intelligence (AI) algorithms. These ser-
vices include government services, banking, e-commerce, hotel reservations and many
other fields related to defense, education, work, business and travel. Therefore, this large
expansion in the use of these devices and services has led to the need of new systems
that improve access security. As a result, the use of systems based on biometric fea-
tures to recognize individuals and grant them access is becoming increasingly common.
Motivated by the exponential growth of systems based on AI algorithms and their ap-
plications, multimedia technologies have also profoundly changed the way to interact,
communicate, learn, entertain, and process the audiovisual information available.

4 Chapter 1. Introduction

Likewise, the rise of these technologies has also promoted the generation of a large
amount of new multimedia and broadcast data like news, talk shows, debates or series
through platforms of video on demand (Youtube, Netflix, HBO, etc.). To increase the value
of all available multimedia content and enhance the user experience, this content has to
be analyzed and catalogued, which is very expensive to do manually. For this reason, the
development of new efficient tools is needed to process the available audiovisual content
and extract relevant information from these archives. This fact has led to a wide exten-
sion of powerful systems based on machine learning algorithms such as Deep Neural
Networks (DNNs). These algorithms have shown great performance in many current au-
diovisual applications with a large amount of data. Thus, the successful development of
these systems has motivated the application of the same approaches in more challenging
tasks such as the automatic description of audiovisual archives from different domains or
in cases where the available data is limited. In recent years, the processing of audiovisual
information has also extended to the digitalization of older repositories, which are com-
posed of historical documents to be preserved. Digitalization with new tools has made
possible to extract important information, which helps to improve the accessibility of
these audiovisual archives.

Motivated by the above insights, this thesis has focused on two main challenges. One
of them is the introduction of new tools to analysis and catalogue the available multime-
dia data. The second is the development of biometric systems which allow us to create
models with better capacities to extract relevant information from the data and person-
alize the system. This personalization allows enhancing the human interaction with bio-
metric recognition systems. In addition, the various approaches implemented also aim
to improve the security and robustness of these systems against attacks. Two examples
of the applications that have motivated the development of these systems during this
thesis are shown in Figure 1.1 and 1.2. Figure 1.1 depicts an example of the application
of these systems for cataloging multimedia content where, from an audiovisual file, it is
determined whether two characters are appearing at each moment and also, if they are
speaking. While in Figure 1.2, another type of application is represented in which speech
utterances of different users are initially stored in the system and when a person wants to
access to the system, the system compares the new utterance with the stored utterances
and decided whether this person is registered and can access or not. To carry out the
development of these systems, different biometric techniques have been employed. In
the following section, biometrics and the different types of systems are introduced.

1.2 Biometrics

Biometrics is the branch of science that deals with measuring and analyzing biological
data. In the technological field, biometrics is defined as a recognition technology that
detects, assigns, verifies and authenticates true identity of the individual based on certain
human characteristics which are unique to each individual. For this reason, the use of
these characteristics is becoming widespread for the development of recognition systems.

1.2 Biometrics 5

Appearing -

Speaking =--=m-mmmmmmm e

Quico Taronji

Figure 1.1: Example of analysis and cataloguing multimedia content.

System
0: reject
access
Evaluation Decision /
1: accept
access
System

Figure 1.2: Example of a biometric recognition system for a secure access.

Traditionally, recognition systems have employed standard techniques based on pos-
session, such as keys, cards or passports, or on knowledge, such as passwords or personal
identification number (PIN). However, the introduction of biometric technology in recog-
nition systems has improved security and privacy in accessing these systems. Biometric
systems can be categorized into two modalities in function of the characteristic employed
as shown in Figure 1.3. On one side, there are biometrics systems that use physiological
characteristics such as Face, Fingerprint, DNA, Hand geometry, Iris and Ear. While the
other group is based on the use of behavioural characteristics such as Voice, Signature
and Keystroke. Both modalities are composed of unique characteristics which are intrin-
sically associated with the individual and cannot be transferred or copied for fraudulent

used.

To develop a specific biometric recognition system, the choice of the biometric modal-
ity used depends upon the application requirements since every biometric characteristic

6 Chapter 1. Introduction

Fingerprint

DNA

Physiological

Hand geomelry

Biometrics

Signature

Behavioral
Keystroke

Figure 1.3: Biometric modalities.

has its advantages and disadvantages. Moreover, specific applications can only employ
certain attributes. Recently, the trend is the fusion of two or more biometric character-
istics to design a multimodal biometric system to overcome possible problems of using
a single characteristic. There are a large number of applications where these biometric
recognition systems are increasingly used such as:

« Surveillance: to improve the security and the reliability of access to certain re-
sources.

« Personalization: to enhance the interaction with domotic applications.
« Authentication: to verify the identity of an individual.

« Forensic: to help prove the identity of the criminal and discharge the innocent
focusing on inspecting digital data to discover relevant information.

« Digitalization or Cataloguing: to analyze and describe the multimedia content.

Since these systems began to revolutionize the way in which recognition was per-
formed in previous applications, face and voice modalities have been two of the most
preferred biometric data. This is motivated by the fact that both attributes are easy to
obtain without the cooperation of the person and using a easy-friendly procedure. Be-
sides, the low-cost to capture face and audio through sensors in smartphones, laptops
and tables has given an advantage of these modalities compared to other biometrics.

Recognition systems based on face and voice attributes can work in several oper-
ating modes as Figure 1.4 depicts. Typically, two of these operating modes are mainly
employed: the identification mode and the verification mode. The former consists of
comparing a biometric sample collected from a subject with all the identities from the

1.3 Thesis Objectives 7

database to find the subject identity. On the other hand, the verification mode is a process
where two biometric samples are compared to determine whether both samples belong
to the same identity or not. Although the two previous have been the most analyzed in
the literature, the rest of the operating modes are also needed to improve the systems
since these modes help to simplify the process made by the identification or verification
process. For example, face or speaker detection allows cleaning data without face or voice
information to determine the identity.

To summarise, in this thesis, we have worked in three specific fields: face verifica-
tion, speaker verification and language recognition. Besides, speaker verification field
involves two different modes. Depending on the constraints of the lexicon content of the
utterances, speaker verification is usually divided into two categories: text-independent
and text-dependent speaker verification. In the former, there are no restrictions on the
uttered phrase pronounced which can produce a large variability in the duration of the
utterances, while in the latter requires the same constraints in the lexicon content. In
this dissertation, we have focused on text-dependent speaker verification.

Biometric Recognition Systems

Face Recognition Speech Speaker Recognition Language

%\ Recognition %\ Recognition

Face Face Face Face speake Speaker Speaker Speaker

Verificanon Detection Dianzaton Identhcation Veqficabon Detection Dianzation

Figure 1.4: Types of face and voice recognition.

1.3 Thesis Objectives

Although face and voice recognition systems are mature technologies, there are still some
challenging tasks which need further improvement and continued research. Therefore,
the main goal of this thesis is the exploration of new approaches based on DNNs for bio-
metric recognition systems using face and voice traits. In particular, focusing on those
techniques that improve the generalization capacity when facing new situations and also,
to train robust systems especially in the case of training data is limited. This broad ob-
jective can be divided into the following more specific ones:

« Applying existing and common approaches for face and speaker verification to
establish a baseline system based on DNNs.

« The exploration of different alternatives to correctly encode phrase and speaker
information for text-dependent speaker verification.

8 Chapter 1. Introduction

« Introducing techniques to provide more robustness to the DNNs employed in our
systems.

+ The development of several loss functions which are more suitable for face, speaker
and language verification tasks.

« The creation of new back-ends to perform the face and speaker verification process.

« Applying the different approaches developed to the automatic indexing of multi-
media content.

1.4 Structure of the Thesis

This dissertation is divided into four main parts, as shown in the conceptual map in Fig-
ure 1.5. In the first one (Chapter 1, 2 and 3), an introduction to the motivation and goals
of this thesis, and also, to the state-of-the-art of the biometric recognition systems is
provided. The second part (Chapter 4, 5, 6, 7 and 8) is dedicated to the different represen-
tation learning approaches developed during this dissertation. In the third part (Chapter
9, 10, 11, 12, 13 and 14), the development of specific metric learning loss functions are
presented which are more suitable for the verification task than the existing ones. To fi-
nalize, Chapter 15 contains the main conclusions of the research presented in this thesis
and future research lines. The organization of the different chapters and the description
is as follows:

+ Chapter 1. Introduction: In the present chapter, the motivation and goals of this
thesis are introduced. Moreover, a brief background of the biometric science and
recognition systems is provided.

« Chapter 2. State-of-the-art Face and Voice Recognition: In this chapter, we
review the state-of-the-art of recognition systems that are based on the same char-
acteristics employed to carry out this dissertation.

« Chapter 3. Biometric Recognition Systems: This chapter introduces the bio-
metric recognition systems and reviews the techniques used in this thesis for each
part. Furthermore, the experimental datasets used for the different systems are
presented, as well as the performance metrics applied to evaluate the different ap-
proaches throughout this thesis.

« Chapter 4. File Level Representation using Deep Neural Network Embed-
dings: Once the theoretical background has been presented in the previous chap-
ters, the baseline systems developed for face and speaker verification are intro-
duced. Apart from baseline systems, we analyze some of the issues found with the
global average pooling if it is used in the models which have promoted part of the
new approaches presented in the following chapters.

1.4 Structure of the Thesis 9

« Chapter 5. Deep Neural Network Supervectors: Motivated by the issues pre-
sented in Chapter 4 for the text-dependent speaker verification systems, in this
chapter, an alignment mechanism using Hidden Markov Model (HMM) and Gaus-
sian Mixture Model (GMM) information is introduced to replace the global aver-
age pooling. This kind of mechanism allows to keep the temporal structure of each
phrase and obtain a neural network supervector with the speaker and phrase infor-
mation since both are relevant to the text-dependent speaker verification task. The
results show the relevance of keeping the phonetic order to obtain a great perfor-
mance in this task. The research described in this chapter generated the following
publications:

[1] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Differentiable Supervector
Extraction for Encoding Speaker and Phrase Information in Text Dependent
Speaker Verification." Proceedings of IberSPEECH 2018, pp. 1-5. Barcelona,
Spain.

[2] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Supervector Extraction for
Encoding Speaker and Phrase Information with Neural Networks for Text-
Dependent Speaker Verification." Applied Sciences, vol. 9, no. 16, p. 3295,
2019.

[3] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Optimization of the area
under the ROC curve using neural network supervectors for text-dependent
speaker verification" Computer Speech & Language, vol. 63,p. 101078, 2020

+ Chapter 6. Knowledge Distillation with Teacher-Student Architectures: Us-
ing as starting point the methodological framework introduced in Chapter 5, this
chapter presents an approach to improve the generalization ability and provide
more robustness. This approach is based on Knowledge Distillation (KD) which
consists of two neural networks, known as Teacher and Student, where the student
is trained to replicate the predictions from the teacher, so it learns their variability
during the training process. The results confirm that KD architectures combined
with techniques that augment the variability of the input signals can improve the
single model presented in Chapter 5. The work presented in this chapter has re-
sulted in the following publications:

[3] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Optimization of the area
under the ROC curve using neural network supervectors for text-dependent
speaker verification" Computer Speech & Language, vol. 63,p. 101078, 2020

[4] V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, "Knowledge Distil-
lation and Random Erasing Data Augmentation for Text-Dependent Speaker
Verification." Proceedings of ICASSP 2020, pp. 6824-6828. Barcelona, Spain.

+ Chapter 7. Multi-head Self-Attention Mechanisms with Memory Layers:
The methodological framework introduced in Chapter 5 demonstrated the rele-
vance of keeping the phonetic knowledge for text-dependent speaker verification

10

Chapter 1. Introduction

task. Thus, in this chapter, we combine the temporal attention of multiple parallel
heads with memory layers and the phonetic embeddings extracted from a phonetic
classification network, which helps to guide the attention mechanism with the role
of the positional embedding. These results have led to the following publication:

[5] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Memory Layers with Multi-
Head Attention Mechanism for Text Dependent Speaker Verification." Pro-
ceedings of ICASSP 2021, pp. 6154-6158. Toronto, Canada.

Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Sys-
tems: As an evolution of the approaches shown in the previous chapters, this chap-
ter introduces a Bayesian estimation of a learnable global representation known as
class token to replace the global average pooling mechanism. Besides, a distilla-
tion token using KD approach is combined with the class token. This distillation
token is trained to mimic the predictions from the teacher network. The research
described in this chapter generated the following publication:

[6] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Class Token and Knowl-
edge Distillation for Multi-head Self-Attention Speaker Verification Systems."
arXiv preprint arXiv:2111.03842, Submitted to IEEE Transactions on Audio,
Speech and Language, 2021.

Chapter 9. Analysis of Different State-of-the-art Training Loss Functions
for Verification Systems based on Deep Neural Networks: In this chapter,
we revisit the most employed loss functions for training Deep Neural Networks
(DNNs). These loss functions can be categorized into two groups: identification
or classification loss functions, and verification or metric learning loss functions.
Throughout this chapter, we define the loss functions of each group used as ref-
erences in this dissertation. Moreover, we analyze the main drawbacks of each
one.

Chapter 10. Optimization of the Area Under the ROC Curve for Training
Deep Neural Networks: In view of the disadvantages of previous loss functions,
we introduce a new loss function to train a triplet neural network as back-end
for detection tasks. This loss is based on an approximation of the Area Under
the Receiver Operating Characteristic Curve (aAUC), which is one of the perfor-
mance metrics employed. Besides, we show that this loss function is suitable for
any recognition task independently of recognizing faces, speakers or languages.
The work presented in this chapter has resulted in the following publications:

[3] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Optimization of the area
under the ROC curve using neural network supervectors for text-dependent
speaker verification." Computer Speech & Language, vol. 63,p. 101078, 2020

[7] V.Mingote, D. Castan, M. McLaren, M. K. Nandwana, A. Ortega, and E. Lleida,
A. Miguel, "Language Recognition using Triplet Neural Networks." Proceed-
ings of INTERSPEECH 2019, pp. 4025-4029. Graz, Austria.

1.4 Structure of the Thesis 11

+ Chapter 11. Approximated Detection Cost Function as Training Objective
Loss: In this chapter, a novel training objective function called approximated De-
tection Cost Function (aDCF) is proposed to replace the classical Cross-Entropy
loss using the same type of multi-class architectures. This loss function is inspired
by DCF, which is another performance metric for verification task. DCF measures
the decision errors produced in verification systems. These results have led to the
following publications:

[8] V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, "Optimization of
False Acceptance/Rejection Rates and Decision Threshold for End-to-End
Text-Dependent Speaker Verification Systems." Proceedings of INTERSPEECH
2019, pp.2903-2907. Graz, Austria.

[9] V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, E. "aDCF Loss Func-
tion for Deep Metric Learning in End-to-End Text-Dependent Speaker Ver-
ification Systems." IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 30, pp. 772-784, 2022, doi: 10.1109/TASLP.2022.3145307.

« Chapter 12. Training Enrollment Models by Network Optimization: This
chapter presents a novel and straightforward methodology to perform the verifi-
cation process instead of a complex back-end. Using this approach, we propose to
leverage the knowledge acquired by a DNN to model the identities of the training
set since the last layer of the DNN can be interpreted as an embedding dictionary
representing the training identities. Thus, after the initial training phase, we in-
troduce a learnable vector for each enrollment identity, and this training process is
lead by aDCF loss proposed in Chapter 11. The research described in this chapter
generated the following publication:

[10] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Training Speaker Enroll-
ment Models by Network Optimization." Proceedings of INTERSPEECH 2020,
pp. 3810-3814. Shangai, China.

« Chapter 13. Multimodal Diarization Systems by Training Face Enrollment
Models as Identity Representations: In this chapter, we introduce the multi-
modal systems developed for the diarization of audiovisual files and the assign-
ment of an identity to each segment. Furthermore, in the face verification system,
we have included the novel approach presented in Chapter 12 to train an enroll-
ment model for the characterization of each identity. The work presented in this
chapter has resulted in the following publications:

[11] V.Mingote, I. Vinals, P. Gimeno, A. Miguel, A. Ortega, and E. Lleida, "ViVoLAB
Multimodal Diarization System for RTVE 2020 Challenge." Proceedings of Iber-
SPEECH 2020, pp. 76-80. Valladolid, Spain.

[12] V. Mingote, I. Vinals, P. Gimeno, A. Miguel, A. Ortega, and E. Lleida, "Multi-
modal Diarization Systems by Training Enrollment Models as Identity Rep-
resentations." Applied Sciences, vol. 12, no. 3, p. 1141, 2022.

12 Chapter 1. Introduction

+ Chapter 14. Log-Likelihood Ratio Cost as Training Objective Loss: Moti-
vated by the great performance obtained in Chapter 11 training with aDCF loss,
this chapter presents an alternative approach to optimize the parameters of a neu-
ral network using a loss function based on Log-Likelihood Ratio Cost (CLLR). This
function is an application-independent metric that measures the cost of soft de-
tection decisions over all the operating points. Thus, prior or relevance cost pa-
rameters assumptions are not employed to obtain it. These results have led to the
following publication:

[13] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, "Log-Likelihood-Ratio Cost
Function as Objective Loss for Speaker Verification Systems." Proceedings of
INTERSPEECH 2021, pp. 2361-2365. Brno, Czechia.

+ Chapter 15. Conclusions and Future Work: This last chapter contains the main
conclusions that emerge from this thesis, as well as a proposal of future research
lines.

1.5 Collaborations and Research Stays

All the research presented in this dissertation has been conducted within the Voice Input
Voice Output (ViVoLab) group (University of Zaragoza, Spain), under the supervision of
Dr. Antonio Miguel Artiaga. Additionally, I had the opportunity of benefiting from one
research stay in the context of my PhD, which is listed below:

+ September 2018 - December 2018: STAR Lab, SRI International, California, United
States. This stay was an opportunity to discuss closely with Diego Castan, Mitchel
McLaren and Mahesh Nwanda in the context of the analysis of language influences
to recognize. Apart of getting familiar with the data to be analyzed, we sat up a
proper framework for its analysis which is described in Chapter 10.

13

1.5 Collaborations and Research Stays

Figure 1.5: Conceptual map of this thesis showing the two stream of research developed in parallel.

State-of-the-art Face and Voice

Recognition

2.1 State-of-the-art Face Recognition
2.1.1 Early Beginnings
2.1.2 The 1980s-2000s 2.3
2.1.3 The 2000s-2012s
2.1.4 The 2012s and onwards
2.2 State-of-the-art Speaker Recog-
nition
2.2.1 Early Beginnings
2.2.2 The 1980s-2000s

2.2.3 The 2000s-2012s

2.24 The 2012s and onwards
State-of-the-art Language
Recognition

2.3.1 Early Beginnings

2.3.2 The 1980s-2000s

2.3.3 The 2000s-2012s

2.3.4 The 2012s and onwards

In this chapter, we summarise in three state-of-the-art reviews the most important

existing approaches in the literature from the fields of face recognition, speaker recog-

nition and language recognition. During their development, the fields of speaker and

face recognition have evolved in parallel, and sometimes approaches developed in one

field have subsequently been implemented in the other. On the other hand, the evolution

of speaker and language recognition has traditionally progressed together as they are

closely related and share many common aspects. In general, the most relevant speaker

recognition approaches have been adapted to the language recognition systems. To make

the following reviews of the state of the art, we have taken into account some relevant re-

views for each field: face recognition [14-20], speaker recognition [21-28] and language

15

16 Chapter 2. State-of-the-art Face and Voice Recognition

recognition [29-31]. In addition, we have divided each of these state-of-the-art review
into the same periods to facilitate the comparison between them.

2.1 State-of-the-art Face Recognition

2.1.1 Early Beginnings

The earliest studies on face recognition can be traced back to the 1950s in psychology [32],
and 1960s in engineering literature [33]. In the latter, the first semi-automatic face recog-
nition system was developed, which could extract usable feature points and calculate
distances between two faces. Nevertheless, the research field on automatic face recog-
nition is considered to have started in the 1970s [34, 35] where human intervention was
not involved in the recognition process. In these initial attempts, face recognition was
performed with feature-based approaches. These approaches used straightforward im-
age processing techniques to extract a vector of important regions of the face. After
that, these vectors were compared with a simple distance measure or using the nearest
neighbour classifier to obtain the identity label.

2.1.2 The 1980s-2000s

During the early 1980s, the field of face recognition remained dormant. The slow progress
made in these years was motivated by the fact that image capture was a difficult task.
Therefore, few face image databases were available. However, since the late 1980s, re-
search interest in this field grew significantly. One of the first approaches was a standard
linear algebra technique applied to perform the face recognition process [36]. This tech-
nique was based on a statistical approach known as Principal Component Analysis (PCA)
and as Karhunen-Loeve transform (KLT) in the pattern recognition literature [37]. Using
this method, feature point selection and dimension reduction were applied on the face
images to obtain representations of the face in a new lower-dimensional space. These
face representations were known as eigenpictures or eigenfaces. Based on the above
work, [38] was one of the first truly successful approaches to automatic face recognition
using eigenfaces as classification features for face detection and identification. To carry
out face recognition, a Euclidean distance was applied on the eigenfaces. Nevertheless,
as this metric was too simple, [39] proposed to employ a probabilistic similarity measure.

The eigenface approaches showed some problems when the face images to be recog-
nized had large variations in illumination, light direction and facial expression. There-
fore, to solve these issues, another linear projection method was developed, which was
based on Fisher’s Linear Discriminant Analysis (LDA) [40,41]. The classification features
obtained with this method became known as Fisherfaces. Apart from this approach, sev-
eral variations and extensions of the eigenfaces and Fisherfaces methods were proposed.
These approaches slightly improved the way of dealing with illumination and expres-

2.1 State-of-the-art Face Recognition 17

sion variations. However, these methods still had one main drawback since the PCA and
LDA techniques only model simple Euclidean distances between samples. Hence, these
techniques failed to discover the underlying complex ground truth structure. Therefore,
a generalization of PCA was proposed, which was Independent Component Analysis
(ICA) [42]. ICA employed a higher-order statistics to have more power of representation
than PCA.

PCA, LDA and ICA are the best known holistic or appearance-based methods for
face recognition. Nonetheless, during the same decades, other types of feature extrac-
tion methods were developed. A widely employed local or feature-based approach was
proposed in [43] which was Elastic Bunch Graph Matching (EBGM). This technique
consisted of representing each face with a labeled graph. To generate it, the Gabor
wavelet transform was applied around the chosen specific facial landmarks, called fidu-
cial points. For the recognition process, the labeled graphs of each face image were com-
pared with a Euclidean distance metric between equivalent landmarks. During these
years, another model-based approach was proposed. This method was Active Shape
Model (ASM) [44, 45] which consisted of flexible statistical models of the shapes of ob-
jects. To train this kind of models for recognition, a prior model with plausible location of
shapes of objects was employed and when a new image was available, it was iteratively
deformed to find the best match position between the new image and the model. On the
other hand, simultaneously, another holistic method based on a deterministic discrete
transform widely used for image compression was introduced for face recognition. This
technique was Discrete Cosine Transform (DCT) [46] which was proposed since it was
more efficient with the variations of illumination, occlusions, different scales, poses and
rotations. In addition, this approach could be applied to obtain local or global features.
In [47], DCT was computed for each block of the face image, and a set of coefficients was
kept as a feature vector. Once these feature vectors were obtained, a Vector Quantizer
(VQ) codebook of feature vectors was generated by using the k-means algorithm to clus-
ter the data. Then, a minimum distance classifier was applied to find the closest features
for recognition.

In parallel to the development of all the presented feature representations, several
techniques were proposed to substitute the simple classifier commonly used. Given the
success of Hidden Markov Models (HMM) [48] in speech recognition previously, the use
of HMM as a classifier for face recognition was introduced in several works. In [49,50],
strips of raw pixels covering areas such as forehead, eye, nose, mouth and chin were
extracted from a face image and converted into a chronological sequence. Then, the
sequence was modeled with a linear left-right HMM model in which the number of states
was defined by the areas covered with the strips. In function of the advantages of applying
an HMM to the recognizer classifier, this approach was also developed with different
feature extraction approaches, such as eigenfaces [51] and DCT [52]. Moreover, another
kind of classifier was introduced, which was Support Vector Machine (SVM) [53]. SVM
classifier could be used with different features as input such as raw pixels, PCA [54],
ICA [55] or EBGM [56], and it was also considered one of the most effective algorithms

18 Chapter 2. State-of-the-art Face and Voice Recognition

for classification problems due to the ability to define complex nonlinear classification
boundaries.

2.1.3 The 2000s-2012s

In the early 2000s, another classifier successfully applied in the speech field was im-
plemented to perform face recognition. Gaussian Mixture Model (GMM) [57, 58] was a
probabilistic model that was composed of a combination of linear Gaussian models. This
approach allowed more complex data to be represented by using a mixture that can han-
dle variations in the data that a single Gaussian model can not capture. Furthermore, as
occurs with previous classifiers, features of different types were employed to train the
GMM classifier [59-61].

Focusing on the existing problems when face images had large variations, a new local
appearance method was also created since this type of methods was more stable to local
changes such as occlusions, misalignment and expression changes. This method was
Local Binary Patterns (LBP) [62-64] which was a representative method in which the LBP
operator was applied to transform the face images and divide them into small regions.
Over these regions, histogram features were extracted, and Chi-square distances between
the corresponding histograms were calculated.

In view of the advances against illumination and occlusion issues, new approaches
were developed to address the problems of large pose changes from a probabilistic point
of view. [65, 66] proposed a novel generative model to describe pose variations in facial
data. This approach was based on a linear statistical model called Tied Factor Analysis
model (TFA). TFA estimated the hidden variables representing identity and pose, defining
the new identity space, using the Expectation Maximization (EM) algorithm. This recog-
nition model was not based on distance comparisons, in this case, the likelihoods were
calculated under the assumption that all images of the face of a person share the same
vector in the identity space since the hidden identity variable was tied. As this previ-
ous probabilistic approach produced good results in face recognition, similar probabilis-
tic techniques were developed. The first of them was Probabilistic Linear Discriminant
Analysis (PLDA) [67, 68], which was a probabilistic version of Fisherfaces. PLDA was a
generative model that projected data to a latent space where data of the same class were
modeled with the same distribution. Thus, the distribution was able to represent the data,
as well as the within-class variability of the data. A model similar to PLDA was developed
independently for the speaker recognition task, which was known as Joint Factor Anal-
ysis (JFA). JFA was an evolution of the GMM representations that models and removes
within-class variability using a low-dimensional subspace to obtain a more reliable class
model. In addition, JFA employed tied hidden variables to model identities and channel
variability. In [69], DCT coefficients were used as facial features, and JFA was applied to
address the face recognition task. As the last approach following this probabilistic phi-
losophy, in [70], an evolution of JFA was applied to face recognition. This evolution was
called Total Variability Modelling (TVM) or also referred to as i-vector modelling, which

2.1 State-of-the-art Face Recognition 19

was based on a generative probabilistic model to represent the data in a low-dimensional
space. TVM can be seen as a JFA with a single type of hidden variables. Therefore, this
technique was proposed as a feature extractor, and in [70], a PLDA was employed as face
classifier.

2.1.4 The 2012s and onwards

In previous decades, several attempts were made to introduce Neural Networks (NN)
in face recognition but, these approaches did not achieve relevant success due to the
limitation in available training data and computational resources. However, after the
great success of AlexNet in the ImageNet competition in 2012 [71], deep learning based
methods gained popularity. Mainly, these deep learning methods consisted of using deep
Convolutional Neural Networks (CNN) to train powerful models for several vision tasks.
In recent years, these deep CNN-based methods have become the dominant approach to
address face recognition due to the availability of large training databases and advances
in computation resources, such as CPU cores and GPUs. [72] was one of the first works
where it was shown that deep CNN would be very successful in face recognition. This
work is known as DeepFace and used the network architecture proposed in AlexNet with
the softmax loss function. Apart from the AlexNet architecture, [72] also experimented
with a siamese network [73]. This approach consisted of replicating the trained neural
network twice without the final classification layer and processing two input images to
predict whether both images belonged to the same person or not. Then, the decision
process was based on a similarity metric [74].

Due to the relevant success achieved with DeepFace, research began to focus on
improving architectures to extract features representing the face images. In [75], the
Facenet model was defined to train a backbone architecture such as CNN or inception
network [76]. Once this backbone network was trained, a backend network was incorpo-
rated using a triplet loss function as the final layer. The triplet network was an evolution
of the siamese approach where instead of a single pair of images, three face images were
processed to train the network and learn to determine whether each pair belonged to
the same identity or not. In [77], an approach similar to [75] was developed. The main
difference was the introduction of a very deep CNN to implement the backbone. Most of
the previous approaches used typical activation functions, such as Sigmoid, Tanh, Recti-
fied Linear Units (ReLU), etc. Nevertheless, [78] introduced a light CNN framework that
presented Max-Feature-Map (MFM) instead of using ReLU activation to learn a more ro-
bust face representation. Increasing network depth led to difficulties in network training,
such as vanishing gradients and convergence problems. Motivated by these issues, Resid-
ual Neural Networks (ResNet) were developed [79], which included shortcut connections
within layers to enable cross-layer connectivity. In face recognition, the first work with
these networks was [80,81]. An evolution of ResNet was presented in [82], this novel
architecture called Wide Residual Neural Networks (WideResNet) proposed to increase
the width and decrease the depth of ResNet.

20 Chapter 2. State-of-the-art Face and Voice Recognition

Most of the previous works had adopted to train neural networks using the same loss
function, which is Cross-Entropy (CE) loss with softmax output units [71]. The choice
of this loss function is also important to correctly train the architectures and obtain suf-
ficiently discriminative representations. Different studies have shown that with CE loss,
the separability of the representations is encouraged. However, this loss is not effective
enough to enhance the intra-class compactness. Therefore, the design of new loss func-
tions has been widely investigated in recent years to find the most suitable loss function
for training deep learning systems. These efforts have focused on two lines of study, on
the one side, the redesign of the identification loss function, and on the other side, the
verification loss functions. The former is composed of CE loss combined with a com-
plementary loss such as Center loss [83] or Ring loss (RL) [84], and other studies have
focused on its variants such as Angular Softmax loss (A-Softmax) [81], CosFace [85], or
Additive Angular Margin loss (ArcFace) [86]. While the latter is based on metric learning
approaches such as triplet neural network [75] or contrastive loss [87]. Although these
approaches had already been introduced, in recent years, this metric learning philoso-
phy has gained more attention. For example, this thesis introduces the use of a new loss
function based on the Area Under the ROC Curve (AUC) combined with triplet neural
networks to improve the discriminative power of learned facial representations. The ad-
vantage of this loss function is that the triplet neural network is directly optimized with
a cost function close to one of the desired performance measures.

2.2 State-of-the-art Speaker Recognition

2.2.1 Early Beginnings

The first works on speaker recognition date back to the early 1960s, when a physiological
model of human voice production was developed [88]. This model and other parallel
research laid the basis for understanding the speech analysis for representing in speaker
recognition systems. Using this knowledge in [89], the first speaker recognition system
known as Voiceprint Identification emerged. In this system, a visual representation of
the speech signal called a spectrogram was inspected by pattern matching and scored
by a human. During the same decade, the research to develop a fully automatic speaker
recognition system was growing, and in 1963, the first automatic speaker recognition
system was developed [90]. This system also relied on the correlation of spectrograms
and the use of spectral pattern matching. As an evolution of these earlier works, a new
approach proposed in [91] took into account formant frequencies, voice pitch period and
speech energy to perform the speaker verification. The first successful systems were all
text-dependent, but a breakthrough in text-independent occurred in the late 1960s when
[92] proposed to apply cepstral analysis to obtain measurable features in the human voice
for speaker recognition. The study presented in [93] demonstrated the improvement
achieved using the cepstral analysis as a feature approach for text-dependent. In this

2.2 State-of-the-art Speaker Recognition 21

work, a Linear Predictor (LP) was also analyzed, and a nearest neighbour classifier was
employed to perform the recognition.

2.2.2 The 1980s-2000s

Contrary to what happened with face recognition, the decade of the 1980s was relevant
for the development of the field of speaker recognition. The great evolution of these
systems came with non-parametric template matching methods, such as Dynamic Time
Warping (DTW) and Vector Quantization (VQ). [94,95] described the use of cepstral co-
efficients [96] and DTW, which was a dynamic programming method to align a pair of
speech utterances. Once the pair of utterances were aligned, the cumulative distance
was obtained as a score to determine the identity of the utterance. In [97], the DTW
method was combined with the use of filter banks as features. On the other hand, a time-
independent template method, which was VQ modelling, was developed and employed
combined with LP analysis [98-100]. The VQ method represented the feature vectors
of each speaker using the indices of a VQ codebook obtained by clustering techniques.
To find the pattern matching score for recognition, an input vector was compared with
the codewords in the VQ codebook, and the codeword with the minimum distance was
selected. This method substantially alleviated the computational complexity of dynamic
programming based systems since no temporal alignment was required. Nevertheless,
the temporal information, which may be relevant for the success of text-dependent sys-
tems, was neglected.

As an alternative to template matching approaches, a second type of classifier based
on parametric modelling methods was developed. The first of these classifiers was Hid-
den Markov Model (HMM) [48, 101-103], which was a stochastic process where a se-
quence of observations was produced by a Markov chain of a finite number of states.
To model the observation generation process with HMM, a Probability Density Func-
tion (PDF) is employed and several alternatives can be selected. One of the probability
models to generate the data given the state was usually a mixture of Gaussian distri-
butions. Furthermore, HMM offered more flexibility and robustness to speech signal
variability. Based on HMM, a special case of this model was proposed as a second para-
metric model for the speaker recognition task. To create this model, a single-state HMM
without taking into account the information about transitions between different states
was employed. Therefore, it was a more robust model and was equivalent to a sim-
ple Gaussian Mixture Model (GMM) [104-106]. GMM can also be considered as a soft
version of the VQ model in which the clusters overlap. On the other hand, this GMM
approach evolved in [107] which presented the training of a general GMM called Univer-
sal Background Model (UBM) or speaker-independent world model. Then, a Maximum
a Posteriori (MAP) criterion was applied to UBM to adapt the means and derive specific
speaker GMMs using a few data samples.

During the late 1990s, several attempts were made to find efficient features for speech
signals that could replace the spectral features. To carry out this search, the first method

22 Chapter 2. State-of-the-art Face and Voice Recognition

applied was one of the standard statistical techniques of the state-of-the-art of face recog-
nition, which was Principal Component Analyasis (PCA) [108-111]. Applying PCA to
the speaker recognition task, Eigenvoices were obtained and combined with Gaussian
models to recognize the identities. On the other hand, Independent Component Analysis
(ICA) method, which was a generalization of PCA, was also introduced for speaker recog-
nition [112, 113]. Despite the efforts to find an effective substitute for spectral features,
these statistical methods have been used in combination with spectral features but, they
have never been employed alone to obtain features.

In addition, in 1996, the National Institute of Standards and Technology (NIST) began
conducting periodic evaluations of speaker recognition systems [114]. These technology
evaluations were known as Speaker Recognition Evaluation (SRE) and provided a com-
mon framework for evaluating text-independent speaker verification systems. Therefore,
in the following years, the development of these evaluations led to focus research efforts
on improving text-independent speaker systems. As a consequence, research on text-
dependent speaker systems received less attention.

2.2.3 The 2000s-2012s

During the 2000s and early 2010s, some important breakthroughs were achieved in the
field of speaker recognition. Mainly, these advances were for application in text-indepen-
dent speaker verification systems. First, the Support Vector Machine (SVM) technique
became a relevant part of speaker recognition systems since it was a powerful discrimi-
native classifier that was able to model a non-linear decision boundary instead of using a
simple threshold. In [115], LPC analysis was employed to obtain feature vectors to train
SVM models for speaker recognition, while in [116], Mel-Frequency Cepstral Coefficients
(MFCC) vectors were extracted and used to obtain GMM supervectors that were used as
input for SVM models. The GMM supervectors were built by concatenating the means
of the adapted mixture components of GMM. Since then, the GMM supervectors have
become one of the reference methods for speaker recognition. Furthermore, in the latter
work, the Nuisance Attribute Projection (NAP) technique was introduced to reduce the
effects of speaker and channel variabilities present in the supervectors.

Following this idea of compensating for variabilities, Factor Analysis (FA) techniques
began to be applied in speaker recognition [117]. One of the techniques developed was
Joint Factor Analysis (JFA) [118] which represented the useful information with a latent
factor of the channel and speaker variability subspace separately. This technique allowed
to reduce the dimensionality of the representation and to compensate for the different
variabilities. Later, a new technique derived from FA emerged as the dominant approach.
This technique was an evolution of JFA modell ing and was known as Total Variability
Modelling (TVM), or i-vectors approach [119]. In this work, the use of factor analysis as a
feature extractor was proposed to obtain the i-vector representations. With this i-vector
extractor, each utterance was represented in a single low-dimensional subspace called
the total variability subspace as a fixed-length feature vector instead of the separate fac-

2.2 State-of-the-art Speaker Recognition 23

tors for speaker and channel variables. Then, a cosine distance or SVM was employed to
obtain the scores for the verification process. To improve the scoring process, [120] intro-
duced the Probabilistic Linear Discriminant Analysis (PLDA) model, which had already
been successfully used in face recognition.

For text-dependent speaker systems, the above techniques needed some modifica-
tions to be employed. In [121], the extended GMM supervector combined with the SVM
was replaced by an HMM supervector as the feature vector for the SVM classifier. On the
other hand, in [122], a slight modification of JFA and standard i-vectors were employed.
However, these works had limitations as the lack of sufficient data in existing databases
did not allow the proper development of this type of system. Hence, the performances
obtained with them were not too good. For this reason, a new database was created in
2012 with the name of RSR2015 database [123, 124]. This database reactivated research
in this field, which had several applications with commercial potential.

2.2.4 The 2012s and onwards

Motivated by the outstanding results of deep learning for face and speech recognition, in
this decade, many advances have also been carried out in speaker recognition following
the same philosophy. These approaches based on discriminative Deep Neural Networks
(DNNs) have achieved substantial success in text-independent systems. However, during
these years, the evolution of text-dependent systems has been different because of the
little development that occurred in the previous decade. Therefore, two different sections
will be used to explain separately the most recent evolution of text-independent and text-
dependent speaker verification systems.

Text-Independent Speaker Verification

In the context of text-independent speaker verification, the combination of i-vector ex-
traction and PLDA [125, 126] has remained dominant during this decade. Nonetheless,
several components have been progressively replaced by DNNs. Mainly, three main
streams have been investigated to improve the i-vector framework. In the first instance,
the fundamental idea proposed was to introduce a DNN to extract bottleneck features
(BNF) instead of acoustic features or combined with them. This kind of DNN was trained
for automatic speech recognition to discriminate phonemes [127, 128] or senones [129].
Once the BNF were extracted, these features were fed into the i-vector framework. Af-
terwards, DNN acoustic models were employed to generate the phonetic posteriors for
the frame alignments instead of using GMM-UBM in the i-vector extractors [130]. The
third stream of research proposed to replace the PLDA of the i-vector framework with a
DNN [131].

Recently, more ambitious proposals similar to face verification architectures have
been developed to train discriminative DNNs for speaker classification with a large num-
ber of speakers as classes and then extract embeddings from an intermediate layer by re-

24 Chapter 2. State-of-the-art Face and Voice Recognition

duction mechanisms. After that embedding extraction, the verification score is obtained
by a similarity metric such as cosine similarity or using PLDA. As input to train the fol-
lowing approaches, several features have been employed in the literature, such as spec-
trogram, filter-bank and MFCC. Also, a few works have directly taken raw waveforms
in the time domain. The first approach based on this philosophy was the frame-level
embedding called d-vector [132,133]. The novelty in this work was the evolution of d-
vector from frame-level embedding to utterance-level embedding. In [134], a standard
Convolutional Neural Network (CNN) was employed to obtain the utterance-level em-
bedding. While in [135,136], a Time Delay Neural Network (TDNN) was introduced to
extract the embeddings, which are called x-vectors. Another popular architecture from
face recognition was ResNet which was used as an extractor to obtain the speaker em-
beddings [137]. Besides, recurrent neural networks, such as Long Short-Term Memory
(LSTM) [138], and Gated Recurrent Units (GRU) [139], were inserted to improve CNN
models. Finally, transformer networks are the most recent architectures introduced in
speaker recognition [140]. Apart from the previous approaches using multi-class archi-
tectures, the triplet network paradigm has also been applied as a back-end for speaker
recognition [141, 142].

As happened in face recognition, most of the initial deep learning systems were
trained with the extended Cross-Entropy (CE) loss for multi-class classification. How-
ever, during the last few years, several loss functions have been designed to replace CE
loss, especially in face recognition, and then applied in speaker recognition. Advances
in this line of research have focused on two types: identification loss functions and ver-
ification loss functions. The former is mainly composed of CE loss combined with a
complementary loss such as Ring loss (RL) [143] or Center loss [144], and other studies
have focused on its variants such as Angular Softmax loss (A-Softmax) [145], or Additive
Angular Margin Softmax loss (AAMSoftmax) [143]. While the latter is based on met-
ric learning approaches as evolution of the triplet neural network such as contrastive
loss [87,137], partial AUC loss (pAUC) [146-148], NeuralPLDA [149] or angular proto-
typical [150].

Text-Dependent Speaker Verification

Due to the late development of text-dependent systems and the creation of a new database
in 2012, the state-of-the-art of these systems during these years has been slightly differ-
ent. The use of traditional techniques based on FA and deep learning approaches has
overlapped. Traditional techniques with specific modifications have achieved good per-
formance for this task. In [151], a modified version of JFA was proposed as Tied Mixture
of Factor Analysis (TMFA), which uses the speaker and channel latent factor mechanism
but, these factors were estimated in a different way. Another variant of JFA was presented
in [152,153] combined with PLDA scoring back-end. On the other hand, a set of HMMs
was introduced to substitute GMM for training the i-vector extractor, and a PLDA was
used to verify speaker identity [154-156]. Apart from using PLDA as a back-end, other
works combined the i-vector extractor with SVM [157] or similarity metric [158].

2.2 State-of-the-art Speaker Recognition 25

Parallel to the previous research stream, deep learning approaches were applied to
replace some parts of the traditional pipeline. Firstly, DNN was trained for phone clas-
sification, and the output of a narrow bottleneck layer was employed as input features
for JFA or i-vector frameworks [159, 160]. In another approach, DNN was also trained
for speech recognition, and the output was interpreted as posterior probabilities, which
replaced the conventional GMM-UBM technique for JFA or i-vector extractors [159,161].
Following the idea presented in [151], speaker and session variability were modeled by
tied hidden variable with autoencoder DNNs [162]. In [151, 162], the systems devel-
oped needed to store a model per user which were adapted from a universal background
model, and the evaluation of the trial was a likelihood ratio. One of the drawbacks of
these approaches were the need to store a large amount of data per user and the speed
of evaluation of trials since likelihood expressions were dependent on the frame length.
Moreover, ambitious approaches were developed for these systems but, the systems have
produced mixed results. DNN was trained to classify speaker identities, and frame-level
embeddings (d-vector) were extracted to compare with the d-vector of each utterance
and make a verification decision [163, 164]. d-vectors have provided good results when
the task involves a large amount of private data and a single phrase. Motivated by the
improvement achieved with x-vectors in text-independent systems, several unsuccessful
attempts were performed to introduce this approach in text-dependent systems. One of
the reasons this type of approach has been successful in text-independent systems is the
availability of large public databases. However, unlike text-independent tasks, those ex-
isting large databases for text-dependent tasks are not always publicly available. There-
fore, in tasks with more than one phrase and smaller databases, the lack of data may
lead to problems with the use of deep architectures due to overfitting. For this reason,
initially, these techniques based on the embedding extracted directly from a DNN or a
ResNet have been shown ineffective [165,166]. Using recurrent neural networks such as
LSTM, an improvement was demonstrated in the case of large databases [167, 168].

Throughout this dissertation, several approaches have been proposed to solve these
problems encountered in the development of such systems. First, DNNs successfully em-
ployed in the face and text-independent speaker verification tasks have been analyzed. In
this analysis, it has been observed that the issues encountered when using them in text-
dependent speaker verification have not only been motivated by the size of the databases,
but also by the reduction mechanisms that are usually part of the architectures. There-
fore, different approaches have been proposed to replace this kind of mechanisms such
as the alignment mechanism [1-3] or multi-head self-attention layers of the transformer
encoder [5]. Moreover, to mitigate the effect of having small training databases, other
architectures based on the teacher-student philosophy [4] have been introduced for the
first time for this task.

On the other hand, the slow progress of this research field and the problems motivated
by the lack of large public databases have meant that the stream of research based on new
loss functions developed in previous tasks has not been widely applied in text-dependent
speaker verification. Hence, most of the existent approaches were trained with the tradi-
tional CE loss. Although some new loss functions have been proposed for text-dependent

26 Chapter 2. State-of-the-art Face and Voice Recognition

speaker verification systems, such as a loss function similar to Triplet loss [167], Tuple-
based End-to-End (TE2E) loss function [164] and Generalized End-to-End (GE2E) loss
function [168]. Nevertheless, these loss functions were initially employed in a private
database and difficult to compare. Approaches based on triplet neural networks were also
developed on public databases [169]. However, these approaches trained the network ar-
chitecture with the triplet loss function, which is not an objective loss function oriented
to the goal task. Thus, in this thesis, a new loss function based on Area Under the ROC
Curve (AUC) has also been applied to train the triplet neural networks. Furthermore, as
already introduced in the reviews of the previous sections, another line of research has
been developed in the second part of this thesis. This line of research is based on the
development of alternative loss functions to CE loss more suitable for the verification
task. The proposed loss functions are inspired by the final performance metrics, such
as Detection Cost Function (DCF) and Cost of Likelihood Ratio (CLLR). Moreover, the
implementation of these loss functions allows keeping the efficiency of using the same
multiclass style of training as systems with CE loss employ [5,8,10].

2.3 State-of-the-art Language Recognition

2.3.1 Early Beginnings

Initial attempts were proposed in language recognition later than in face and speaker
recognition. The reason was that many approaches used in language recognition come
from speaker recognition and, in this case, the first speaker recognition systems date
back to the 1960s. Thus, the first reports in automatic language recognition were made
between 1973 and 1980 by Texas Instruments [170-173]. These reports explored the idea
that the frequency of occurrence of certain reference sounds or sequences of sounds dif-
fered by language. With this motivation, these works extracted the reference sounds
with an automatic segmentation technique based on spectral change. To decide the spo-
ken language in the new speech utterances, the likelihood of the reference sounds was
calculated. Hence, in these early approaches, the similarity of different spectral refer-
ences was exploited to perform language recognition.

2.3.2 The 1980s-2000s

During these decades, great advances were produced, as occurred in speaker recogni-
tion. [174] was one of the first works developed to discriminate between languages using
statistical inference techniques. In this work, an automatic approach based on acoustic-
phonetic segmentation was employed to build the language recognition system. In an-
other approach [175], a pattern analysis technique based on a polynomial decision func-
tion was designed and applied to the acoustic feature vectors extracted from the speech
signal by Linear Predictive Coding (LPC) analysis. Until then, the available speech sig-
nals came only from read speech but, the next research approaches also started to address

2.3 State-of-the-art Language Recognition 27

recorded speech from radio under noisy conditions and spoken speech. Assuming the
premise that prosodic features extracted from pitch and energy contours vary from lan-
guage to language, a quadratic classifier could be applied to these features for language
recognition in [176]. Besides, this work also introduced another technique to exploit the
occurrence frequency of sounds using the formant frequency values, and a Vector Quan-
tization (VQ) distortion measure was applied to make the language decisions. In [177], the
VQ technique was used to characterize each language in combination with the acoustic
features derived from LPC.

Motivated by the success achieved in speaker recognition, Hidden Markov Model
(HMM) and Gaussian Mixture Model (GMM) were also incorporated into the language
recognition. [101] proposed the use of HMM for prosodic features, while in [178], an
interesting comparison was made using VQ, HMM and GMM acoustic classifiers with
Mel-Frequency Cepstral Coefficients (MFCCs) as feature vector. In [179], one of the first
approaches employing n-gram features was developed, and the use of Perceptual Lin-
ear Predictive (PLP) coefficients for language recognition systems was also introduced.
This work employed a phonetic classifier to recognize the phonemes of each language
and then extracted unigram and bigram statistics. To argue that pitch estimation was
more robust in noisy environments than spectral features, [180] built a system that used
only features based on pitch estimates. These features were analyzed using Principal
Component Analysis (PCA) and discriminant analysis. Moreover, in 1996, when NIST
began speaker recognition evaluations, the Language Recognition Evaluation (LRE) was
also launched to compare the performance of the language recognition system under the
same conditions for all the participants.

2.3.3 The 2000s-2012s

In the early 2000s, GMM-UBM, a widely deployed approach in speaker recognition, was
introduced as an alternative to the standard GMM system [181]. As an input feature
in this work, MFCCs and their first delta parameters were employed. In 2002, one of
the most important works in the language recognition field was presented in [182]. This
work introduced the use of cepstrum data combined with some special derivatives. These
derivatives were Shift Delta Cepstrum (SDC), which were the derivatives of a downsam-
ple version of the sequence, so long-term information was considered since the derivative
coefficients where applied to non adjacent frames. Besides, a Gaussian back-end classifier
was employed for recognition. Continuing the previous work, [183] proposed a variant
of Gaussian back-end and applied the Support Vector Machine (SVM) classifier [184] for
the first time in language recognition.

To compensate for the channel mismatches that still existed, a research stream for lan-
guage recognition based on the application of Factor Analysis (FA) approaches started to
be applied. The work presented in [185] was considered the first to use FA techniques.
FA was employed to create a factor subspace that represents the distortions caused by
inter-speaker variability within the same language, helping to compensate for these dis-

28 Chapter 2. State-of-the-art Face and Voice Recognition

tortions. In [186], an eigenlanguage space was developed by analogy with the eigenface
and eigenvoice approach. This approach was proposed to estimate language factors with
PCA, which had low dimensionality. These factors were used as input features for an
SVM classifier. Following with FA approaches, in [187], JFA was applied to model lan-
guage and channel variabilities separately, and accurate acoustic language recognizers
were built. One of the most popular approaches of the last decade in speaker recognition
was also applied to the language recognition task. This approach was based on i-vector
utterance representation [188,189]. In this approach, the system pipeline consisted of two
main blocks: a front-end formed by a GMM-UBM along with a total variability subspace
for i-vector extraction and a back-end. The i-vector was considered a low-dimensional
representation of the GMM mean-supervector obtained by FA. After these two works,
i-vectors became the most widespread approach, and researchers’ efforts focused on the
study of back-ends, which can be one of several existing generative and discriminative
classification techniques to produce system scores. In the following years, several at-
tempts to improve the back-end technique employed as an i-vector classifier led to the
development of studies using all existing classifiers such as Logistic Regression (LR) [188],
SVM [189], or variants of previous employed GB [190, 191]. However, Probabilistic Lin-
ear Discriminant Analysis (PLDA), which was the main back-end technique developed
for face recognition and successfully applied in speaker recognition, was not as successful
in language recognition [192].

2.3.4 The 2012s and onwards

Due to similarities in the research fields, recent advances in automatic speech recogni-
tion and speaker recognition techniques based on discriminative Deep Neural Network
(DNN) have subsequently improved the technology applied to language recognition. At
the beginning of this deep learning era, modern systems have substituted parts of the pre-
vious pipeline with DNNs to achieve greater robustness to varying conditions and audio
duration. For instance, a significant step forward in language recognition was obtained
by replacing acoustic features with DNN bottleneck representations [193]. These repre-
sentations were used as input to the i-vector system. Another approach was proposed
to replace GMM-UBM posteriors with DNN or Convolutional Neural Network (CNN)
senone posteriors [191,194,195] within the i-vector framework.

At the same time, other more ambitious DNN approaches have been used, includ-
ing end-to-end systems [196-198]. These techniques consisted of a DNN trained with a
softmax layer at the output and a multiclass Cross-Entropy (CE) loss, whereby the net-
work learns to classify languages. These end-to-end DNN systems are quite successful
at this task, but the approach requires relatively large training datasets compared to the
i-vector framework, and it is computationally more expensive. More recently, leverag-
ing advances in speaker recognition, the use of DNN language embeddings to produce
an utterance-level representation of speech has become commonplace [199]. The most
employed embeddings were x-vectors and replaced i-vectors as front-end [200-202]. In
this approach, once the DNN is trained, embedding representations are obtained from

2.3 State-of-the-art Language Recognition 29

one of the previous layers within the DNN, and these embeddings are evaluated using a
back-end classifier like any traditional classifier or neural network (NN) [203].

As in deep learning approaches to face and speaker recognition systems, a new line of
research has been initiated in recent years motivated by the limitations presented by CE
loss. However, for the language recognition task, only the most successful loss functions
from the speaker verification task have been applied. As for example, [144] introduced
the combination of CE loss with Center loss. On the other hand, variants of CE loss have
also been incorporated into the DNNs pipeline for language recognition, such as Angu-
lar softmax [144, 204] or Additive Angular Margin softmax [205]. Another widespread
approach in face and speaker recognition tasks has been metric learning loss functions,
especially the triplet neural networks. Nevertheless, this approach had not been em-
ployed for language recognition. For this reason, in this dissertation, we propose the use
of this kind of network for language recognition. In addition, the AUC-based loss func-
tion applied for face and speaker verification has also been introduced for this task [7].

Biometric Recognition Systems

3.1
3.2

3.3

3.4

Introduction 3.5
Data Processing 3.6
3.2.1 Face Processing 3.7

3.2.2 Audio Processing 3.8
3.2.3 Video Processing

Representation Methods Review

3.3.1 Hidden Markov Model

3.3.2 Gaussian Mixture Model

3.3.3 From Representation Mod-
els to Vectors

3.3.4 Convolutional Neural Network

3.3.5 Residual Neural Network

Back-end Approaches Review 3.9
3.41 Cosine Similarity

3.42 Weighted Gaussian Back-end

3.43 Probabilistic Linear Dis-
criminant Analysis

3.44 Support Vector Machines
3.45 Neural Network Back-end

Score Normalization
Calibration

Decision Making
Performance Metrics

3.8.1 Receiver Operating Char-
acteristic Curve and Detec-
tion Error Trade-off Curve

3.8.2 AreaUnder ROC Curve and
Equal Error Rate

3.8.3 Detection Cost Function
3.8.4 Log-Likelihood Ratio Cost
3.8.5 Diarization Error Rate
Experimental Framework

3.9.1 Face Verification Datasets

3.9.2 Text-Dependent Speaker
Verification Datasets

3.9.3 Language Verification Datasets
3.9.4 Multimodal Diarization Datasets

31

32 Chapter 3. Biometric Recognition Systems

3.1 Introduction

As Chapter 1 introduced, biometric recognition systems are attracting a great deal of re-
search interest since they have become a crucial part of day-to-day life. There are several
tasks that can be performed by these systems, but in this thesis, we focus on the veri-
fication task to recognise faces, speakers and languages from image and audio samples.
As described in Chapter 2, many approaches have been created to develop such systems
to address this task using the different characteristics. The pipeline of these biometric
recognition systems is very similar regardless of the biometric characteristic employed
and consists of the parts shown in Figure 3.1. These systems typically have four differ-
ent phases: training phase, development phase, enrollment phase and test phase. During
the training phase, the implementation of a generic model is usually carried out. In this
phase, the representation method is chosen and trained using the training data from the
different databases including a large amount of different identities. Moreover, in the case
of applying a trainable back-end, this step is also performed. The second stage is the de-
velopment phase which is not always used. This phase allows obtaining the scores of the
representation method or the back-end. After that, these scores could be incorporated
into the last phase to perform score normalization and calibration. During the enrollment
phase, the examples of the target identity are processed with the representation method
and, if applicable, with the back-end. Once these examples are processed, in the test
phase, they are compared with the test data, which are new examples also known as trial
examples. From this comparison, the scores are obtained, and with these scores which
can be corrected by the normalization or calibration methods, a final decision about the
identity is made.

Thus, in this chapter, the main blocks that compose this type of system and also the
most relevant approaches of the state-of-the-art for each block are presented.

Training

Phase (\ r‘ R—
——x _
= - [Resetion) - pepesntaton -pack nd
Data Method C i
Development
Phase R _— -
— r | r |
. : lRW"m") JBack-end! - Scores}
Data
Data S — o -
Envoliment |ProCessing
Phase
Enroll » Representation *Back-end
Data
Test
Phase
Score
Test o , e ‘ A L .
Deatsa Representation Back-end' |Evaluation Normalization Calibration: ..Decision

Figure 3.1: Components and phases of a biometric recognition system, the dashed lines indicate the blocks that
are optional in this kind of system.

3.2 Data Processing 33

3.2 Data Processing

The first step of biometric recognition systems concerns acquiring the data and process
them to obtain the most relevant information. Nowadays, acquiring image and audio
samples is easier than capturing other biometric characteristics. It is made possible by the
widespread use of technological devices to capture image and audio data. After that, the
data is prepared to facilitate the training of the recognition methods. Depending on the
biometric trait employed, this data processing is slightly different. Thus, throughout this
section, we explain the specific process applied in function of the type of data available
as Figure 3.2 depicts. First, when the data come from image or audio directly, and in the
other case, whether the available data are video files.

Data Processing

Face _
"| Detection Preprocessing

Frame
. Extraction
T
Change Shot Video
~"| Detection | " Information
. Audio
Extraction

i

\oice
Activity
Detection

Feature :
Preprocessing

Extraction

Figure 3.2: Data processing in function of the kind of data available.

3.2.1 Face Processing

This section explains the main steps that are followed to prepare face images when a
face recognition system is to be developed. As described in Chapter 2, a large number of
different features have been obtained over the years to represent a face image. These fea-
tures have been classified into two lines of research: local or texture-based features and
holistic or appearance-based features. The former is based on treating only some critical
facial points and extracting local features to generate more details. In this type of fea-
tures, the most employed approaches have been Elastic Bunch Graph Matching (EBGM),
Scale Invariant Feature Transform (SIFT), and Local Binary Patterns (LBP). While the

34 Chapter 3. Biometric Recognition Systems

latter features process the whole face and try to represent it in a low-dimensional space
within this kind of features are Eigenfaces, Fisherfaces, Gabor filters, and Discrete Cosine
Transform (DCT) features. Nonetheless, nowadays, none of these feature extraction tech-
niques are commonly used when Deep Neural Networks (DNNs) are involved to carry
out the recognition process. Since these deep learning based methods are considered a
holistic approach that performs deep feature extraction and deep face recognition steps.

During the development of this dissertation, we have employed different architec-
tures based on DNNs, as we will explain in the following sections. As input for each of
these architectures, we have not applied any of the previous feature extraction techniques
present in the literature. Instead, raw face images have been used to train the different
architectures. Although we do not apply a feature extraction technique, several steps are
involved in the process before training the DNNs that simplify the raw face images to
facilitate the following process. The first of these steps is face detection which has to be
done before continuing with the rest of the face verification pipeline. Face detection is
a fundamental step because failures in this process could be crucial for the correct de-
velopment in other parts of the face recognition system. To carry out this step, the face
detector employed is a system of alignment and detection. After the detection step, a
face preprocessing step is usually applied. This step can be different depending on the
architecture used. The most common operations employed in this step are cropping and
normalization, which help to make all the face images used to train the DNNs uniform.
Finally, a data augmentation process is also applied to increase the amount of image data
by generating slightly modified copies of the existing data [71,206]. Moreover, the use
of this process helps to reduce overfitting due to the lack of data in some cases and to
generate more robust systems.

3.2.2 Audio Processing

In the case of working with audio files, the process followed is conceptually quite sim-
ilar to that of face processing. Nevertheless, for developing the speaker and language
recognition systems, a feature extraction step is usually applied. As already mentioned
in Chapter 2, many types of features have been applied for decades to extract relevant
information about speech samples and remove irrelevant and redundant information.
Techniques to obtain these representations have been based on different groups of fea-
ture approaches: short-term spectral (Mel-Frequency Cepstral Coefficients (MFCC), Lin-
ear Predictive Coding (LPC)), prosodic and high-level features. In recent years, apart from
approaches using these features, several works have appeared that use raw speech files
or the short-time frequency transform (STFT) directly to train DNNs [139]. However,
in this thesis, the most popular features are employed which are the short-term spec-
tral features. Moreover, there are several variants of short-term spectral features which
characterize the resonances of the vocal tract. The most widespread spectral features are
MFCCs [96], but more recently, log Filter Banks (FBs) are becoming increasingly popu-
lar as intermediate signal representations between raw speech files and MFCCs to train

3.2 Data Processing 35

DNNSs. For this reason, in the most advanced models of this thesis, FBs are also used as
input features.

To extract the features, the process followed consists of performing a short-time anal-
ysis of the speech signals. The pipeline to compute these spectral features is depicted in
Figure 3.3 which shows that the process to obtain both types of spectral features (MFCCs,
FBs) involves somewhat the same procedure. This procedure consists of several stages.
Initially, offset compensation, pre-emphasis filter and multiplication with hamming win-
dows are applied on the frames of the speech signal to condition this signal for subsequent
spectral analysis. Afterwards, the spectrum is calculated with the Fast Fourier Transform
(FFT). Then, a set of triangular Mel-filters is applied on the spectrum to obtain the fre-
quency bands. After that, the output spectrum is converted to a logarithmic scale, and
the FB features are produced as the result of this conversion. Finally, if a Discrete Cosine
Transform (DCT) is applied, the MFCC features are obtained. Once the features have
been calculated, the log energy is concatenated to them, and, in the case of the MFCC,
the derivatives are also usually computed and added.

logE
Energy

Mel MFCC
= FFT |, Filter —»| Log || DCT |
bank

Offset P hasi Hamming
Compensation |~ re-emphasis |- window

FB

Figure 3.3: Audio feature extraction pipeline.

As shown in Figure 3.2, once the features have been extracted, a Voice Activity Detec-
tion (VAD) step is applied. This step is critical to the recognition task, as it detects speech
in the audio samples and removes non-speech frames for optimal performance. There
are different approaches to obtain this VAD, where the simplest one is an energy-based
voice activity detector. This detector consists of setting a threshold, and when the en-
ergy of the signal is above the threshold, the VAD indicates speech activity. Other more
recent VAD approaches have been proposed that rely on deep learning solutions [207].
Both approaches can be employed using the different types of features presented previ-
ously. After the VAD step, preprocessing is applied as in face processing. Including in
this preprocessing, normalization and scaling techniques are usually applied. Apart from
these traditional techniques, data augmentation techniques are also incorporated before
training using DNNss.

36 Chapter 3. Biometric Recognition Systems

3.2.3 Video Processing

Aside from working directly with image and audio samples, data can be derived from
video files. In this case, as we observe in Figure 3.2, two first steps are performed to
extract the image and audio. Once the images are extracted in the frame extraction step,
the process applied on them is the same as directly using a dataset of face images. On the
other hand, when audio extraction has been performed, the audio processing is also the
same.

In addition to the above steps, whether video files are used and depending on the
task performed, a shot change detection step is applied. This step allows generating ex-
tra information from the video files, such as the changes of shots and scenes. A simple
and efficient approach to obtaining these changes consists of using a threshold-based de-
tection method. This detector finds areas where the difference between two subsequent
frames exceeds a threshold value. In the tasks of tracking people through the video such
as Multimodal Diarization, this information helps to perform the tracking and clustering
step since usually the source of the videos employed are television programs. These pro-
grams are composed of a huge variability in content characteristics and constant changes
of shot and scenes.

3.3 Representation Methods Review

As Figure 3.1 depicts, once the data have been processed, a representation method is in-
troduced to obtain a representation of each sample from the input data. A large number
of approaches have been developed to address this task, as we presented in Chapter 2.
There are two main types of representation methods: model-based and embedding-based
approaches. The former are methods based on the creation of generative models, which
will be able to represent all data, such as Hidden Markov Models (HMMs) or Gaussian
Mixture Models (GMMs). While the latter are techniques that train systems which allow
extracting an internal representation such as GMM Supervectors, i-vectors or embed-
dings of a neural network. The most widespread methods used as a starting point in this
thesis are explained below.

3.3.1 Hidden Markov Model

The Hidden Markov Model (HMM) [48] is a generative probabilistic model that repre-
sents a set of stochastic sequences (such as face regions, audio concepts or segments)
as a Markov chain with a finite number of states, Q. Each state generates observations

following a random process which we characterize by its Probability Density Function
(PDF). The elements that characterize a HMM are:

3.3 Representation Methods Review 37

+ A: the state transition probability matrix where a;; represents the probability of
moving from state g; to state g;.

« B: for discrete observation variables, the emission probability matrix defined by
the probability density function associated with each state where b; denotes the
probability that the observation is generated from state g;.

« II: the vector with the initial state probabilities of each state ;.

HMMs could be classified according to the type of output distribution model into two
categories. The first is discrete HMMs, where the observations are discrete elements. On
the other hand, in continuous HMMs, the states are represented by continuous obser-
vation density functions. The most common way to model observation probabilities is
using a mixture of Gaussian distributions:

C
bq(o) = Z Wge * N(Ol,qu ch) (3.1)

where wg, is the mixture weight for the cth mixture in state g, and N(o|pgc, Zgc) is a
multivariate Gaussian distribution with mean y,. and covariance matrix ..

To create this representation model, initially, the emission and transition probabil-
ities are chosen randomly and the initial state probabilities are uniformly distributed.
Then, this kind of model is trained using Expected Maximization (EM) or Baum-Welch
algorithm to compute and update iteratively the elements characterizing HMM. This pro-
cess has been explained to train a single HMM. However, it can be repeated to obtain a
model for each class. Afterwards, using the estimated model parameters and given an
observation sequence, the likelihood of the observation sequence is calculated with the
forward-backward algorithm. Moreover, the most probable state sequence associated
with the given observation sequence can be found with the Viterbi algorithm.

3.3.2 Gaussian Mixture Model

Like the previous HMM, Gaussian Mixture Model (GMM) [106] is also a generative model.
In concrete, HMM can be viewed as the general model, which includes GMM as a specific
HMM with a single-state with a mixture of Gaussian distributions. This kind of model has
been the most widespread since it is a more robust parametric model due to the fact that
it ignores the temporal dependence, so the transition probability matrix is not necessary.
Furthermore, previous works have demonstrated that recognition rates were strongly
correlated with the number of mixture components and not so much with the number
of states. Therefore, GMM is defined as a parametric probability density function which
is composed of a weighted sum of individual Gaussians without the dependence on any
state since there is only one:

C
p(o|9) = Z We * N(Ol;uc’ z:c) (3.2)

c=1

38 Chapter 3. Biometric Recognition Systems

where w, is the mixture weight for the cth mixture, and Mo|y,, 2.) is a multivariate Gaus-
sian distribution with mean p. and covariance matrix X, which can be expressed as:

1

N(olpe, Ze) = emprz e P

(5 0-p) -G o-p) (3

To estimate the GMM parameters, the process followed is simpler as for the train-
ing of HMMs, since there is not necessary to estimate the alignment, and the Maximum
Likelihood (ML) criterion is iteratively optimized by using the EM algorithm. Although
for maximization, the logarithm of the likelihood is usually employed instead of likeli-
hood. The use of these models for some tasks quickly became the dominant approach.
Nevertheless, as the number of classes increased, building a class-specific GMM with a
large number of mixture components is not a good choice, as it requires too much time
to create all class-specific models and a large memory storage to save them. To solve this
issue, the GMM combined with the Universal Background Model (UBM) approach was
developed. Using the GMM-UBM approach, a general UBM model is trained. Afterwards,
to train the enrol models the amount of data is low, therefore the UBM parameters are
adapted to be robust against data scarcity following the Maximum a Posteriori (MAP)
approach. MAP adaptation is defined as:

N
MAP _ chzl Xn, + T e
¢ ne+r1
N
ne chzl xnc T

= + 'IJCs
Ne+ T ne Ne+ 7T

(3.4)

where 7 is a fixed relevance factor, and n, are the weights of Gaussian components.
Hence, the MAP adapted mean parameter is computed for each class n as:

pe=p-f+(1-p)pe (3.5)

where p is the adaptation coeflicient defined as n./n. + 7, and f is the mean estimation.
With this adaptation, a class-dependent GMM is obtained.

3.3.3 From Representation Models to Vectors

The methods presented so far are model-based techniques to obtain models that rep-
resent the data. However, since the early 2000s, the embedding paradigm has gained
prominence. This paradigm consists of creating models that constrain the class informa-
tion into a restricted space where a compact vector represents each class. Regarding this
paradigm, initially, the GMM supervector derived from the adapted GMM-UBM emerged.
This supervector is a high-dimensional representation of a sample file that is obtained by
concatenating the mixture means of the class adapted GMM-UBM to form a GMM mean
supervector.

s=[ps Ky o s 1, (3.6)

3.3 Representation Methods Review 39

where ! represents the mean vector of cth Gaussian in the GMM for each class n.

After that, another relevant approach based on the representation vector instead of
models is the i-vector approach. The i-vectors apply the Factor Analysis (FA) techniques
and employ a low-rank projection matrix known as Total Variability Matrix (TVM) to
reduce the dimension of GMM supervectors. Nonetheless, in this dissertation, the i-
vector approach has not been applied.

3.3.4 Convolutional Neural Network

Within the embedding-based methods, the latest approach to emerge was the deep learn-
ing representation methods. In these methods, typically, a deep learning system is trained,
and an internal representation is extracted for each sample file. This representation is
what is known as embedding. Several variants of deep learning representation tech-
niques have been the main approach employed in this dissertation.

input image feature maps feature maps feature maps feature maps

256x256 128x128) (128x128 64x64 output
(256:256) (56x256) ~ (128x128) - (128x128) (6dxbd) category

=

f= i
Tt
wa) o N I
convolution subsampling convolution subsampling fully
I layer \ layer | layer I layer | connected

Figure 3.4: CNN architecture example.

Deep learning methods are based on Artificial Neural Network (ANN). ANNs are non-
linear models inspired by the structure and information processing of the brain. These
networks consist of three types of layers: input layer, one or more hidden layers, and out-
put layer. When these networks have many hidden layers, these models are called Deep
Neural Networks (DNNs). DNNs can capture complex relationships between input and
output. Within DNNs, we can find numerous types of neural networks. One of the most
popular architectures is Convolutional Neural Network (CNN) [208,209]. Traditionally,
standard CNNs have as input a 2D matrix of values, although other implementations ex-
ist to work with 1D or 3D matrices depending the data used. From the structural point
of view, the typical CNN is composed of convolutional layers, pooling layers, fully con-
nected layers and a loss layer, as can be seen in Figure 3.4. During this thesis, we have
worked on the different parts of these CNNs. Therefore, we will now provide a general
introduction of them, and throughout the different chapters, we will explain the specific
modifications or developments made in each part.

40 Chapter 3. Biometric Recognition Systems

Convolutional Layer

The convolutional layer is the core building block of these networks. With these layers,
the main idea lies in applying a convolution operation in place of a general matrix mul-
tiplication between the input signal and a filter or kernel to generate a feature map. This
layer is not connected to all input values because this leads to impracticable computa-
tional complexity when the input to the CNN is high-dimensional data. Instead, neurons
are connected only to a small local region of the input, which is the local receptive field.
Then, the filter is applied as a sliding window across the entire input signal, and each
part corresponds to a different neuron in the layer. Using this kind of layer with two-
dimensional data, the filter slides over the width and height of the data, as the example
in Figure 3.5 depicts, and spatial and temporal dependencies are captured. Hence, the
main goal of this layer is to extract relevant features of the data. This data is usually
derived from real-world data, so the distribution of the data is too complex to model it
linearly and simple linear approaches are ineffective. However, the convolutional layer
is a linear operation. Therefore, an additional activation function is usually included
to introduce nonlinearity after each convolutional layer. The activation function is an
element-wise operation such as Sigmoid, Hyperbolic Tangent (Tanh) or Rectified Linear
Unit (ReLU). Moreover, CNNs are usually composed of several convolutional layers and
the composition of these type of linear (convolution) and nonlinear operations gives the
network great modelling capacity for complex data. Hence, depending on the point of
the architecture, the features are different in each layer. In the initial layers, low-level
features are extracted, such as edges, color, etc. While in the advanced layers, high-level
and more abstract features are obtained, such as shapes, faces, etc.

J
[7 7 7 7
/7 7 7 7 7
/7
77 77
777

./ /
’////////

fi.=
1 (-
f=3 Zero padding

Figure 3.5: Convolutional layer example [210]. In this example, the filter of size 3x3 is applied to the input data
to capture temporal and spatial dependencies, and the relevant features of data of each region are extracted as
output.

3.3 Representation Methods Review 41

Pooling Layer

Typically, after the convolutional layer, a second layer called pooling or subsampling
layer is employed. The pooling layer aims to reduce the processing time by summarizing
the statistics of nearby regions and preserving the most important information in them.
For this purpose, this layer performs a subsampling of the input data in order to reduce
the dimensionality of each feature map coming from the previous convolutional layer.
This reduction allows making the input representations smaller and more manageable,
which also involves a smaller number of parameters and computations in the subsequent
layers of the network. Likewise, the risk of overfitting is reduced. Furthermore, this layer
also introduces robustness against a certain level of invariance to small transformations,
translations and distortions in the input data, so the dominant features are extracted. The
most common reduction methods are average and max pooling. An example of how this
max pooling method works is shown in Figure 3.6. Using this method, the maximum
value on each feature map is obtained and used as output of this layer. Moreover, this
selection of the maximum values of each region reduces the size of the output represen-
tation.

These pooling layers interleaved with the convolution layers is a widely used ap-
proach in image recognition tasks, while depending on the task performed, it could be
necessary to keep one of the dimensions invariant. For this reason, in some implementa-
tions, the pooling layer is only applied once all convolution layers have been employed
and before the use of the fully connected layer, usually in this case, it is called global
pooling if the size of the receptive field kernel involves the entire signal.

Figure 3.6: Pooling layer example using maximum method [210]. This type of layer operates on each feature
map to obtain the maximum value, so that the dominant features are kept and the size of the representation in
the output is reduced.

42 Chapter 3. Biometric Recognition Systems

Fully Connected Layer

After several convolution layers, activations and pooling layers, a reduction or flatten is
applied to convert the matrix of feature maps into vectors without losing information.
Once the reduction or flatten is performed, a fully connected or dense layer is used to
connect all the neurons in the previous layer to each of the neurons in the next layer.
Thus, this layer is a linear combination of all the inputs using a weight matrix and an
optional bias parameter where the output is expressed as:

o= WT.x+bias, (3.7)

where W7 is the weight matrix of the linear layer and bias is the bias parameter vector.
The purpose of this layer consists of learning the non-linear combination of the high-
level features from the previous spatial layers and uses this combination of features for
the final classification.

Loss Layer

Finally, after performing representation learning in many layers, CNN systems have a
loss layer or objective function. This loss layer determines the function to be optimized
with that network. The most traditional approach has been based on employing a softmax
activation function after the last fully connected layer, and then, Cross-Entropy (CE) loss
is obtained. CE loss is calculated as:

m N
Leg = - Z Z Vij - log(yy), (3.8)
ij

where y;; is the ground truth class label with i € {1,..., m} where m is the number of
samples and j € {1,..,N} where N is the number of classes, and y; is the predicted
probability extracted from the output of the last fully connected layer. Nevertheless, this
approach, although it is optimal for classification, has several problems in obtaining more
general representations for biometric comparison. As we introduced in Chapter 2, a very
active research line is currently being widely investigated to solve these issues. For this
reason, in the third part of this thesis, an extensive study related to the loss functions of
neural network architectures for biometric comparisons has been developed.

3.3.5 Residual Neural Network

Since in 2012, CNNs began to gain more attention, a lot of more powerful variants based
on CNNs have been proposed, such as AlexNet [71], VGGNet [211], GoogLeNet Incep-
tion [76], ResNet [79], UNet [212] or EfficientNet [213]. These approaches are mainly
focused on introducing more and more CNN layers into the architectures. Neverthe-
less, [79] studied the effect of degradation that these deeper architectures start to show.

3.4 Back-end Approaches Review 43

Initially, this degradation was the result of overfitting, but a wide analysis showed that
it was not the cause of performance degradation. Instead, the optimization function, the
initialization of the network, or the problem of vanishing or exploding gradients could

be blamed.

To solve these issues, in [79], a new architecture called Residual Neural Network
(ResNet) was also created and achieved high relevance. ResNets are based on convolu-
tional layers and residual path additions, which are also known as skip connections or
shortcut connections. The basic block diagram of the ResNet architecture with the skip
connection is depicted in Figure 3.7. This connection allows the input signal of the resid-
ual block to be added directly to the output. In this way, the effect of vanishing gradients
is reduced, and the training convergence improves. Moreover, the use of these blocks
increased the ability to train much deeper networks than was previously possible.

weight layer
F (x) l relu <
weight layer identity

F(x) +x

Figure 3.7: Residual block [79]. This block has a skip connection that allows information to flow more easily
from one layer to the next layer which helps to reduce the effect of vanishing gradients.

3.4 Back-end Approaches Review

For the back-end and evaluation blocks in Figure 3.1, many popular algorithms have
been employed throughout history. As with representation methods, these algorithms
can be categorized into two main groups: distance-based and trainable-based. Distance-
based approaches, such as Euclidean distance or cosine similarity, are directly applied to
obtain the scores of the representations extracted from the representation method. On
the other hand, the trainable methods consist of different techniques in which a model
is trained using generative approaches such as Gaussian back-end and PLDA, or with
discriminative approaches such as SVM and NN back-end. The biometric recognition
systems may or may not introduce one of these trainable methods, and only these systems
are evaluated using a distance-based approach. As in the previous section, the approaches
employed in this thesis are briefly described below.

44 Chapter 3. Biometric Recognition Systems

3.4.1 Cosine Similarity

The easiest approach to employ as a back-end is cosine similarity. This similarity is a
metric that measures the normalized product between two representation vectors. These
vectors are known as enrollment and test vectors in recognition systems, and when these
vectors come from a DNN are often called embeddings. To determine the similarity, the
cosine of the angle between the two vectors is calculated. In order to calculate the cosine
value, no extra training is required. Using this metric, the degree of similarity of the
enrollment and test vectors is computed as:

el e,

t
e (3.9)
e || - lleell

s(ee, er) =
where ||e.|| is the norm of the enrollment vector, and ||e] || is the norm of the test vector,
where the euclidean norm applied to these vectors is ||¢|| = /Y., 4. Whether this simi-
larity value is close to 1, it indicates that the two vectors are very similar. Whereas two
orthogonal vectors would have a similarity close to 0.

3.4.2 Weighted Gaussian Back-end

The previously explained similarity is a straightforward and an efficient way to evaluate
the systems. However, depending on the task and the approach used to obtain the repre-
sentation vectors, a trainable back-end can also be incorporated to improve the results.
The generative Gaussian Back-end (GB) is one of the most common. In this back-end,
each class is modeled by a Gaussian distribution, defined by a class-dependent mean and
a full covariance matrix shared across all classes. These Gaussian models are used to com-
pute the likelihood of a sample for each of the modeled classes. As usually, the back-end
training data is likely to be imbalanced, a modification of the Gaussian Back-end [191]
was presented to normalize for the imbalance by appropriately weighting the examples
during the computation of the means m; and covariance S of the model. The Weighted
GB (WGB) is thus defined by,
my = e M (3.10)
Ziu,:l Wi
_ 21 D=1 Wi - (€ = mp)" - (e; — my)
i Wi ’

where e; is the representation vector with i € {1,..,m} and m is the total number of

S

(3.11)

examples, w; is the weight assigned to each example, and [; is the class present in the
example. The weights are computed such that all samples from a class are weighted
equally (w; = w; if [; = ;) and the sum of their weights is identical across classes (3 ;;,.; wi
is the same for all).

3.4 Back-end Approaches Review 45

3.4.3 Probabilistic Linear Discriminant Analysis

Another generative approach has been widely used in several tasks, which is called Prob-
abilistic Linear Discriminant Analysis (PLDA). PLDA is a probabilistic variant of Linear
Discriminant Analysis (LDA) that can be used with more complex data than LDA. This
technique is also similar to models based on Joint Factor Analysis (JFA). The PLDA mod-
elling can be expressed as

ej=p+V- -y +U-x;+ €, (3.12)

where p is the class-independent mean vector, V is the eigenclass matrix, y; is the class
factor, U is the eigenchannel matrix, x;; is the channel factor with j € {1,..., m} and m is
the total number of examples, and €;; models the residual variability (intra class).

Once this model is trained, it can be used as a binary detector to determine whether
pairs of examples are of the same class or different. For scoring pairs of examples, the
verification score is calculated using the likelihood ratio of the form:

p(ee: et‘Hl)
plec|Ho) - pleHp)’

where e, is the vector of enrollment sample, e, is the vector of test sample, H; represents

s(ee, e;) = (3.13)

the hypothesis of both vectors coming from the same class, and H, is the hypothesis of
both vectors belonging to different classes.

3.4.4 Support Vector Machines

The generative back-end techniques aforementioned may struggle to separate similar
classes because they are not trained to separate them explicitly. For this reason, in [184],
the Support Vector Machines (SVM) kernel-based classifier were introduced as discrimi-
native technique. The SVM classifier focuses on finding the optimal plane which maxi-
mizes the margin between classes. This classifier is built from the sum of a kernel function
as

fle) = Z wi - i - K(e, e;) + b, (3.14)

where e; is the representation vector with i € {1,.., m} and m is the total number of
examples, w; are the learned coefficients, y; are the target values, and K(e, ¢;) is the kernel
function used to discriminate classes. One of the most employed the kernel function is
the radial basis function (RBF).

The SVM is by nature a binary classifier, so to use the SVM with multiclass data, a
“one vs. all" strategy can be employed. This strategy consists of training class-dependent
SVMs that target one class against the pool of all other classes. In this manner, the margin
between the target class and the other classes will be largely defined by closely related
classes to the target class.

46 Chapter 3. Biometric Recognition Systems

3.4.5 Neural Network Back-end

Apart from the techniques introduced above, a discriminative model based on a feed-
forward Neural Network (NN) approach is another option for training a back-end. Re-
cently, the NN approach has been widely extended as a representation method to obtain
the vectors characterizing each sample. Nevertheless, several traditional techniques are
still used for some tasks to extract representation vectors, so in those cases, the NN can
be employed as a back-end over the representation vectors extracted from the previous
model. Even sometimes, special NN configurations [75,149] are applied as back-end with
vectors extracted from another DNNs, as we will present and analyze in later chapters.

3.5 Score Normalization

Before the final verification step, a score normalization is usually applied to conclude
the system. The motivation for this score normalization is the large variations that can
be observed in the scores obtained with different back-end techniques. Therefore, the
need arose to compensate for them to reduce variability, and several normalization tech-
niques have been developed. These techniques allow to improve the quality of the final
scores, but depending on the previous models, they could be optional to apply in the
cases where this variability is not very large. Among all normalization techniques, Zero
Normalization (Z-Norm) and Test Normalization (T-Norm) [214] have been the most pop-
ular until the introduction of the PLDA paradigm. PLDA produces symmetric scores, so
another normalization technique was extended, which is Symmetric Normalization (S-
Norm) [215]. Nowadays, this S-Norm is one of the most common score normalization
applied and can be calculated as:

score_norm = Seore ” fe | SCOTET 'ut, (3.15)

Oe Ot
where score is the original score, y; and o; are the mean and standard deviation of the
scores obtained from the evaluation of test vs. development files, and p, and o, are the
mean and standard deviation of the scores obtained from the evaluation of enroll vs.

development files.

3.6 Calibration

As the score normalization step, this calibration step is not always applied. However,
when it is introduced into the system, it is the last step before the final decision process.
In this step, the scores generated by the back-end are calibrated by transforming the
scores into proper likelihoods using a linear logistic regression as described in [216,217],

3.7 Decision Making 47

log(LR) = fy + i - scores. (3.16)

Using this transformation, these scores are converted into well-calibrated Log-Likelihood
Ratios (LLRs). Apart from obtaining well-calibrated LLRs, this process also chooses the
optimal threshold for detection. Thus, this step ensures optimal performance for the
operating point of the application.

3.7 Decision Making

Once the scores comparing the enrollment and test samples have been obtained, and
these scores have been normalized and calibrated whether both steps are employed, the
last step to complete the verification process consists of making a decision. In verification
systems, this final decision is taken by comparing the scores to an empirical threshold
(Q) and is a binary decision: acceptance or rejection [218]. Thus, as Table 3.1 shows,
this kind of system produces two types of decision hits and errors [219, 220] which are
depicted in Figure 3.8:

« True Positive (TP), correct detection or hit: which refers to when a sample of a true
identity or target is above the threshold and is correctly accepted.

« True Negative (TN) or correct rejection: which is related to the correct rejection of
an impostor identity.

« Type I error, False Alarm (FA), False Positive (FP), False Match (FM) or False Ac-
ceptance (FA): which refers to when an impostor is incorrectly accepted.

« Type Il error, Miss, False Negative (FN), False Non-Match (FNM) or False Rejection
(FR): which is related to the incorrect rejection of a true identity or target.

Truth

Positive - Target Negative - Impostor

Accept True Positive (TP) | False Positive (FP)
Reject False Negative (FN) True Negative (TN)

Decision

Table 3.1: Decision hits and errors types.

Based on these hits and errors, the probability of occurrence rates can be defined as
Table 3.2 shows:

« Sensitivity or True Positive Rate (TPR): which is the number of TPs in relation to
the total number of target identities.

48 Chapter 3. Biometric Recognition Systems

Truth
Positive - Target Negative - Impostor
Sensitivity: False Alarm Rate:
Accept T TP i
Decision . TP + FN — FP+ TN
Miss Rate: Specificity:
Reject R FN i TN
TP +FN ~_FP+TN

Table 3.2: Probabilities of hits and errors rates.

« Specificity or True Negative Rate (TNR): which corresponds to the number of TNs
with respect to the total number of impostors.

« Probability of False Alarms, False Alarm Rate (FAR) or False Positive Rate (FPR):
which is defined by the number of times of a FA occurs in relation to the number
of impostors.

« Probability of Misses, Miss Rate or False Rejection Rate (FRR): which is the average
number of times that the scores are smaller than Q and a miss is produced with
respect to the number of target identities.

Therefore, the main challenge of this step is to position the decision threshold. The selec-
tion of the threshold is what relates the system to the operating point of interest in terms
of the application, and there are three different types of cases. Firstly, when FAR = FRR as
in Figure 3.8(a), we are at the point known as Equal Error Rate (EER). EER is an operating
point that is frequently used as a measure of the discrimination capability of the system
for many applications, especially commercial ones [221]. However, EER may not be the
best choice for some applications, so there are alternative operating points [222]. For
example, if Q is set to a high value for a high-security application, the number of false
alarms may decrease even though a higher number of false rejections occur [223]. Thus,
for systems where the cost of accepting an impostor is high, the threshold is chosen such
that FRR > FAR as in Figure 3.8(b). On the other hand, if the application of the system
requires a lower number of false rejections, such as forensic evidence evaluation, Q will
be set lower, but this involves that the number of accepted impostors increases, so in this
case, FRR < FAR as in Figure 3.8(c).

3.8 Performance Metrics

As described in the previous section, the main objective of these systems is to determine
whether each access attempt is made by a target or by an impostor person. Hence, when

3.8 Performance Metrics 49

Impostor Target
Q
1. . _"EER
-+ - 1 + + = +
\ FR | FA
Miss (FR) False alarm (FA) |
(a) FAR = FRR
Q Impostor Target
—ts
AN
Misses (FR) False alarm (FA)
(b) FRR > FAR
Q Impostor Q Target
7/ + I *\‘I’ */ = + f
Miss (FR) False alarms (FA) FR| FA

(c) FRR < FAR

Figure 3.8: Decision errors based on the decision threshold (Q) for speaker verification systems. Different
possible cases depending on the amount of each type of error. (a) Case where FAR is equal to FRR. (b) The
number of FRR are greater than FAR. (c) Greater number of FAR than FRR.

these systems are created, they try to minimize decision errors. Thus, to analyze and
evaluate the behaviour of the biometric recognition systems proposed in this disserta-
tion, we have measured the performance using six metrics. Moreover, it is common to
represent the performance using two types of curves that depicts the trade-off between
decision errors.

3.8.1 Receiver Operating Characteristic Curve and Detection Er-
ror Trade-off Curve

The first curve used to represent system performance is the Receiver Operating Charac-
teristic curve (ROC) which is shown in Figure 3.9(a). The ROC curve is a graphical plot
that has been widely adopted to show performance in biometric systems. The aim of this
representation is to analyze the power of the systems to detect as many TPs as possible
and minimize FPs. Therefore, in this curve, the relation between the sensitivity or TPR
and FPR or FAR is shown on a linear scale.

50 Chapter 3. Biometric Recognition Systems

On the other hand, the Detection Error Trade-off curve (DET) is a variant of the pre-
vious ROC curve. The DET curve represents in a visual plot the decision errors sweeping
the threshold over all operating points. Non-linear warping has been applied to this curve
on both axes, which spreads out the plot and produces curves that are closer to straight
lines if the scores are better calibrated. In this case, instead of plotting the correct detec-
tion rate, this plot represents the trade-off between the probability of false alarms or FAR
and the probability of misses or FRR as Figure 3.9(b) depicts.

4 & High security

applications

" FAR=FRR

g AUC 2
Forensic
applications
FAR g FAR g
(a) ROC curve and AUC (b) DET curve and EER

Figure 3.9: (a) Left: Example of ROC curve and AUC of this curve. (b) Right: Example of DET curve, EER
operating point, and also different application operating points.

3.8.2 Area Under ROC Curve and Equal Error Rate

The previous curves allow representing the overall capabilities of the systems at the dif-
ferent operating points. Nevertheless, a single performance number is usually employed
to represent the capability of the systems. One of the most used metrics to obtain it is
the Area Under ROC Curve (AUC) [224]. AUC measures the probability that samples
from the target and non-target classes, m* and m~, are ranked correctly based on the
previously obtained scores. This metric is expressed as,

1 m" m”
AUC = ——3 3 1(s; > 5)), (3.17)
mm 3 =1
where s; is the score of target class, s; is the score of non-target class, and 1() has a value
equal to ’1” whenever s; > s;, and '0” otherwise.

Another widely spread metric is Equal Error Rate (EER) [216, 225] which measures
the discrimination ability of the system to separate true identities from impostors. EER
represents the operating point at which the probability of FA is equal to the probability
of FR as marked on the DET curve in Figure 3.9(b). This operating point is widespread in
commercial applications, as it provides a general idea of the performance regardless of
the number of samples in each class.

3.8 Performance Metrics 51

3.8.3 Detection Cost Function

As explained in the decision making section, the operating point is different accord-
ing to the desired application of the system. Then, measuring only the EER value may
not be the best option to show the performance. For this reason, Detection Cost Func-
tion (DCF) [226] is calculated and is usually shown in combination with EER. DCF is an
application-dependent cost function to measure the discrimination and calibration power
of the system. This function is based on the measure of the cost of detection errors in
terms of a weighted sum of the FA and FR probabilities for some decision threshold and
a prior probability of observing true (target) or impostor (non-target) identities. In this
metric, two different values can be measured: the minimum and the actual detection cost
(minDCF and actDCF). minDCF is defined as the optimal value of DCF. While actDCF is
the computed cost for a fixed threshold obtained from the development data during the
calibration step. To calculate this function, the general expression is defined as:

DCF = Cfa ’ (1 - Ptar)) Pfa(Q) + Cmiss * Prar - Pmiss(Q), (3-18)

where P, is the target prior probability, Cy, is the cost of false alarms, Ps,(Q) is the prob-
ability of false alarms for a given threshold Q, C,,;,, is the cost of misses, and Py,;55(Q?) is the
probability of misses for a given threshold Q. In addition, depending on the application
and the desired operating point, there are two main configurations in the bibliography
for Py, Crq and Cpiss parameters that have been used to evaluate the systems in this
thesis: NIST detection costs 2008 (DCF08 [227]) and 2010 (DCF10 [228]).

3.8.4 Log-Likelihood Ratio Cost

Log-Likelihood Ratio Cost (CLLR) [216, 226] is an application-independent measure of
the discrimination and calibration performance of the system. This metric can be seen as
a generalization of DCF since CLLR is defined as an integral over all possible operating
points of DCF. As occurs with DCF metric, CLLR has two different values to measure:
minimum Log-Likelihood Ratio Cost (minCLLR) and actual Log-Likelihood Ratio Cost
(actCLLR). minCLLR indicates the optimal CLLR. While actCLLR represents the value
obtained during the calibration step. The integral of CLLR is calculated as,

CLLR = / DCF(Q) dQ, (3.19)
Q

where Q is the decision threshold, and DCF(Q) is the DCF value at each operating point.
However, to measure this value, the following analytic expression is employed:

CLLR = 1 (Zyieym, log(l + exp(_star(xi: yz))) + Zy,-Eynon 10g(1 + exp(snon(xi; y:)))) (3.20)

2 IOg 2 Niar Nuon

where s, are the scores of target class, and s,,, are the scores of non-target class.

52 Chapter 3. Biometric Recognition Systems

3.8.5 Diarization Error Rate

Apart from the above metrics, another metric has been used to measure the performance
of multimodal diarization systems. As reference metric to evaluate these systems, Di-
arization Error Rate (DER) is usually employed. However, in this thesis, DER is obtained
slightly different than the original metric since it also takes into account the measure-
ment of the identity assignment errors. To analyze better the results obtained with the
DER metric, this metric can be decomposed in the three terms of error:

« Probability of misses (MISS): which indicates the segments where the target identity
is presented but the system does not detect it.

« Probability of false alarm (FA): which illustrates the number of errors due to the
assignment of one enrollment identity to a segment without identity known.

« Identity error (ID): which reflects the segments assigned to enrollment identities
different from the target identity.

3.9 Experimental Framework

This section presents the databases used in this thesis to develop and evaluate the differ-
ent biometric recognition systems. A key element for the evaluation of the performance
of these systems is the availability of large databases, which nowadays are growing more
and more in both size and variety. Therefore, this section introduces the databases em-
ployed during this dissertation for face, text-dependent speaker and language recogni-
tion, and also for multimodal diarization.

3.9.1 Face Verification Datasets

The development of face verification systems has been carried out using three main
databases.

Labeled Faces-in-the-Wild database

Many face databases have existed over the years, but the desire to study face recogni-
tion systems in unconstrained situations led to the creation of Labeled Faces-in-the-Wild
(LFW) [229,230]. This dataset was collected from the web in 2007 with different varia-
tions such as changes in posture, facial expression, race, gender, illumination and other
parameters. Moreover, the number of identities increased with respect to the previous
existing databases. The LFW dataset contains 5.749 different celebrity identities with
13.233 facial images.

3.9 Experimental Framework 53

CASIA-WebFace database

The need for a large-scale dataset motivated the development of the CASIA-WebFace
dataset [231] that was built in 2014. The facial images to create this dataset were selected
from the IMDb website. This dataset is composed of 494.414 images of 10.575 individuals.
In many previous works, it has been employed as a training set due to this dataset is one
of the largest public corpora for the face recognition task.

Mobile biometrics database

The mobile biometrics (MOBIO) database [232] is a bi-modal, face and speaker database
containing video recordings from mobile devices collected in 2010. This database was the
first captured almost exclusively on mobile phones. It contains 152 individuals with 52
females and 100 males, where each person has 12 sessions with over 61 hours of audio-
visual data. To enroll the people, 5 facial images per identity were employed. Using this
database, the systems have to cope with the different variabilities caused by acquisition
in a mobile environment.

3.9.2 Text-Dependent Speaker Verification Datasets

To carry out the speaker verification experiments, two different text-dependent speaker
verification datasets have been used.

RSR2015 database

Initially, we have used the RSR2015 text-dependent speaker verification dataset [124] for
experiment development as it was the only one composed of several phrases and with
publicly available train and test sets for text-dependent phrase-based speaker verification.
This dataset consists of three different parts with speech samples from 157 males and 143
females. For each speaker and part, there are 9 sessions in which 30 different phrases
are uttered. Furthermore, this corpus is divided into three speaker subsets: background
(bkg), development (dev) and evaluation (eval). We develop our experiments with Part
I and Part II, and employ the bkg and dev data (194 speakers, 94 females/100 males) for
training. The evaluation part is used for enrollment and trial evaluation. Part I contains 30
phonetically balanced pass-phrases. Part Il is based on 30 short control commands which
have a strong overlap of lexical content. Moreover, this dataset has three evaluation con-
ditions, but in this work, we have only evaluated the most challenging condition, which
is the Impostor-Correct case where non-target speakers pronounce the same phrase as
target speakers. This condition is also the most commonly employed in text-dependent
speaker verification.

54 Chapter 3. Biometric Recognition Systems

DeepMine database

The above database has been widely used to develop text-dependent speaker verification
systems for several years, but it is not very large. For text-dependent speaker verification
tasks, existing large databases are usually not publicly available. To address this issue,
the multipurpose DeepMine dataset has been recently released [233]. The DeepMine
dataset was released in 2019 and was created mainly to provide a large-scale database
for text-dependent speaker verification purposes. This database is composed of three
different parts with English and Persian phrases. For the experiments with this database,
we employ the selected files from Part 1, which are used in Task 1 of the Short-duration
Speaker Verification (SdSV) Challenge 2020 [234]. Part 1 corresponds to text-dependent
part and consists of 5 Persian phrases and 5 English phrases. This part contains about
100.000 files from 963 female and male speakers.

3.9.3 Language Verification Datasets
Language Recognition Evaluation

In this thesis, the language recognition experiments have been performed with the databa—
se that was provided by the National Institute of Standards and Technology (NIST) for the
Language Recognition Evaluation (LRE) 2009 [235]. Specifically, we have used a division
of LRE09 development data that was proposed in [236]. The 49 original LRE09 develop-
ment languages with 41793 files are used for training the different systems. For testing,
we use test segments of the 23 target languages, each cut to consist of just 8 seconds
of speech. We focus on the closed-set language recognition problem in which there are
no out-of-set examples since all test examples belong to one of the 23 target languages.
Also, we use the evaluation part of the LRE15 [237] corpus and the LRE17 [238] corpus
to perform a final test since these databases are composed of clusters of closely related
languages, useful for dialect discrimination.

3.9.4 Multimodal Diarization Datasets

In the case of multimodal diarization, images and audios will be extracted from the fol-
lowing video databases to perform diarization and identity assignment on them.

RTVE 2020 Challenge

The RTVE 2020 Challenge is part of the 2020 edition of the Albayzin evaluations [239,
240]. This dataset is a collection of several broadcast TV shows in Spanish language
covering different scenarios. To carry out this challenge, the database provides around
40 hours of shows from Radio Television Espafiola (RTVE), the Spanish public Radio and
Television. The development subset of the RTVE2020 database contains two of the parts

3.9 Experimental Framework 55

of the RTVE 2018 database (dev2 and test partitions) which are formed by four shows of
around 6 hours. Furthermore, this subset also contains a new development partition with
nine shows of around 4 hours. The evaluation or test set consists of fifty-four video files
of around 29 hours in total with timestamps of speakers and faces. Enrollment data is
also provided for 161 characters with 10 images and a 20-second video of each character.

Part 11

Representation Learning

57

File Level Representation using Deep
Neural Network Embeddings

4.1 Motivation 44.1 1D Convolution Layer

4.2 Baseline Architecture for Face 442 Random Erasing
Verification 4.5 Results and Analysis of Text-

4.3 Results of Face Verification Dependent Speaker Verification
Baseline Systems Baseline Systems

4.4 Baseline Architecture for Text-
Dependent Speaker Verification

4.1 Motivation

In the first part of this thesis, the theoretical background of biometric recognition sys-
tems has been introduced. As already mentioned, these systems are attracting a great
deal of research interest in which many biometric attributes can be used. Among all the
multiple options, this thesis is based on face and voice recognition, as they have become
a crucial part of day-to-day life. Since, nowadays, most of the personal devices have a
camera and a microphone, which allow capturing face and audio easily. This fact has
led to these systems being used for different applications. Although the technology be-
hind this kind of systems is quite mature and has undergone a breakthrough in recent

59

60 Chapter 4. File Level Representation using Deep Neural Network Embeddings

years with the spread of Al algorithms, especially Deep Neural Networks (DNNs), there
are still some issues to be solved, such as overfitting problems due to limited data that
generate problems to generalize to unseen data. Moreover, in some cases, applying tech-
niques with impressive results in a specific task to another task may not produce the
expected behaviour. Therefore, in this thesis, we propose different approaches to solve
these problems. However, to introduce these approaches, we first need to create two ref-
erence systems similar to the main state-of-the-art approaches. Hence, in this chapter, we
present face and text-dependent speaker verification systems that will serve as baseline
systems throughout this thesis.

The remainder of this chapter is organized as follows: the baseline architectures for
the face verification system are described in Section 4.2. Section 4.3 presents the experi-
mental results for the face verification systems. The initial architectures used as baselines
for text-dependent speaker verification systems are introduced in Section 4.4. Finally, the
text-dependent speaker verification results and analysis of the results are described in
Section 4.5.

4.2 Baseline Architecture for Face Verification

To establish the baseline system for face verification, a data processing step is initially
carried out. In this step, first, the face images are passed through a face detector. This
detector is a system of alignment and detection based on a DNN called Multi-task Cas-
caded Convolutional Networks (MTCCN) [241]. We have used this implemented system
as it is an effective and proven method for face detection, which is necessary to do before
proceeding with the rest of the face verification pipeline. Subsequently, the detected im-
ages are used as input to train the neural network architecture. To perform this training,
at the beginning of the process, the images are randomly cropped to a size of 160 x 160
pixels, mean and variance normalization are applied, and data augmentation methods
are employed. Aside from applying a random crop, a random horizontal flip and Ran-
dom Erasing (RE) [206] are also used as data augmentation in this case. The RE data
augmentation technique will be explained in detail later. Once the images are processed,
the neural network as representation method is trained to optimize a multi-class classi-
fication objective loss function such as the traditional Cross-Entropy (CE) loss. As first
neural network, a widespread architecture in the image field has been employed. This ar-
chitecture is a WideResnet [82] which is an evolution of the Resnet architecture [79] and
has a general structure as shown in Figure 4.1. The developed architecture is composed of
twenty-five convolutional layers. Moreover, this kind of architecture is based on a neural
network with wide residual blocks with two-dimensional convolution (2D convolution)
layers, a pooling layer typically using a global average operation, a fully-connected (lin-
ear) layer, and finally a loss layer such as softmax. The detailed information of each layer
and its dimensions can be found in Table A.1 of Appendix A. Once the training of this
architecture is completed after 150 epochs using Stochastic Gradient Descent (SGD) op-
timizer with a learning rate that decreases from 107! to 107, file level representations

4.2 Baseline Architecture for Face Verification 61

known as embeddings are extracted from the pooling layer to carry out the verification
process. Typically, for the verification process, a simple cosine similarity is applied to
obtain the scores and the final performance metrics are calculated. To implement this
system, the CASIA-WebFace dataset is employed for training and the MOBIO dataset is
used for evaluation.

On the other hand, the development of the previous system was limited in depth
and width due to the computational resources available. Nevertheless, contemporane-
ously with the start of this thesis, several powerful state-of-the-art systems were im-
plemented and made available in public repositories. Therefore, we have established a
second baseline using a pretrained model based on Inception ResNet [242] with more
than one hundred layers [75]. This network was also trained for a classification task
on the CASIA-WebFace dataset with the same general structure as Figure 4.1 depicts.
Hence, we decided to use this system to improve the initial baseline results, as the em-
beddings extracted from this model were previously tested in a verification task with the
LFW database to check their discriminative ability with impressive results. Using this
network, the processing of the face image is similar to the previous one, mean and vari-
ance normalization is applied, and it is resized to 160 x 160 pixels by applying a central
cropping. Next, the processed images are passed through a trained model to obtain an
embedding representation of each file to perform the verification process, for which a
cosine similarity is also employed.

Input signal

Processing
' Backbone ————— v T
| Neural Network :

e gt

| H |
, Pooling Global :
| |
I Average :
: Pooling :
|Embedding l—— Embedding
iextraction

|

|

Linear Layer :
v :
|

|

Softmax+CE Loss

Figure 4.1: Baseline system for face verification.

62 Chapter 4. File Level Representation using Deep Neural Network Embeddings

4.3 Results of Face Verification Baseline Systems

In this section, the results obtained with both systems are presented. Table 4.1 shows the
performance in terms of Equal Error Rate (EER%), Area Under the ROC Curve (AUC%),
minimum Detection Cost Function 08 (minDCF08), minimum Detection Cost Function 10
(minDCF10) and minimum Log-Likelihood Ratio Cost (minCLLR) for the female and male
data from the MOBIO dataset. Furthermore, we also include the results for this dataset
using the simple Convolutional Neural Network (CNN) with only nine layers developed
in [243]. The introduction of this result allows us to show more clearly the effect of
training a deep system with CASIA-WebFace to improve performance. Note that both
baseline systems introduced in this thesis are powerful architectures that show a relevant
improvement over a system with a simpler architecture. This effect confirms the need to
use larger architectures when the training data is large to achieve good performance.

Table 4.1: Experimental results on MOBIO [244] eval set, showing AUC%, EER%, minCLLR, minDCF08, and
minDCF10. These results were obtained to compare the baseline systems for face verification.

Architecture Female
Type N°Layers N°Param. EER% AUC% minDCF08 minDCF10 minCLLR
CNN 9 32.31M 11.89 94.91 0.492 0.752 0.403
WideResnet 25 43.31M 4.72 99.12 0.210 0.505 0.166
Facenet > 100 140M 2.14 99.76 0.086 0.201 0.079
Architecture Male
Type N°Layers N°Param. EER% AUC% minDCF08 minDCF10 minCLLR
CNN 9 32.31M 7.04 98.11 0.273 0.608 0.243
WideResnet 25 43.31M 1.22 99.91 0.060 0.148 0.049
Facenet > 100 140M 0.59 99.94 0.036 0.154 0.028
Architecture Female+Male
Type NeLayers Ne°Param. EER% AUC% minDCF08 minDCF10 minCLLR
CNN 9 32.31M 8.34 97.38 0.342 0.9674 0.289
WideResnet 25 43.31M 2.31 99.75 0.107 0.317 0.087
Facenet > 100 140M 1.05 99.92 0.051 0.184 0.043

4.4 Baseline Architecture for Text-Dependent Speaker
Verification

In view of the results achieved with the powerful architectures in the previous section,
we decided to implement a text-dependent speaker verification system using a similar
WideResNet architecture for the backbone part. This type of architecture had also been
successfully applied for text-independent speaker verification [137]. Moreover, in text-
dependent speaker verification, an attempt was carried out to introduce these convolu-
tional architectures in [166]. However, that work did not achieve the same good results as
simple architectures with only dense layers [165] for the RSR2015 database, which is the
text-dependent speaker verification dataset initially employed in this thesis. In addition,

4.4 Baseline Architecture for Text-Dependent Speaker Verification 63

since this database employed to create this system is smaller than the CASIA-WebFace
dataset, we have also proposed to compare performance with a second baseline system
that is composed of a straightforward architecture with only a few convolutional layers.
To evaluate these architectures, cosine similarity is employed as a metric. This metric is
simple and allows us to perform a fast evaluation of the trials using a matrix structure,
which reduces the time required for the entire evaluation. The structure of the system
architecture for both baseline systems is the same as shown in Figure 4.2 where the only
difference lies in the number and type of layers used in the backbone which are described
in Tables A.2 and A.3 of Appendix A.

Input signal

Processing
'Backbone ————— Yy TTTTT |
I Neural Network ,

| i |
, Pooling Global |
: Average .
! Pooling :
:Embedding + " Embedding
jextraction

Linear Layer

) i

|
|
|
: Softmax+CE Loss

Figure 4.2: Baseline system for speaker verification.

In the processing step in both systems, the raw signals are processed to calculate a
set of features composed of 20 Mel-Frequency Cepstral Coefficients (MFCCs) [96, 245]
with their first and second derivatives as features to obtain a final input dimension of
60 using a window length of 25 ms and an advance of 10 ms. Then, an energy based
Voice Activity Detector (VAD) is used on them. These features are employed as input to
train the WideResNet and simpler architectures. On the other hand, we have made some
modifications to these architectures with respect to the one used for the face verification
system. The first modification is the replacement of the 2D convolution layers by one-
dimensional convolution (1D convolution) layers since in this case, the input signals to
the network are audio samples. Furthermore, a new data augmentation technique is
introduced in the audio processing step. This new technique is known as Random Erasing
(RE) [206]. Both modifications will be explained in detail below.

64 Chapter 4. File Level Representation using Deep Neural Network Embeddings

4.4.1 1D Convolution Layer

Regarding the layers applied to create the backbone of text-dependent speaker verifica-
tion systems, we have proposed the use of 1D convolution layers instead of dense layers
or 2D convolution layers as in the face verification system. Our proposal is to operate on
the temporal dimension to add context information to the process, and at the same time,
all channels are combined in each layer. The context information added depends on the
size of the kernel k used in the convolution layer.

S =

X1 Xy X3 X4 X5 Xg X v X1 X3 X3 X4 X5 Xg X7
. « >

T T

-

(a) Operation with 1D Convolution.
4)I IR D(l)I

D0

] D(I)I Linear
kxDO__ DO X * =— combination of
= convolutions

D(I)I Xt+1 D(I)I

\ — / +—>
NEE A

(b) Example of the convolution operation.

Figure 4.3: Operation with 1D Convolution layers, (a) general pipeline of this operation; (b) example of how
k context frames from input are multiplied by the weight matrix W and the output is equivalent to a linear
combination of convolutions.

The operation of the 1D convolution layers is depicted in Figure 4.3. To efficiently
train this type of layers, it is desirable that all input signals have the same length in order
to concatenate them and pass them to the network. It is possible to obtain this fixed length
by applying an interpolation transformation or by padding the input signals with zeros.
In this thesis, we have used an interpolation to have all of them with the same dimensions
(D° x T) where D° is the acoustic feature dimension, and T is the temporal dimension.
Then, the signal used as input to the layer and its context, the previous and the subsequent

4.4 Baseline Architecture for Text-Dependent Speaker Verification 65

frames indicated by the kernel size, are processed by the 1D convolution layer, where
they are multiplied frame by frame with the corresponding weight matrix to produce a
new vector sequence. The result of this operation is that each frame and its context are
linearly combined to create the output signal. During the training process with these
convolution layers, the value of the temporal dimension (T) is kept until the pooling
block, while the acoustic feature dimension changes when it passes through the network
layers in function of the combination of channels in each layer. As we can see in Figure
4.3, each convolution layer will have feature vectors of dimension D as input and DU+
as output. The resulting dimension of the signal processed through the network will be
D =D DO, . DY . DW) where L is the total number of backbone layers.

4.4.2 Random Erasing

Focusing on the idea of adding some extra variability to the input signals, the use of con-
volution layers allows us to introduce a new data augmentation method for the speaker
verification task which is the Random Erasing (RE) data augmentation [206]. This method
was developed to improve the ability to generalize in image tasks using 2D convolution
layers. However, we have used a modified version of this method, one-dimensional RE
(1D RE), to apply it combined with 1D convolution layers. Figure 4.4 depicts a ran-
dom perturbation applied on F consecutive time frames at a random position in the
sequence. The number F of corrupted frames is drawn from an uniform distribution,
N ~ U(Fnins Fmax), where Fp;, is the minimum number of corrupted frames, and F,qy is

the maximum number.

Perturbation
/

MFCC A and AA Coefficients

25 5 100

50 7
Time (frames)

Figure 4.4: 1D Random Erasing transformation applied over input sample after the feature extractor and the
padding and normalization transformations.

66 Chapter 4. File Level Representation using Deep Neural Network Embeddings

4.5 Results and Analysis of Text-Dependent Speaker
Verification Baseline Systems

This section presents the results of the two baseline systems for the text-dependent
speaker verification task. In Table 4.2, we show EER%, AUC%, minDCF08, minDCF10
and minCLLR results with both systems trained on the bkg subset for females, males
and both partitions of the eval subset together from the RSR2015-Part I dataset. We
have found that these approaches do not perform well for this task, regardless of net-
work depth. It is noteworthy that the smaller architecture achieves slightly better results.
Nevertheless, these results are worse than expected, as DNNs combined with traditional
approaches such as Hidden Markov Models (HMMs), Gaussian Mixture Models (GMM:s)
or i-vectors [154, 159] exhibit EER values around 1%.

Table 4.2: Experimental results on RSR2015-Part I [124] eval set, showing AUC%, EER%, minCLLR, minDCF08,
and minDCF10. These results were obtained by training with bkg+dev subsets to compare the baseline systems
for text-dependent speaker verification.

Architecture Female
Type NeLayers N°Param. EER% AUC% minDCF08 minDCF10 minCLLR
WideResnet 25 21.51M 11.09 95.74 0.526 0.968 0.378
CNN 3 0.02M 9.11 97.04 0.453 0.959 0.315
Architecture Male
Type Ne Layers N°Param. EER% AUC% minDCF08 minDCF10 minCLLR
WideResnet 25 21.51M 12.74 94.79 0.619 0.975 0.417
CNN 3 0.02M 8.67 97.22 0.460 0.963 0.306
Architecture Female+Male
Type N°Layers N°Param. EER% AUC% minDCF08 minDCF10 minCLLR
WideResnet 25 21.51M 12.02 95.23 0.578 0.972 0.401
CNN 3 0.02M 8.88 97.14 0.458 0.963 0.311

To analyze what may be happening, we have computed the cosine similarity of the
embeddings of the samples in the evaluation subset. Due to the computational cost of
calculating this similarity for the entire subset, we have depicted only the first ninety
samples in Figure 4.5. In view of this representation, it seems that embeddings with good
potential representation ability have been obtained, but it does not match the numerical
performance in Table 4.2. Therefore, we decided to analyze some more examples of test

embeddings.

For this purpose, we have calculated the cosine similarity matrix shown in Figure 4.6.
To compute this matrix, we have used the embeddings of the first female speaker pro-
nouncing the thirty phrases composing the RSR2015-Part I dataset, and also, the second
temale speaker pronouncing the first twenty phrases. In this illustration, we observe that
the embeddings extracted from the DNN after the global average pooling produce high
cosine values when comparing the embeddings for the same identity and phrase. On the
other hand, whether we pay attention to the cosine similarity of the comparison of the
second speaker pronouncing the same phrase as the first speaker, we can see that the

4.5 Results and Analysis of Text-Dependent Speaker Verification Baseline Systems 67

9 x 9 diagonal blocks of
high similarity indicate a
good behaviour comparing
utterances of the same
speaker + phrase

Figure 4.5: Matrix of cosine similarity with the first female speaker pronouncing the first ten phrases.

value is also high. Therefore, the final verification process can be affected by the confu-
sion generated by different speakers pronouncing the same phrase. This effect could be
the reason for the poor performance of the system.

High similarity among
different speakers for
the same phrase will
lead to detection errors

100 200

Figure 4.6: Matrix of cosine similarity with more embeddings where problems to distinguish between two
different female speakers pronouncing the same phrase are shown.

Unfortunately, the results and the cosine similarity matrices depicted show that the
application of this kind of system does not work efficiently on text-dependent tasks with

68 Chapter 4. File Level Representation using Deep Neural Network Embeddings

small training databases. A possible cause of inaccuracy in text-dependent tasks could
be derived from the use of the global average pooling mechanism as a representation of
the utterance. Since for text-dependent speaker verification tasks, the uttered phrase is
a relevant piece of information to correctly determine identities and the system has to
detect a match in speaker and phrase to be correct, as we will show in the next chapter.

Deep Neural Network Supervectors

5.1 Motivation 5.4.2 Analysis of the Training
5.2 Alignment Mechanism Data and the Number of
52.1 Hidden Markov Model States using HHM Align-
ment with RSR2015-Part I

Alignment Mechanism

5.2.2 Gaussian Mixture Model and Part II
with Maximum A Posteri- 54.3 Comparing Global Aver-
ori Alignment Mechanism age Pooling with GMM as

Alignment Pooling Mech-
anism with RSR2015-Part I
and Part II

5.5 Conclusions

5.3 Deep Neural Network based on
Alignment

5.4 Experiments and Results

5.4.1 Experimental Setup

5.1 Motivation

As described in Chapter 4, the use of techniques based on discriminative Deep Neural
Network (DNN) combined with a global average pooling mechanism does not work ef-
ficiently for text-dependent speaker verification tasks. Most text-independent speaker
verification approaches to obtain speaker representations or embeddings from a whole
utterance employ this type of approaches in which temporal information is reduced by
calculating the average across frames of internal representations of the network. Thus,

69

70 Chapter 5. Deep Neural Network Supervectors

this type of systems only maintain the information of who is speaking and they may not
capture phonetic information for the final identification process. This approach may ne-
glect the order of phonetic information because in the same phrase the beginning of the
sentence may be totally different from what is said at the end. An example of the rele-
vance of keeping this order is the case where the system asks the speaker to utter digits
in a random order. In that case, a mean vector would fail to capture the combination of
the order of the uttered digits and speaker. For that reason, we show that it is important
to keep this information for the identification process in text-dependent speaker veri-
fication tasks, and not only the information of who is speaking, since the order of the
phonetic information of the uttered phrase is a relevant part of the identity information.

To solve this problem, this thesis proposes a new architecture that includes a phonetic
phrase alignment method as a key component of the mechanism to obtain the vector
representation of a DNN. Unlike previous works, we substitute the average of internal
representations across time used in other neural network architectures [165, 166] by a
differentiable alignment mechanism applied as a new internal layer to keep the temporal
structure of each utterance. We show how the alignment can be applied in combination
with a DNN acting as a backbone to encode speaker and phrase information in a super-
vector for each utterance thanks to the DNN and the specific states of the supervector. A
supervector is a concatenation of lower-dimensional vectors of each specific state into a
higher-dimensional vector. As we will show, the application of both sources of informa-
tion in the process of defining the supervector provides better results in the experiments
performed with the RSR2015 database compared to previous approaches.

Therefore, the aim of this chapter is to explore different approaches to generate signal
representations or embeddings introducing a differentiable alignment mechanism into
the DNN models which preserve the subject identity and uttered phrase. In the following
section, we present the alignment mechanism and the two techniques employed in this
thesis. Later on, we will describe the way to use this mechanism as an internal layer in the
architecture. Afterwards, the results for these approaches will be introduced. Finally, we
explain the conclusions about this alternative to the global average pooling mechanism.

5.2 Alignment Mechanism

Due to the poor performance of the results achieved in the previous chapter for this task
with DNNs combined with global average pooling, we have developed a differentiable
alignment mechanism for DNNs to replace the usual pooling because of the importance
of the phrases and their temporal structure in this type of task. Since the same person
does not always pronounce a phrase at the same speed or in the same way due to differ-
ences in the phonetic information, it is usual that there exists an articulation and pronun-
ciation mismatch between two speech utterances compared even from the same person.
Thus, for the success of the text-dependent speaker verification task, a new mechanism is
necessary to encode the phrase and speaker information of the audio file into a represen-

5.2 Alignment Mechanism 71

tation vector. This vector has to be able to keep the order of the phonetic information, so
for this reason, different alignment mechanisms have been proposed to use their states or
components to maintain this information in the representation vector. Therefore, using
the alignment mechanism, the representation obtained has a common mechanism with
the traditional supervector in speaker verification. It has the advantage of being discrim-
inative against differences in phonetic information, which is necessary in our task, and,
at the same time, it is robust against the different sources of variability produced when
an utterance is pronounced. There are several alternatives to use as an alignment mech-
anism such as Hidden Markov Model (HMM), Gaussian Mixture Model (GMM) or DNN
posteriors. An example of the alignment for each of these mechanisms can be seen in
Figure 5.1. In Figure 5.1(a), the relation between time and states of an HMM is shown.
On the other hand, Figure 5.1(b) depicts the relation between time and components of
a GMM. Finally, Figure 5.1(c) represents the relation between time and DNN posteriors.
The two alternatives employed in this thesis will be explained below.

o ° L} o

25 2 - _ -
]

Q=32 C=64 p=s2

(a) HMM (b) GMM (c) DNN posteriors

Figure 5.1: Examples of alignment for the different existent approaches. (a) Left: HMM alignment. (b) Center:
GMM alignment. (c) Right: DNN Posteriors alignment.

5.2.1 Hidden Markov Model Alignment Mechanism

The first technique employed during this dissertation is a phrase HMM-based alignment
mechanism [48,246]. The general explanation of this type of model was detailed in Sec-
tion 3.3.1. Using this approach, the knowledge of phonetic information is not necessary
for the training process, so we can easily train an independent HMM with no skip states
for each different phrase. Unlike HMMs generally used in Automatic Speech Recognition
(ASR), whose states are associated with phonemes or context-dependent units, we have
used one HMM per phrase with a fixed number of states and these models are trained in
an unsupervised way. Therefore, we do not need to use annotations to define the states of
the model from the transcribed sequence of phonemes for each phrase. Furthermore, this
kind of alignment mechanism has a left-to-right architecture and employs the Viterbi al-
gorithm to provide a decoded sequence in which all states of HMM have correspondence
with at least one frame of the utterance, so no state is empty.

The process followed to add this frame-to-state alignment to our system is detailed
below. Once the models for alignment are trained, we obtain a sequence of decoded states
q=(q1, - G --» q7) Where q; indicates the decoded state at time t with ¢, € {1, ..., Q} and

72 Chapter 5. Deep Neural Network Supervectors

A
A
ay,
ay,
pw | '
T ’ — D&
X1 X2 X3 X4 X5 Xg XT .
ay
< > v
S
T q $18;, SQ

Figure 5.2: Process of alignment, the input signal x is multiplied by an alignment matrix A to produce a matrix
with vectors sp which are then concatenated to obtain the supervector.

Q is the number of states. After that, these decoded sequence vectors are converted into
a matrix with ones at every state q corresponding to the decoded sequence at time ¢ and
zeros in the remaining states, which makes possible to use them directly inside of the
neural network. As a result of this process, we have the alignment matrix A € RT*9 with
its components a;q,=1and), a;;=1which means that only one state is active at the same
time.

For example, if we train an HMM with 4 states and we obtain a vector v and apply
the previous transformation, the resultant matrix A would be:

v=1[1,1,1,2,2,3,3,4] > A= (5.1)

SO O O r Rr O O O
S =k RO O O O O
_ o O O O o o O

O O O O O =

Once this process is over, as we can see in Figure 5.2, the alignment matrix is pro-
vided externally to the network for each utterance, giving the supervector as the output
of a matrix product as one additional layer after the last layer L. The use of this matrix
facilitates differentiation and enables to backpropagate the gradients to train the neural
network. Therefore, each column of the output matrix is a linear combination of the
sequence of vectors, and its derivative is straightforward. Matrix multiplication assigns
the sum of the corresponding frames to each state vector, resulting in a supervector if
we consider them concatenated. Then, speaker verification is performed with this super-
vector. This process can be expressed as a function of the output, xfft), of the last layer L
with dimensions (D) x T) and matrix of alignment of each utterance A with dimensions

(T < Q):

5.2 Alignment Mechanism 73

(L+1) Zt xt(iltl) i atq Z () - (5 2)
d =T . Xar * Gigs .
1 Zt g t '
(L+

where x; q Y is the supervector of the layer (L + 1) with dimensions (DY) x Q), where there
are Q state vectors of dimension D) and we normalize with the number of times the
state g is active, and d;, are the normalized weights defined as a;4/}, a4

5.2.2 Gaussian Mixture Model with Maximum A Posteriori Align-
ment Mechanism

The second proposed approach is the use of a GMM to generalize the previous method.
GMM was introduced in detail in Section 3.3.2. Like the previous alignment mechanism,
the phrase transcription is not needed to train a model for each phrase. Moreover, this
method provides more flexibility since a single frame might not correspond to a single
component in the mixture. They can be distributed, and there might be empty compo-
nents for the whole sequence.

A
A
ay
e
1) B
D . _ o
X1 Xy X3 X4 Xs Xg X7 .
Ayc
- > v
S
T ¢ S18; Sc
c c

Figure 5.3: Process of alighment with GMM, the input signal x is multiplied by an alignment matrix A to produce
a matrix with vectors s¢c which are then concatenated to obtain the supervector. Note that we use the C to refer
at the components of the GMM.

The philosophy of this frame-to-components alignment process is similar to the one
described in the previous section, and it is depicted in Figure 5.3. However, in this case, we
obtain the GMM alignment from the posterior probability of the hidden variables. Matrix
A with dimensions (T x C) where C are the components of GMM is built by assigning the
posterior probabilities of the Gaussian component c at time ¢ to the elements of the matrix
ae = i) = P(Z = cJx{)):

(L+1) _ thgth) “ O n -
Xic = W = Zt: Xgp * Qtes (53)

where x;LCH) is the supervector of the layer (L + 1), a;. are the weights of the component

c, xfft) is the input to this layer L, and a,. are the normalized weights defined as a;./), a:..

However, often, most of the posteriors are close to zero. To avoid the loss of performance

74 Chapter 5. Deep Neural Network Supervectors

due to the sparness of matrix A, we add a MAP adaptation [106,107] that slightly modifies
this process. To define how this layer operates, we employ the following expression:
L b
) i x((jt) yle)+ T llizc)
“ Yivlo)+r

where 7 > 0 is the relevance factor, y;(c) is the posterior probability of Gaussian compo-

(5.4)

nent ¢, and ,ufil? is the running mean per component of the mixture that will be updated
each batch b in a similar manner to a Batch Normalization layer [247]:

b b-1
u = 1-p) v p-f, (5.5)
where p is the adaptation coeflicient, and f is the mean estimation using the batch data
samples.

The MAP adaptation ensures that the components with a low count of activations
in a sequence will be assigned the mean value of the corresponding supervector section,

y((ibc), making the system more robust even in the case a component is not activated.

5.3 Deep Neural Network based on Alignment

As a first approximation to check that the above alignment layer works better than the
extraction of the embedding from the global average pooling, we could apply this men-
tioned layer directly on the acoustic features to obtain the traditional supervector. How-
ever, we expect to improve this baseline result, so we propose to add some layers as a
backbone network previous to the pooling part and train them in combination with the
alignment mechanism. For this purpose, two different architectures are developed. In
addition, we have added the architecture created in Chapter 4 to remark the changes
introduced. These architectures are depicted in Figure 5.4 and are designed as follows:

« Architecture A. The architecture depicted in Figure 5.4(a) is the approach used in
many recent verification systems, in which a DNN is trained for the multi-class
classification which we developed in Chapter 4, and a global average pooling is
applied to extract the embedding representation. Once the system is trained, an
embedding is extracted for each enrollment and test file, and then a cosine similar-
ity metric is applied on them to obtain the verification scores.

o Architecture B. As described in Chapter 4, the previous architecture with this kind
of pooling is not the most suitable approach for text-dependent speaker verification
tasks. For this reason, we substitute the global average pooling by the differentiable
alignment mechanism explained in the above section, which allows us to keep the
temporal structure of the utterance. Thus, we use the system in Figure 5.4(b) to ver-
ity that these alignment mechanisms work better than the global average pooling.
This architecture consists of applying the alignment mechanism as a layer directly
on the acoustic features, so we get the traditional supervector per each audio file.

5.4 Experiments and Results 75

This supervector can be seen as a mapping between an utterance and the state
components of the alignment, which allows encoding the phrase information.

» Architecture C. Considering the good behaviour of the alignment layer and the pos-
sibility to propagate gradients, we can use this layer as a link between the backbone
and loss parts, allowing us to train the whole system to optimize any cost function
we decide. Thus, we create the architecture depicted in Figure 5.4(c) by combining
the architecture type B with a backbone network, and a flatten layer is used to link
with the last layer to train the system for multi-class classification with the CE
loss function. To implement the backbone network, different configurations of the
1D convolution layers introduced in Chapter 4 have been used. For the verification
process, once our system is trained, a neural network supervector is extracted from
the flatten layer for each enrollment and test utterance, and then a cosine similarity
is applied on them to produce the verification scores.

5.4 Experiments and Results

5.4.1 Experimental Setup

To validate the introduced approaches, we have used the RSR2015-Part I and II database
presented in Chapter 3. As the audio processing step in these experiments, a set of fea-
tures composed of 20 Mel-Frequency Cepstral Coefficients (MFCCs) with their first and
second derivates are employed as features to obtain a final input dimension of 60. Then,
an energy based voice activity detector is used on them. These features are employed
as input to train the alignment mechanisms and also as input to the DNN. To train two
different alignment mechanisms, the bkg partition of the RSR2015 dataset has been em-
ployed. Moreover, both were trained to obtain a model per phrase without the needed
to know the phrase transcription. On the one hand, HMM models have been trained us-
ing a left-to-right model with no skip states, which has been developed with models of
10, 20, 40 and 80 states for each phrase. On the other hand, a 64 component GMM has
been trained per phrase. With these models, we can extract the alignment information
for use inside our DNN architecture. The lack of data may lead to DNN training prob-
lems, so we try to avoid a possible overfitting in our models with the Random Erasing
(RE) data augmentation method explained in Chapter 4 which is applied on the input fea-
tures. Furthermore, we train the neural networks using an Adam optimizer [248] with
a learning rate of 10™* during 300 epochs that is more robust than Stochastic Gradient
Descent (SGD).

Along this chapter, two set of experiments have been performed to analyze the impact
of using the two different alignment mechanisms proposed to replace the global average
pooling. In addition, we have studied the effect of training with more data and also,
using different configurations of the DNN architecture. To train all alternatives of the

76 Chapter 5. Deep Neural Network Supervectors

Input signal Input signal
l - Processing |
| Processing | L
:Backbone i : :Pooling Alignment :
| Neural Network Lo gnme |
1 s mechanism 1
g ey e el o el l. ___________ . Supervector
1 Poolin o !
! g Global P Islsl I 1 ISII
| 1 1 1 S . . . Q 1
X Average I
1 Pooling :
I o o e e e e e e L D D D e e o
Embedding v Embedding :
1 extraction Linear Layer |
[}
| - |
! Softmax+CE Loss :
L L}
(a) Architecture type A (b) Architecture type B
Input signal
Processing |

| Backbone Y |

1 Neural Network .

e e e e T == l‘ ___________ F]

Poolin !

: ooling Alignment :

1 mechanism |

1 Supervector

I

(I o o — N I— —

1 Sy S . . . Sq |

\Embedding & *Embedding

extraction Linear Layer

Softmax+CE Loss

! |

(c) Architecture type C

Figure 5.4: The architectures developed to check the effectiveness of our proposed alignment mechanism, 5.4(a)
the architecture type A is trained for multiclass classification using a traditional global average pooling mecha-
nism. In 5.4(b) the architecture type B, the acoustic features are aligned directly to obtain the supervector. The
supervector is composed of Q vectors sp for each state or component. 5.4(c) the architecture type C is trained
for multiclass classification using the alignment mechanisms.

DNN architecture, CE loss has been employed, and to test a cosine similarity is applied
on the embeddings. The diverse experiments have been performed using Pytorch [249].

5.4 Experiments and Results 77

5.4.2 Analysis of the Training Data and the Number of States us-
ing HHM Alignment with RSR2015-Part I and Part I1

In the first set of experiments, we have analyzed the replacement of the usual global
average pooling mechanism by a differentiable alignment based on HMMs as the pooling
mechanism. In addition, we have also evaluated the interaction of different backbone
architectures with the alignment and the utterance duration by means of several HMM
sizes.

We compare a backbone using an average pooling with similar philosophy as [165,
166] which is detailed in Table A.3 in Appendix A, and the acoustic feature input directly
aligned with the HMM alignment; thus, we obtain the traditional supervector. In these
experiments, we have used the traditional supervector as the reference system instead
of an i-vector based system due to the limitations of i-vectors for text-dependent tasks
in the RSR2015 database, as pointed out in [250, 251], where the authors conclude that
these types of datasets do not have enough data to properly train the traditional i-vector
extractors. Additionally, we have evaluated several backbone architectures with four dif-
ferent configurations which are detailed in Appendix A in Tables A.4, A.5 and A.6: one
convolutional layer with a kernel of dimension 1 equivalent to a dense layer but keeping
the temporal structure and without adding context information, one convolutional layer
with a kernel of dimension 3, three convolutional layers with a kernel of dimension 3,
and four convolutional layers with a kernel of dimension 3. These configurations for
kernel size and number of layers have been selected as simply as possible, since, as we
mentioned in Chapter 4, DNNs have not achieved good results in this task. Finally, after
all experiments, we have extracted embeddings using average global pooling or super-
vectors as a combination of backbone and alignment with a flatten layer, and, with them,
we have obtained speaker verification scores using a cosine similarity metric without any
normalization technique.

RSR-Part I

The analysis introduced above has been carried out on both parts of the RSR2015 dataset.
First, we focus on RSR-Part I which is composed of fixed pass-phrases, e.g., “Only lawyers
love millionaires". In these experiments, we study the behaviour of our system when we
vary the number of backbone layers, the training data and the states of the HMM. In
Tables 5.1, 5.2 and 5.3, we show Equal Error Rate (EER%) and minimum Detection Cost
Function 10 (minDCF10) results with the different architectures trained on the bkg subset
for females, males and both partitions together. As we shown in Chapter 4, the approach
with a global average pooling mechanism to extract embeddings does not perform well
for this text-dependent speaker verification task. It seems that this type of embeddings
does not correctly represent the information to achieve discrimination between the cor-
rect speaker and the correct phrase simultaneously. For that reason, we seek an alterna-
tive to improve this discriminative ability, so we change this typical mechanism to a new
alignment layer inside the DNN that achieves a relative improvement of 92.14% in terms

78 Chapter 5. Deep Neural Network Supervectors

of EER%. In addition, we have evaluated the performance of our system as a function of
whether we vary the number of states used to model each phrase. Given the length of
the phrases in Part I, we observe that it is better to employ a larger number of states to
correctly model each phrase.

Table 5.1: Experimental results on RSR2015-Part I [124] eval set, where EER% and minDCF10 are shown. These
female results were obtained by training only with a bkg subset and by varying the number of states of the
HMM.

Architecture Results
Type Backbone Pooling Female
Layers Kernel Type States EER% minDCF10
A 3C 3 avg - 11.20 0.981
B - - HMM 10 3.14 0.273
C 1C 1 1.75 0.276
1C 3 1.60 0.250
3C 3 1.72 0.315
4C 3 2.31 0.384
B - - HMM 20 1.81 0.219
C 1C 1 1.42 0.192
1C 3 1.17 0.178
3C 3 1.14 0.181
4C 3 1.03 0.194
B - - HMM 40 1.35 0.210
C 1C 1 1.16 0.175
1C 3 1.04 0.170
3C 3 0.86 0.157
4C 3 1.09 0.198
B - - HMM 80 1.70 0.235
C 1C 1 1.46 0.197
1C 3 1.27 0.189
3C 3 0.84 0.153
4C 3 1.04 0.210

Nevertheless, the EER% results were still quite high, so we decided that the results
could be improved by training with the bkg and dev subsets together. In Tables 5.4, 5.5
and 5.6, we can see that, if we use more data to train our systems, we achieve better per-
formance, especially on deep architectures with more than one layer. This improvement
is observed for both architectures. This fact remarks on the importance of having a large
amount of data to be able to train deep architectures. Moreover, we have carried out an
experiment to illustrate this effect. In Figure 5.5, we show that, if we gradually increase
the amount of data used for training, the results progressively improve. In addition to

5.4 Experiments and Results 79

Table 5.2: Experimental results on RSR2015-Part I [124] eval set, where EER% and minDCF10 are shown. These
male results were obtained by training only with a bkg subset and by varying the number of states of the HMM.

Architecture Results
Type Backbone Pooling Male
Layers Kernel Type States EER% minDCF10
A 3C 3 avg - 12.13 0.991
B - - HMM 10 7.18 0.375
C 1C 1 2.58 0.305
1C 3 2.31 0.293
3C 3 2.78 0.405
4C 3 3.28 0.502
B - - HMM 20 3.00 0.220
C 1C 1 1.37 0.190
1C 3 1.07 0.172
3C 3 1.42 0.272
4C 3 1.48 0.271
B - - HMM 40 1.57 0.164
C 1C 1 0.98 0.150
1C 3 0.77 0.138
3C 3 1.01 0.209
4C 3 1.27 0.253
B - - HMM 80 1.73 0.181
C 1C 1 1.19 0.157
1C 3 0.88 0.148
3C 3 0.88 0.187
4C 3 1.18 0.271

that, we can see in Figure 5.5b that the alignment mechanism makes the system more ro-
bust to the size of training data. To make this representation, we have used the alignment
mechanism with 40 states. In addition, the shaded areas in Figure 5.5 depict the standard
deviation of the EER% values obtained from each system trained three times.

Moreover, DET curves of these experiments have been depicted in Figure 5.6. These
curves represent the best systems for each pooling configuration for the female+male
experiments. As it can be noticed in these representations, the DET curves of systems
trained with the HMMs of 40 or 80 states have similar behaviour.

For illustrative purposes, we also represent our high-dimensional supervectors in
a two-dimensional space using T-Distributed Stochastic Neighbor Embedding (t-SNE)
[252] which preserves distances in a small dimensional space. In Figure 5.7(a), we show
this representation for the architecture that uses the global average to extract the embed-

80 Chapter 5. Deep Neural Network Supervectors

Table 5.3: Experimental results on RSR2015-Part I [124] eval set, where EER% and minDCF10 are shown. These
female+male results were obtained by training only with a bkg subset and by varying the number of states of
the HMM.

Architecture Results
Type Backbone Pooling Female+Male
Layers Kernel Type States EER% minDCF10

A 3C 3 avg - 11.70 0.989
B - - HMM 10 6.37 0.433
C 1C 1 2.66 0.347
1C 3 2.29 0.309

3C 3 2.45 0.378

4C 3 3.00 0.460

B - - HMM 20 3.20 0.334
C 1C 1 1.88 0.295
1C 3 1.51 0.255

3C 3 1.34 0.236

4C 3 1.34 0.235

B - - HMM 40 2.03 0.289
C 1C 1 1.56 0.277
1C 3 1.20 0.234

3C 3 0.98 0.194

4C 3 1.23 0.240

B - - HMM 80 2.25 0.311
C 1C 1 1.67 0.283
1C 3 1.43 0.260

3C 3 0.92 0.187

4C 3 1.17 0.249

dings, while in Figure 5.7(b) we represent the neural network supervectors of our best
system. As we can see in the second system, the representation is able to cluster the ex-
amples of the same person, whereas in the first method is not able to cluster together the
examples of the same person. On the other hand, in both representations, the data are
auto-organized to show on one side the examples of female identities and on the other
side the examples of male identities.

Furthermore, we illustrate in Figure 5.8 the same representation as in the previous fig-
ure, however in this case, we represent the embeddings and neural network supervectors
of the thirty phrases of the female identities. With this depiction, we prove something
that we had already observed in the previous verification experiments, as the embeddings
of the global average architecture are not able to separate between the same identity with

5.4 Experiments and Results 81

Table 5.4: Experimental results on RSR2015-Part I [124] eval set, showing EER% and minDCF10. These female
results were obtained by training with bkg+dev subsets and by varying the number of states of the HMM.

Architecture Results
Type Backbone Pooling Female
Layers Kernel Type States EER% minDCF10
A 3C 3 avg - 9.11 0.959
B - - HMM 10 3.14 0.273
C 1C 1 1.66 0.252
1C 3 1.43 0.227
3C 3 1.29 0.234
4C 3 1.56 0.285
B - - HMM 20 1.81 0.219
C 1C 1 1.30 0.181
1C 3 1.15 0.168
3C 3 0.83 0.133
4C 3 0.99 0.189
B - - HMM 40 1.35 0.210
C 1C 1 1.17 0.182
1C 3 1.07 0.152
3C 3 0.59 0.105
4C 3 0.74 0.158
B - - HMM 80 1.70 0.235
C 1C 1 1.32 0.216
1C 3 1.17 0.178
3C 3 0.65 0.111
4C 3 0.80 0.165

different phrase and the same identity with the same phrase which is the base of the text-
dependent speaker verification task.

RSR-Part II

The second part of these experiments evaluates the performance of the system proposed
in RSR-Part II which is based on short commands with a strong overlap of the lexical
content of different commands, e.g., “Volume up” and “Volume down". The results obtained
with Part IT are shown in Table 5.7. In this set of experiments, the phrases are shorter, so
we can see that we need fewer states to model them. However, the performance obtained
with models of 10 and 20 states is similar since some phrases might require more states

82 Chapter 5. Deep Neural Network Supervectors

Table 5.5: Experimental results on RSR2015-Part I [124] eval set, showing EER% and minDCF10. These male
results were obtained by training with bkg+dev subsets and by varying the number of states of the HMM.

Architecture Results
Type Backbone Pooling Male
Layers Kernel Type States EER% minDCF10
A 3C 3 avg - 8.67 0.963
B - - HMM 10 7.18 0.375
C 1C 1 2.30 0.265
1C 3 2.01 0.256
3C 3 2.08 0.287
4C 3 2.41 0.383
B - - HMM 20 3.00 0.220
C 1C 1 1.29 0.163
1C 3 1.05 0.140
3C 3 1.11 0.190
4C 3 1.32 0.255
B - - HMM 40 1.57 0.164
C 1C 1 0.98 0.144
1C 3 0.78 0.118
3C 3 0.71 0.157
4C 3 0.89 0.215
B - - HMM 80 1.73 0.181
C 1C 1 1.00 0.137
1C 3 0.78 0.129
3C 3 0.61 0.154
4C 3 0.83 0.198

than others. For example, phrases like “Turn on coffee machine" are best modelled with
20 states, while others like “Call sister” only need a 10 state model to be characterized.

Furthermore, as we expected, the overall performance is worse, as the system suffers
from the lexical similarity of short commands. Thus, this part is more challenging than
Part I, as we can also see from other previous works [155-157].

In addition to the above table, Figure 5.9 depicts the DET curves. These representa-
tions show the performance for the female+male experiments with the best systems for
each pooling configuration. We can observe that the results with the HMMs of 10 or 20
states are practically the same.

5.4 Experiments and Results 83

Table 5.6: Experimental results on RSR2015-Part I [124] eval set, showing EER% and minDCF10. These fe-
male+male results were obtained by training with bkg+dev subsets and by varying the number of states of the
HMM.

Architecture Results
Type Backbone Pooling Female+Male
Layers Kernel Type States EER% minDCF10

A 3C 3 avg - 8.88 0.963
B - - HMM 10 6.37 0.433
C 1C 1 2.49 0.335
1C 3 2.13 0.298

3C 3 1.82 0.275

4C 3 2.12 0.345

B - - HMM 20 3.20 0.334
C 1C 1 1.79 0.279
1C 3 1.51 0.239

3C 3 1.03 0.179

4C 3 1.22 0.238

B - - HMM 40 2.03 0.289
C 1C 1 1.55 0.267
1C 3 1.24 0.225

3C 3 0.73 0.142

4C 3 0.86 0.195

B - - HMM 80 2.25 0.311
C 1C 1 1.60 0.297
1C 3 1.34 0.252

3C 3 0.68 0.144

4C 3 0.84 0.187

5.4.3 Comparing Global Average Pooling with GMM as Alignment
Pooling Mechanism with RSR2015-Part I and Part II

As the second set of experiments, we compare architecture A that makes use of a global
average pooling (avg) [165,166], architecture B which applies the GMM alignment to the
feature input directly, and the GMM alignment combined with the backbone network
using architecture C. We have employed for the backbone network of architecture C, a
convolutional network with three layers (CNN) and a kernel of dimension 3 which gave
us the best performance in the previous section for the HMM alignment mechanism and
is described in Table A.5 in Appendix A.

84 Chapter 5. Deep Neural Network Supervectors

EER-%train EER-%train
201 —— eer_fem+male_avg — eer_fem+male_3C-sv
—-- eer_fem_avg 1.8 —=- eer_fem_3C-sv
18 «-eeo eer_male_avg - eer_male_3C-sv

EER value
EER value

T T T T T T T T
10 2‘0 3‘0 4‘0 S‘D ﬁb 7‘0 Sb 9‘0 10 20 30 40 50 60 70 80 20

Train percentage Train percentage
(a) Average embeddings (b) Neural Network Supervectors

Figure 5.5: Results of EER% varying train percentage where standard deviation is shown only for both gender
independent results. (a) average embeddings; (b) neural network supervectors.

N

30

Avg (EER= 8.88)
HMM-10states (EER= 1.82)
HMM-20states (EER= 1.03)
HMM-40states (EER= 0.73)
()

20 7 HMM-80states (EER= 0.68

False Rejection Rate [In %]

T T T T T T T T
0.1 0.2 0.5 1 2 5 10 20 30 40

False Acceptance Rate [In %]

Figure 5.6: Detection Error Trade-off (DET) curve for female+male results on RSR2015-Part I of the best systems
for each pooling configuration.

RSR-Part I

In Table 5.8, we can see EER%, AUC%, actDCF10, minDCF10, CLLR, and minCLLR results
for these experiments. To obtain the actDCF10 and CLLR results, we have carried out a
calibration step for which we have employed the dev subset. As we showed, the embed-
dings of the global average reduction mechanism do not correctly represent the relevant
speaker and phrase information due to the importance of keeping the temporal structure
of phrases in the neural network supervectors with the alignment layer within the DNN
architecture. We can also observe that architecture C which combines a backbone net-

5.4 Experiments and Results 85

<
¥
20 0 . . ’ . '
®
o 10 :' a ¢ | ‘e ':. L 2
e i e * % o? .
]
y 1 oY Peve 22000
¢ ¢ e ¢ "0'3'.‘
-10 0l ® ' e Py .‘ =)
LY @ 4 &
-20 8. < ¢)
—20 .‘ e '.
-30 4 ‘
-60 -40 -20 0 20 40 60 —80 -40 -20 0 20 4‘0 60
(a) Average embeddings (b) Neural Network Supervectors

Figure 5.7: Visualizing Mean embeddings vs Neural Network Supervectors for 1 phrase from male+female using
t-SNE, where female is marked by cold color scale and male is marked by hot color scale.

100 -

e
'+
5

-100

T T T T T
-100 =50 0 50 100

(a) Average embeddings (b) Neural Network Supervectors

Figure 5.8: Visualizing Mean embeddings vs Neural Network Supervectors for 30 phrases from female using
t-SNE. Each phrase is marked by one different color scale.

work with the alignment mechanisms improves the performance achieved by applying
only the alignment mechanism as in architecture B. In addition to the previous table, we
depict the DET curves in Figure 5.10. These curves show the results for the female+male
experiments. These representations demonstrate that the approach with the best system
performance is architecture C with the backbone combined with GMM with MAP as the
alignment mechanism.

86 Chapter 5. Deep Neural Network Supervectors

Table 5.7: Experimental results on RSR2015-Part II [124] eval set, showing EER% and minDCF10. These results
were obtained by training with bkg+dev subsets and by varying the number of states of the HMM.

Architecture Results
Type Backbone Pooling Female
Layers Kernel Type States EER% minDCF10

A 3C 3 avg - 11.18 0.982
B - - HMM 10 7.99 0.706
C 1C 1 4.76 0.590
1C 3 4.16 0.547
3C 3 3.91 0.540
4C 3 4.82 0.642
B - - HMM 20 10.06 0.745
C 1C 1 6.44 0.671
1C 3 5.57 0.618
3C 3 3.90 0.542
4C 3 5.00 0.654
B - - HMM 40 18.13 0.820
C 1C 1 11.60 0.800
1C 3 9.52 0.769
3C 3 5.55 0.646
4C 3 7.56 0.761

Architecture Results

Type Backbone Pooling Male
Layers Kernel Type States EER% minDCF10

A 3C 3 avg - 11.81 0.981
B - - HMM 10 9.47 0.674
C 1C 1 4.70 0.556
1C 3 4.31 0.539
3C 3 4.97 0.654
4C 3 6.13 0.709
B - - HMM 20 10.01 0.731
C 1C 1 5.56 0.601
1C 3 5.01 0.555
3C 3 4.86 0.645
4C 3 6.23 0.721
B - - HMM 40 18.16 0.815
C 1C 1 10.53 0.750
1C 3 8.83 0.704
3C 3 6.76 0.683
4C 3 9.52 0.815

5.4 Experiments and Results

87

Architecture Results
Type Backbone Pooling Female+Male
Layers Kernel Type States EER% minDCF10

A 3C 3 avg - 11.59 0.981
B - - HMM 10 9.79 0.781
C 1C 1 5.47 0.649
1C 3 4.94 0.614

3C 3 4.68 0.615

4C 3 5.73 0.688

B - - HMM 20 11.06 0.803
C 1C 1 7.02 0.740
1C 3 6.17 0.687

3C 3 4.61 0.607

4C 3 5.88 0.696

B - - HMM 40 18.43 0.856
C 1C 1 11.74 0.847
1C 3 9.95 0.819

3C 3 6.59 0.679

4C 3 8.93 0.794

40 -

30 1

20 A1

10

False Rejection Rate [In %]

0.5

0.2

0.1

Avg (EER= 11.59)

HMM-10states (EER= 4.68)
HMM-20states (EER= 4.61)
HMM-40states (EER= 6.59)

0.1 0.2

T
05 1 2 5 10 20

False Acceptance Rate [In %]

Figure 5.9: Detection Error Trade-off (DET) curve for female+male results on RSR2015-Part II of the best systems

for each pooling configuration.

88 Chapter 5. Deep Neural Network Supervectors

Table 5.8: Experimental results on RSR2015-Part I [124] eval set, showing AUC%, EER%, CLLR, minCLLR, act-
DCF10 and minDCF10. These results were obtained by training with bkg+dev subsets to compare the global
average pooling networks and the neural networks with GMM alignment technique.

Architecture Female
Type BB Pool. BE EER% AUC% min/actDCF10 minCLLR/CLLR
A CNN avg CE 9.11 97.04 0.959/1.744 0.315/0.404
B - GMM - 1.44 99.79 0.240/0.276 0.065/0.085
C CNN GMM CE 0.79 99.95 0.174/0.210 0.032/0.041
Architecture Male
Type BB Pool. BE EER% AUC% min/actDCF10 minCLLR/CLLR
A CNN avg CE 8.67 97.22 0.963/2.978 0.306/0.387
B - GMM - 1.55 99.77 0.244/0.301 0.062/0.130
C CNN GMM CE 0.99 99.94 0.227/0.269 0.040/0.042
Architecture Female+Male
Type BB Pool. BE EER% AUC% min/actDCF10 minCLLR/CLLR
A CNN avg CE 8.88 97.14 0.963/2.581 0.311/0.393
B - GMM - 1.74 99.77 0.283/0.302 0.067/0.109
C CNN GMM CE 0.92 99.94 0.204/0.271 0.037/0.040

30

—— Avg (EER= 8.88)
—— GMM (EER= 1.74)
—- CNN-GMM-CE (EER= 0.92)

20 A

False Rejection Rate [In %]

01 02 05 1 2 5 10 20 30
False Acceptance Rate [In %]

Figure 5.10: DET curves for female+male results on RSR2015-Part I of the different approaches employed for
the backbone and alignment mechanism.

RSR-Part 11

The results obtained with Part II are shown in Table 5.9 and Figure 5.11. In this second
part, phrases are shorter with overlapped lexical content of short commands such as
“Call brother” or “Call sister”. As we expected, the overall performance is worse since the
system suffers from the lexical similarity of the different phrases. Therefore, this part is

5.4 Experiments and Results 89

more challenging than the first part, as we can also see in previous experiments. However,
the system performance achieved with all architectures follows the similar trend to the
results of Part I, and the best system is also formed by architecture C with an alignment
mechanism based on GMM and MAP.

Table 5.9: Experimental results on RSR2015-Part II [124] eval set, showing AUC%, EER%, CLLR, minCLLR, act-
DCF10 and minDCF10. These results were obtained by training with bkg+dev subsets to compare the global
average pooling networks and the neural networks with GMM alignment technique.

Architecture Female
Type BB Pool. BE EER% AUC% min/actDCF10 minCLLR/CLLR
A CNN avg CE 11.18 95.57 0.982/5.772 0.386/0.570
B - GMM - 5.91 98.40 0.734/0.784 0.221/0.238
C CNN GMM CE 3.86 99.28 0.652/0.668 0.149/0.157
Architecture Male
Type BB Pool. BE EER% AUC% min/actDCF10 minCLLR/CLLR
A CNN avg CE 11.81 95.02 0.981/4.131 0.409/0.664
B - GMM - 5.74 98.52 0.738/0.786 0.214/0.239
C CNN GMM CE 5.53 98.71 0.789/0.810 0.202/0.225
Architecture Female+Male
Type BB Pool. BE EER% AUC% min/actDCF10 minCLLR/CLLR
A CNN avg CE 11.59 95.26 0.981/4.826 0.400/0.618
B - GMM - 6.35 98.26 0.770/0.820 0.236/0.254
C CNN GMM CE 4.86 98.96 0.727/0.744 0.181/0.198
N \-\ —- Avg (EER= 11.59)
40 1\, N —— GMM (EER= 6.35)
N N\, —- CNN-GMM-CE (EER= 4.86)

False Rejection Rate [In %]

T T T T T T T T
0.1 0.2 0.5 1 2 5 10 20 30 40

False Acceptance Rate [In %]

Figure 5.11: DET curve for female+male results on RSR2015-Part II of the different approaches employed for
the backbone and alignment mechanism.

90 Chapter 5. Deep Neural Network Supervectors

5.5 Conclusions

This chapter presents a new method for adding an alignment layer inside DNN archi-
tectures to encode the meaningful information of each utterance into a neural network
supervector, allowing us to conserve the relevant information that we use to verify the
speaker identity and the correspondence with the correct phrase. We have evaluated the
models in the RSR2015-Part I and Part II text-dependent speaker verification database.
The results confirm that the alignment as a layer within the architecture of DNN is an
interesting approach since we have obtained competitive results with a straightforward
and simple alignment technique that has low computational cost such as HMM, and with
a more powerful and flexible technique such as GMM combined with MAP. Moreover, we
have analyzed the effect of using different number of HMM states in funcion of the types
of phrases which compose the dataset. Finally, we have also observed the improvement
achieved by increasing the size of the training data.

Knowledge Distillation with
Teacher-Student Architectures

6.1 Motivation 6.5.2 Results using a Single Net-

6.2 Knowledge Distillation work versus the use of a

6.3 Proposed Knowledge Distilla- Teacher-Student Architecture

tion Approach 6.5.3 Analysis of Different Al-
ternatives of Training
Teacher-Student with
RSR2015-Part I

6.4 Teacher-Student Architecture
6.5 Experiments and Results

6.5.1 Experimental Setup 6.6 Conclusi
. onclusions

6.1 Motivation

Apart from the issue of phonetic information presented in the previous chapter, another
relevant issue is the availability of enough data for a given task. The impact of this
other relevant problem could also be seen in Chapter 5 [1-3] with the experiments in
which we trained using more data with respect to the initial experiments. As aforemen-
tioned, for face verification, language recognition and text-independent speaker verifi-
cation, the amount of data to train the deep learning systems is very large. Whereas in
text-dependent speaker verification tasks, there are large databases [164] but the amount

91

92 Chapter 6. Knowledge Distillation with Teacher-Student Architectures

of publicly available training data is limited. For this reason, when a Deep Neural Net-
work (DNN) similar to the approaches used in text-independent speaker verification task
is trained using these smaller datasets, this kind of training leads to produce overconfi-
dent predictions, and is not able to generate enough discriminative representations for
the new data.

Motivated by the previous reasons, the ability to generalize properly to unseen new
data during the training process is a research focus for current speaker verification sys-
tems based on DNNs. These systems are typically trained to optimize an objective func-
tion on training data such as multi-class classification [132,135]. A training process that
only considers this strategy may optimize performance on training data without being
able to generalize to new data. Furthermore, when the amount of training data is limited,
for instance such as the RSR2015 database [124], overconfident predictions are produced.
The use of several models trained on the same data has been proposed to decrease over-
fitting by averaging their predictions in a manner similar to a montecarlo sampling strat-
egy, which allows the ensemble model to approximate the uncertainty in the parameters.
The general idea behind the ensemble model is shown in Figure 6.1. However, this pro-
cess can be cumbersome and too computationally expensive since several intermediate
models have to be stored and evaluated at inference time to obtain the final ensemble
model prediction, which requires a large number of computing resources. To solve this
problem, a possible alternative is the use of an architecture that follows the philosophy
of the Knowledge Distillation (KD) approach [253,254], also known as Teacher-Student
architecture. This approach consists of training two networks at the same time. First, the
teacher network produces soft speaker labels given by their predicted posterior probabil-
ity that are used to train the second network, i.e. the student network. With this training
strategy, the student network is able to better capture the variability in the predictions
produced by the teacher network during training in a compact model. Thus, this archi-
tecture provides more robustness to parameter changes during training and overfitting
due to the lack of data. In addition, the evaluation is more efficient since a single model
needs to be computed at inference time.

Therefore, this chapter presents the modifications applied on the original KD, which
are based on the approach proposed in [253], to develop a teacher-student architecture
for the text-dependent speaker verification task. The architecture consists of leading
the student network to produce the same predictions as the teacher network. We also
introduce the use of the Random Erasing (RE) data augmentation strategy [206] to add
variability to the input of the networks. This technique has improved the generalization
ability of neural networks in image tasks. The combination of these proposals in our
system allows better modelling the parameter uncertainty with a compact model, without
the needed to average the predictions of several trained models. Hence, we achieve a
more robust system and contribute to handle a potential overfitting issue.

6.2 Knowledge Distillation 93

Training
Data (x,y)

Net(8,) +—>...— Net(8,) .. .— Net(6))

p(y|x,6;)

p(y|x,6,) p(y|x,6;)

Ensemble Net:

1
7 p1%6)
i

Prediction: p(y | x, 0ENS)

Figure 6.1: Ensemble models of several intermediate models to obtain the final prediction.

6.2 Knowledge Distillation

Knowledge Distillation (KD) approach, also called Dark Knowledge (DK), is originally
a model compression framework [253], where two DNNs are implemented. These net-
works are often referred to as teacher and student networks. The use of the term “distil-
lation” indicates the process made to transfer learning from the teacher network to the
student network. Thus, KD can be considered as a transfer learning approach, where a
teacher network is used to transfer knowledge to a student network which learns to make
the same predictions. KD approaches have been successfully applied in many tasks such
as image recognition [255], speech recognition [256-258], language recognition [259,260]
and keyword spotting [261]. A traditional approach employing this transfer learning
method consists of using a classifier output distribution instead of category labels dur-
ing training in the context of model compression or distillation [262-264]. It has also
been used in a domain adaptation context [265], where the source domain is employed
in teacher network training, and the target domain in student network training.

With this philosophy, the teacher network produces the posterior probabilities which
can be interpreted as soft speaker identity labels. These labels are used to train the stu-
dent network. This second network can explore the knowledge learned by the teacher
with the objective of transferring uncertainty. This learning is made possible by the use
of soft labels instead of hard labels. Therefore, the student network is expected to mimic
the predictions of the teacher if we drive them to produce similar posteriors. To achieve
this, the Kullback-Leibler Divergence (KLD) between the student and teacher prediction

94 Chapter 6. Knowledge Distillation with Teacher-Student Architectures

distributions is minimized. KLD measures the distance between two probability distri-
butions, in our case pr(y;|x) and ps(yi|x):

PT()/i|x)

KLD(pr||ps) = Z pr(yilx) - & ps(il)

(6.1)

i=1

1 1
Zpr(mx log (pr(3ilx)) = > pr(vilx) - log (ps(yilx))
H(

pr) — CE(pr, ps),

where H(pr) is the entropy which is independent of student probability distribution, so
it can be considered as a constant value, and CE(pr, ps) is the traditional Cross-Entropy
(CE) loss between both distributions. Therefore, as objective function to minimize during
the DNN training, KLD loss can be formulated as,

I J
KLD ==Y pr(vilx)) - log (ps(vilax;)) + const, (6.2)
i=1 j=1
where i and j are the speaker and utterance indices, x; is the input signal, pr(y;|x;) is the
output posterior probability of the label y; from the teacher model (Label Distribution),
ps(yilx;) is the output posterior probability of the label y; from the student network for
the same example (Prediction Net), and const which is defined in [254].

O
Training
Data (xy)

Frozen
Teacher
Network

Net (6])
|

P&y 1x,67) |-

Student
1| Network

Net (65)

Prediction: p(y | x, 85 Tfrozen)
Figure 6.2: Original Knowledge Distillation approach.

Many KD methods focus on training the student network by using a pre-trained
teacher model [259,264]. The weights of the teacher network are usually frozen to reduce
the complexity, due to most approaches employ the same training data for both networks.
Therefore, the soft speaker labels of the teacher network are fixed and are obtained from
the last training step, as we can observe in Figure 6.2 which depicts the general structure

6.3 Proposed Knowledge Distillation Approach 95

of this type of approach. Thus, the student network has to approximate the uncertainty
in the model parameters from the same labels during the whole training process. The
use of a frozen network also involves that part of the ability to better approximate the
uncertainty in the parameters using the diversity of models as in ensemble models is
lost. Nevertheless, a new version of the KD method based on a Bayesian approach (BDK)
was presented in [254]. This approach showed how by applying a Bayesian estimation
method, such as Stochastic Gradient Langevin Dynamics (SGLD) [266] which iteratively
adds noise to the parameters and applies data augmentation to the inputs, the optimiza-
tion training process of the teacher network was used to provide soft prediction labels
to the student network while both were trained simultaneously and it was possible to
improve the performance of the system and gets reliable probabilistic predictions.

6.3 Proposed Knowledge Distillation Approach

In this thesis, we propose an adaptation of the KD approach [253] using some of the in-
teresting ideas in [254]. We have implemented a teacher-student architecture that allows
us to provide robustness to our speaker verification system during the training process.
Unlike previous works using models with frozen weights in the teacher network, we pro-
pose to train both networks at the same time which produces different prediction labels as
the training progresses. The modifications introduced in the overall structure can be seen
in Figure 6.3. Thus, this architecture provides robustness to the neural network training
using the above strategy. Furthermore, in order to obtain more robustness, we have also
substituted the classical Stochastic Gradient Descent (SGD) by the Adam optimizer [248].

Add noise in
input
Teacher
Network
Net (67)
Student
,,,,,,,,,,,, ---1 Network

Transfer

Net (65) | - - — Net (65) \

Prediction: p(y | x,05T)

Figure 6.3: Proposed Knowledge Distillation approach.

Following the approach presented in [254], we have also used a perturbation strategy
to sample data different from the training set. In this case, we have added the RE data
augmentation technique explained in Chapter 4 to introduce more variability or noise
in the input signals. Therefore, the general loss in (6.2) has two distributions that we

96 Chapter 6. Knowledge Distillation with Teacher-Student Architectures

have to choose in function of these modifications. As we can see in Table 6.1, the loss of
teacher network (Lossr) is calculated using the true Label Distribution and the Prediction
Network (i.e. the standard CE loss). For the student loss (Losss), we propose two different
alternatives:

« BDK: The first alternative consists of applying the same perturbation (RE1) to the
input of the student network as that used in the teacher network.

« BDK2: The second alternative adds a different perturbation (RE2) to the input of the
student network. With this modification, the architecture measures uncertainty on
different samples than those used to train the teacher network.

Table 6.1: Teacher and Student Losses for the two alternatives.

DK method Loss Label Distr. Predic. Net

BDK Lossy i pr(¥i|RE1(x;))
Losss pr(yilRE1(x;) ps(yilRE1(x;))
BDK?2 Losst Vi pr(yi|RE1(x;))

Losss pr(yilRE2(x;)) ps(yilRE2(x;))

6.4 Teacher-Student Architecture

To develop the teacher and student networks, we have employed the same approaches
for each part presented in Chapter 5 to create the architecture. Figure 6.4(a) represents
the structure of the system used for training, our KD architecture. On the one hand, we
can see how the soft predictions of the teacher network (yr) are used to optimize CE
loss and backpropagate the gradients through the teacher network. On the other hand,
the same soft predictions (yr) are employed to teach the student network to mimic these
predictions using KLD loss. Hence, to train this architecture, we employ the following
two loss expressions for teacher and student networks:

Losst = CE(y, y1), (6.3)

Losss = KLD(yr, ys), (6.4)

where CE is Cross-Entropy loss, yr is the posterior probability of the teacher network, ys
is the posterior probability of the student network, and y are the ground truth labels. In
tunction of the two possibilities explained in Table 6.1, ys and yr values will be obtained
using one alternative of the Label Distribution and Prediction Network or the other. Fig-
ure 6.4(b) depicts the testing phase, where only the student network without the last

6.5 Experiments and Results 97

layers is employed to test the system. Thus, our speaker verification system extracts the
embeddings and applies a cosine similarity to perform the verification process.

Input signal
Feature Extractor Enroll/Test signals
MFCC “——————— MFCC
-ll\-lee?\?vlleilz Rand E ,——le i ﬁteut(\fv%nrlt(| Feature Extractor | | Student
andomerasin andomerasin
L 9 T g | MFCC Network
t Neural Network * Neural Network
Neural Network
mechanism mechanism s " Alignment
| [Supervector upervector mechanism
N | — — I I — LT T T T T T T] Supervector
S % - - |- - - Sa R I — I —
Emb. > Emb. Sy S sq
Il Il Enroll Emb. Test Emb.
| [Softmax | i
| [Soffmax | Softmax
| Grad VY1 ‘ Grad vV Ys
y- Ta— KLD Loss | Score
(a) Training phase (b) Testing phase

Figure 6.4: (a) Left: Teacher-student training phase, where the dashed line indicates the process of backpropa-
gation of the gradients from each network. (b) Right: Teacher-student testing phase, where the last layers are
replaced by a cosine similarity to compare the embeddings extracted from the student network.

6.5 Experiments and Results

6.5.1 Experimental Setup

As the experimental setup to evaluate the improvement achieved with this architecture
using RSR2015-Part I and II, we have employed a set of features composed of 20 dimen-
sional Mel-Frequency Cepstral Coefficients (MFCCs) stacked with their first and second
derivates as input to train the alignment mechanism and the DNN. For the pooling part
of the architecture, two alignment mechanisms based on those developed in the previ-
ous chapter are used to create the teacher-student architecture. To train the alignment
mechanisms, the bkg partition of the RSR2015 dataset has been employed. Moreover,
both were trained to obtain a model per phrase without the needed to know the phrase
transcription. On the one hand, HMM models have been trained using a left-to-right
model of 40 states for each phrase. On the other hand, a GMM of 64 componenent has
been trained per phrase. From these models, we extract the alignment information to be
used in the alignment mechanism of our architecture.

In this chapter, two sets of experiments have been performed to show the benefits
of using teacher-student architectures. First, we have studied the effect of introducing
this architecture (CNN (BDK)) in case of using the different alignment mechanisms pre-
sented in Chapter 5. This architecture is described in Tables A.7 and A.8 in Appendix
A. The second set of experiments has been carried out to evaluate the two different al-

98 Chapter 6. Knowledge Distillation with Teacher-Student Architectures

ternatives for introducing the perturbation into the system. We compare an architecture
that uses a single convolutional neural network (CNN) with the RE augmentation, the
first alternative proposes to train the system using the same input for both networks in
the teacher-student architecture (CNN (BDK)), and the other alternative uses different
RE perturbations on the inputs of both networks (CNN (BDK2)). Additionally, we have
evaluated the three systems with different layer configurations: two, three, and four con-
volution layers with a kernel of dimension 3.

6.5.2 Results using a Single Network versus the use of a Teacher-
Student Architecture

In this first set of experiments, the basic network created in Chapter 5 is replicated us-
ing a teacher and student version, following the Bayesian Dark Knowledge (BDK) ap-
proach [253,254]. With this philosophy, a teacher network produces soft speaker identity
labels that are used to train a student network. In this case, the RE data augmentation is
applied to the input of the teacher network which adds variability to the labels predic-
tion. The student network is trained using these labels, and we are able to better capture
the data variability introduced. Thus, this architecture is used to provide robustness to
the training of the neural network of the backbone part. Moreover, this approach has
been evaluated for RSR2015-Part I and II using both HMM and GMM with MAP as the
alignment mechanism.

RSR-Part I

For Part I of RSR2015, Table 6.2 contains Equal Error Rate (EER%), Area Under the ROC
Curve (AUC%), actual Detection Cost Function 10 (actDCF10), minimum Detection Cost
Function 10 (minDCF10), Log-Likelihood Ratio Cost (CLLR), and minimum Log-Likelihood
Ratio Cost (minCLLR) results for these experiments. As we observe, the CNN (BDK) ap-
proach combined with the proposed frame-to-components alignment mechanism based
on GMM with MAP provides an additional performance improvement. In addition to the
previous table, we depict the DET curves in Figure 6.5. These curves show the results for
female+male experiments. These representations demonstrate that the approach with
the best system performance is the architecture with the backbone based on BDK and
GMM with MAP as the alignment mechanism. Furthermore, it is worth noting that in
the case of using HMM as pooling, it is better not to apply this kind of approach.

RSR-Part 11

The results obtained with Part I are shown in Table 6.3 and Figure 6.6. In this second
part, phrases are shorter with overlapped lexical content of short commands such as “Call
brother” or “Call sister”. As we could see in Chapter 5, the overall performance is worse,
since the system suffers from the lexical similarity of the different phrases. Thus, this

6.5 Experiments and Results

99

Table 6.2: Experimental results on RSR2015-Part I [124] eval set, showing AUC%, EER%, CLLR, minCLLR, act-
DCF10 and minDCF10. These results were obtained by training with bkg+dev subsets to compare the different

neural networks with both alignment techniques.

Architecture Female
BB Pool. Loss EER% AUC% min/actDCF10 minCLLR/CLLR
CNN HMM CE 0.59 99.95 0.105/0.113 0.027/0.030
CNN(BDK) 0.73 99.95 0.125/0.132 0.029/0.042
CNN GMM CE 0.80 99.95 0.174/0.210 0.032/0.041
CNN(BDK) 0.51 99.98 0.128/0.135 0.021/0.025
Architecture Male
BB Pool. Loss EER% AUC% min/actDCF10 minCLLR/CLLR
CNN HMM CE 0.71 99.96 0.157/0.180 0.030/0.033
CNN(BDK) 0.79 99.94 0.137/0.143 0.033/0.037
CNN GMM CE 0.99 99.94 0.227/0.269 0.040/0.042
CNN(BDK) 0.78 99.96 0.149/0.215 0.031/0.039
Architecture Female+Male
BB Pool. Loss EER% AUC% min/actDCF10 minCLLR/CLLR
CNN HMM CE 0.73 99.95 0.142/0.172 0.030/0.032
CNN(BDK) 0.80 99.95 0.149/0.153 0.033/0.036
CNN GMM CE 0.92 99.94 0.204/0.271 0.037/0.040
CNN(BDK) 0.66 99.97 0.135/0.156 0.027/0.033

False Rejection Rate [In %]

30

20 A

—— CNN-HMM-CE (EER= 0.73)
CNN(BDK)-HMM-CE (EER= 0.80)
—— CNN-GMM-CE (EER= 0.92)
CNN(BDK)-GMM-CE (EER= 0.66)

01 02 05
False Acceptance Rate [In %]

2

10 20

Figure 6.5: DET curve for female+male results on RSR2015-Part I of the different systems for each pooling

configuration.

part is more challenging than the first part. However, the system performance achieved
with all architectures follows the same trend as the results of Part I, and the best system

100 Chapter 6. Knowledge Distillation with Teacher-Student Architectures

is also formed by the BDK architecture with an alignment mechanism based on GMM
and MAP.

Table 6.3: Experimental results on RSR2015-Part II [124] eval set, showing AUC%, EER%, CLLR, minCLLR, act-
DCF10 and minDCF10. These results were obtained by training with bkg+dev subsets to compare the different
neural networks with both alignment techniques.

Architecture Female
BB Pool. Loss EER% AUC% min/actDCF10 minCLLR/CLLR
CNN HMM CE 5.55 98.67 0.646/0.821 0.205/0.234
CNN(BDK) 5.99 98.53 0.616/0.624 0.216/0.258
CNN GMM CE 3.86 99.28 0.652/0.668 0.149/0.157
CNN(BDK) 3.15 99.50 0.519/0.573 0.121/0.169
Architecture Male
BB Pool. Loss EER% AUC% min/actDCF10 minCLLR/CLLR
CNN HMM CE 6.76 97.98 0.683/0.693 0.247/0.384
CNN(BDK) 7.31 97.87 0.689/0.726 0.261/0.476
CNN GMM CE 5.53 98.71 0.789/0.810 0.202/0.225
CNN(BDK) 4.72 99.00 0.767/0.785 0.176/0.205
Architecture Female+Male
BB Pool. Loss EER% AUC% min/actDCF10 minCLLR/CLLR
CNN HMM CE 6.59 98.19 0.679/0.741 0.237/0.312
CNN(BDK) 6.94 98.04 0.671/0.676 0.251/0.374
CNN GMM CE 4.86 98.96 0.727/0.744 0.181/0.198
CNN(BDK) 4.07 99.24 0.666/0.689 0.154/0.189

—— CNN-HMM-CE (EER= 6.59)
N, — - CNN(BDK)-HMM-CE (EER= 6.94)

N
o

\. N\ —— CNN-GMM-CE (EER= 4.86)
O\ -

w
o

!
7

CNN(BDK)-GMM-CE (EER= 4.07)

N
o
!

=
o
!

False Rejection Rate [In %]
o
n - N w

o
N
!

o
-
1

T T T T T T T T T T
0.1 0.2 05 1 2 5 10 20 30 40

False Acceptance Rate [In %]

Figure 6.6: DET curve for female+male results on RSR2015-Part II of the different systems for each pooling
configuration.

6.6 Conclusions 101

6.5.3 Analysis of Different Alternatives of Training Teacher-Student
with RSR2015-Part I

Apart from observing the general effect of the introduction of the teacher-student philos-
ophy as we have done in the previous section, we have also analyzed how these systems
could be improved by applying some modifications in the perturbation strategy. Table
6.4 presents EER%, minDCF10, and minCLLR results for these experiments using GMM
combined with MAP as alignment mechanism. We can observe that the proposed archi-
tectures based on KD: CNN (BDK) and CNN (BDK2), achieve better performance than the
simple CNN for every number of layers configuration. This improvement reflects the fact
that the speaker verification system performs better if it can generalize the embedding
representation to the unseen speakers that will be encountered in enrollment and eval-
uation. Especially relevant is the improvement achieved over the baseline with the best
CNN (BDK2), which uses different RE perturbations on the input of the student network
as in [254] which allows to measure the uncertainty in those samples different from the
training set. In terms of relative improvement, EER% and minCLLR have improved 27%
and 21% respectively, and minDCF10 is also improved.

Table 6.4: Experimental results on RSR2015-Part I [124] eval set, showing EER%, CLLR and minDCF10. These
female results were obtained by training with bkg+dev subsets to compare the three systems with GMM+MAP
as alignment mechanism and the different configuration layers for each system.

Architecture Results
BB T/S ConvLayers EER% minDCF10 minCLLR

CNN -/- 2 0.59 0.138 0.024

3 0.80 0.174 0.032

4 1.37 0.296 0.053

CNN(BDK) RE1/RE1 2 0.52 0.128 0.021
3 0.60 0.155 0.024

4 1.12 0.262 0.044

CNN(BDK2) RE1/RE2 2 0.43 0.123 0.019
3 0.59 0.126 0.024

4 1.05 0.237 0.040

In addition to the above table, Figure 6.7 depicts DET curves representing the re-
sults of the female experiments with all system configurations. Note that both teacher-
student architectures with three layers obtain similar behaviour than the single CNN with
only two layers. Thus, these representations clearly demonstrate that systems with the
teacher-student architecture have great system performance for all the configurations.

6.6 Conclusions

This chapter has presented the philosophy of Knowledge Distillation and two alterna-
tives to introduce more variability in this approach. This kind of architecture allows

102 Chapter 6. Knowledge Distillation with Teacher-Student Architectures

20

—— CNN-2L (EER= 0.59)
== CNN-3L (EER= 0.80)
— - CNN-4L (EER= 1.37)

10 4 —— CNN(BDK)-2L (EER= 0.52)
O ——. CNN(BDK)-3L (EER= 0.60)
NN\ —- CNN(BDK)-4L (EER= 1.12)

5 |) - \.\ —— CNN(BDK2)-2L (EER= 0.43)
b NN\, ——' CNN(BDK2)-3L (EER= 0.59)
“NONN N (BDK2)-4L (EER= 1.05)

SR AN —- CNN

False Rejection Rate [In %]

0.1 0.2 0.5 1 2 5 10 20
False Acceptance Rate [In %]

Figure 6.7: Detection Error Trade-off (DET) curve for female results on RSR2015-Part I of the three systems
with GMM+MAP as alignment mechanism.

training two networks simultaneously, where the student network is trained to mimic
the predictions of the teacher network, providing more robustness to the training of the
system. Moreover, we have included the RE data augmentation method to introduce
different variabilities to the input of the networks, which contributes to manage a po-
tential overfitting problem in the models due to the lack of data. The proposal succeeds
in generalizing and better modelling the variability introduced by the input signals. The
evaluation was carried out in the RSR2015-Part I and II text-dependent speaker verifica-
tion database. The results confirm that the architectures based on BDK combined with
techniques that include variability to input signals are able to improve a single model in
training CNN when a GMM with MAP is employed as alignment mechanism.

Multi-head Self-Attention Mechanisms
with Memory Layers

7.1 Motivation 7.6.2 Analysis the Effect of us-
7.2 Multi-head Self-Attention ing Positional Embed-
Mechanism dings or Phonetic Em-

beddings using RSR2015-
Part 1 and DeepMine-

7.3 Memory Layer
7.4 Phonetic Embeddings

7.5 Residual Network Architecture Part 1
combined with Multi-head Self- 7.6.3 Results with RSR2015-Part I
Attention and Memory Layers 7.6.4 Results with DeepMine-
7.6 Experiments and Results Part 1
7.6.1 Experimental setup 7.7 Conclusions

7.1 Motivation

As we showed in previous chapters, keeping the order of phonetic information is im-
portant for text-dependent speaker verification tasks due to the lexical content, since
this information is part of the identity. Deep Neural Network (DNN) models that use
standard average pooling mechanisms to transform the processed utterance information
into an embedding vector can have problems for this task. For this reason, in Chapter

103

104 Chapter 7. Multi-head Self-Attention Mechanisms with Memory Layers

5 [1-3], we presented an alternative pooling mechanism to replace the standard global
average pooling. While in this chapter, we explore a different type of processing for
temporal information in DNN that is provided by temporal attention mechanisms en-
hanced by a memory layer, which provides an efficient access to knowledge stored in
the training phase. Architectures with attention mechanisms have become an effective
approach in a wide variety of application areas [267, 268] to focus the processing of the
DNN s on certain areas of feature maps or certain temporal slots, including the scenario
of speaker verification [134, 167]. The success achieved with this approach in speaker
verification may be due to the fact that this kind of mechanism allows models to learn
frame-level representations, which are more precise in representing the speaker charac-
teristics. Recently, the Multi-head Self-Attention (MSA) proposed in [268] for the Trans-
former architecture is a powerful attention mechanism which allows using several single
attention mechanisms to extract diverse information about different parts of the net-
work [140,269]. These self-attention mechanisms are becoming a dominant approach in
many fields beyond text-related tasks. For example, Transformers [268] are spreading to
many tasks [270-273] where large scale databases are available. In speaker verification
tasks, this kind of architecture has started to be successfully applied in text-independent
speaker verification [140] where there are no constraints on the uttered phrase and large
databases are available. However, in text-dependent speaker verification, there is still
room for improvement since the amount of public data is not very large. Besides, phonetic
information is relevant, so keeping the temporal structure is needed to obtain represen-
tations that correctly encode both phrase and speaker information. On the other hand,
to improve the model capacity while keeping similar computational efficiency, memory
layers [274] have been introduced in combination with the MSA mechanism with success
for language modelling tasks. Nevertheless, this technique has not yet been applied to
speaker verification tasks.

Apart from the issue of phonetic information, these techniques have had problems
in applying them to text-dependent speaker verification tasks due to the lack of large
public training databases to develop powerful deep learning approaches. However, two
years ago, the multipurpose DeepMine database [233] was released and a challenge [234]
related to this database has also been carried out. Thanks to them, a new large-scale
database for text-dependent speaker verification can also be used to analyze these ap-
proaches.

In this chapter, we present an architecture based on Residual Networks (RN) [79]
combined with MSA and memory layers [274] for text-dependent speaker verification
tasks with small and large-scale databases. The details of the MSA layer are described
in Section 7.2. On the other hand, as we will explain in Section 7.3, the memory layer
is a product-key attention mechanism to store the knowledge learned by the DNN dur-
ing the training process. Moreover, we have added more phonetic information to the
different architectures with the use of phonetic embeddings extracted from a phonetic
classification network [269,275] which are introduced in Section 7.4. These phonetic em-
beddings are used as a complement to the feature extractor and can be used by the dot
attention mechanism to locate phoneme similarities which can play the role of the posi-

7.2 Multi-head Self-Attention Mechanism 105

tional embedding that is not used in our architecture. In Section 7.5, the specific blocks
used to develop the architecture are presented. Finally, Section 7.6 collects and analyzes
the experiments carried out and their results.

Vi Qn* Ky

Vi * softmax,(QuK})

(d x t) (t x Q)

Figure 7.1: Multiple dot-product attention.

7.2 Multi-head Self-Attention Mechanism

The original transformer architecture [268] is composed of two main parts: the encoder
and the decoder. However, in many representation and analysis tasks, the transformer
encoder is the only part used to create deep learning systems. The core mechanism of
each encoder block is the Multi-head Self-Attention (MSA) layer. Instead of performing
a single attention function, this mechanism consists of a multiple dot-product attention
that allows to do attention in parallel. In this thesis, we only employ the encoder part, so
as we can see in Figure 7.1, the input to this attention mechanism is the same for query,
key and value signals (O, Ky, Vp,):

On=x-WE Ky=x-WK Viy=x-w/}, (7.1)

where x is the input to this layer, and WhQ, Wf , WhV are learnable weight matrices to make
the linear projections. After these projections, a softmax operation is performed on the
temporal axis, which allows each head to focus on certain frames of the input sequence
for each output. The result of this softmax operation is known as the self-attention matrix

106 Chapter 7. Multi-head Self-Attention Mechanisms with Memory Layers

for each head and can be defined as:

T
Ap = softmax; (Qh\/.;:h) ; (7.2)

where dy is the number of dimensions of the query/key vector. This self-attention matrix

learns the most relevant information among the different data. Using this information,
the value V}, feature vectors are aggregated to obtain the output of each head. The final
output of each head can be calculated as,

B =V A, (7.3)
Thus, MSA is defined as the concatenation of the outputs from each head Hy:
MSA(X) = [Hy, Hy ... Hyheat] - W€, (7.4)

where X is the input to the attention layer, W"¢? is a learnable weight matrix to make a
final linear projection, and d¢“? is the number of attention heads in the 4~ th layer. When
the architecture is trained with a speaker classification objective, the MSA mechanism
learns to calculate a set of weights for each head that focus on different positions in the
sequence and provide more relevance to the most important frames to discriminate better
among speakers and utterances.

FF Layer /
Memory Layer

-

Figure 7.2: MSA layer alternates originally with a FF layer but in this thesis, we have proposed to replace with
a Memory layer.

Xout

7.3 Memory Layer

The transformer encoder alternates the MSA layer with a second layer which is the feed-
forward (FF) layer. However, in this thesis, we propose replacing the FF layers with mem-
ory layers as in [274]. The way to combine each of these layers with the MSA layer can
be observed in Figure 7.2. The idea of using an external memory with a neural network
was introduced in [276, 277]. A simplified version, which acts as a read-only memory
at inference time, was used in [274] to improve the model capacity of a transformer ar-
chitecture with a large external memory. This module is called memory layer and has a
small computational overhead while providing significant performance improvement. In
this chapter, we also use read-only memory layers that are able of storing the knowledge
obtained for the network during the training process. Since the information has to be

7.4 Phonetic Embeddings 107

stored while training, like any other network parameter, we need to use a differentiable
mechanism to address the location. Thus, a product key-attention is used [274, 276, 277]
where the closest keys to the signal enable the output of the learnable memory slots, and
the output is composed of the weighted sum of the corresponding memory values of the
k nearest keys.

Memory Layer

Figure 7.3: Memory layer which uses the output of the dot attention to select the closest stored values and
produce a vector to add extra information to concatenate with the input.

With this layer, as shown in Figure 7.3, the input data are compared with all keys
using a product key-attention, and the scores obtained are used to select the closest keys,
which have the highest scores. After that, the associated weight vectors are computed
with the following expression:

w = softmax,, (x - UX), (7.5)

where x is the input to the memory layer, UX is the key matrix, and the softmax is
computed on the memory index axis of size n,, to focus on certain contents of the memory
that will be used to provide the output. Once these vectors are obtained, these weights are
combined with the memory values of the selected keys, and the output is concatenated
with the previous attention output:

Xyt =X+ w-UY, (7.6)

where w are the weights of the selected keys obtained with (7.5), and U" are the memory
values associated with the keys.

7.4 Phonetic Embeddings

Another relevant source of information employed in the transformer encoder is the posi-
tional information [268] for the MSA layers to provide good performance. This positional

108 Chapter 7. Multi-head Self-Attention Mechanisms with Memory Layers

information is obtained using the following expressions:

PE 05,2 = sin(pos/10000% 4rodet)

‘ (7.7)
PE(pos2ir1) = COS(pOS/lOOOOZl/dmodel)

where pos is the position, and i is the dimension. Instead of using this temporal posi-
tional information like many language modelling applications, in this dissertation, we
have employed the output of a phonetic classifier bottleneck [269,275]. The architecture
of the phonetic classifier is an evolution of [269]. In this system, we use a modification of
the efficient net [213] to operate with 1D group convolutions as backbone. Efficient net
processes the signal at several temporal scales. We combine them using a modification
of [278], where we substitute the linear combinations by the operation concatenation of
channels and 1D group convolution. With the integration of these phonetic embeddings
into the transformer encoder architecture, the performance of the attention mechanism
improves since the phonetic embeddings help to guide the attention mask to focus on
the most relevant phonetic information. In Figure 7.4, examples of the cosine similarity
obtained by comparing the original positional embedding [268] and the phonetic embed-
ding with themselves are represented.

-

(a) Positional embeddings (b) Phonetic embeddings

Figure 7.4: (a) Left: Similarity of a positional embedding comparing with itself. (b) Right: Similarity of a phonetic
embedding comparing with itself.

7.5 Residual Network Architecture combined with Multi-
head Self-Attention and Memory Layers

In the following section, we describe the system architecture that combines Residual
Network blocks (ResBlock), MSA and memory layers. Figure 7.5 depicts this architecture
which is composed of two main parts: the backbone and pooling. Moreover, Table A.9

7.5 Residual Network Architecture combined with Multi-head Self-Attention and

Memory Layers 109
X
ephq,_ . S
|
e ! ResBlock Backbone|
ph | I
|
I ResBlock :
I"'—=-‘_'=—_'=-___—'_'===—_'=
Memory

Memory

Average

TD speaker
CE Loss embedding

Figure 7.5: Architecture for ResBlock, MSA and Memory layers network, composed of a backbone, a pooling
and a embedding extraction.

in Appendix A presents the detailed information related to the layers and dimensions of
this architecture. The backbone uses two Residual blocks with three layers each block
and Rectified Linear Units (ReLU) as non-linearities.

Following these Residual blocks, the pooling part alternates two MSA layers with two
memory layers. The MSA layers can be seen analogous to an alignment method which
allows assigning embeddings to several categories. This approach has proven useful for
text-dependent speaker verification tasks [2, 3, 279]. In addition, we have introduced
memory layers in our architecture that can store a significant amount of information for
a relatively small inference computing cost.

After the previous blocks and layers have been applied, an average pooling mech-
anism is usually employed to reduce the temporal information and represent variable-
length utterances with fixed-length vectors. However, this averaging may neglect the
order of phonetic information, which is relevant for text-dependent speaker verification
tasks.

Moreover, as we mentioned in the previous section, this type of architecture needs
positional information to guide better the self-attention mechanisms of the MSA layers.
As an alternative, in this thesis, we have introduced phonetic embeddings to help the

110 Chapter 7. Multi-head Self-Attention Mechanisms with Memory Layers

attention masks with phonetic information. To include this information, we have con-
catenated these phonetic embeddings before each Residual block.

7.6 Experiments and Results

7.6.1 Experimental setup

To check the power of the MSA layers used and the proposed modifications to the origi-
nal components of the transformer encoder architecture, we have carried out three sets
of experiments with a small (RSR2015 dataset) and a large databases (DeepMine dataset).
For the experiments with DeepMine data, we have employed as input to the system a
feature vector based on mel-scale filter banks. With this feature extractor, we obtain two
log filter banks of sizes 24 and 32 that are concatenated with the log energy. While for
the experiments with the RSR2015 database, 20 dimensional Mel-Frequency Cepstral Co-
efficients (MFCCs) stacked with their first and second derivates are employed as input to
train the architecture. To train the systems with this database, we have only used the bkg
subset. Furthermore, in both cases, we have used phonetic embeddings of 256 dimensions
as positional information which are extracted from a phonetic classifier network [269].
This phonetic classification network has been trained using LibriSpeech [280] to extract
phonetic embeddings. As the optimizer for the experiments in this chapter, the Adam
optimizer is employed with a learning rate that increases from 107% to 5 » 10 during 5
epochs and then decays from 5 107 to 107°. In addition, training data is fed into the
systems with a minibatch size of 32.

7.6.2 Analysis the Effect of using Positional Embeddings or Pho-
netic Embeddings using RSR2015-Part II and DeepMine-
Part 1

In the first set of experiments, RSR2015-Part Il and DeepMine-Part 1 have been employed.
This initial experiment allows us to check the impact of replacing the fixed positional em-
beddings proposed in the original transformer work [268] by the phonetic embeddings
introduced in [269]. Therefore, Tables 7.1 and 7.2 present Equal Error Rate (EER%), min-
imum Detection Cost Function 08 (minDCF08) and minimum Detection Cost Function
10 (minDCF10) results for the experiments with both dataset. We can see how a great
performance improvement is achieved whether the phonetic embeddings are employed
instead of the positional embeddings.

7.6 Experiments and Results 111

Table 7.1: Experimental results on RSR2015-Part II [124] evaluation set, showing EER%, minDCF08, and
minDCF10. These results were obtained with bkg subset and comparing the use of positional or phonetic em-
beddings with the feed-forward layer in the architecture.

Architecture Female+Male
Embedding FF MEM EER% minDCF08 minDCF10
Baseline avg 11.59 0.556 0.981
Positional yes no 8.25 0.387 0.877
Phonetic 5.29 0.255 0.743

Table 7.2: Experimental results on DeepMine-Part 1 [233] evaluation set, showing EER%, and minDCF08. These
results were obtained with bkg subset and comparing the use of positional or phonetic embeddings with the
feed-forward layer in the architecture.

Architecture Female+Male
Embedding FF MEM EER% minDCFO08
Baseline x-vectors’ [281] | 9.05 0.529
Positional yes no 6.30 0.245
Phonetic 3.94 0.151

7.6.3 Results with RSR2015-Part II

To carry out the second set of experiments with RSR2015-Part II, we have used, as baseline
for comparison, the result obtained in [10] where a model for each phrase is trained with
GMM as alignment method instead of attention mechanisms, using exactly the same data
as in this work. Additionally, we compare the architecture using memory layers (MEM)
with different sizes of the layer with the architecture using feed-forward layers (FF) as in
the original transformer network [268].

Table 7.3 shows EER%, minDCF08 and minDCF10 results for the experiments focused
on the RSR2015-Part II database. We can observe that the proposed architecture using
memory layers with MSA mechanism achieves the best result. Note that regardless of the
size of MEM layer, the result is better than using the original FF layer. In addition to the
above metrics, in the last row of the table, we show the relative improvement achieved by
comparing the architecture with the best result using the MEM layer and the architecture
with the FF layer.

Furthermore, in Chapter 5, we demonstrated that approaches similar to x-vectors
do not work correctly with the RSR2015 database due to small size of the training data,
and the lack of special treatment of phonetic information. For this reason, we used an
alignment mechanism and trained a model for each phrase in the baseline system [10].
However, in this chapter, we can check that a competitive result can be obtained with
a single network for all phrases thanks to the architecture based on MSA with phonetic
embeddings that allow a precise handling of phonetic information, which is one of the
key points in text-dependent speaker verification. As we can see from the results, the

112 Chapter 7. Multi-head Self-Attention Mechanisms with Memory Layers

Table 7.3: Experimental results on RSR2015-Part II [124] evaluation set, showing EER%, minDCF08, and
minDCF10. These results were obtained with bkg subset and varying the use of feed-forward layer or memory
layer in the architecture, and the sizes of memory layer.

Architecture Female
FF MEM Size EER% minDCF08 minDCF10
Baseline* [10] 4.19 0.226 0.724
yes no - 4.72 0.233 0.697
no yes 211 4.39 0.218 0.680
212 4.64 0.228 0.669
213 4.60 0.228 0.713
MEM vs FF Improv. % | 6.99 6.43 4.02
Architecture Male
FF MEM Size EER% minDCF08 minDCF10
Baseline* [10] 5.80 0.316 0.911
yes no - 5.69 0.268 0.774
no yes 21! 5.32 0.255 0.716
212 4.92 0.244 0.716
213 5.29 0.255 0.712
MEM vs FF Improv. % | 13.53 8.95 8.01
Architecture Female+Male
FF MEM Size EER% minDCF08 minDCF10
Baseline® [10] 5.10 0.276 0.845
yes no - 5.29 0.255 0.743
no yes 211 4.88 0.238 0.700
212 4.80 0.237 0.706
213 4.99 0.245 0.721
MEM vs FF Improv. % | 9.26 7.05 5.78

memory layer enhances the performance of the attention mechanism, which confirms
that the information stored during training is useful at inference time.

7.6.4 Results with DeepMine-Part 1

In the third set of experiments with DeepMine-Part 1, the baseline to be compared is based
on the x-vectors presented by the organizers of the SdASV Challenge [234]. Apart from

7.7 Conclusions 113

training with the mention DeepMine database, this baseline was trained with the popular
VoxCeleb 1 and 2 databases [137, 282]. Nevertheless, we have not used VoxCeleb 1 and
2 datasets [137,282] in the neural network training process. Motivated by the fact that
in some situations and applications is required the implementation of custom systems
with the few available in domain-data. For this reason, we have developed systems only
with the in-domain data. Moreover, as in the first set, we compare the architecture using
memory layers (MEM) with the architecture with feed-forward layers (FF).

The results obtained in the DeepMine-Part 1 database are shown in Table 7.4. Un-
like previous text-dependent speaker verification works, in these experiments where the
training data available in this database is larger, we observe that using a model trained
with all phrases performs better. Moreover, we can see that the architecture with dif-
ferent sizes of MEM layers achieves better result than the architecture with FF layers,
following the same trend as the other database. In Table 7.4, we can also see that both
architectures outperform the baseline with x-vectors. Therefore, the importance of pho-
netic information combined with temporal attention using MEM layers and MSA to train
DNN architectures on text-dependent speaker verification is again demonstrated.

Table 7.4: Experimental results on DeepMine-Part 1 [233] evaluation set, showing EER%, and minDCF08. These
results were obtained with train set and varying the use of feed-forward layer or memory layer in the archi-
tecture, and the sizes of memory layer.

Architecture Female+Male

FF MEM Size EER% minDCF08
Baseline x-vectors® [281] 9.05 0.529
yes no - 3.94 0.151
no yes 21 3.70 0.143
212 3.58 0.136
213 3.62 0.137
MEM vs FF Improv. % 9.14 9.93

7.7 Conclusions

Along this chapter, we have introduced a new architecture for the text-dependent speaker
verification task. This kind of architecture allows us to take advantage of the knowledge
acquired by temporal attention mechanisms to keep the phonetic information. Moreover,
the use of memory layers improves the model capacity while keeping the efficiency of
the architecture based on the original transformer network. The evaluation was carried
out on two text-dependent speaker verification databases to confirm the improvement
achieved. The first one is RSR2015-Part II, which due to the lack of data had suffered
problems with deep architectures when an alignment mechanism was not incorporated
into the network, but in this work, we have shown that with this architecture is possible
to achieve competitive results on this database. Using the other database, DeepMine-

114 Chapter 7. Multi-head Self-Attention Mechanisms with Memory Layers

Part 1, the proposed architecture outperforms the baseline with x-vectors, so we have
demonstrated the relevance of keeping temporal information during training even with

larger databases.

Class and Distillation Tokens for
Multi-head Self-Attention Systems

8.1 Motivation 8.5.2 Class Token Study

8.2 Representation using Class Token 8.5.3 Effect of Knowledge Distil-

8.3 Knowledge Distillation with Tokens lation using Tokens

8.4 Class and Distill Tokens for 8.5.4 Analysis of Class Token
Teacher-Student Architecture Self-Attention Representations

8.5 Experiments and Results 8.6 Conclusions

8.5.1 Experimental Setup

8.1 Motivation

The advantages of replacing the traditional pooling mechanism based on averaging of
temporal information by other pooling mechanisms such as the alignment mechanism or
Multi-head Self-Attention (MSA) layers combined with memory layers have been shown
to be effective in the previous chapters. Nevertheless, both approaches still have some
problems. The neural network supervector approach presented in Chapter 5 [1-3] allows
keeping the temporal structure and representing both phrase and speaker information,
but the temporal alignment has to be done by an external method as a phone decoder,
a Gaussian Mixture Model (GMM) or an Hidden Markov Model (HMM). Whereas the

115

116 Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Systems

use of MSA of Chapter 7 [5] allows the model to focus on the most relevant frames of
the sequence by means of the attention combined with the phonetic embeddings to dis-
criminate better among utterances and speakers. However, the proposed architecture
based on MSA employed an average pooling mechanism to obtain the final embedding
representation.

In this chapter, to address these issues, we have introduced a learnable vector known
as Class Token, which is inherited from Natural Language Processing (NLP) [270], and
recently, from many image recognition systems [271]. However, this approach has not
yet been applied to speaker verification tasks. To introduce this vector into the system
based on DNN with MSA and memory layers, the class token is concatenated to the in-
put before the first MSA layer, and the state at the output is employed to perform class
prediction. During training, temporal information is encoded into the token, and this
token interacts with the whole input sequence through self-attention and learns a global
description similar to a supervector approach [2,279] since the multiple heads act as slots
of the supervector. A similar mechanism has also been used recently in [273]. Therefore,
the average pooling mechanism is not necessary to obtain a representation. Multiple
heads can encode more details about the sequence order than the average, playing the
role of states and improving the results as shown in Chapters 5 and 6 [1-4] with the use
of external alignment mechanisms based on HMM and GMM. In addition, the informa-
tion encoded in these multiple heads can be represented and analyzed, which improves
the interpretability of the results of this kind of approach. To improve the performance
obtained with the class token approach, we also introduce a novel Bayesian multiple ini-
tialization sampling mechanism to reduce potential initialization problems and give more
robustness against the lack of data to model predictions. Since it is a case of use in the
industry to develop specific custom systems with the small in-domain datasets and this
kind of approach could be a possible solution.

Moreover, this chapter contributes with another approach based on the Transformer
architecture and KD [272, 283]. We propose a teacher-student approach combined with
the RE data augmentation [4,206] that allows modelling the uncertainty in the parameters
of a teacher model with a compact student model and getting more reliable predictions.
Following the idea proposed in [272], we have also introduced the Distillation Token in
the student network to replicate the predictions of the teacher network, while the class
token is trained to reproduce the true label. Unlike the objective in [272], in this chapter
as we also presented in Chapter 6 [3,4], the distillation process does not aim to compress
the teacher model, but rather both models are trained together and the student model
learns to better capture the intrinsic variability of the teacher predictions.

The rest of the chapter is organized as follows. In Section 8.2, we explain the strategy
of introducing a learnable class token to obtain a global utterance descriptor associated
to the concept of supervector in speaker verification and the new approach based on a
Bayesian approximation to estimate the class token. Section 8.3 introduces the approach
based on a teacher-student architecture with an additional token known as distillation
token that is combined with the class token to provide robustness to the learned student

8.2 Representation using Class Token 117

model. In Section 8.4, we describe the system used. Section 8.5 presents the experimental
setup and explains the results achieved. Conclusions are presented in Section 8.6.

8.2 Representation using Class Token

In many NLP and computer vision tasks, the transformer architecture uses a learnable
vector called Class Token (xcrs), as in the original BERT model [270] or Vision Trans-
former (ViT) [271], instead of a global average pooling. To employ this token in the
transformer encoder, the vector is concatenated to the input of the first MSA layer to
perform the classification task. With this token, the self-attention is forced to capture
the most relevant information with the class token to obtain a representation as a global
utterance descriptor similar to the supervector approach. Instead of mixing all the in-
formation with an average pooling mechanism, the temporal structure can be kept since
the attention mechanism acts as a weighted sum of the temporal tokens for each layer.
The output vector is the concatenation of different head subvectors and each of them is
the result of a different attention outcome. Thus, the mechanism can be seen similar to
those used in Chapter 5, where the heads play the role of the states and the supervector
in [279]. The supervector mechanism is also similar to [269] but in that case, the task was
text-independent speaker verification and MSA layers were not used. Besides, this type
of mechanism allows to enhance the interpretability of what the neural network learns
through the self-attention layers as we will see in the experimental section.

Ap
A1cis []
11 “ee h a2cls b
. . A1) K
]]]]] um Qqe Aqcis : —
D (L) Qay, Ay | Cecls
v * . clscl. D(L) SH_cLs
h T+1 : : —
X1 Xz X3 X4 X5 X¢ X7 XcLs a a h
tt tels L]
(. Aiscl
< —> >
S1-t S1-cLs S$1-1S1-2 S1-1 S1-cLs
T 1
T+1 T+1

Figure 8.1: Process of alignment, the input signal x is multiplied by H alignment matrices Ay to produce H
matrices with vectors sy_7.; which are then concatenated to obtain the supervector.

In [279], this mechanism to obtain the supervector is defined similar to a conventional
GMM supervector with the following expression:

Zt Xt * Arc -
S, = —/m88 = X+ - a s (8.1)
c Zt atc Z t tc

where a;. are the weights obtained by a softmax function on the output of a learnable
layer, s, are vectors per state/component C of dimension D that summarise the informa-

118 Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Systems

tion associated along the sequence of feature vectors x; of dimension D, and a,, are the
normalized weights defined as a;./)’, a;.. The final supervector is a representation con-
catenated of these vectors S = (si, ..., S¢). In this chapter, the application of the MSA layer
can be seen equivalent to using (8.1) for each head H in the layer, where a;. corresponds
to the matrix of self-attention weights of each head Ay, in particular for the class token
which is in the last row of A, would play the same role in the weighted sum. Therefore,
the final class token obtained with this mechanism is the concatenation of the different
head subvectors corresponding to the class token position, which can be expressed as the
supervector presented previously Scrs = (S1-cLs, - SH-cLs)- This mechanism is depicted
in Figure 8.1.

Iteration 1 (Initial) Iteration n
II 0oo II) II > II OGO I see —P eee
CLS; CLS, - CLS,_,CLS, CLSgp_CLSpg CLS; CLS; - CLS,_,CLS, ~ CLSz_1CLSg
< > +—>
l > R

Y=R v=a
lteration N, (End)

LN} —> LN)

CLSy CLS, ~ CLS,_,CLS, ~ CLSp_1CLSg
>

Y=1

Figure 8.2: Evolution of the number of vectors in the token matrix that are available for sampling from the
beginning of the training process (iteration 1) to the final iteration (iteration N). In each iteration, the dark
vectors represent the enabled class tokens, while the light vectors are the disabled tokens.

To introduce the class token into the system, one trainable vector parameter is defined
with the dimension of the feature vectors when the network is initialized. For each batch,
it is replicated and concatenated at the end of each input feature sequence in the training
batch as an additional token. Hence, a single shared vector is trained to learn the final
embedding representation.

In this chapter, we propose the use of a Bayesian approach [284], and instead of having
a single shared class token for the whole batch, we assume that this sensitive parameter is

8.2 Representation using Class Token 119

the result of sampling from a multimodal prior distribution, a mixture of Gaussians which
allows several vector modes to be selected during training by sampling them. In order
to do that, we define a matrix of R vectors (Token Matrix) and sample it to take one of
them for each example in the batch, therefore introducing uncertainty in the class token
(CLS Token). However, the use of this approach would lead to a complex and slower
evaluation process, since a Bayesian sampling inference would have to be carried out to
obtain the representations. For this reason, to avoid making sampling at inference time,
we have scheduled a forced reduction of the available prior components in the mixture
throughout the training process. Thus, at the end of this process, only one weight is
different from zero, and the class token vector parameter is fixed. This strategy allows us
to start the training (Iteration 1) with a matrix of several initial class tokens to sample
from and, gradually, we reduce the number of vectors as the training progresses to finish
(Iteration N,) with only one as the original class token, as Figure 8.2 depicts. Therefore,
training leads the system to progressively focus the relevant information on the first
vector in the matrix.

Token Matrix - Iteration n

I I I Step 1

CLS, CLS, = CLS;_1CLS, -+ CLSp_1CLSg

Token . '
[p=g

GLS: CLiSs 1 CLSy CLS;

< >

_____ C’?T___ ceeld© ’

Figure 8.3: Example of the sampling steps in iteration n of the training process. In Step 1, the available vectors
of the token matrix in that iteration are defined and the random indices of batch size (b) are calculated. In Step
2, the class tokens are selected and added to the input of MSA layer.

:_ 3 Pooling :

1 MSA I !

l |

: : Step 2
) |

! |

! Memory | I

I |

I |

| |

To carry out this process, we define a linear decrease scheduling using the following
vector, which indicates to the neural network the number of tokens available for sampling
at each iteration of the training process:

V= (Y15 e Unto oo UNL)s U = .1,withReR (8.2)

120 Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Systems

Algorithm 1: Algorithm for sampling class token as substitute of global aver-
age pooling and introducing it before the pooling part.

Input: Input examples X, batch size b, samples of batch x, the number of layers
L, the total number of tokens to sample R, and the number of epochs N,

1. Define the vector with the number of sample vectors {/ available to
select each epoch:

¢ = (wla () lpn: () wNe)’ Ebn = R, cees 1, Wlth R € R

2. Define the random matrix of class token vectors:
TokenMatrix = random_matrix(R)

for n=1to N, do

for x € X do
3. Sampling Process

3.1 Step 1, every update b integer indexes are randomly generated
from the available ¢, vectors:

inds = random_integer(yn,b)

3.2 Step 2, the correspondent tokens are selected:

CLStoken = TokenMatrix[inds]

4. Network Training

4.1 Step 1, the class token is concatenated with the input to the
MSA layer:

X = [xHCLSToken]

4.2 Step 2, the concatenation is the input of the first MSA layer in
the pooling part and the L layers are applied:

for [=1to Ldo
x; = x; + MSA(x;)
X = x; + Memory(xl/)
end
4.3 Step 3, the state at the output of the last layer in the pooling

block of the class token is used as final representation:

xcrs = xf™

4.4 Step 4, the final representation is passed through a linear layer
and the loss function is calculated:

out = Linear(xcrs)

loss = CE(sof tmax(out, y)) + RL(out)

end

end

where R is the number of tokens defined in the matrix, and N, is the total number of
iterations for the training process. Among the number of tokens available at each it-
eration, a random selection of the batch size is made to select the index of the vectors.

8.3 Knowledge Distillation with Tokens 121

These vectors are selected from the distribution (Token Matrix) and used as class tokens
(CLS Token) in the batch to concatenate to the input of the first MSA layer. The overall
process is described in Algorithm 1. Besides, Figure 8.3 shows a graphical example of
how this sampling process is made in an intermediate iteration (Iteration n).

8.3 Knowledge Distillation with Tokens

Motivated by the benefits obtained when the training databases are not very large with
the Teacher-Student architecture based on Convolutional Neural Networks (CNNs) [4]
as we proved in Chapter 6, we have implemented this architecture using two transformer
networks as Figure 8.4 depicts. Using a Bayesian approach similar to [254], the teacher-
student architecture provides robustness to the system. In this approach, the teacher and
student networks are trained at the same time, unlike previous works [259, 260] where
the teacher network is usually a pre-trained model to reduce complexity and remains
frozen during the training. Besides, different sources of noise are added to the input sig-
nals of both networks, so we have also employed the RE data augmentation method to
provide more variability as in Chapter 6. With this kind of architecture, the student net-
work attempts to mimic the label predictions produced by the teacher network using the
class token output. However, inspired by [272], we have also included an extra learnable
token in the student network which is known as Distillation Token (Distill Token). The
introduction of this extra token allows us to implement a multi-objective optimization
using the class token to reproduce the true label while the distillation token is trained to
mimic the predictions of the teacher network. To achieve this, Kullback-Leibler Diver-
gence (KLD) loss between the student and teacher distributions is minimized. As it was
shown in Chapter 6, KLD loss can be formulated as,

I J
KLD =~ > pr(y"|x) - log (ps(y"|x) + const, (8:3)

i=1 j=1
where i and j are the speaker and utterance indices, x; is the input signal, pr(y¢*|x;) is the

c

output posterior probability of the label y¢** from the class token of the teacher model,
ps(y?!|x;) is the output posterior probability of the label y¢’! from the distillation token
of the student network for the same example, and const is defined in Chapter 6. Hence,
to train the teacher-student architecture shown in Figure 8.4, we employ the following

two loss expressions for the teacher and student networks:

Losst = CE(yS", y), (8.4)

Losss = KLD(y5"™, yi") + CE(y5", y), (8.5)
where CE is Cross-Entropy loss, y¢* is the posterior probability of the class token from

the teacher network, y< is the posterior probability of the class token from the student

122 Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Systems

network, ydis! is the posterior probability of the distillation token from the student net-

work, and y are the ground truth labels.

Input features

Teacher Student
X X
Network /\ Network
Ph emb

PR | ndomErasing | : ey
é eﬂh e L Backbone! i e“h et X Bochbona)
) h 1 ResBlock] ac! oneI ey | | ResBlock IBackbone:
“: [leLs 4 :CLS
Token

- = =

Figure 8.4: Teacher-student architecture used to create the system, where the dashed line indicates the process
of backpropagation of the gradients of both loss functions. Both networks are employed to train while for
testing, the student network is the only one used.

8.4 Class and Distill Tokens for Teacher-Student Ar-
chitecture

In this section, we describe the new approach to teacher-student architecture developed
in this chapter, which is depicted in Figure 8.4. Both architectures follow the structure
described in Chapter 7 with the same backbone and pooling parts which are detailed in
Tables A.10, A.11, A.12 and A.13 in Appendix A. Moreover, before the first MSA layer,
the class token is concatenated with the input. In the case of the student network, the
distillation token is also included. Thanks to the self-attention mechanism, these tokens
learn to obtain a global representation for each utterance without applying global average
pooling. These representations, similar to the neural network supervector in Chapter 5,
are more convenient for the text-dependent speaker verification task. Besides, the use
of memory layers increases the amount of knowledge obtained by the network that can
be stored. After training the system, the class and distillation tokens are extracted as
representations and a cosine similarity is applied on them to perform the verification
process.

8.5 Experiments and Results 123

8.5 Experiments and Results

8.5.1 Experimental Setup

For the experiments, the two text-dependent speaker verification datasets presented in
Chapter 3 have been employed. To carry out the experiments with the RSR2015 dataset, a
set of features composed of 20 dimensional Mel-Frequency Cepstral Coefficients (MFCCs)
with their derivates are used as input. While for the experiments with the DeepMine
dataset, we have employed a feature vector based on mel-scale filter banks. With this
feature extractor, we obtain two log filter banks of sizes 24 and 32, which are concate-
nated with the log energy to obtain a final input dimension of 57. Moreover, phonetic
embeddings of 256 dimensions have been used as positional information as in Chapter
7. As the optimizer for the experiments in this chapter, the Adam optimizer is employed
with a learning rate that increases from 107 to 5 « 107 during 60 epochs and then decays
from 5 « 107 to 10™*. In addition, training data is fed into the systems with a minibatch
size of 32.

In this chapter, two sets of experiments have been carried out to evaluate the propos-
als with both databases. Different approaches to obtain the representations with a single
neural network using the same architecture as the teacher network are compared: the
use of the traditional global average pooling (AVG) and the introduction of the learnable
class token (CLS). For the class token approach, we evaluate our proposal of sampling a
mixture distribution implemented as a matrix of R vectors and reducing it until having a
single vector (Sampling). This parameter is also swept for different values of R, including
R = 1 which corresponds to the original idea in the bibliography [271] of having a single
token and repeating it. Moreover, we analyze the effect produced by the fact of using a
teacher-student architecture with an extra distillation token (CLS — DIST).

8.5.2 Class Token Study

A first set of experiments was performed to compare the use of a class token to obtain
global utterance descriptors with the use of a global average pooling method. Thus, we
study the two approaches to introduce this vector explained during this chapter and the
effect of the number of vectors chosen for the sampling approach.

RSR-Part 11

Table 8.1 presents Equal Error Rate (EER%), minimum Detection Cost Function 08

(minDCF08) and minimum Detection Cost Function 10 (minDCF10) results for the ex-
periments with the RSR2015-Part II dataset. Regardless of the number of vectors in the
sampling for class tokens, if we apply our proposed strategy to introduce the tokens with
a sampling alternative, the obtained performance is better. In addition, the results show
how employing a learnable token outperforms the use of an average embedding. Note

124 Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Systems

that the token is trained through self-attention and keeping the temporal structure to
obtain a global utterance representation, while the average embedding neglects this in-
formation that is relevant to the speaker verification task. As we can also observe with
the sweep of the value of R, the use of several vectors to create the token matrix is better
than using a single vector (R = 1) and repeating it for the whole batch, which corre-
sponds to the original way of applying this approach [271]. However, when the number
of available tokens is too large, the performance begins to degrade.

Table 8.1: Experimental results on RSR2015-Part IT [124] eval subset, showing EER%, minDCF08 and minDCF10.
These results were obtained by training with bkg subsets to compare the different approaches to obtain the
representations: average or sampling strategies. The case of having a single vector and repeat it corresponds

with the experiments with R=1.

Architecture Female
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 4.64 0.228 0.669
CLS no R=1 3.71 0.174 0.580
R=50 3.37 0.169 0.580
R=100 3.33 0.158 0.552
R=200 3.55 0.171 0.562
Architecture Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 4.92 0.244 0.716
CLS no R=1 4.27 0.215 0.679
R=50 4.04 0.199 0.601
R=100 3.68 0.182 0.552
R=200 4.09 0.199 0.607
Architecture Female + Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 4.79 0.237 0.706
CLS no R=1 4.12 0.201 0.634
R=50 3.75 0.187 0.606
R=100 3.57 0.173 0.565
R=200 3.86 0.189 0.587

DeepMine-Part 1

In Table 8.2, the results obtained in the DeepMine-Part 1 database are shown. Unlike the
other dataset, the training data in DeepMine is larger, which indicates that the lack of data
is not so critical to train a powerful and robust system. Therefore, the replacement of the
average embedding by a class token improves the performance only slightly. Besides, the

8.5 Experiments and Results 125

sweep of the value R shows that an improvement is also achieved although smaller than
in the RSR-Part II results.

Table 8.2: Experimental results on DeepMine-Part 1 [233] eval subset, showing EER%, minDCF08 and minDCF10.
These results were obtained by training with train set to compare the different approaches to obtain the repre-
sentations: average or sampling strategies. The case of having a single vector and repeat it corresponds with
the experiments with R=1.

Architecture Female
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 3.92 0.135 0.411
CLS no R=1 3.81 0.128 0.389
R=50 3.92 0.131 0.393
R=100 3.69 0.124 0.379
R=200 3.89 0.133 0.417
Architecture Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 3.02 0.137 0.676
CLS no R=1 3.32 0.143 0.697
R=50 3.19 0.140 0.668
R=100 3.09 0.137 0.658
R=200 2.92 0.133 0.655
Architecture Female + Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 3.58 0.136 0.521
CLS no R=1 3.60 0.134 0.520
R=50 3.62 0.134 0.519
R=100 3.43 0.129 0.505
R=200 3.50 0.133 0.521

8.5.3 Effect of Knowledge Distillation using Tokens

In this section, we analyze the effect of introducing an approach based on KD philosophy
which consists of a teacher-student architecture. Furthermore, in this approach, an extra
distillation token (CLS - DIST) is incorporated [272]. This approach has been employed
to compare the performance obtained in the case of the global average pooling as well as
in the proposed sampling approach to use the class token. In this second case, we have
developed the teacher-student architecture using the R value of the best configuration
obtained in the previous section, and also, the case of R = 1 as it is the usual way to apply
this class token approach in the literature.

126 Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Systems

RSR-Part II

Results of these experiments in RSR-Part II are shown in Table 8.3. Regardless of the
kind of approach to obtain the representations used, we can observe that the use of an
architecture based on a teacher-student approach improves the robustness and achieves
better performance in all the alternatives to extract the representations. Moreover, the
best performance is obtained by applying our proposed strategy to introduce the tokens
with a sampling alternative with more than a single vector, especially if it is combined
with the distillation token representation.

Table 8.3: Experimental results on RSR2015-Part IT [124] eval subset, showing EER%, minDCF08 and minDCF10.
These results were obtained by training with bkg subset to compare the use of a teacher-student architecture
for the different approaches to obtain the representations: average or sampling strategies. The case of having
a single vector and repeat it corresponds with the experiments with R=1.

Architecture Female
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 4.64 0.228 0.669
yes - 3.52 0.170 0.587
CLS no R=1 3.71 0.174 0.580
CLS-DIST yes R=1 3.01 0.148 0.548
CLS no R=100 3.33 0.158 0.552
CLS-DIST yes R=100 2.47 0.122 0.414
Architecture Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 4.92 0.244 0.716
yes - 3.78 0.186 0.579
CLS no R=1 4.27 0.215 0.679
CLS-DIST yes R=1 3.40 0.173 0.557
CLS no R=100 3.68 0.182 0.552
CLS-DIST yes R=100 2.83 0.138 0.463
Architecture Female + Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 4.79 0.237 0.706
yes - 3.74 0.185 0.602
CLS no R=1 4.12 0.201 0.634
CLS-DIST yes R=1 3.31 0.167 0.558
CLS no R=100 3.57 0.173 0.565

CLS-DIST yes R=100 2.68 0.133 0.443

8.5 Experiments and Results 127

DeepMine-Part 1

On the other hand, Table 8.4 presents the performance of systems with DeepMine-Part 1.
In this case, the results show that the application of only the teacher-student architecture
does not improve the systems. However, the use of the teacher-student architecture and
the extra distillation token (CLS - DIST), combined with the sampling strategy with sev-
eral token vectors also allows achieving a more robust system and a significant improve-
ment in the results. The best results are again obtained when the class and distillation
token representations are used.

Table 8.4: Experimental results on DeepMine-Part 1 [233] eval subset, showing EER%, minDCF08 and minDCF10.
These results were obtained by training with train set to compare the use of a teacher-student architecture for
the different approaches to obtain the representations: average or sampling strategies. The case of having a
single vector and repeat it corresponds with the experiments with R=1.

Architecture Female
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 3.92 0.135 0.411
yes - 4.07 0.135 0.401
CLS no R=1 3.81 0.128 0.389
CLS-DIST yes R=1 3.80 0.131 0.395
CLS no R=100 3.69 0.124 0.379
CLS-DIST yes R=100 3.51 0.122 0.385
Architecture Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 3.02 0.137 0.676
yes - 3.04 0.141 0.646
CLS no R=1 3.32 0.143 0.697
CLS-DIST yes R=1 3.25 0.144 0.621
CLS no R=100 3.09 0.137 0.658
CLS-DIST yes R=100 2.68 0.122 0.652
Architecture Female + Male
Type T/S Sampling EER% minDCF08 minDCF10
AVG no - 3.58 0.136 0.521
yes - 3.65 0.138 0.501
CLS no R=1 3.60 0.134 0.520
CLS-DIST yes R=1 3.57 0.135 0.494
CLS no R=100 3.43 0.129 0.505
CLS-DIST yes R=100 3.19 0.123 0.492

128 Chapter 8. Class and Distillation Tokens for Multi-head Self-Attention Systems

8.5.4 Analysis of Class Token Self-Attention Representations

In view of the relevant results obtained, we have also conducted an analysis to interpret
where the self-attention matrix A is focusing on each system. To perform this analysis,
we have employed the system with the best performance from each database, and within
these systems, the last MSA layer of the student model has been selected to make the
representations. In addition, we have chosen different utterances to analyze in Figures
8.5 and 8.6. For each utterance, three figures are plotted: the spectrogram of the utterance,
the matrix of attention weights corresponding to the class token for each of the 16 heads
of the MSA layer, and the sum of the weights of these class token attentions.

In Figure 8.5, two examples of utterances of different phrases (“Call sister”, “Call
brother”) pronounced by the same speaker are shown. These examples are obtained from
the evaluation set of the RSR-Part II database. Whether we look in the middle and bottom
figures, we can observe the relevant information learned by the self-attention weights to
correctly determine the phrase and speaker of each utterance using the class token. Note
that these two phrases of example begin exactly the same with the word Call, so focus-
ing on the beginning of the figures, we observe how the self-attention gives a similar
relevance pattern in both cases to the areas of same phonemes. Moreover, we can also
see that the weights do not pay attention to the area at the beginning and the end of the
utterances that correspond to moments of silence.

0.200

azon
®175 A

a17s I

0150
o1
o100
aa7s
ag50
a02s

LLILES
o

8

(a) Call sister, speaker 1

0150
0128
o100
0075
BOS0
0025

n.oon
a

(b) Call brother, speaker 1

Figure 8.5: Visualizing two examples of different phrases of RSR2015-Part II which are pronounced by the same
speaker. In both cases, three representations are presented. The figure on top shows the spectrogram of each
phrase. In the middle, the attention weights learnt by the class token for each of the 16 heads in the last MSA
layer are depicted. Finally, the plot on bottom is the sum of the rows of the previous weight attention matrix.

Figure 8.6 represents two examples of utterances of the same phrase (“OK Google”)
pronounced by different speakers. In this case, the examples are obtained from the eval-
uation set of the DeepMine-Part 1 database. Note that since these figures are of the same
phrase, self-attention is focused on the same areas, but different relevance is given to

8.6 Conclusions 129

ozo ozoo
oy 0173 A
asad M | 5 FI

asad [f | a1s0 " N a
a12s

a1

agrs 1 /1 L TR O o L A f ag \ A YR
\/ s O y i I \ [\ Vi U | /
amod| W/ | R ol | | L S \ Il e aomod | W \ | \ w8 Y Y O (O \ o f
ams | "-.\ /III \J \ I'UII "\‘___,_." '\.._/'f\'/ ____,\ i ;I, \ "-.\ ["\,__,"'u '-.\ ..'I \/ | s
faw o 50 1ac 1ma 200 50 0o b o =0 100 150 z00 230 300
(a) OK Google, speaker 1 (b) OK Google, speaker 2

Figure 8.6: Visualizing two examples of the same phrase of DeepMine-Part 1 which are pronounced by different
speakers. In both cases, three representations are presented. The figure on top shows the spectrogram of each
phrase. In the middle, the attention weights learnt by the class token for each of the 16 heads in the last MSA
layer are depicted. Finally, the plot on bottom is the sum of the rows of the previous weight attention matrix.

some of them. Besides, the effect of not focusing on the beginning and end of the utter-
ance also occurs in these examples.

8.6 Conclusions

In this chapter, we have presented a novel approach for the speaker verification task.
This approach is based on the use of a learnable class token to obtain a global utter-
ance descriptor instead of employing the average pooling. Moreover, we have developed
an alternative to create the class token with a sampling strategy that introduces uncer-
tainty that helps to generalize better. Apart from the previous approach, we have also
employed a teacher-student architecture combined with an extra distillation token to de-
velop a more robust system. Using this architecture, the distillation token in the student
network learns to replicate the predictions from the teacher network. Both proposals
were evaluated in two text-dependent speaker verification databases. Results achieved
show in RSR2015-Part II that each of the approaches introduced to obtain a robust system
and reduce potential underperformance due to the lack of data improves the overall per-
formance. However, in DeepMine-Part 1, the results obtained replacing only the average
embedding by the class token present a small but consistent improvement, while the use
of a teacher-student architecture achieves a great improvement and confirms the power
of this kind of approach to train the systems.

Part 111

Metric Learning

131

Analysis of Different State-of-the-art
Training Loss Functions for Verification
Systems based on Deep Neural Networks

9.1 Motivation 9.22 CE Loss combined with
9.2 State-of-the-art Loss Functions Ring Loss

for Training DNNs 9.2.3 Angular Softmax Loss

9.2.1 Cross-Entropy Loss 9.2.4 Triplet Loss

9.1 Motivation

During Chapters 4, 5, 6, 7 and 8, different approaches to obtain robust representations
using Deep Neural Networks (DNNs) have been analyzed. To develop these approaches,
we have followed the typical framework to project the utterances into a low dimensional
space employed in many state-of-the-art verification systems based on DNNs [132, 135,
166]. This framework has three key components: a data processing step followed by a
backbone network, a pooling mechanism which produces representations to character-
ize the whole file, and a loss function to train the entire system. In all previous chapters,
several alternatives have been studied for the backbone and pooling parts, while the loss

133

Chapter 9. Analysis of Different State-of-the-art Training Loss Functions for
134 Verification Systems based on Deep Neural Networks

function has always been the same which is based on a widespread approach using Cross
Entropy (CE) loss [75,135] combined with a complementary loss such as Ring loss [84].
Then, the verification process is performed through a separated back-end, in this case,
a similarity metric [74]. Although these verification systems have already provided rea-
sonably good results, the CE loss employed is a general approach that was not designed
to optimize the verification task itself. This loss function does not encourage the dis-
criminative learning of features also valid for out of domain data and the straightforward
classification models trained with it may not be always able to generalize properly on un-
seen data. Therefore, when these systems are trained for classification using CE loss, the
performance of a verification task may not be optimal as it will be shown in the follow-
ing chapters, since it is a problem where generalization of unseen classes is important.
Hence, for the successful training of DNNs, the chosen loss function plays an important
role, since a suitable loss function can improve the ability to discriminate of the verifica-
tion systems. For this reason, recently, the design of new loss functions has been widely
investigated to find the most suitable loss function for training deep learning systems.
These efforts have focused on two lines of study, on one side, the verification or metric
learning loss functions, and on the other side, the redesign of identification or classifica-
tion loss functions. Metric learning loss functions are increasing as a relevant research
focus since these approaches allow making the training process more appropriate to the
evaluation procedure [75, 142]. The main purpose of metric learning algorithms con-
sists of bringing similar samples closer, while different samples are pushed apart from
each other using a specific loss function. Thus, these approaches aim to learn a more
discriminative embedding space. However, this kind of metric learning loss functions
requires careful sample preparation, which usually involves a high computational cost.
To address this problem, recent research efforts have focused on redesigning traditional
classification loss functions to improve discrimination ability. Nevertheless, the existent
loss functions in both lines of study have not been created focused on the goal task.

Motivated by the above ideas, the aim of this chapter is to describe some of the most
extended state-of-the-art loss functions, as well as their main disadvantages, before mov-
ing on to the explanation of the loss functions developed in this thesis. These loss func-
tions have been created oriented to the verification task as will be explained in detail in
the following chapters.

9.2 State-of-the-art Loss Functions for Training DNNs

Training loss functions play an important role in verification systems based on DNNS,
since an effective loss function can improve the discriminative power of the learned fea-
tures. The selection of which loss function should be used depending on the task is also
relevant. Loss functions can be grouped into two categories:

« Identification or classification loss functions: which are used in classification tasks
where all test identities are predefined in the training set, and the features are ex-

9.2 State-of-the-art Loss Functions for Training DNNs 135

pected to be separable. In this category, the current extended function is CE loss
with softmax output units [71, 285, 286] combined with Ring loss [84] or Center
loss [83], and its variants, such as Angular Softmax loss (A-Softmax) [81,145], Ad-
ditive Angular Margin loss (ArcFace) [86] or Additive Angular Margin Softmax loss
(AAMSoftmax) [143].

« Verification or metric learning loss functions: which are designed to improve the
discrimination power with a pairwise- or triplet-based training and a similarity
metric, which leads to a supervised embedding learning in Triplet loss [75, 142],
Tuple-based End-to-End (TE2E) loss [164], Generalized End-to-End (GE2E) loss
[168], Contrastive loss [87], Partial AUC loss (pAUC) [146-148] or NeuralPLDA
[149].

Both groups of loss functions have several variants. In this section, we focus on a
detailed explanation of the most widespread functions of each group.

9.2.1 Cross-Entropy Loss

The traditional and most common identification loss function is Cross-Entropy (CE) loss
[71,285,286]. Due to its simplicity, excellent performance and probabilistic interpretation,
this function has been widely applied for multi-class classification. CE loss can be defined
as,

m N
Leg = - Z Z yij - log(yy), (9.1)
ij

where y;; is the ground truth class label with i € {1,..., m} where m is the number of
samples and j € {1,..,N} where N is the number of classes, and y;; is the predicted
probability extracted from the output of the last fully connected layer. When the labels
are hard, this loss is also known as Negative Log-likelihoood (NLL) and can be expressed
as,

Leg =- Z log(y:), (9:2)

Moreover, this loss function is usually combined with a softmax function. Thus, CE loss
can also be written as,

1 & exp(Wy{ - x; + by,)
Leg = —azl: log— , (93)

Z exp(VVjT - X; + b))
J

where x; is the input sample with i € {1,..., m} and m is the number of samples, y; is the
class label, W is the weight matrix, by, and b; indicate the bias values, W), and W; are the
y; and j column of W with j € {1,.., N} and N is the total number of classes.

When a DNN is trained using this loss function, it learns how to separate features
as far away as possible from the decision boundary, which is the goal for a classification

Chapter 9. Analysis of Different State-of-the-art Training Loss Functions for
136 Verification Systems based on Deep Neural Networks

task. Nevertheless, deeply learned embeddings are not explicitly encouraged to enlarge
the inter-class distance and reduce the intra-class variations, which is not suitable for
verification systems, as they require separable and also discriminative embeddings for
the verification task. Therefore, CE loss improves the posterior probability of training
samples, which is not the best approach to achieve generalization in learned representa-
tions in verification tasks which compare if unseen examples in the training set belong
to the same class.

9.2.2 CE Loss combined with Ring Loss

To solve the above drawbacks with CE loss and simultaneously keep the same efficiency
during training, other approaches have been proposed with encouraging results. CE loss
learns to separate embeddings of different classes, but this loss function does not address
intra-class compactness. In order to mitigate the effects of the lack of generalization
in the representations, an alternative is to combine CE loss with a complementary loss
such as Ring loss [84]. Ring loss was proposed to apply a convex norm constraint on
the primary loss to normalize the embeddings and bring compactness to them. With this
complementary function, the system learns to force the embedding norms to be close to
the unit norm, which increases the generalization in the representation among different
classes since all vectors have similar module and different angles are used to represent
the data while the intra-class feature variability is reduced. Ring loss is formulated as,

Ay &
Lg = %; (I[xillz = Rn), (9.4)

where R, is the target norm value, usually 1, A,, is the loss weight, x; is the input sample
of the penultimate layer with i € {1,..., m} and m is the number of samples. Thus, the
joint loss to minimize with this approach is defined as,

L=Leg + Ly (9.5)

9.2.3 Angular Softmax Loss

Many recent studies have pointed out the need to define new CE variants to address
the lack of generalization for classes out of the training set. Thus, another interesting
approach to solve the generalization problems was to introduce a redesign of CE loss by
incorporating an angular margin to encourage greater variance among classes. This loss
function is known as Angular Softmax, or A-Softmax loss [81, 145] which introduces an
angular margin to learn angular discriminative embeddings. The loss function is defined
as follows:

exp (|[xi]|¢(0y,.1))
N , (9.6)

exp (1611£(6y,)) + D, exp (||xil[cos(6y,,))

J#Yi

1m
L =——El
ANG i 0g

9.2 State-of-the-art Loss Functions for Training DNNs 137

where {(0y,;) is the angle function which is a monotonic function defined as,

{(6y,.1) = (-1)Fcos(m,6,,,) - 2k, (9.7)

with 0,,; € [’;—’Z, (k;la)”], k € [0, m,—1], and m, is an integer to control the angular margin.

A-Softmax loss has been proved to be an effective method for improving some recog-
nition systems. However, it is difficult to train with this function since it is sensitive to
the values of the parameters.

-———

- ~ - ~
~ ~
// - - S /, - S e'
7 /z \\ \\ y // \\ \\
4 SN ’ s Mo —VO
/7 v _ \ . A4 - -,
L7 selee N Leaming /S 0 g Se(ee) <
1o € ‘\ I _ - \ \‘
1o - \ 1o O \
e 5 | 5
1 1 1 + r—
! I ! se(e,e™) I
\ ‘ + 1 \ 1
\ \\ . se(e,e™) , \ \\ . ;1
v € ¢ ! v O ¢ !
AN \ / / \ \ / /
\ N // / \ ~ // /
N\ S S _ - 4 AN S o _ - 4
N - = 7 N - - 7
S o _ S o _

Figure 9.1: Triplet loss learning process.

9.2.4 Triplet Loss

Motivated to improve the discriminative power of the features extracted from the net-
work, the metric learning approaches or verification loss functions were introduced in
the training process of DNNs. One of the most widespread verification loss functions for
metric learning is Triplet loss [75]. To use this type of loss function, a triplet neural net-
work structure is applied in which three examples are selected to create a negative pair
and a positive pair of samples. They are defined as an example of a specific class called
anchor (e), a positive sample of the same class of the anchor (e"), and a negative sample
of a different class (e”). Once the triplet selection process is made, three instances of the
same neural network with shared parameters are trained to enforce a larger similarity
metric on the anchor-positive pair than on the anchor-negative pair with a margin, as
Figure 9.1 depicts. Triplet loss is defined as,

m m
Lrr

33 U@z - liso@l: +] . (9.8)

~,

where sgp(p;) is the similarity metric of each pair of anchor-positive embeddings where
pi = (e,ef) with i € {1,..,m"} and m" is the total number of positive examples, se(pj‘)
indicates the metric of each pair of anchor-negative embeddings where p; = (e, ¢;) with
i € {1,..,m } and m~ is the total number of negative examples, and ¢ is the minimum
margin between those similarities.

10

Optimization of the Area Under the ROC
Curve for Training Deep Neural Networks

10.1 Motivation
10.2 Triplet Neural Network

10.3

10.2.1

10.2.2

Optimization of the Area
Under the ROC Curve

Triplet Training Method

Experiments and Results in

Speaker Verification

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5

System Description
Experimental Setup

Results with RSR2015-Part I
Results with RSR2015-Part II
Analysis of Applying a
Triplet Neural Network
with aAUC Loss as Back-
end

10.4 Experiments and Results in

Language Verification

10.4.1 System Description
10.4.2 Baseline Results with NIST
LRE 2009

10.4.3 Results using Neural Net-
work Approaches with Dif-
ferent LRE datasets

10.4.4 Limitations of the Triplet
Neural Network Back-end

10.5 Experiments and Results in
Face Verification

10.5.1 System Description

10.5.2 Results using WideResnet
with MOBIO

10.5.3 Results using Pre-trained
FaceNet with MOBIO

10.6 Conclusions

139

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
140 Networks

10.1 Motivation

Ideally, verification systems based on Deep Neural Networks (DNNs) should be trained
to directly carry out the verification process and, also, all parameters should be trained
at the same time. For example, training an end-to-end system as a binary classification,
so the system is able to determine between two examples as a target or a non-target trial.
Some attempts with this philosophy have been successfully trained thanks to the avail-
ability of a large amount of training data or using strong pre-trained models as start-
ing point. However, these situations are not the most typical for many specific tasks.
Therefore, as Chapter 9 has introduced, the most widespread approach to develop ver-
ification systems consists of training DNNs for multi-class classification using the tra-
ditional Cross-Entropy (CE) loss. After that, a back-end is applied on the embeddings
extracted from the previous DNN to perform the verification process, either through a
similarity metric [74], a Probabilistic Linear Discriminant Analysis (PLDA) [287,288], or
another NN. Nowadays, one of the most common back-end approaches based on DNNs
is a triplet neural network with Triplet loss [75,289]. Nevertheless, this loss function is
not designed to optimize the verification task. For this reason, an alternative to Triplet
loss optimization has been proposed in this thesis. The use of a novel method combined
with the triplet philosophy is more appropriate for a verification task. In this method, the
loss function approximates the Area Under the Receiver Operating Characteristic (ROC)
Curve [290-293] in a differentiable way. Area Under the Curve (AUC) is a metric used
to evaluate performance in verification systems. This metric measures the area between
the ROC and the axes, and AUC is obtained by sweeping across all thresholds (under the
assumption of uniform sampling). Therefore, by optimizing the proposed loss function,
we can optimize the AUC performance.

In summary, in this chapter, we propose a new optimization procedure as a back-
end that combines the triplet neural network approach with an approximation of AUC
(aAUC) as a loss function. The optimization of AUC as a cost function is appropriate for a
detection task as it directly correlates with performance metric of the system. Moreover,
this kind of approach needs careful selection of the triplet examples for correct conver-
gence during training. For this reason, a smart triplet selection method is included in
this chapter. In addition, to prove that this loss function is suitable for any verification
task, we have employed it to train systems for text-dependent speaker, face and language
verification tasks.

10.2 Triplet Neural Network

The triplet neural network defines a cost function to evaluate the embeddings provided
by three instances of the same neural network with shared parameters. As input to this
network, three examples are used, one example from a specific class x (an anchor), an-

10.2 Triplet Neural Network 141

other example from the same class x* (a positive example), and an example from another
class x~ (a negative example). In most of the existing recognition systems using this ap-
proach (75,132,141, 169, 289, 294], the goal of the neural network learning process is to
maximize the distance between the anchor and the negative example while the distance
between the anchor and the positive example is minimized, if it is greater than a mar-
gin defined in Triplet loss. Unlike previous systems that train the neural network using
Triplet loss, in this thesis, we propose to use the AUC metric as the training objective,
which allows us to directly optimize a well-suited loss function that measures the per-
formance of the whole system independently of the operating point. The choice of the
AUC as the objective function for the training process is due to its simplicity, since it can
be approximated with differentiable functions [290] allowing us to build an end-to-end
system. Furthermore, another important point to correctly train this type of systems is
the triplet data selection that is applied to choose which are the examples that compose
the triplets. Therefore, in this chapter, we have decided to introduce an approach similar
to the triplet sampling strategy proposed in [75] which is usually called Hard Negative
Mining,.

For the training of the triplet neural network as a back-end approach, the pipeline of
the proposed scheme is depicted in Figure 10.1. In addition, we detail below the proposed
objective function and the training strategy employed to carry out this back-end.

x* et

score (e,e*) se(Pi*)
_ |x A \

Sigmoid (se(Pi*)-Se(P;))

i L Se(Py
X © score (e,e’) ol

\ J| J\ J
kY} | | |

Triplet Embedding Cosine Similarity Approximation AUC

Figure 10.1: Triplet neural network, the examples are grouped in triplets by the triplet selection to train the
network and evaluated the two pairs of embeddings to optimize the objective function, where x is the anchor
and e is its embedding from back-end network, x* is the positive example and e* is its embedding, and x~ is
the negative example and e~ is its embedding. Besides, sp(p;’) is the cosine similarity from anchor-positive pair,
and sy(p;) is the cosine similarity from anchor-negative pair.

10.2.1 Optimization of the Area Under the ROC Curve

Metric learning loss functions aim to improve the generalization ability of systems as
they learn to better discriminate in verification problems. However, these functions are
designed without considering the measure of the performance used in the verification
process. Verification systems are generally trained with discriminative paradigms to op-

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
142 Networks

timize classification performance. Nevertheless, in that way, the training process does
not consider the verification process and relative measures such as the trade-off between
false alarms and misses. For that reason, to make the training process more consistent
with the evaluation procedure, we propose to directly optimize the Area Under the Curve
(AUC) as loss function using the triplet philosophy. AUC is an operating point indepen-
dent metric and measures the probability that all pairs of examples are correctly ranked.
Therefore, AUC is a proper metric to make the training procedure consistent with the
evaluation process. Since this metric is not differentiable, we propose an effective ap-
proximation of the AUC function (aAUC) to enable backpropagation of the gradients
during the training process.

For m training examples, AUC is defined as the function that maximizes the average
number of times the score of anchor-positive pairs is greater than the score of anchor-
negative pairs. The anchor-positive score is given by the cosine similarity value sy(p;)
where p; = (e, €") indicates each pair of anchor-positive embeddings with i € {1,..., m*}
and m" is the total number of positive examples, and the anchor-negative score is pro-
vided by the cosine similarity value sy(p;) where p; = (e, €”) represents the anchor-
negative pairs with j € {1,.., m™} and m~ is the total number of negative examples. Both
values are also expressed as a function of the net learning parameters 6. Hence, given a
set of network parameters 0, the AUC function can be written as

AUC() =

=Y) Wsolp)) > so(py)), (10.1)

+
m i=1 j=1

3

where 1() has a value equal to "1° whenever sp(p;) > sp(p;), and '0" otherwise. With
this expression, the optimization process leads the score of the anchor-positive pair to be
greater than the score of the negative pair. This function can be rewritten using the unit
step function u() as,

+

wan) (10.2)

j=1

3

AUC(0) =

t*m-

3

To enable the backpropagation of the gradients, this expression must be approximated
in order to be differentiable. For that reason, we substitute the step function by a sigmoid
function, as we can see in Figure 10.2 is a close approximation to the step function which
is one if the condition is met and zero otherwise. In our case, the condition is that the
score of e and e” must be greater than the score of e and e”. Thus, our approximation of
the AUC (aAUC) loss function can be formulated as,

aAUC(0

WmZZ%wm so(p;)), (10.3)

i=1 j=1

.

where 0,() is the sigmoid function which is defined as,

(10.4)

10.2 Triplet Neural Network 143

15 1
step
sigmoid

1k
N
>
N’
S
g
2 05f
7
~
~
tad
N
[}
[
@
0
0.5 . ‘ . - ‘ -
-15 1 0.5 0 05 1 15

Figure 10.2: Representation of unit step and sigmoid functions, where the sigmoid function can be seen as a
good approximation of the unit step function.

where « is an adjustable parameter which modifies the slope of the sigmoid to make it
closer to the unit step [293]. The use of a differentiable function as the sigmoid func-
tion allows us to include this optimization function in combination with the alignment
mechanism presented in Chapter 5 in our end-to-end system. Thus, we seek the network
parameters 6" which maximize this expression:

1 m m
0" = argmax aAUC(0) = argmax o (se(pi) — se(p;))- 10.5
gn (6) = argn > 2, oulsopi) = so(py)- - (105)

mtm-
=1 Jj=

10.2.2 Triplet Training Method

Aside from the loss function, the method used to select triplets is an important factor
in training a good triplet neural network. If the anchor-negative example consistently
comes from easily-separable classes, the network will not provide the discrimination
needed to separate closely-related classes. In this section, we describe the different triplet
selection strategies to perform this selection. Nevertheless, depending on the verification
task and the data, we have decided which one to apply.

Random Selection

The first strategy is a straightforward approach consisting of a random choice of classes
and examples of each class. To perform this selection, at each iteration, we randomly
choose G groups of P classes where G - P is equal to the total number of classes N. Then,
all examples from each class selected from each group are used to make random triplets
to train the neural network.

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
144 Networks

Hard Negative Mining Selection

Random selection is the simplest way to perform this process, but it is not the smartest
option. Therefore, in this thesis, this process has also been developed following the triplet
sampling strategy proposed in [75] termed Hard Negative Mining strategy, which is an
intelligent selection process. This technique involves selecting anchor-negative pairs
with the maximum similarity value (hard negative) for which the system triggers a false
alarm, and anchor-positive pairs with the minimum similarity value (hard positive) that
the system can not detect and produces a miss. To manage this selection process, we
propose two methods using both the same random selection for classes:

+ Hard Negative Mining Type 1 (HM1): This method has been developed to create the
triplets with only a random subset of K examples from each P class.

« Hard Negative Mining Type 2 (HM2): As an evolution of the first approximation, we
employ the whole set of examples from each P class to find the most complicated
cases to discriminate. We handle this process in Algorithm 1 using a random se-
lection of the identities, since using all of them at the same time would involve a
significant cost. We use all the examples from each identity to find the cases which
are more complicated to discriminate. Once the pairs of challenging examples have
been calculated, we select only a small percentage of them p, to train the triplet
network. This value is chosen according to the size of the database, so the number
of examples used for training is similar to the original size.

After the selection process, the training of the neural network is made using subsets of
these pairs selected in the triplet selection process, the number of pairs selected is defined
by the batch size. The aAUC value and the gradients to update the network are calculated
for these pairs of embeddings in each subset or minibatch. Thus, this computation is
not the exact AUC, because to obtain the whole AUC, we should calculate the value
and gradients for all pairs at the same time, but the convergence would be extremely
slow. Hence, the benefit of this process in terms of performance comes with a higher
computational cost.

10.3 Experiments and Results in Speaker Verification

In this section, we present the experiments and results obtained for the speaker veri-
fication task by applying the proposed novel approach with the following verification
system.

10.3 Experiments and Results in Speaker Verification

145

Algorithm 2: Training algorithm for triplet neural network using aAUC loss
function.

Input: Input examples to triplet selection process X, class labels Y, initial
network parameters ¢, number of classes N,, selection percentage of
examples p,, adjustable parameter «, batch size b, learning rate A,
number of class for block N;, and the number of epochs N,

Output: Updated network parameters 0.

X<—0

for n=1to N, do
1. Triplet Selection Process

for n, =1to N, do
1.1 Step 1, select randomly N; classes from Y:

ids=random_selection(Y,N;)

1.2 Step 2, evaluate all versus all selected ids.

1.2.1 Step 2.1, choose the percentage p, of reference training
examples x (anchors).

1.2.2 Step 2.2, select the percentage p, of the cases with lowest
score and same class as reference x* (hard positives).

1.2.3 Step 2.3, choose the percentage p, of the cases with highest
score and different class to the reference x~ (hard negatives).

1.2.4 Step 2.4, add the triplet to the new training set X:

X «— Xu{(x,x",x7)}

end

2. Network Training

2.1 Step 1, every update a minibatch of size b is extracted from the

train set X composed by triplets (x, x*, x7).
for (x,x*,x”) € X do
2.2 Step 2, extract the neural network embeddings :
e=Net(x,0)
e*=Net(x*,0)
e =Net(x",0)
2.3 Step 3, obtain the scores from each pair of embeddings
(e, e"),(e, e7):
so(e, e")=score(e,e*)
sg(e, e")=score(e,e”)
2.4 Step 4, calculate the aAUC loss function using (10.3):
aAUC=0c(a(sg(e, e*) — sg(e, "))

0 «—0+Avyg(aAUC)
end

end

2.5 Step 5, update network parameters 6 with gradient of aAUC:

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
146 Networks

10.3.1 System Description

The text-dependent speaker verification system employed to carry out these experiments
is based on the systems developed in Chapter 5 and 6. As reference backbone network for
each alignment mechanism, the best configuration from those chapters has been used.
The output of the pooling part of the system will be the neural network supervector or
embedding. These neural network supervectors with fixed dimension are processed by
the back-end to train a classification of identities, therefore, enforcing the separability of
the speaker in the supervector space or to provide directly the verification scores.

Input signal Input fignal
[Processing | | Processing |
_______________________ |
| Backbone y | I
| Neural Network I]
e e e e e e e e s e e e e e e e e = =] e e e e e e e e e e e e e e e e e —— !
Pooing | e - :
| Alignment | "
1 mechanism | 1
| Supervector | Supervector |
y

A e —— i — — —— .
I 8 S . . 1 . . . Sa_ | Sq 1
|Embedding 4 > Embedding| | e e :
} : =

, extraction Linear Layer o ack-en etwor : X
I ! : | Embedding !
1 5

| Lo Triplet Loss/ |
! Softmax+CE Loss | : aAUC Loss :
Lo o o o o e o - - — = ——————

(a) Architecture type C (b) Architecture type D

Figure 10.3: The architectures developed to check the effectiveness of our proposed back-end, 10.3(a) the archi-
tecture type C is trained for multiclass classification using the alignment mechanisms. In 10.3(b), the architec-
ture type D is trained to optimize the back-end network.

In Figure 10.3, we show the architectures employed to develop this approach. These
architectures are designed as follow:

« Architecture C. Chapter 5 have introduced the architecture type C depicted in Fig-
ure 10.3(a) which has been created by combining the architecture type B with a
backbone network, and a flatten layer is used to link with the last layer to train the
system for multi-class classification with CE loss. The alignment layer explained
in that chapter is used as a link between the backbone and loss parts, allowing us
to train the whole system to optimize any cost function we decide. To implement
the backbone network, the best configuration of Chapter 5 and 6 for each align-
ment technique has been employed. For the verification process, once our system
is trained, a neural network supervector is extracted from the flatten layer for each
enrollment and test utterance, and then a cosine similarity is applied on them to
produce the verification scores.

10.3 Experiments and Results in Speaker Verification 147

« Architecture D. In this chapter, we propose another architecture with a novel cost
function in this context. This function is better integrated with the back-end and,
thus, comes closer to the task objective. In the architecture type D which we show
in Figure 10.3(b), an embedding is obtained for each utterance, and then the back-
end is applied to provide the verification scores directly with the metric allowing
us to have an end-to-end system.

10.3.2 Experimental Setup

The following section describes the experimental setup employed for the text-dependent
speaker verification task with RSR2015-Part I and II. To develop our experiments, a set
of features composed of 20 Mel-Frequency Cepstral Coeflicients (MFCCs) with their first
and second derivates are employed as input to train the alignment mechanisms and also
as input to the DNN. The bkg partition has been employed to train two different align-
ment mechanisms, both of which were trained to obtain one model per phrase without
the need to know the phrase transcription. On the one hand, Hidden Markov Models
(HMMs) have been trained using a left-to-right model of 40 states for each phrase. On the
other hand, a Gaussian Mixture Model (GMM) of 64 componenents has been trained per
phrase. With these models, we can extract alignment information to use inside our DNN
architecture. Furthermore, we have trained the DNNs using an Adam optimizer [248].
In all experiments with the aAUC function, the « parameter in the sigmoid function has
a fixed value of 10 to have a shape close to the unit step since this parameter acts as a
control of steepness. For this task, we fixed it using the dev partition.

In this section, a set of experiments has been developed for each part of the text-
dependent speaker verification database to compare the diverse back-end loss functions.
As back-end, the network used is composed of two dense layers and the specific config-
uration is in Table A.14 in Appendix A. The triplet selection strategy employed to train
is described in Section 10.2.2 with the name of Hard Negative Mining Type 2. Moreover,
these approaches have been evaluated with the two alignment mechanisms proposed in
Chapter 5. Each set of experiments has been developed using the bkg, dev and eval data
corresponding to each part and the parameters of the system and training algorithm have
been selected using the dev partition.

10.3.3 Results with RSR2015-Part I

In the first experiments with RSR2015-Part I, we have contrasted the best architecture C
for each alignment mechanism with architecture D using the proposed aAUC optimiza-
tion, and also, compared with Triplet loss (TrLoss). To initialize the second architecture,
we employ a pre-trained model with architecture C.

Table 10.1 shows that if we apply the back-end network to the neural network su-
pervectors instead of just using cosine similarity, we improve the ability to discriminate

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
148 Networks

between different identities and phrases. This improvement is due to the joint estima-
tion of the backbone and back-end network parameters to optimize the aAUC objective.
Therefore, it is an end-to-end system as all parameters are learned to jointly optimize the
detection task. The best system performance is obtained when we use the end-to-end
aAUC optimization strategy to combine the backbone and back-end networks with the
alignment mechanism, which plays the important role of encoding the features in the
supervector communicating both networks. In addition, we have achieved 11% and 15%
relative improvement of EER% using HMM and GMM with MAP respectively, and the
DCF10 values are also improved in both cases. CLLR also improves when we employ the
proposed methods. In Figure 10.4, we represent the DET curves for these experiments.
These representations clearly demonstrate that the systems using GMM with MAP as
the alignment mechanism have great system performance with all approaches, and es-
pecially when we apply the proposed aAUC function for the back-end, the best system
performance is achieved.

Table 10.1: Experimental results on RSR2015-Part I [124] eval set, showing AUC%, EER%, CLLR, minCLLR,
actDCF10 and minDCF10. These results were obtained by training with bkg+dev subsets to compare the best
backbone neural network with both alignment techniques using the different losses.

Architecture Female
Type BB Pool. Loss EER%/AUC% min/actDCF10 minCLLR/CLLR
C CNN HMM CE 0.59/99.95 0.10/0.11 0.027/0.030
D TrLoss 0.89/99.94 0.23/0.24 0.038/0.041
aAUC 0.52/99.96 0.10/0.12 0.023/ 0.027
C CNN(BDK) GMM CE 0.51/99.98 0.12/0.17 0.021/0.025
D TrLoss 0.63/99.96 0.14/0.30 0.028/0.044
aAUC 0.40/99.98 0.09/0.16 0.018/0.024
Architecture Male
Type BB Pool. Loss EER%/AUC% min/actDCF10 minCLLR/CLLR
C CNN HMM CE 0.71/99.95 0.16/0.18 0.030/0.033
D TrLoss 1.09/99.93 0.24/0.25 0.043/0.046
aAUC 0.67/99.97 0.14/0.16 0.027/0.028
C CNN(BDK) GMM CE 0.78/99.96 0.15/0.24 0.031/0.039
D TrLoss 0.70/99.97 0.16/0.41 0.028/0.045
aAUC 0.69/99.97 0.12/0.19 0.027/0.030
Architecture Female+Male
Type BB Pool. Loss EER%/AUC% min/actDCF10 minCLLR/CLLR
C CNN HMM CE 0.73/99.95 0.14/0.17 0.030/0.032
D TrLoss 1.07/99.93 0.26/0.26 0.043/0.045
aAUC 0.65/99.96 0.13/0.16 0.027/0.029
C CNN(BDK) GMM CE 0.66/99.97 0.13/0.21 0.027/0.033
D TrLoss 0.72/99.96 0.17/0.34 0.030/0.038
aAUC 0.56/99.98 0.11/0.17 0.023/0.025

10.3 Experiments and Results in Speaker Verification 149

30

—— CNN-HMM-CE (EER= 0.73)

—+ CNN-HMM-TrLoss (EER= 1.07)
—=CNN-HMM-aAUC (EER= 0.65)

—— CNN(BDK)-GMM-CE (EER= 0.66)
— - CNN(BDK)-GMM-TrLoss (EER= 0.72)
10 4 == CNN(BDK)-GMM-aAUC (EER= 0.56)

20 A

False Rejection Rate [In %]

0.1 0.2 0.5 1 2 5 10 20 30
False Acceptance Rate [In %]

Figure 10.4: DET curves for female+male results on RSR2015-Part I of the best backbone networks combined
with the different losses.

10.3.4 Results with RSR2015-Part II

As in the first set of experiments, when we apply the same back-end techniques using
architecture D on Part II of the database, the discriminative ability also improves. This
improvement is shown in Table 10.2 and Figure 10.5. Besides, in terms of relative im-
provement, EER% has improved 11% with both alignment mechanisms, and the DCF10
values also improve in both cases. We have also improved the CLLR values with the
proposed approaches.

False Rejection Rate [In %]

—— CNN-HMM-CE (EER= 6.59) N hbS
=+ CNN-HMM-TrLoss (EER= 8.48) ~\

== CNN-HMM-aAUC (EER= 5.84) Y

0.2 4/=—— CNN(BDK)-GMM-CE (EER= 4.07) -~
— - CNN(BDK)-GMM-TrLoss (EER= 4.24)

— = CNN(BDK)-GMM-aAUC (EER= 3.64)

0.5 1

0.1

T T
01 02 05 1 2 5 10 200 30 40
False Acceptance Rate [In %]

Figure 10.5: DET curves for female+male results on the RSR2015-Part IT of the best backbone networks combined
with the different losses.

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
150 Networks

Table 10.2: Experimental results on RSR2015-Part II [124] eval set, showing AUC%, EER%, CLLR, minCLLR,
actDCF10 and minDCF10. These results were obtained by training with bkg+dev subsets to compare the best
backbone neural network with both alignment techniques using the different losses.

Architecture Female
Type BB Pool. Loss EER%/AUC% min/actDCF10 minCLLR/CLLR
C CNN HMM CE 5.55/98.67 0.65/0.82 0.205/0.234
D TrLoss 8.09/97.57 0.89/0.98 0.285/0.417
aAUC 5.15/98.92 0.61/0.71 0.185/0.201
C CNN(BDK) GMM CE 3.15/99.50 0.52/0.57 0.121/0.169
D TrLoss 3.28/99.46 0.51/0.60 0.127/0.176
aAUC 2.74/99.59 0.47/0.56 0.108/0.147
Architecture Male
Type BB Pool. Loss EER%/AUC% min/actDCF10 minCLLR/CLLR
C CNN HMM CE 6.76/97.98 0.68/0.69 0.247/0.384
D TrLoss 8.32/97.35 0.86/0.90 0.296/0.376
aAUC 6.02/98.48 0.67/0.76 0.219/0.243
C CNN(BDK) GMM CE 4.72/99.00 0.77/0.79 0.176/0.205
D TrLoss 4.58/99.10 0.65/0.77 0.169/0.372
aAUC 3.99/99.25 0.65/0.75 0.151/0.259
Architecture Female+Male
Type BB Pool. Loss EER%/AUC% min/actDCF10 minCLLR/CLLR
C CNN HMM CE 6.59/98.19 0.68/0.74 0.237/0.312
D TrLoss 8.48/97.30 0.85/0.97 0.301/0.419
aAUC 5.84/98.60 0.66/0.82 0.212/0.233
C CNN(BDK) GMM CE 4.07/99.24 0.67/0.69 0.154/0.189
D TrLoss 4.24/99.23 0.59/0.69 0.157/0.281
aAUC 3.64/99.38 0.57/0.67 0.137/0.198

10.3.5 Analysis of Applying a Triplet Neural Network with aAUC
Loss as Back-end

In addition to the two sets of experiments described above, Figure 10.6 depicts the em-
beddings of the thirty phrases in a two-dimensional space using T-Distributed Stochastic
Neighbor Embedding (t-SNE) [252]. Figure 10.6(a) represents the embeddings that are
extracted from architecture A presented in Chapter 4 using the global average pooling
mechanism and CE as loss function, while Figure 10.6(b) shows the neural network su-
pervectors of architecture C using the alignment mechanism and CE loss. The third rep-
resentation in Figure 10.6(c) depicts the embeddings extracted from architecture D. As
we also shown in Chapter 4, the embeddings obtained from the global average pooling
are not able to separate between the same identity with the same phrase and the same
identity with different phrase. Besides, we verify that the use of the alignment mecha-
nism improves the discrimination ability for unseen classes, and this ability is even better
if we use architecture D with our proposed aAUC loss function.

For illustrative purposes, Figure 10.7 represents the evolution of the real AUC func-
tion (10.2) against the aAUC proposed (10.3) during the training process. In this repre-
sentation, we can see that the proposed differentiable estimation of the AUC function is

10.3 Experiments and Results in Speaker Verification

151

(a) CNN-avg-CE

T
80

100 +

751

25 |
o
4 :*

(c) CNN-HMM-aAUC

Figure 10.6: Visualizing Average embeddings vs Neural Network Supervectors vs Embeddings from aAUC
architecture for 30 phrases from female using t-SNE. Each phrase is marked by one different color scale. The
examples used for this representation are from the test set, and they have not been seen during the training

process.

AUC vs aAUC

1.000 A
/

0.998 4
0.996 1

0.994 4

AUC

0.992 4

0.990 +

0.988 1

— aAUC
— AUC

10 15 20 25
it

Figure 10.7: Training evolution of real AUC vs aAUC.

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
152 Networks

getting closer to the real function as the training progresses, which supports the assertion
that aAUC is an effective approximation of the real AUC function.

The differences between the real AUC function and aAUC are due to the approxima-
tion used, which is based on a sigmoid function to substitute the original step function.
This step function can be seen as a binary counter, only 0 or 1 values, so there are no in-
termediate values. However, the sigmoid function is a smooth approximation, so during
the training process, there are intermediate values of this function, not just 1 or 0 values,
like the unit step function.

10.4 Experiments and Results in Language Verification

After proving the success of the proposed back-end approach in the speaker verification
task, we have applied this new approach in the language recognition task to improve the
discrimination ability between similar languages. We have focused our attention on im-
proving only the back-end part of the system for this task, due to the assumption that the
language embedding backbone can generalize to a variety of domains. Besides, working
only in the back-end allows us to adapt faster the system for specific needs. To demon-
strate the advantages of the triplet neural network back-end, we benchmark against tra-
ditional back-ends including Gaussian Back-end (GB), Probabilistic Linear Discriminant
Analysis (PLDA), Support Vector Machines (SVM), and NN.

10.4.1 System Description

The following section describes the system used which is shown in Figure 10.8. We first
detail the front-end and backbone employed to extract a language embedding from an
audio sample. This is followed by a description of various back-ends explored in this
task, with each being based on the same embeddings extracted from the backbone. A
final calibration step is applied to the scores from each back-end in order to transform
the scores into calibrated likelihoods.

Front-end

Front-end is composed of 3 subsystems. The Speech Activity Detection (SAD) system
selects frames containing speech, and then a Bottleneck Senone DNN (BN-DNN) system
extracts features rich in phonetic information [295]. BN features are used as input to the
posterior backbone DNN which is trained to discriminate languages as output classes.

« Speech Activity Detection (SAD)

We use a DNN-SAD model composed of two hidden layers with 500 and 100 nodes,
respectively, and trained to discriminate speech vs non-speech frames. It is based

10.4 Experiments and Results in Language Verification 153

LDA+GB |

LDA+PLDA

r i

! 1

! 1

! 1

l 1

! 1

S—] !
1

Front-end |—»| Backbone |——»1 }—»| Calibration Calibrated
+
: LDA+SVM : Likelihoods

L | |1

! 1

! 1

! 1

! [

! 1

! [

! 1

!]

Neural
Network

Triplet
— Neural —
Network

Back-end

Figure 10.8: The language recognition system, composed of a front-end, backbone, selection of one back-end
option, and calibration.

on 20-dimensional MFCC features, stacked with 31 frames to provide an input of
620 dimensions to the DNN, which is first mean and variance normalized over a 201
frame window. A threshold was applied to speech posteriors to determine whether
a frame of audio consisted of speech or not.

« Bottleneck Senone DNN Extractor

Senone DNN extracts 80-dimensional bottleneck (BN) features from a bottleneck
layer. The network targets 3450 senones (tri-phone states) learned using Fisher and
Switchboard data. Log Mel Spectra features of 40 dimensions were used as acoustic
input features. The network has 5 hidden layers of 600 nodes with the last hidden
layer being the bottleneck of 80 nodes.

Backbone Network used as Language Embedding Extractor

The embedding extractor network is trained with BN features extracted from the BN-
DNN and is trained to discriminate 49 different languages from the LRE09 development
data described in Chapter 3. The data was augmented with 4 types of degradation: rever-
beration, compression, non-vocal music, and noise. The structure of the network starts
with four frame-level hidden layers followed by a statistics pooling layer and two final
segment layers. Features for back-end are extracted from the first segment-level hidden
layer of 512 nodes. More information about the DNN structure and the augmentation
process can be found in [295].

Traditional Back-ends

To establish a baseline framework for the language verification task, we have applied a
range of traditional back-ends to the language embeddings such as SVM, GB and PLDA.
All of these techniques have been detailed in Chapter 3, but below we describe the specific

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
154 Networks

aspects of how they have been employed for this particular task. Before applying each
of these techniques, the embeddings were transformed to 48 dimensions with Linear
Discriminant Analysis (LDA) into a new feature space that maximizes class separability,
followed also by mean and length normalization.

» Weighted Gaussian Back-end (WGB)

The Generative Gaussian Back-end (GB) is one of the most common back-ends
applied to language recognition. In this back-end, each language is modeled by a
Gaussian distribution, defined by a language-dependent mean and a full covariance
matrix shared across all languages. These Gaussian models are used to compute the
likelihood of an embedding being based on each of the modeled languages. Since
the back-end training data is language-imbalanced, we have employed a modifi-
cation of GB [191] to normalize for the imbalance by appropriately weighting the
examples during the computation of the means m; and covariance S of the model.

« Probabilistic Linear Discriminant Analysis (PLDA)

Traditionally, PLDA approaches combined with i-vectors were not as successful
for language recognition as in speaker recognition tasks, since the number of lan-
guages N is much smaller than the speaker identities, so there is a significant loss
of information for the identification process with the projection into a (N-1) dimen-
sional space. However, in view of the impressive results achieved with the PLDA in
speaker verification tasks with embeddings, we apply it to have a reference result
of PLDA in embeddings for language recognition. Thus, we have used as a binary
detector to determine whether pairs of examples are from the same language or
different.

« Support Vector Machines (SVM)

The aforementioned generative back-end techniques may struggle to separate sim-
ilar languages because they are not trained to separate them explicitly. For this
reason, we have decided to substitute the classical generative back-end with dis-
criminative techniques. Before starting with the neural network approaches, we
employ a discriminative SVM kernel based classifier [184]. The SVM classifier fo-
cuses on maximizing the margin between language classes.

The SVM is by nature a binary classifier, so in order to use SVM with multiclass
data we employ a “one vs. all" strategy. This strategy consists of training language-
dependent SVMs that target one language against the pool of all the other lan-
guages. In this manner, the margin between the target language and other lan-
guages will be largely defined by the closely-related languages to the target lan-

guage.

Neural Network Back-end

As another reference back-end for comparisson, we also apply a feed-forward neural
network (NN) approach, which is trained to discriminate languages directly. In contrast

10.4 Experiments and Results in Language Verification 155

to the embeddings network trained on short audio cuts of 2-4 seconds, this back-end
is trained with longer audio samples using a fixed embedding extraction process. The
employed NN is trained using CE loss for multi-class language classification. After the
training process, a secondary embedding is extracted from an intermediate layer and a
similarity metric such as cosine similarity is applied to compare the test embedding to
those obtained from the embeddings of each language in the training dataset.

Triplet Neural Network Back-end

Finally, the last back-end employed is the one proposed in this chapter. Previous work
found that language-imbalanced databases are not well suited to NN back-end tech-
niques, which is a hinderance when a large amount of training data for each language is
required [191,203]. Thus, to help with this imbalance, we propose to apply a novel ap-
proach for the language recognition task based on a triplet neural network that is trained
to discriminate between pairs of embeddings. For this case, the input of this network is
three embeddings, one embedding from a specific language e (an anchor), another em-
bedding from the same language e* (a positive example), and an embedding from another
language e~ (a negative example).

Calibration

The scores generated by all back-ends are calibrated by transforming the scores into
proper likelihoods using multiclass logistic regression as described in [217] and Chapter
3. These are then transformed into calibrated log-likelihood ratios (LLRs).

10.4.2 Baseline Results with NIST LRE 2009

In this section, we compare the performance of the traditional back-end techniques de-
scribed previously, each of them with previous LDA reduction, mean and length normal-
ization, to establish a baseline result using the LRE09 database for language recognition
described in Chapter 3. Table 10.3 details EER% and minCLLR for the initial systems based
on three different back-ends. We have found that although traditionally the i-vector and
PLDA pipeline has not been the most suitable approach for the language recognition task,
embeddings followed by PLDA as a binary detector is found to outperform the back-ends
based on classifiers such as WGB and SVM. Thus, in the following section, we use the
PLDA back-end as the baseline system.

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
156 Networks

Table 10.3: Comparison of different traditional back-end techniques on the LRE09 [235] eval data in terms of
showing EER% and minCLLR. Audio files contained 8 seconds of speech.

Back-end minCLLR EER%

WGB 0.229 3.48
PLDA 0.135 3.07
SVM 0.317 4.33

10.4.3 Results using Neural Network Approaches with Different
LRE datasets

Once the best result with the traditional back-ends has been established, we benchmark
both the existing and proposed neural network approaches against the PLDA baseline.
To develop these experiments, we have implemented a straightforward architecture with
a single dense layer as described in Table A.15 in Appendix A for the two different NN
approaches, and we have used cosine similarity to produce system scores for a test sam-
ple.

In Table 10.4, we can see the results achieved on the LRE09 dataset in terms of EER%
and minCLLR, where we compare the NN performance and the triplet neural network
perfomance with the different strategies proposed in Section 10.2.2: random selection
strategy (TripletNet-Rand), Hard Negative Mining Type 1 (TripletNet-HM1), and Hard
Negative Mining Type 2 (TripletNet-HM2). While the traditional NN back-end is outper-
formed by the PLDA back-end, the TripletNet-Rand is comparable to PLDA, and the use
of an intelligent selection strategy via Hard Negative Mining brings reasonable improve-
ments in minCLLR. In the best case based on the minCLLR result, TripletNet-HM2, we
achieve a relative improvement of 17% in terms of minCLLR with respect to the PLDA
baseline. While, in terms of EER%, the result of TripletNet-HM1 is better than TripletNet-
HM2 with a relative improvement of 25% respect to PLDA.

Table 10.4: Comparison of PLDA and the triplet neural network approaches on the LRE09 [235], the LRE15 [237]
and the LRE17 [238] eval data in terms of showing EER% and minCLLR.

LRE09 LRE15 LRE15-nofre LRE17
Back-end minCLLR EER% minCLLR EER% minCLLR EER% minCLLR EER%
PLDA 0.135 3.07 0.231 5.91 0.188 4.60 0.285 7.35
DNN 0.149 3.38 0.345 8.83 0.258 7.36 0.359 8.11
TripleNet — Rand 0.129 2.72 0.443 8.11 0.351 7.18 0.438 8.02
TripleNet - HM1 0.119 2.29 0.372 6.33 0.285 5.49 0.351 6.73
TripleNet - HM2 0.112 2.61 0.274 6.36 0.183 4.95 0.283 6.72

Furthermore, we have also evaluated the PLDA baseline and the NN approaches on
the LRE15 and LRE17 datasets to check the ability to generalize from our back-end ap-
proach. The results in Table 10.4 show that a relative improvement of 9% in terms of
EER% is achieved on LRE17 using the triplet neural network. Nevertheless, in LRE15,
the PLDA performance outperforms the triplet neural network results. The performance
of the system with respect to the proposed triplet selection strategies shows a promis-

10.5 Experiments and Results in Face Verification 157

ing trend, as the more elaborate selections are providing better results. In the case of
LRE15, the french cluster is known to suffer from a significant mismatch between the
development and evaluation sets [296,297]. Therefore, we additionally present LRE15-
nofre results in which the removal of the 'fre’ cluster provided a 33% and 18% relative
gain for the Triplet NN and PLDA backends, respectively. This effect demonstrates that
the triplet NN backend is particularly impacted by the condition mismatch in this cluster,
and warrants further work to cope with this issue.

10.4.4 Limitations of the Triplet Neural Network Back-end

Despite the clearly achieved improvement in system performance on the LRE09 dataset,
we expect to obtain a relevant reduction of the confusion between closely related lan-
guages. Therefore, we conducted an analysis of the most confused pairs of languages
based on the NIST LRE 2009 evaluation: Bosnian-Croatian, Farsi-Dari, and Russian-
Ukrainian. Supporting our assumption, it has been found that the confusion between
Russian and Ukrainian languages has been reduced using the system with the best per-
formance. Similarly, in the case of Farsi and Dari languages, Farsi test samples have been
more accurately allocated to Farsi instead of confused with Dari, however, the detection
of Dari samples has not improved. Discrimination between Bosnian and Croatian did not
tend to improve nor decline. A possible cause of the failure in the reduction of discrim-
ination problem between these languages could be derived from the lack of examples of
some of the languages mentioned. A possible solution to solve this problem would be to
bias the triplet selection to provide relatively more triplets from the pairs of languages
with greater confusion, with the intent to focus the discriminative power of the DNN on
these languages.

10.5 Experiments and Results in Face Verification

Apart from the text-dependent speaker and language verification tasks, the approach
proposed in this chapter has also been applied for the face verification task.

10.5.1 System Description

To validate the effectiveness of this new approach, we have developed the face verifica-
tion system for this approach using both baseline architectures introduced in Chapter
4. As in the other tasks, the system employed for face verification task has two differ-
ent architectures which can be seen in Figure 10.9. These architectures are designed as
follow:

« Architecture C. Unlike architecture C developed previously for the text-dependent
speaker verification, we have used two architectures like the employed for the

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
158 Networks

state-of-the-art systems. In these architectures, we can use the usual global av-
erage pooling layer as a link between the backbone and loss parts, allowing us to
train the whole system to optimize any cost function we decide. Thus, we have used
the architecture depicted in Figure 10.9(a) which was developed in Chapter 4 and
was trained for multi-class classification with CE loss. To implement the backbone
network, the WideResnet and the pre-trained Facenet model based on Inception
Resnet introduced in Chapter 4 have been used. For the verification process, once
our system is trained, each enrollment and test image are passed throughout the
architecture to extract the embeddings from the flatten layer. After that, a cosine
similarity is applied on them to produce the verification scores.

o Architecture D. The novel cost function proposed in this chapter is incorporated to
the systems thanks to the use of a new architecture. In concrete, to integrate this
function in the back-end part, the architecture type D depicted in Figure 10.9(b)
is developed, an embedding is obtained for each image, and then the back-end is
applied to provide the verification scores directly with the metric allowing us to
have an end-to-end system.

Input signal Input signal
| |
| Processing | | Processing |

Global

Average Average

Pooling Pooling
r ot T tptttdedllutodyly
1 Embedding 14’ Embedding, 'Back-end !
lextraction Linear Layer ! | Back-end Network :
I 1 v | Embedding !
1 | -
I ;! Triplet Loss/ I
! Softmax+CE Loss ! ! aAUC Loss !

(a) Architecture type C (b) Architecture type D

Figure 10.9: The architectures developed to check the effectiveness of our proposed back-end in the case of face
verification, 10.9(a) the architecture type C is trained for multiclass classification. In 10.9(b), the architecture
type D is trained to optimize the back-end network.

10.5.2 Results using WideResnet with MOBIO

For the face verification task with the MOBIO database, the first set of experiments has
been performed using the WideResnet architecture developed in Chapter 4 as architec-
ture C. As baseline to compare the new back-end approach, we have employed the results

10.5 Experiments and Results in Face Verification 159

obtained in that chapter where architecture C was trained with the traditional CE loss.
Moreover, we have also compared the results with architecture D trained using Triplet
loss. The triplet selection strategy employed to train is described in Section 10.2.2 with
the name of Hard Negative Mining Type 2.

Table 10.5 presents EER%, AUC%, minDCF08, minDCF10 and minCLLR results. In
these experiments, we can observe both in the female experiments and in the male case,
the best performance is obtained by applying architecture D with our proposed aAUC
loss. Note that the improvement achieved in both experiments with verification metrics
that measure the whole performance is more consistent and greater than metrics that
are evaluated at a specific operating point. Furthermore, the results of the experiments
carried out with Triplet loss show that this approach is not a good choice in this task
with this dataset.

Table 10.5: Experimental results on MOBIO [244] eval set, showing AUC%, EER%, minCLLR, minDCF08, and
minDCF10. These results were obtained by training with train set to compare the different losses.

Architecture Female
Type BB Loss EER% AUC% minDCF08 minDCF10 minCLLR
C WideResnet CE 4.72 99.12 0.210 0.505 0.166
D TrLoss 4.67 98.98 0.208 0.490 0.175
aAUC 3.63 99.48 0.179 0.371 0.129
Architecture Male
Type BB Loss EER% AUC% minDCF08 minDCF10 minCLLR
C WideResnet CE 1.22 99.91 0.060 0.148 0.049
D TrLoss 2.66 99.64 0.129 0.369 0.103
aAUC 0.92 99.93 0.055 0.229 0.040

10.5.3 Results using Pre-trained FaceNet with MOBIO

In the second set of experiments, the embeddings extracted from the pre-trained Facenet
model are directly evaluated with cosine similarity to obtain the reference result for this
set of experiments. As in the previous case, this reference result is compared to architec-
ture D using Triplet loss and our proposed aAUC loss, and the triplet selection strategy
is also the same.

In Table 10.6, we can observe EER%, AUC%, minDCF08, minDCF10 and minCLLR re-
sults for the female and male experiments. These results show the same trend as the
experiments using the WideResnet implemented in Chapter 4. Notice that the back-end
with aAUC loss achieves a large improvement in almost all metrics.

Chapter 10. Optimization of the Area Under the ROC Curve for Training Deep Neural
160 Networks

Table 10.6: Experimental results on MOBIO [244] eval set, showing AUC%, EER%, minCLLR, minDCF08, and
minDCF10. These results were obtained by training with train set to compare the different losses.

Architecture Female
Type BB Loss EER% AUC% minDCF08 minDCF10 minCLLR
C FaceNet CE 2.14 99.76 0.086 0.201 0.079
D TrLoss 2.65 99.74 0.102 0.236 0.088
aAUC 1.52 99.90 0.054 0.131 0.052
Architecture Male
Type BB Loss EER% AUC% minDCF08 minDCF10 minCLLR
C FaceNet CE 0.59 99.94 0.036 0.154 0.028
D TrLoss 0.62 99.96 0.031 0.141 0.026
aAUC 0.54 99.96 0.030 0.148 0.025

10.6 Conclusions

In this chapter, we present a novel optimization procedure to optimize aAUC loss as an
alternative to the triplet loss cost. To prove the versatility of this new loss function, we
have carried out experiments in different verification tasks.

First, this proposal has been evaluated in the RSR2015-Part I text-dependent speaker
verification database. As we show, training the system end-to-end to maximize the AUC
performance measure provides better performance in the detection task. Besides, we
check the generalization ability of our proposals using RSR2015-Part II, which is a more
complicated task. In this second part, we can see how the results achieved follow the
same trend as the results of the first part, and they are also competitive compared to the
state-of-the-art systems for this Part II.

In addition, we have implemented this new triplet network approach for the language
verification task to discriminate similar languages. This approach outperformed the tra-
ditional back-ends by up to 17% and 25% relative, in the context of a closed-set evaluation
of the LRE 2009 dataset. Besides, this approach has provided relevant results in LRE 2015
and 2017, although the generalization power can be still improved. Results confirm that
a back-end technique based on triplet neural networks is an interesting line of research
for this task since we have obtained competitive results even though some discrimina-
tion problems still exists. Moreover, note that the experimental results have shown that
the triplet selection has a big influence in the performance. Especially, the smart triplet
selection presented in Algorithm 2 has shown a great improvemente respect to the use of
random triplet selection. Thus, we can achieve even better results with an improvement
of the language selection combined with the smart triplet selection.

Finally, we have also proven the ability to use this approach for each verification
task, including the face verification task. To evaluate the effect of applying the approach
proposed in this chapter, we have employed the MOBIO database to develop the face
verification system. The experiments for this task have been carried out using exactly

10.6 Conclusions 161

the same configuration for the back-end part as that employed in the text-dependent
speaker verification system, including the strategy for the triplet data selection. There-
fore, we have demonstrated with these experiments that the proposed aAUC loss can be
successfully applied for each verification task.

Approximated Detection Cost Function as
Training Objective Loss

11.1 Motivation 11.4 Experiments and Results
11.2 Approximated Detection Cost 11.4.1 Experimental Description
Function Loss 11.4.2 aDCF Parameters a, y, f8
11.2.1 Relationship between 11.4.3 Last Layer and Ring Loss Study
aDCF and CE Loss 11.4.4 Comparison with State-of-
11.2.2 Efficient Implementation the-Art Loss Functions
11.2.3 Cosine Distance Layer 11.4.5 Impact of the Score Nor-
11.3 System Employed for Training malization
with aDCF Loss 11.5 Conclusions

11.1 Motivation

The use of the traditional loss function for training verification systems based on Deep
Neural Network (DNN) architectures does not encourage the discriminative learning of
features. Hence, recently, metric learning functions have been alternatively used in train-
ing to handle this issue. These metric learning approaches have shown to be very effective
techniques to improve the discriminative ability of verification systems. For this reason,

163

164 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

in the previous chapter [3, 7], we proposed an alternative back-end that combines the
triplet loss philosophy with the optimization of Area Under the ROC Curve (AUC) as a
loss function [290-292]. AUC provides a performance measure independent of the op-
erating point. The proposed aAUC loss function is optimized in the learning framework
to improve the overall system performance in terms of Equal Error Rate (EER). However,
this kind of metric learning loss functions with pairs or triplets have some drawbacks as
slow convergence or instability. Traditionally, to address these problems, sample mining
strategies have been applied to select the most informative pairs to create the triplets [75].
This process improves performance, but also involves a high computational cost which
slows down excessively the training process. To alleviate this problem, recent research
efforts have focused on improving the ability to discriminate by redesigning the tradi-
tional classification loss functions while maintaining the low computational cost of these
traditional loss functions. Nevertheless, this stream of research does not take into account
metrics to measure performance in the verification process.

As a consequence of the aforementioned drawbacks, we have investigated alternative
approaches to train the systems. The motivation for this search is to find a new loss
function which keeps the low computational cost of the traditional classification loss
functions, while the system is trained with a metric focused on the goal task to increase
the generalization capability. The goal of the verification task consists of training systems
to make a binary decision based on a decision threshold (Q2): acceptance or rejection [218].
Thus, this type of systems produces two types of decision errors which are described in
Chapter 3 and depicted in Figure 3.8. False Acceptance (FA) refers to when an impostor
identity is incorrectly accepted, and the False Rejection (FR) is related to the incorrect
rejection of a true identity [219,220]. For this reason, apart from using EER and AUC as
metrics, performance in a verification system is obtained by combining the ratio of these
two errors, which are defined by the number of times of each one occurs in relation to
the number of legitimate or impostor identities [226]. The selection of the threshold, €, is
what relates the system to the operating point of interest depending on the application,
and there are three different kind of cases in function of the total number of errors of
each type occurred as we explained in Chapter 3.

Therefore, the aim of this chapter is to replace the classical Cross-Entropy (CE) loss
function in an architecture similar to those used for multi-class classification by a new
loss function. Due to the relevance of decision errors in the verification process, we pro-
pose a new loss function called approximated Detection Cost Function (aDCF) loss which
is inspired by Detection Cost Function (DCF) [298,299] used by the National Institute of
Standards and Technology (NIST) during Speaker Recognition Evaluations (SRE). This
function measures the cost of decision errors of verification systems in terms of FA and
FR and allows the systems based on DNNs to be trained directly to optimize a metric
focused on the goal task. We have implemented this approximation of DCF by a differen-
tiable function, which allows the training algorithm to adapt the network parameters to
minimize the cost and learn the optimal decision threshold. Unlike recent classification
or metric learning loss functions [75,145,300], aDCF has the ability to adapt the param-
eters to modify the optimal threshold and the tradeoff between FA and FR errors to meet

11.2 Approximated Detection Cost Function Loss 165

the requirements of a concrete system application. The ability to manage the score distri-
butions in function of the operating point is a useful skill to provide for such end-to-end
systems with. Moreover, we have studied the effects of using aDCF loss combined with
a cosine layer [8, 9] as the last layer in the DNN architecture instead of a linear layer to
train the system. On the other hand, we have also explored the effects of training the
verification systems by giving different relevance to both types of errors depending on
the application. Finally, we have analyzed the behaviour of using a complementary loss
function in combination with CE loss or aDCF loss to improve the discriminative power.

11.2 Approximated Detection Cost Function Loss

Motivated by the idea of taking advantage of the efficiency and speed of multi-class train-
ing and, at the same time, the improvement achieved with verification loss functions such
as the previous aAUC loss, we have proposed approximated Detection Cost Function
(aDCF). This function is inspired by DCF [298, 299], which is one of the main perfor-
mance metrics in the evaluation process of speaker verification tasks. Using aDCF loss
to train the systems, the network learns to minimize this evaluation metric and find the
optimal threshold for the specific application. In order to carry out this function, we have
to develop an effective and differentiable expression for the original DCF metric.

aDCF loss is composed of a weighted sum of the batch level estimate of the probabil-
ity of misses or FRR (Py,;s5) and the probability of false alarm or FAR (Py,). Pppiss is defined
by the average number of times the scores of target identities N;,, are smaller than the
decision threshold (Q2), so that the system cannot effectively detect, and a miss is pro-
duced. While Py, is determined by the average number of times the scores of non-target
identities N,,, are greater than Q, so a false alarm occurs. These two kinds of errors are
depicted graphically in Figure 3.8 for each application case. Therefore, as a function of
the network parameters 0, Py, and Pp,;s; can be written as,

Zyie)’non]]'(Se(xb yl) > Q)

Pra(0,Q) = N
non

, (11.1)

ZyiEymr]1(39(3(1, yl) < Q)
Ntar
where Ny, is the number of target identities, N,,, is the number of non-target identities,

Pmiss(e’ Q) = P (11~2)

1() is equal to ‘1’ whenever the score sy(x;, y;) meets the condition with respect to Q, and
‘0’ otherwise. The score sy(x;, y;) is obtained from the last layer of the neural network
where x; is the input sample with i € {1, ..., m} and m is the number of samples, y; is the
class label. Equations (11.1) and (11.2) can be rewritten using the unit step function u()
as,

Zyieym u(sg(xi, yi) — Q)

Pfa(9> Q) = N >

(11.3)

166 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

ZyiEym, U(Q - se(x,», y:))

pmiss(e; Q) = N
tar

(11.4)

However, the expressions (11.3) and (11.4) for the probabilities are not differentiable,
so we replace the unit step function u() by a sigmoid of the difference to make an approx-
imation of the binary counter which enables the backpropagation of gradients:

Zy,-Eym oa(se(xi, yi) — Q)

Pra(6,Q) = , 115
/a(6,9) . (115)
. ey a2 = so(xi, yi

Ppuiss(0, Q) = Lyey, a2~ $0(xi 1)) (11.6)

Ntar

where 0,() is the sigmoid function and is defined as,
(s) ! (11.7)

Ou(s) = ————, .
1+ exp(-a-s)

where « is an adjustable parameter. Thus, using these expressions, we can now propose
to minimize the following approximated loss function defined as,

aDCF(0,Q) = y - Pto(0,Q) + B - Priss(0, Q), (11.8)

where y and f are adjustable parameters to provide more cost relevance to one of the
terms over the other. The effect of the values of these parameters with respect to the
system application will be studied in the experimental section. For instance, some system
applications provide more relevance when a target identity is not detected, while other
applications need to decrease the number of non-target identities that the system accepts.
Note that Q will be optimized as part of the system parameters. Moreover, to employ this
function efficiently, we have adopted an implementation that follows the same training
philosophy of multi-class architectures with DNNs as we detail below.

11.2.1 Relationship between aDCF and CE Loss

To perform the multi-class classification task using DNNs, a widely adopted and efficient
approach consists of training the system with CE loss combined with a softmax function.
Thus, for one hot labels, CE loss can be written as,

1« exp (so(xi, yi))
Leg = ‘EZ log— , (11.9)

b exp (sl)
J

where x; is the input sample with i € {1,.., m} and m is the number of samples, y; is the
class label, N is the total number of classes, and sy(x;, j) is obtained from the last layer of

11.2 Approximated Detection Cost Function Loss 167

Backbone
+

1
I
1
1
| Pooling
I
1
1

L

Embedding

Linear
Cosine

tar |1 - N| nontar

Figure 11.1: Interpretation of the last layer of the neural network as a matrix of weights which models each
identity.

the DNN. Typically, the last layer is defined as a linear layer and the score for each class
sg(x;, y;) is obtained as,

so(xi yi) = W, - x; + by, (11.10)

where x; is the input of the last linear layer, Wyf is the row of the matrix of weights
containing the layer parameters of the class y;, and b,, is the bias term. Although in this
chapter, we will remove the bias term to simulate the score evaluations as the output of
the last layer. The interpretation of the output of this layer as scores is possible since
each vector of the matrix of weights used in the last layer can be interpreted as a model
for each trained identity and the output as the dot product with the input vector x; in a
similar way as is done to evaluate similarity in verification tasks, as Figure 11.1 depicts.

Despite its accuracy in the training process, CE loss is designed to maximize the pos-
terior probability of the correct class in a multi-class classifier. Thus, this function is
appropriate for classification tasks where the goal is to determine the identity of each
sample in a known set of identities. However, in verification tasks, the main goal con-
sists of detecting if two samples belong to the same identity or not, so we need to measure
the degree of separation and similarity. Therefore, the use of aDCF loss is more consis-
tent with the verification task since it allows to minimize the false alarms for the output
dimensions of the neural network that are non-target for which (11.5) provides positive
values, so the gradient will tend to reduce this term. And also to reduce the misses when
(11.6) term is positive for the output dimension of the neural network that is the same as

168 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

the label. As in architecture with CE loss, the key to keep the efficiency for training the
system with aDCF loss is the chance to interpret the matrix of weights as a representa-
tion of each trained identity and obtain scores to optimize the system during the training
progresses with it. Using this approach, DNN is trained with positive samples to rise its
score values which minimizes the probability of misses and negative samples to reduce
its score values which minimizes the probability of false alarms. Therefore, an example
of the learning process can be seen in Figure 11.2 where (11.5) and (11.6) terms charac-
terized by the sigmoid function are minimized during the learning process by gradient

backpropagation.
Scores Q Q
-— - + -1 +- + + + - - + -1 +- + + +
e []
Pra(6,9) - Learning /
— .
, -
- /
°® [) -—
- o0
[]
: ™
+
Learning
Pries (0,) . —>
+ []
+
[

Figure 11.2: aDCF learning process using the sigmoid functions trained with target and non-target examples.

11.2.2 Efficient Implementation

To develop this process efficiently, training is made using subsets of samples, since stan-
dard neural network optimization operates with small batches of samples. When the
network is trained with a batch size b, the number of N, and N,,,, that will be taken
into account in the expression (11.8) to calculate the gradients will be b, and b(N - 1),
where N is the total number of speakers. Thus, as we can see in Figure 11.1, the target
and non-target scores used in (11.5) and (11.6) are obtained by using the ground truth
labels and comparing with the model for each trained identity which is stored in the ma-
trix of weights. Therefore, these assumptions allow us to obtain similar efficiency and
convergence speed as the most common approaches to multi-class classification as CE
loss during the training process.

11.3 System Employed for Training with aDCF Loss 169

11.2.3 Cosine Distance Layer

Previous works [85,301,302] have remarked the fact that there is a gap between the metric
used during training (11.10) and the cosine metric employed in the evaluation. Also, these
works have shown the relevance of the normalization of features and weights to provide
significant performance improvements. Therefore, in this chapter, we have also analyzed
the use of a cosine layer instead of a linear layer as the last layer of the neural network

to obtain this score as,

Ty

(17 = 2 (11.11)
So\Xi, Vi) = oo o .
Wyl {1l

where ||x;|| is the normalized input signal to the last linear layer, and ||Wy{|| is the nor-
malized layer parameters of the speaker class y;. This cosine layer can be also seen as
a composition of a feature normalization combined with a linear layer with weight nor-
malization without the bias term [303] as Figure 11.3 shows. As we will show, the use of
the cosine layer combined with aDCF loss achieves better results.

:

Feature Norm !
= Cosine Layer
Linear Weight !
Norm without
Bias

v

Figure 11.3: Cosine layer is equivalent to a feature norm followed by a linear layer with weight normalization
without bias.

11.3 System Employed for Training with aDCF Loss

Following with the architectures used in Chapter 10, the speaker verification system em-
ployed to validate this new loss function is practically the same. Figure 11.4 depicts the
two architectures used in the experiments. The backbone and pooling parts are shared
in both architectures and are described below.

As backbone network, the best configuration found in Chapter 6 using the Bayesian
Dark Knowledge (BDK) approach to model the uncertainty in the parameters during the
training process is employed. This approach combined with the alignment mechanism
based on Gaussian Mixture Model (GMM) with Maximum A Posteriori (MAP) adaptation
improves system performance. We introduce this pooling mechanism based on a frame-
to-components alignment process instead of using global average pooling, since it allows
us to keep the order of the phonetic information of each phrase.

170 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

Input signal Input signal
o _| __Processing _| ______ Processing |
I Backbone ! Mo p -~~~
| | Neural Network | | ! Backbone
L e e e e e e e e] e e e - - |
_______________________ |
| Pooling o 3m - T rebvsiniiiiiinls
I meghan?sm : Pooling
: [Supervector | :
N I - - [, o
1 Sy S Sq 1 1 | I
S T S T S T S T Yy S o o o o o o o o o D 1
| Embedding ¢ Embedding ! | S
‘extraction [inear / Cosinel LT Bzgk=e_?1(;_ ====== .
| -
! A"Q"f Layer ! | | Back-end Network | |
1 1 i
I Softmax+CE Loss / : | ' ‘ Embedding :
: A-Softmax / L Triplet Loss/ i
! aDCF Loss | | aAUC Loss :
| e e e e e e e e e e e e e e e e o = e e o o =
(a) Architecture type C (b) Architecture type D

Figure 11.4: The architectures developed to check the effectiveness of our proposed loss, 11.4(a) the architecture
type C is trained for multiclass classification using the alignment mechanisms. In 11.4(b), the architecture type
D is trained to optimize the back-end network.

Nevertheless, the last part is different to make the verification process. Architecture
C shown in Figure 11.4(a) combines the backbone and pooling with a cosine or linear
layer and the loss function to train the system. Moreover, architecture C has been modi-
fied with respect to architecture C of the previous chapters to incorporate the possibility
of using A-Softmax loss and our aDCF loss instead of CE loss. The configuration of
these architectures is detailed in Tables A.16, A.17, A.18 and A.19 in Appendix A. After
the training process, verification scores are obtained by applying a cosine similarity on
the embeddings. On the other side, architecture D depicted in Figure 11.4(b) represents
a trainable back-end with Triplet loss or aAUC loss as the objective function. As ini-
tialization of this architecture to avoid the convergence issues, a pre-trained model of
architecture C with CE loss is employed as we did in the experiments of Chapter 10.

11.4 Experiments and Results

11.4.1 Experimental Description

To carry out the experiments in this chapter, RSR2015-Part I and Il have been employed.
As an alignment mechanism, we have trained a 64 component GMM per phrase without
phrase transcription using the bkg partition of each part. From these models, we extract
the alignment information for use in the frame-to-component alignment mechanism of
each of the DNN architectures, since one model is trained for each different phrase. As
input to the DNN, a feature set composed of 20 dimensional Mel-Frequency Cepstral

11.4 Experiments and Results 171

Coefficients (MFCCs) with their first and second derivates are employed. To train the
DNN architecture for each different phrase, the bkg partition has been used. While in
this chapter, the dev partition has been employed for normalization and calibration.

In this chapter, several sets of experiments have been developed. First, a set of experi-
ments has been carried out to study the behaviour of the system while different parameter
values in aDCF loss are swept. After that, we have analyzed the use of a complementary
loss to improve the discrimination ability in combination with CE loss and aDCF loss
with the second set of experiments. In the last set of experiments, we have evaluated the
system employing some of the most widespread state-of-the-art loss functions to com-
pare the performance with our aDCF loss. These experiments have been performed with
score normalization (snorm) [215].

11.4.2 aDCF Parameters a, y, f3

In this section, we analyze the performance of the system when we sweep the aDCF loss
parameters which are the terms of the cost relevance (y,) and the adjustable parameter
in the sigmoid function ().

Tables 11.1, 11.2 and 11.3 shows Equal Error Rate (EER%), minimum Detection Cost
Function 10 (minDCF10) and actual Detection Cost Function 10 (actDCF10) results with
Part I for different configurations of parameter values. As we can see, in most of the
experiments, the use of a greater value for o parameter improves the results since the
value of a modifies the slope of the sigmoid function. Thus, a greater value involves the
sigmoid is closer to the unit step, which is used to define the exact DCF. Furthermore, we
observe that the results are even better when we give more relevance to the probability
of false alarms (Py,) during training with the cost term y. However, we have noted that if
this value is too extreme (upper 0.90-0.10), there are some convergence problems during
the training process, and the results are more sensitive to the variation of the value of a.

In addition to the above table, Figure 11.5 depicts the Detection Error Trade-off (DET)
curves representing the relationship between Py, (FAR) and Py,;s; (FRR). These curves
show the best result in terms of minDCF10 for each configuration of the cost parameters.
Note that these representations demonstrate the best results for each configuration of y
and f, and although the results are too similar, we decide to use as a reference system the
configuration with better behaviour in all the operating points corresponding to y = 0.75,
B =0.25and «a = 40.

The results obtained for RSR2015-Part II are shown in Tables 11.4, 11.5 and 11.6 and
Figure 11.6. In this set of experiments, the phrases are shorter and have overlapped lexical
content, so it is more challenging than Part I and the general performance is worse. In
this case, we observe that when the cost terms are balanced, with an intermediate value
of « is enough to achieve the best performance.

172 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

Table 11.1: Experimental results on RSR2015-Part I [124] eval subset, showing EER%, minDCF10 and actDCF10.
These female results were obtained by training with bkg subset and sweeping of the parameter values in aDCF
loss with normalization (snorm).

aDCF Parameters Female
14 B o EER% min/actDCF10

0.15 0.85 1 1.22 0.328/0.646
10 0.57 0.164/0.199
20 0.45 0.086/0.163
30 0.34 0.096/0.293
40 0.43 0.095/0.117

0.25 0.75 1 1.18 0.300/0.772
10 0.51 0.153/0.163
20 0.44 0.085/0.118
30 0.38 0.085/0.088
40 0.43 0.094/0.210

0.50 0.50 1 1.15 0.311/0.587
10 0.51 0.115/0.186
20 0.35 0.093/0.093
30 0.39 0.088/0.111
40 0.36 0.072/0.104

0.75 0.25 1 3.81 0.723/0.984
10 0.42 0.093/0.119
20 0.44 0.094/0.097
30 0.36 0.078/0.158
40 0.33 0.068/0.084

0.85 0.15 1 4.69 0.709/0.986
10 2.32 0.393/0.420
20 0.34 0.071/0.073
30 0.32 0.078/0.096
40 0.38 0.077/0.080

For illustrative purposes, we have included Figure 11.7 to depict the evolution of aDCF
loss with different values of « against the exact DCF during training. This figure shows
that the differentiable approximation of DCF is getting close to the real function while
the training progresses. Note that this evolution supports the fact that aDCF loss is an
effective approximation of the real DCF.

11.4 Experiments and Results 173

Table 11.2: Experimental results on RSR2015-Part I [124] eval subset, showing EER%, minDCF10 and actDCF10.
These male results were obtained by training with bkg subset and sweeping of the parameter values in aDCF
loss with normalization (snorm).

aDCF Parameters Male
14 p o EER% min/actDCF10

0.15 0.85 1 1.19 0.279/0.611
10 0.76 0.179/0.180
20 0.52 0.132/0.134
30 0.57 0.110/0.119
40 0.57 0.119/0.121

0.25 0.75 1 0.90 0.245/0.248
10 0.70 0.170/0.174
20 0.67 0.140/0.141
30 0.61 0.122/0.124
40 0.62 0.116/0.133

0.50 0.50 1 0.91 0.267/0.270
10 0.64 0.132/0.135
20 0.54 0.129/0.143
30 0.64 0.118/0.121
40 0.63 0.120/0.138

0.75 0.25 1 6.83 0.797/1.000
10 0.56 0.154/0.214
20 0.56 0.125/0.158
30 0.59 0.115/0.118
40 0.55 0.116/0.150

0.85 0.15 1 7.14 0.794/0.874
10 6.65 0.687/0.699
20 0.88 0.187/0.445
30 0.61 0.128/0.226
40 0.59 0.125/0.225

11.4.3 Last Layer and Ring Loss Study

A second set of experiments has been carried out to observe the system performance
when a complementary loss as Ring loss is added to CE loss or aDCF loss. The results of
these experiments in Part I (Table 11.7) demonstrate that our aDCF loss does not need a
complementary loss function to improve the discrimination ability, while CE loss needs

174 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

Table 11.3: Experimental results on RSR2015-Part I [124] eval subset, showing EER%, minDCF10 and actDCF10.
These female+male results were obtained by training with bkg subset and sweeping of the parameter values in
aDCF loss with normalization (snorm).

aDCF Parameters Female+Male
14 B o EER% min/actDCF10

0.15 0.85 1 1.21 0.312/0.322
10 0.70 0.204/0.210
20 0.52 0.137/0.148
30 0.51 0.139/0.141
40 0.55 0.124/0.132

0.25 0.75 1 1.04 0.272/0.516
10 0.62 0.180/0.189
20 0.60 0.133/0.133
30 0.55 0.128/0.146
40 0.59 0.126/0.206

0.50 0.50 1 0.63 0.146/0.163
20 0.51 0.119/0.128
30 0.58 0.128/0.130
40 0.56 0.115/0.123

0.75 0.25 1 6.59 0.797/0.999
10 0.58 0.145/0.154
20 0.55 0.131/0.134
30 0.55 0.123/0.140
40 0.50 0.117/0.119

0.85 0.15 1 6.79 0.781/0.999
10 4.25 0.525/0.684
20 0.68 0.157/0.159
30 0.54 0.132/0.135
40 0.57 0.118/0.120

it. Furthermore, when we employ aDCF loss to train the system, the use of a cosine layer
as last layer is the most suitable option, since this cosine metric employed during the
training process is the same metric employed by the evaluation process to obtain the
final verification scores. Thus, we can see better results when the training process used
is a pipeline more similar to the final verification process.

When these experiments are carried out for Part II, we observe in Table 11.8 that the
effect of using a complementary loss and a cosine layer instead of a linear layer follows a

11.4 Experiments and Results

175

False Rejection Rate [In %]

i
0.15-0.85-40 (EER= 0.55)

0.25-0.75-40 (EER= 0.59)
0.50-0.50-40 (EER= 0.56)
0.75-0.25-40 (EER= 0.50)
0.85-0.15-40 (EER= 0.57)

0.2 0.5

1 2

False Acceptance Rate [In %]

Figure 11.5: DET curves for female+male results on RSR2015-Part I varying the parameter values of aDCF loss

y and B, and using the best « value in each case.

40

30 A

20 A

10

False Rejection Rate [In %]

0.15-0.85-40 (EER= 3.76) I

0.25-0.75-30 (EER= 3.50)

0.50-0.50-20 (EER= 3.42)

0.75-0.25-30 (EER= 3.56)

0.85-0.15-40 (EER= 4.75)
7

T T T
0.5 1 2

5

10

False Acceptance Rate [In %]

Figure 11.6: DET curves for female+male results on RSR2015-Part Il varying the parameter values of aDCF loss

y and B, and using the best « value in each case.

similar trend as the results of Part I. However, we have checked that CE loss without Ring
loss with this set of data provides similar results to those obtained with Ring loss. The
difficult in this dataset may cause that the system can not bring together correctly some
features from the same identity even though Ring loss is applied and for this reason, the
results do not improve so clearly when applying this complementary function.

176 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

Table 11.4: Experimental results on RSR2015-Part II [124] eval subset, showing EER%, minDCF10 and actDCF10.
These female results were obtained by training with bkg subset and sweeping of the parameter values in aDCF
loss with normalization (snorm).

aDCF Parameters Female
14 B o EER% min/actDCF10

0.15 0.85 1 5.22 0.746/0.839
10 3.24 0.588/0.602
20 2.66 0.478/0.491
30 2.59 0.434/0.446
40 2.83 0.456/0.463

0.25 0.75 1 4.18 0.719/0.755
10 2.84 0.502/0.541
20 2.82 0.443/0.481
30 2.67 0.428/0.446
40 2.70 0.460/0.463

0.50 0.50 1 4.13 0.648/0.658
10 2.76 0.489/0.518
20 2.47 0.424/0.467
30 2.54 0.425/0.432
40 3.83 0.446/0.452

0.75 0.25 1 19.55 0.983/1.000
10 2.84 0.486/0.529
20 2.61 0.443/0.467
30 2.57 0.437/0.448
40 2.65 0.422/0.432

0.85 0.15 1 23.47 0.964/1.000
10 18.08 0.940/0.995
20 4.36 0.604/0.955
30 3.29 0.475/0.680
40 2.95 0.458/0.466

11.4.4 Comparison with State-of-the-Art Loss Functions

In the last set of experiments, we have performed a comparison among the best configu-
rations of aDCF loss for Part I and Part II and some of the most extended loss functions
in the state-of-the-art, which are CE loss combined with Ring loss (CE+RL), Triplet loss
(Trloss), aAUC loss, and A-Softmax loss. In Table 11.9, we show the results of these exper-

11.4 Experiments and Results 177

Table 11.5: Experimental results on RSR2015-Part II [124] eval subset, showing EER%, minDCF10 and actDCF10.
These male results were obtained by training with bkg subset and sweeping of the parameter values in aDCF
loss with normalization (snorm).

aDCF Parameters Male
14 p o EER% min/actDCF10

0.15 0.85 1 12.05 0.817/1.000
10 7.17 0.721/0.771
20 6.93 0.671/0.770
30 4.54 0.615/0.626
40 4.39 0.588/0.688

0.25 0.75 1 6.56 0.741/0.921
10 4.96 0.624/0.626
20 4.15 0.576/0.609
30 4.08 0.583/0.587
40 4.20 0.611/0.705

0.50 0.50 1 5.24 0.725/0.727
10 4.08 0.606/0.628
20 4.10 0.568/0.570
30 4.21 0.596/0.598
40 4.21 0.576/0.593

0.75 0.25 1 22.32 0.988/1.000
10 4.95 0.633/0.645
20 4.18 0.579/0.598
30 4.17 0.568/0.570
40 4.15 0.609/0.619

0.85 0.15 1 26.11 0.988/1.000
10 21.69 0.974/1.000
20 7.93 0.755/0.759
30 5.92 0.697/0.705
40 5.77 0.658/0.674

iments with Part I. We can observe that architecture C trained using aDCF loss achieves
the best results. Especially relevant is the improvement at comparing with CE loss and
A-Softmax loss, since both have been trained using the most comparable strategy with
architecture C, which allows us to keep the same efficiency for the training process. In
terms of relative improvement, EER% and minDCF10 values have improved by 30.6% and
26.4% with respect to CE loss, and by 28.6% and 34.3% with respect to A-Softmax. This

178 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

Table 11.6: Experimental results on RSR2015-Part II [124] eval subset, showing EER%, minDCF10 and actDCF10.
These female+male results were obtained by training with bkg subset and sweeping of the parameter values in
aDCF loss with normalization (snorm).

aDCF Parameters Female+Male
14 B o EER% min/actDCF10

0.15 0.85 1 8.93 0.786/1.000
10 5.42 0.666/0.744
20 5.41 0.588/0.685
30 3.75 0.537/0.543
40 3.76 0.530/0.539

0.25 0.75 1 5.51 0.733/0.771
10 4.10 0.566/0.570
20 3.60 0.521/0.523
30 3.50 0.514/0.516
40 3.62 0.543/0.545

0.50 0.50 1 4.75 0.693/0.701
10 3.51 0.551/0.575
20 3.42 0.506/0.515
30 3.54 0.518/0.528
40 4.03 0.519/0.522

0.75 0.25 1 21.91 0.971/1.000
10 4.05 0.566/0.613
20 3.64 0.527/0.530
30 3.56 0.514/0.520
40 3.58 0.526/0.531

0.85 0.15 1 25.16 0.977/1.000
10 20.14 0.968/1.000
20 6.88 0.693/0.756
30 4.99 0.595/0.653
40 4.75 0.567/0.572

improvement is remarkable given that the models involved have the same number of
parameters and the inference time does not increase.

11.4 Experiments and Results 179

DCF vs aDCF

0.5 1 w—— aDCF-a=1
wee aDCF-a=10
s aDCF-a=20
= aDCF-a=30
= aDCF-a=40

0.4 1

0.3 4

DCF

0.2 4

0.1 1

0.0 A

0 50 100 150 200 250 300
it

Figure 11.7: Evolution training aDCF with different & values and exact DCF.
Table 11.7: Experimental results on RSR2015-Part I [124] eval subset, showing EER%, minDCF10 and actDCF10.

These results were obtained by training with bkg subset to analyze the behaviour using a complementary loss
with normalization (snorm).

Architecture Female

Layer Loss Ring EER% min/actDCF10

Linear CE yes 0.47 0.114/0.149
no 0.86 0.240/0.255

Cosine yes 0.73 0.217/0.243
no 0.92 0.282/0.375

Linear = aDCF yes 1.39 0.320/0.764
no 1.77 0.430/0.684

Cosine yes 0.34 0.085/0.140
no 0.33 0.068/0.084

Architecture Male

Layer Loss Ring EER% min/actDCF10

Linear CE yes 0.83 0.177/0.189
no 1.00 0.243/0.258

Cosine yes 1.51 0.337/0.379
no 0.91 0.245/0.288

Linear aDCF yes 2.23 0.487/0.939
no 2.32 0.455/0.998

Cosine yes 0.68 0.129/0.137
no 0.55 0.116/0.150

180 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

Architecture Female+Male
Layer Loss Ring EER% min/actDCF10
Linear CE yes 0.72 0.159/0.165

no 0.96 0.259/0.269
Cosine yes 1.21 0.289/0.296
no 0.94 0.264/0.314
Linear = aDCF yes 2.09 0.420/0.768
no 2.08 0.447/0.953
Cosine yes 0.60 0.125/0.145
no 0.50 0.117/0.119

Table 11.8: Experimental results on RSR2015-Part II [124] eval subset, showing EER%, minDCF10 and actDCF10.
These results were obtained by training with bkg subset to analyze the behaviour using a complementary loss
with normalization (snorm).

Architecture Female

Layer Loss Ring EER% min/actDCF10

Linear CE yes 3.31 0.550/0.563
no 3.20 0.569/0.608

Cosine yes 4.14 0.663/0.773
no 3.68 0.641/0.647

Linear aDCF yes 8.69 0.823/0.832
no 10.92 0.901/0.976

Cosine yes 3.47 0.512/0.536
no 2.47 0.424/0.467

Architecture Male

Layer Loss Ring EER% min/actDCF10

Linear CE yes 5.45 0.690/0.833
no 5.03 0.689/0.969

Cosine yes 8.76 0.804/0.872
no 5.24 0.719/0.732

Linear = aDCF yes 12.57 0.883/0.890
no 9.51 0.841/1.000

Cosine yes 5.15 0.638/0.788
no 4.10 0.568/0.570

11.4 Experiments and Results 181

Architecture Female+Male
Layer Loss Ring EER% min/actDCF10
Linear CE yes 4.58 0.627/0.645

no 4.25 0.639/0.717
Cosine yes 6.71 0.745/0.771
no 4.55 0.689/0.718
Linear aDCF yes 10.97 0.857/0.874
no 10.94 0.882/1.000
Cosine yes 4.43 0.580/0.633
no 3.42 0.506/0.515

Table 11.9: Experimental results on RSR2015-Part I [124] eval subset, showing EER%, minDCF10 and actDCF10.
These results were obtained by training with bkg subset to compare the different loss functions with normal-
ization (snorm).

Architecture Female
Loss Type EER% min/actDCF10
CE+RL C 0.47 0.114/0.149
Trloss D 0.78 0.161/0.559
aAUC D 0.47 0.103/0.142
A-Softmax C 0.68 0.156/0.263
aDCF C 0.33 0.068/0.084
Architecture Male
Loss Type EER% min/actDCF10
CE+RL C 0.83 0.177/0.189
Trloss D 0.96 0.174/0.319
aAUC D 0.74 0.157/0.170
A-Softmax C 0.70 0.163/0.187
aDCF C 0.55 0.116/0.150
Architecture Female+Male
Loss Type EER% min/actDCF10
CE+RL C 0.72 0.159/0.165
Trloss D 0.88 0.173/0.261
aAUC D 0.64 0.137/0.157
A-Softmax C 0.70 0.178/0.187
aDCF C 0.50 0.117/0.119

182 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

Moreover, we have also added Figure 11.8 with the corresponding DET curves. These
curves show results of the female+male experiments. These representations demonstrate
that the best system performance for all operating points is obtained for architecture C
trained with aDCF loss. On the other hand, note that A-Softmax loss was proposed in
the literature as a better approach to replace CE loss, but in this case, the system trained
using CE loss combined with Ring loss achieves better overall performance. In addition,
we can observe that the whole performance in the system using aAUC loss is better than
the performance in the system with A-Softmax loss.

20

CE+RL (EER= 0.72)
Trloss (EER= 0.88)
aAUC (EER= 0.64)
A-Softmax (EER= 0.70)
aDCF (EER= 0.50)

10

False Rejection Rate [In %]

0.1 0.2 0.5 1 2 5 10 20
False Acceptance Rate [In %]

Figure 11.8: DET curves for female+male results on RSR2015-Part I using different loss functions.

The results of these experiments using Part II are shown in Table 11.10 and Figure
11.9. As in the experiments with Part I, the system trained with aDCF loss has the best
results with a relative improvement in EER% and minDCF10 of 25.3% and 19.3% with
respect to CE loss, and 2.6% and 14.1% compared to A-Softmax. In addition, it is worth
noting that the DET curves show that the system trained with aDCF loss obtains the best
behaviour for low FAR operating points, while when FRR is low, the behaviour is similar
to the system trained with A-Softmax.

11.4 Experiments and Results 183

Table 11.10: Experimental results on RSR2015-Part II [124] eval subset, showing EER%, minDCF10 and act-
DCF10. These results were obtained by training with bkg subset to compare the different loss functions with
normalization (snorm).

Architecture Female
Loss Type EER% min/actDCF10
CE+RL C 3.31 0.550/0.563
Trloss D 3.75 0.542/0.603
aAUC D 2.76 0.503/0.527
A-Softmax C 2.79 0.511/0.575
aDCF C 2.47 0.424/0.467
Architecture Male
Loss Type EER% min/actDCF10
CE+RL C 5.45 0.690/0.833
Trloss D 5.53 0.621/0.655
aAUC D 4.62 0.601/0.760
A-Softmax C 4.01 0.655/0.666
aDCF C 4.10 0.568/0.570
Architecture Female+Male
Loss Type EER% min/actDCF10
CE+RL C 4.58 0.627/0.645
Trloss D 4.66 0.583/0.603
aAUC D 4.25 0.579/0.704
A-Softmax C 3.51 0.589/0.610
aDCF C 3.42 0.506/0.515

11.4.5 Impact of the Score Normalization

In this section, we analyze the results without score normalization and calibration. To
carry out this study, we only compare the same type of architectures: architecture C.
Table 11.11 obtained EER% and minDCF10 results for systems with and without snorm.
For systems with snorm, aDCF achieves the best performance in Parts I and II. For sys-
tems without snorm in Part I, aDCF and A-Softmax present similar results without using
score normalization. While the relative improvement in both metrics with respect to CE
loss is higher than 50%. However, for the rows corresponding to Part II, A-Softmax loss
outperforms aDCF loss. In the following, we further analyze the results without snorm
by checking the performance for each phrase.

184 Chapter 11. Approximated Detection Cost Function as Training Objective Loss

40

CE+RL (EER= 4.58)
Trloss (EER= 4.66)
aAUC (EER= 4.25)
A-Softmax (EER= 3.51)
aDCF (EER= 3.42)

30

False Rejection Rate [In %]

0.1 0.2 0.5 1 2 5 10 20 30 40
False Acceptance Rate [In %]

Figure 11.9: DET curves for female+male results on RSR2015-Part II using different loss functions.

Table 11.11: Results in terms of EER% and minDCF10 for RSR2015-Part I and Part II [124] eval subset (female
and male) with and without normalization (snorm).

Architecture Without SNORM With SNORM
Dataset Loss Type EER% minDCF10 EER% minDCF10
CE+RL C 1.87 0.373 0.72 0.159
RSR-PartI | A-Softmax 0.85 0.171 0.70 0.178
aDCF 0.82 0.174 0.50 0.117
CE+RL C 9.64 0.964 4.58 0.627
RSR-Part IT | A-Softmax 5.16 0.800 3.51 0.589
aDCF 6.56 0.876 3.42 0.506

Table 11.12 shows the average improvement of aDCF loss against CE+RL/A-Softmax
in terms of minDCF10 for the results without normalization. Positive values indicate that
aDCF loss performs better regarding the other loss. This time we evaluate the phrases
individually. Note that, at the phrase level, the system with aDCF loss achieved the best
performance for both parts of the dataset. To explain this result, note that we have trained
a model per phrase, so with aDCF loss, the model learns to obtain the best score distri-
butions for each phrase. Thus, when we evaluate separately the phrases, the obtained
scores have one optimal threshold by each. However, at joining together all scores (as in
Table 11.10), we simulate how a decision system would work and there is a single thresh-
old for all of them. The application of a single decision threshold is non-optimal for all
phrases and this causes the drop in performance observed in Table 11.11.

11.5 Conclusions 185

Table 11.12: Average improvement of aDCF vs. CE+RL/A-Softmax without normalization (snorm) in terms of
minDCF10 by phrase on RSR2015-Part I and Part IT [124] eval subset.

minDCF10(%Improv.)
RSR-PartI RSR-PartlIl
aDCF vs CE+RL 9.39 14.85
aDCF vs A-Softmax 13.41 7.36

11.5 Conclusions

In this chapter, we have conducted a wide analysis of the use of a metric learning ap-
proach based on aDCF loss. This loss function is an approximate measurement of the
decision errors FAR and FRR in verification systems which allows end-to-end systems
to optimize a metric used in the final verification process. To employ this loss function,
we have used an efficient implementation that follows the philosophy of existing multi-
class loss functions and allows us to take advantage of the interpretation of the matrix of
weights of the last layer to directly obtain scores as training progress.

Experiments to evaluate the effectiveness of our approach are carried out on the
RSR2015-Part I and Part II text-dependent speaker verification database. The results ob-
tained by studying the sweep of aDCF loss parameters have shown a great performance
on both datasets, and also that in function of the part of the database, the best parame-
ter configuration is different. Furthermore, we have checked the improvement achieved
when aDCF loss is combined with a cosine distance layer as the last layer in the DNN
instead of the usual linear layer. It has also been observed that aDCF loss does not need
the use of a complementary loss to improve the discrimination ability, while CE loss im-
proves considerably with it. Finally, we have compared the results obtained using aDCF
loss with some of the state-of-the-art approaches, and aDCF loss outperforms all of them
with relative improvements bigger than 10% in the EER and DCF metrics.

12

Training Enrollment Models by Network
Optimization

12.1 Motivation 12.4.1 Experimental Setup

12.2 Training Enrollment Model 12.4.2 Results with RSR2015-Part II

12.3 Supervector Neural Network 12.43 Analysis of the Detection
combined with Enrollment Cost Function Evolution
Back-end as System during the Enrollment Phase

12.4 Experiments and Results 12.5 Conclusions

12.1 Motivation

As we have emphasized throughout this thesis, verification is a binary problem that con-
sists of determining whether two different files belong to the same identity or different.
Hence, systems should be trained to directly perform this verification process between
the two files. These two files are widely known as enrollment file and test file. How-
ever, most current verification systems are trained for multi-class classification to obtain
a representation for each of these files. This type of approach does not take into account
the goal of the verification task to train discriminative embeddings. Therefore, after ex-
tracting the embeddings, a back-end is applied to obtain the final verification scores. This

187

188 Chapter 12. Training Enrollment Models by Network Optimization

back-end can be a simple similarity metric or a more sophisticated method that usually
involves a more complex training process.

In pioneer Deep Neural Network (DNN) works with this framework, it was supposed
that successful classification models would be able to achieve great results on different
test data without the need for any back-end technique. Nevertheless, test data can have
different variability than training data, so it may not be always possible to generalize
properly on unseen data. For that reason, recently, Cross-Entropy (CE) loss has been sub-
stituted by different variants of classification loss functions to increase the discrimination
ability [8,9,81]. On the other hand, different back-end approaches based on metric learn-
ing techniques are increasing as a relevant research focus since these approaches allow
to make the training process more appropriate to the evaluation procedure, such as the
approach based on triplet neural networks with aAUC loss proposed in Chapter 10 [3,7].
However, these approaches are very sensitive to the selection of training data to create
the pairs or triplets, and this process also involves slow convergence and high compu-
tational cost. To alleviate these drawbacks, in Chapter 11 [8, 9], we proposed aDCF loss
which is an alternative to CE loss, and at the same time, it is a more suitable loss function
for the verification task since this function is inspired by one of the main verification met-
rics employed. For the text-dependent speaker verification task, the use of aDCF loss for
training has proven to be an effective approach. Nonetheless, as we observed in Chapter
11 [8,9], this approach was trained using a model for each phrase, so it suffers when the
whole performance is given and score normalization is not applied.

Following the idea of improving the discrimination ability with back-ends based on
metric learning techniques and to solve previous issues, instead of using a complex back-
end, this chapter presents a novel and straightforward approach to perform the verifi-
cation process. This approach is based on training enrollment models with a learnable
vector for each identity. These models will be optimized using the enrollment data of
each identity and taking advantage of the information learned in a main trained network
from the training identity set which allows the system to be more robust in the test stage.
The use of this information is possible since the matrix from the last layer in DNN models
can be interpreted as an embedding dictionary where the identities of the training data
are stored. Using this approach, we can consider the information stored in the last layer
as competing identities, therefore negative examples, and the enrollment data represent
positive examples. This process has to be carried out for each enrollment identity to pro-
duce a learned vector, which will be separated in terms of the detection metric from the
training identities. The process is extremely efficient, as there is no need to select hard
negatives, and only some learnable parameters are optimized while the rest of the net-
work is frozen. To train the whole system, we optimize aDCF loss presented in Chapter
11, which is more appropriate for the verification task. Furthermore, this function can
be easily incorporated into the new verification process to train the enrollment models
since it is composed of two loss contributions to reduce false alarms, meaning the enroll-
ment data is not similar to the training identities, and also to reduce misses, so that the
enrollment data is similar enough to the learned model. Moreover, this kind of back-end
allows us to directly obtain the final verification scores and at the same time, whether it

12.2 Training Enrollment Model 189

would be necessary, we could store the enrollment model of each identity to use them in
a next step, as we will see in Chapter 13.

12.2 Training Enrollment Model

As mentioned, many verification systems apply a back-end approach to perform the fi-
nal verification process. In DNN systems, the back-end is employed on the intermediate
representations extracted from the previously trained DNN architecture. This back-end
can be a simple cosine similarity [74] in which the verification scores when each tar-
get identity has more than one enrollment file are obtained by averaging all enrollment
embeddings as,

eLsr = % > e, (12.1)

i=1

'tar
i

methods employed [145] to perform the verification process are complex and strong.

where e;?" is the enrollment or target data. However, nowadays, some of the back-end
Most of them usually require a careful selection process of the input data, which makes
these methods very sensitive to this process and increases the computational time.

Therefore, to reduce these disadvantages, this section proposes a novel approach to
carry out the enrollment process in a verification system taking advantage of the informa-
tion modelled during the initial training phase with aDCF loss developed in Chapter 11 to
improve the system performance. Figure 12.2 shows that this initial training is termed in
this chapter as the training phase. While the training of the back-end approach is called
as the enrollment phase. The final evaluation is referred to as the testing phase.

To address the issue of data selection in this approach, we employ the matrix from
the last layer of the initially trained architecture combined with the enrollment data to
mimic the target/non-target process which is carried out in the verification task. In Figure
12.1, we interpret the matrix obtained from the last layer during the training phase as an
embedding dictionary, since each row learns as the training progresses a representation
of the identity information that is correctly classified when the embedding is multiplied
by the corresponding row. Therefore, we can see each row weight as an embedding which
represents a different identity.

Once this matrix is well-trained in the training phase, we pass to the second stage,
which is the enrollment phase represented in Figure 12.2b). In this phase, we add a new
learnable vector w, for each enrollment identity that will also be evaluated similarly to
(11.11) as we will see later. To initialize this layer, we have employed two different al-
ternatives. First, we define random values for vector w,, while in the other option, we
initialize this vector using an averaging of the embeddings of the enrollment data of each
identity which is obtained as,

wl = el (12.2)

e avg’

tar

where e,

is the average of the embeddings of the enrollment data obtained as in (12.1).

190 Chapter 12. Training Enrollment Models by Network Optimization

A
v

D

Figure 12.1: Embedding dictionary from the last layer in the training phase, where each row represents one of
the N train speakers and D is the dimension of the embedding.

Moreover, during the training of the enrollment model, the same aDCF loss function
that we have employed in the training phase is optimized. In this specific case of use of
aDCF loss, we define the probability of false alarms and misses directly without the need
of labels since we have a binary task with target and non-target data separately. Hence,
(11.5) and (11.6) terms can be written as,

2 0a(so(ef”") - Q)

Pra(6,9) = N , (12.3)
Bass(6,0) = 2002 s0(e™)) (12.4)

Ntar

where Ny, is the number of target identities, N,,, is the number of non-target identities,

the score sp(e/*") is the non-target score where ;"

identity with j € {1, .., m,} where m, is each row of the matrix from the last layer of the

is the embedding of each non-target

tar
i

neural network, and the score sg(e/*") is the target score where e/ is each enrollment
embedding with i € {1, ..., m;} and m; is the number of target samples. To optimize this
function now, the score can be expressed as,

T

[FN"Y
___¢ (12.5)

sole) = — e _
7 el Tl

where ||| is the normalized input to the enrollment model, and ||w}

. || is the normal-

ized layer parameters of the embedding obtained from the enrollment file. Using this
expression, we obtain the scores of the enrollment files or targets s;,, comparing with
enrollment model, and the scores of the embedding dictionary or non-targets s,,, are
computed comparing with the enrollment model, which are directly used to optimize
aDCF loss. Therefore, the aDCF loss employed to train the enrollment models is ob-
tained as in (11.8) combining these expressions to define the approximated loss function.
The optimization using this function is possible since it can be seen as a loss designed
to minimize one-versus-all confusions for negatives or training identities and maximize
similarity for positives or enrollment data. Thus, we optimize the cost of classifying the

12.2 Training Enrollment Model 191

enrollment utterances as the correct enrollment identity avoiding the similarity to the
stored models from the training set.

Train data l
| Processing | . _|_ _ _PIO_CtEE'»_Sin _ |_ _____
C T ¥ Backbone ! ! Backbone |
Backbone

| | Neural Network | : | | Neural Network | !

e e e e e e e e e e e e e = 1 e

L —~———"" " Pooling ' L (R — "] Pooling |

: Alignment Pooling | : Alignmr ent ng |

1 mechanism : 1 mechanism 1
1

: i Supervector! : Supervector

1 1

1 I 1

1

R . . |
Jf """""" i == TTT T IIITON Backend
: i ! '
1 | 1
1 | 1
1 1
1 1
! :
!]

) y :Snontar . . Star
aDCF Loss ! | aDCF Loss
(a) Training phase (b) Enrollment phase
Test data
| Procespsing |
"""""""" Backbone |

I
' | Neural Nétwork | |

) 1
Alignment Pooling |
mecharfism I

|
|
|
: Supervector:
:
|

(c) Testing phase

Figure 12.2: (a) Left: Training phase, where the last layer can be seen as an embedding dictionary of the training
identities. (b) Right: Enrollment phase, where an enrollment model is trained for each target identity. (c)
Bottom: Testing phase, where test data is compared with each enrollment model and the verification scores are
obtained.

192 Chapter 12. Training Enrollment Models by Network Optimization

For the testing phase shown in Figure 12.2c), the test data is compared with each
enrollment model trained during the enrollment phase, and we obtain directly the veri-
fication scores without the need of using another external metric. We also have to note
that this procedure does not affect the efficiency or the computation cost at test time.

12.3 Supervector Neural Network combined with En-
rollment Back-end as System

In the following section, we briefly describe the architecture of the system developed to
apply this novel approach for text-dependent speaker verification, which is depicted in
Figure 12.2. The backbone and pooling parts are shared during the three phases which
compose our whole system. As we explained in the previous chapters, the backbone part
employed is the best configuration of Chapter 6 for training one model for each phrase
in this task. Moreover, the alignment method used as pooling part is also the best option
found in Chapter 6, a GMM combined with a MAP adaptation [106]. In addition, the last
layer that acts as an embedding dictionary during the enrollment phase is a cosine layer
since it was proven in Chapter 11 that it is better than using a linear layer. Finally, to
train this system, aDCF loss proposed in Chapter 11 is applied as objective loss function.

12.4 Experiments and Results

12.4.1 Experimental Setup

The experiments developed in this chapter have been performed with RSR2015-Part II.
As input to train the alignment mechanism and as input to the DNN, we have employed
a 20 dimensional Mel-Frequency Cepstral Coefficients (MFCCs) stacked with their first
and second derivatives. Furthermore, a 64 component GMM has been trained per phrase.
From these models, the alignment information is extracted to use in the alignment mech-
anism of our architecture. The bkg partition of the database has been used to train the
alignment mechanism and the DNN architecture.

To show the potential and the behaviour of the new approach proposed in this chap-
ter, the following set of experiments was carried out. The performance obtained using the
architecture after the training phase to extract embeddings and applying a cosine simi-
larity (Cosine) is compared to the results achieved with the training enrollment models
approach (EnrollModel) proposed with two different alternatives for the layer initializa-
tion. The first alternative consists of a totally random initialization (rand), and the other
alternative is initialized with an averaging of the enrollment embeddings (avg).

12.4 Experiments and Results 193

12.4.2 Results with RSR2015-Part II

Table 12.1 presents Equal Error Rate (EER%), minimum Detection Cost Function 10

(minDCF10), actual Detection Cost Function 10 (actDCF10), Log-Likelihood Ratio Cost
(CLLR), and minimum Log-Likelihood Ratio Cost (minCLLR). We can observe that the
proposed approach for the verification process with the two different initializations out-
performs the baseline using a cosine similarity directly over the average of the embed-
dings extracted from the architecture without applying any other back-end technique.
Furthermore, we can see as a good initialization leads the enrollment training to better
performance, but a random initialization also improves the baseline results. This fact re-
flects that training specific enrollment models for each enroll speaker helps to improve
the discriminative ability, and therefore the text-dependent speaker verification process.

Table 12.1: Experimental results on RSR2015-Part II [124] eval set, showing EER%, CLLR, minCLLR, actDCF10
and minDCF10. These results were obtained by training with bkg subset to compare the approach proposed
with the two alternatives as initialization and the cosine baseline.

Back-end Female
Type Init EER% min/actDCF10 minCLLR/CLLR
Baseline (Cosine) - 4.19 0.72/0.78 0.159/0.164
Enroll Model rand 3.77 0.74/0.77 0.143/0.147
Enroll Model avg 3.52 0.69/0.72 0.132/0.135
Improvement (%) | 15.99 4.17/7.69 16.98/17.68

(a) Female results

Back-end Male
Type Init EER% min/actDCF10 minCLLR/CLLR
Baseline (Cosine) - 5.80 0.91/1.02 0.218/0.228
Enroll Model rand | 5.42 0.89/0.92 0.204/0.213
Enroll Model avg 5.22 0.86/0.89 0.196/0.228
Improvement % 10.00 5.49/12.75 10.09/6.58

(b) Male results

Back-end Female+Male
Type Init EER% min/actDCF10 minCLLR/CLLR
Baseline (Cosine) - 5.10 0.85/0.93 0.193/0.201
Enroll Model rand | 4.72 0.83/0.85 0.180/0.185
Enroll Model avg 4.46 0.79/0.82 0.170/0.174
Improvement (%) 12.55 7.06/11.83 11.92/13.43

(c) Female+Male results

194 Chapter 12. Training Enrollment Models by Network Optimization

Moreover, whether we pay the attention in the difference between the values of the
optimal DCF (minDCF10) and CLLR (minCLLR) with their correspondent actual value,
we note that both alternatives for the training of the enrollment models have a smaller
difference between those values than using the cosine.

In addition, Figure 12.3 represents the Detection Error Trade-off (DET) curves. These
curves are grouped by gender to show better the results for each part of the Table 12.1.
These representations clearly demonstrate that the training of the enrollment models
with both initializations have a great performance in both subsets (female and male).
In Figure 12.3a), we can see the DET curves of female results where the three results
follow the same trend than in the other figure. However, note that the minDCF result in
Table 12.1 for the EnrollModel + rand in this data shows a slightly lower performance
than Cosine result, but in the correspondent DET curve, we observe that the overall
performance including EER point are also better than Cosine baseline.

| 2|
—— Baseline (Cosine) (EER= 4.19) —— Baseline (Cosine) (EER= 5.80)
—— Enroll Model+rand (EER= 3.77) —— Enroll Model+rand (EER= 5.42)
—— Enroll Model+avg (EER= 3.52) —— Enroll Model+avg (EER= 5.22)

IS
I}
s
IN
S

w
S
w
=}
!

N
5}
!
N
1S}
!

-
15}
!
-
15}
!

N
!
N
!

-
!

False Rejection Rate [In %]

False Rejection Rate [In %]

0.5 05 4

0.2 1 0.2

0.1 01

T T T T T T T T T T T T T T T T T T
01 02 05 1 2 5 10 20 30 40 0102 05 1 2 5 10 20 30 40

False Acceptance Rate [In %] False Acceptance Rate [In %]

(a) Female DET curves (b) Male DET curves

Figure 12.3: (a) DET curves for female results of the three back-ends. (b) DET curves for male results of the
three back-ends.

12.4.3 Analysis of the Detection Cost Function Evolution during
the Enrollment Phase

Finally, we have conducted an analysis of this new approach where we have made a brief
study of the results obtained individually for each phrase. In Figures 12.4 and 12.5, we
represent the evolution of the DCF metric for two different phrases during the training
of the enrollment phase by conducting a complete test evaluation at each training stage.
Note that for each point in the curve, the full trial list is evaluated and DCF computed
for the selected phrase. In these representations, we observe two different behaviours
which demonstrate that even though the global performance is better with the proposed

12.4 Experiments and Results 195

approach, there is still room for improvement. We can find some phrases that the system
works correctly with while some others do not behave as good as expected. For example,
Figure 12.4 shows one of the phrases which has a great performance and where we can
see that the results with the proposed method improves considerably the final DCF result.
While in Figure 12.5, we observe that the use of the same training configuration for all the
phrases may not be the best option. In this case, with less iterations we can find a better
result, but the system does not converge to a better solution compared to the baseline.

0.80

— Cosine
- Enroll Model+avg
0.75

0.70 -

5 0651

0.60 A

0.55 4

0.50

0 50 100 150 200 250 300
Iterations

Figure 12.4: DCF evolution in one of the phrases (Phrase 046) from the evaluation data which individually has
a great performance during the training of the enrollment model.

0.700
= Cosine

0.675 - —— Enroll Model+avg

0.650 -

0.625 -

e~

“g 0.600 -
0.575 \/

0.550 4
0.525 4
0.500 - . - . .
0 50 100 150 200 250 300
Iterations

Figure 12.5: DCF evolution in one of the phrases (Phrase 054) from the evaluation data which has one of the
worst performance during the training of the enrollment model.

196 Chapter 12. Training Enrollment Models by Network Optimization

12.5 Conclusions

Along this chapter, we have presented a novel approach to perform the verification pro-
cess. This approach consists of the use of the embedding dictionary stored during the
training phase in the matrix of the last DNN layer as negative examples to train an en-
rollment model for each speaker. With this system, we mimic the test process where
enrollment utterances are compared with test utterances to determine whether each pair
of utterances is a target or non-target trial. The proposal has been able to improve the
system performance, although, in the analysis part, we have checked that some limita-
tions still exist. The results confirm that this technique is an interesting line of research,
so different alternatives to initialize the weight vector combined with different Bayesian
estimation approaches could be applied to improve this new approach.

13

Multimodal Diarization Systems by

Training Face Enrollment Models as
Identity Representations

13.1 Motivation 13.4.3 Clustering
13.2 Face Enrollment Models 13.4.4 Identity Assignment Scoring
13.3 Face Subsystem 13.5 Experiments and Results
13.3.1 Video Processing 13.5.1 Analysis of Training En-
13.3.2 Embedding Extraction rollment Models for Face
13.3.3 Training Face Enrollment Subsystem
Models 13.5.2 Effect of aDCF Parameters
13.3.4 Clustering y, B for Training Face En-
13.3.5 Tracking and Identity As- rollment Models
signment Scoring 13.5.3 Summary of Face and
13.4 Speaker Subsystem Speaker Results
13.4.1 Audio Processing 13.6 Conclusions

13.4.2 Embedding Extraction

197

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as
198 Identity Representations

13.1 Motivation

Multimodal biometric verification field consists of the identification of persons by means
of more than one biometric characteristics, as the use of two modalities makes the process
more robust to potential problems. Typically, face and voice characteristics have been
two of the preferred biometric data due to the ease of obtaining audiovisual resources
to carry out the systems that perform this process. When this identification process
is applied throughout a video file, and this information is kept over time, this kind of
task is also known as multimodal diarization combined with identity assignment. In
recent years, this field has been widely investigated due to its great interest, motivated
by the fact that human perception uses not only acoustic information but also visual
information to reduce speech uncertainty. Moreover, this task has been rarely addressed
for uncontrolled data due to the lack of this type of datasets. However, several challenges
focused on this topic have recently been developed [304-306], and also a large amount
of multimedia and broadcast data is currently being produced such as news, talk shows,
debates or series. Therefore, to develop a multimodal biometric system, different tools are
required to process this data, detect the presence of people and address the identification
of who is appearing and speaking. The need to find new efficient tools to process all
the available audiovisual content has led to a wide variety of systems based on artificial
intelligence algorithms such as Deep Neural Networks (DNNs).

To perform multimodal diarization, many studies focus on the simplest way which
is based on independent systems for speaker and face diarization [306, 307]. Speaker
diarization is a widespread task [308, 309] due to its usefulness as pre-processing for
other speaker tasks. At the same time, it is still a challenging task because there is no
prior information about the number and the identity of speakers in the audio files, and the
domain mismatch between different scenarios can produce some difficulties. On the other
hand, face diarization has been widely used as a video indexing tool, and the previous
step for face verification [310,311]. However, in real-world scenarios, face images can
often appear with large variations, so this kind of system has also found some problems
in unconstrained videos. For these reasons, a straightforward score-level fusion is usually
employed to join the information from both types of systems.

The IberSPEECH-RTVE 2020 Challenges described in Chapter 3 aims to benchmark
and further analyze this different kind of diarization systems. Therefore, two types of
diarization evaluations are included in this challenge, Speaker Diarization and Identity
Assignment (SDIA) [312], and Multimodal Diarization (MD) [240]. The former is the most
extended kind of diarization combined with the speaker assignment. While the latter
combines the previous one with face diarization and face identity assignment, which is
obtaining more relevance in recent times. In this chapter, we have focused on this second
challenge, and especially the characteristics of the face subsystem have been remarked.

This chapter presents the system submitted to the IberSPEECH-RTVE 2020 Challenge
in the MD task. This challenge focuses on the segmentation of broadcast audiovisual doc-
uments and the assignment to segments of an identity from a closed set of different faces

13.2 Face Enrollment Models 199

and speakers. The face and speaker identities from this closed set are known as enroll-
ment or target identities. For the challenge, we have processed audio and video tracks
independently in order to separately improve their performance. However, the pipeline
is very similar in both cases, where the differences are the exact approach used in each
part of the process. Therefore, initially, both audio and video files are processed. After
that, an embedding extractor is used to obtain the representations and, finally, cluster-
ing and assignment process is applied. The assignment process can be seen as a binary
task that consists of comparing each face or speaker present in the audiovisual file with
all the enrollment identities and determining whether it belongs to one of them or not.
A simple approach employed is a cosine similarity by averaging the representations of
all the enrollment files for each identity to obtain the verification scores and decide the
identity. Nevertheless, these representations are extracted from DNN systems which are
not trained with this objective, so instead of using only cosine similarity, complex back-
ends [75,139] are often applied to improve the discriminative ability of these representa-
tions. The drawbacks of this kind of back-end are that it involves a more complex train-
ing process and, therefore, a high computational cost. Thus, to carry out the assignment
process in the face subsystem of this work, a new approach developed in Chapter 12 [10]
has been applied to model the enrollment identities. This new approach was shown to be
a promising technique to characterize each enrollment identity with a single learnable
vector for the speaker verification task. For this reason, this technique has been applied
in face verification in this chapter. To train this back-end, approximated Detection Cost
Function (aDCF) loss introduced in Chapter 11 [8,9] has been used as the objective loss.
Apart from the analysis of the use of this new approach for this task, in this chapter,
different parameter settings of this loss have been explored and their effect on the errors
produced by the system has been studied.

The remainder of this chapter is laid out as follows. In Section 13.2, we describe the
new approach based on training face enrollment models by network optimization and the
loss function used as objective for the training. Section 13.3 details the face diarization
subsystem. The speaker diarization employed is explained in Section 13.4. Finally, Section
13.5 presents and discusses results, and Section 13.6 concludes the chapter.

13.2 Face Enrollment Models

In verification tasks, a back-end is traditionally applied to compare enrollment and test
embeddings and obtain the final verification scores to assign the correspondent identity.
A widely used approach is the cosine similarity, where if an enrollment identity has more
than one enrollment embedding, these embeddings are averaged to be compared with the
test embedding. However, we have shown in Chapter 12 for the speaker verification task
that a better solution to do this process consists of training an enrollment model for each
enrollment identity. Therefore, in this chapter, we have applied this approach for the face
verification task where we have trained a model for each of the face enrollment identities.

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as
200 Identity Representations

The loss function optimized and the process to carry out the training of these models with
this loss function are explained in detail below.

Motivated by the demonstrated effectiveness in training DNNs using aDCF loss, in
Chapter 12, we developed a straightforward and powerful back-end approach based on
a network optimization with this loss function. The use of this differentiable version of
the DCF metric proposed in Chapter 11 as objective loss function allows training DNN
systems aimed at minimizing one of the main metrics employed in verification tasks. In
addition, this function is based on the measurement of the two types of decision errors
produced by verification systems using a threshold. These two errors are known as false
alarms (FA) and misses (FR) which are also part of the Diarization Error Rate (DER) used
to evaluate diarization systems as we detailed in Chapter 3. The former errors occur when
an identity is incorrectly assigned, while the latter refer to a correct identity not being
detected by the system. Therefore, we seek to minimize aDCF loss, which is composed
of a weighted sum of the average number of times false alarms (Py,) and misses (Pp;ss)
occur.

Using this loss function as objective, this approach tries to mimic the target/non-
target process performed in verification tasks. In addition, this back-end takes advantage
of the data learned during a previous training step of a general embedding network. Thus,
this approach avoids the need for a careful selection of input data to train the models
as required by other complex back-ends such as Triplet Neural Network with Triplet
loss [75] or Triplet Neural Network combined with aAUC loss introduced in Chapter
10 [3,7].

Shontar Star

aDCF Loss

Figure 13.1: Training face enrollment models using target and non-target embeddings for each enroll or target
identity.

Figure 13.1 shows the process to carry out this training where a learnable vector is
obtained to represent each enrollment identity. This process is based on comparing the
positive or target examples with enrollment model (s;,,), and also with the negative or
non-target examples (Spontqr) using the aDCF loss function as training objective loss. As
we did in Chapter 12, the original expressions (11.5) and (11.6) for this case are interpreted

as,

13.2 Face Enrollment Models 201

Y.j Oa(so(ef*") - Q)

Pra(6,9) = N , (13.1)
Bp(6,0) = 2222 0(e™) (132)

Ntar

where Ny, is the number of target identities, N,,, is the number of non-target identities,

the score sp(e*") is the non-target score where e'°" is the embedding of each non-target

identity with j € {1,.., m,} where m, is each embedding, and the score sy(e/*") is the
tar
i

number of target samples. To optimize aDCF loss, the scores used are obtained with

target score where e;*" is each enrollment embedding with i € {1,..., m;} and m; is the

cosine similarity as,

e - w!
sg(€) = — =, 13.3
9(z) "el” . ||Wg| ()

where |e;| is the normalized input to the enrollment model, and H wl || is the normalized
layer parameters of the embedding obtained from the enrollment utterance. Therefore, to
train the enrollment models, these expressions are combined to define the approximated
loss function employed as in (11.8).

The philosophy of the approach followed in this chapter has been the same as the
original approach used for speaker verification, but there are several differences. First,
in Chapter 12, the final verification scores were obtained directly in the last step of the
training process by comparing all target and non-target samples with the trained vector.
Whereas in this chapter, the learnable vector is stored as an enrollment model to be used
in the final step of the face subsystem to assign the identity to each segment. On the
other hand, the non-target examples employed in this system are directly the embeddings
extracted from the pretrained model. These non-target examples belong to identities
different from the enrollment identities, so we have used them to train the enrollment
models instead of using the weight matrix of the last layer of the trained neural network
to obtain them as we did in Chapter 12. Hence, in this chapter, the process for training
the enrollment model for each identity is based on the following steps:

1. The target and non-target embeddings extracted from the pretrained model are
employed as positive and negative examples.

2. Each enrollment model is trained using aDCF loss with all non-target embeddings
and only the target embeddings of the corresponding enrollment identity.

3. The trained models are stored to use them in the assignment process.

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as
202 Identity Representations

13.3 Face Subsystem

In this section, we present the different blocks of the face system, including video pro-
cessing, embedding extraction, training face enrollment models, clustering, tracking, and
identity assignment scoring. The block diagram of the face system is depicted in Figure
13.2.

Step 1: Initial
checking &
loading
information

Step 2:
Establishing
relationships
for tracking
process

Step 3:
Checking
change of shot

YES

Tl g o i

Step 4: Identity
assignment

Figure 13.2: Block diagram of face system where the steps of tracking and identity assignment are remarked
with dashed lines.

13.3 Face Subsystem 203

13.3.1 Video Processing

The video processing step used to develop this face subsystem consists of three blocks:
frame extraction, face detection and change shot detection. In the following, we will
detail all of them.

Frame Extraction

As the first step, the video is processed to extract five frames per second using ffmpeg
tool !. We decided to use five frames per second since this number of frames allows us
to have a high precision to determine the limits of the characters appearance. Therefore,
frames are extracted using a constant rate where one frame is obtained every 200 msec.

Face Detection

Another fundamental step in this process is the face detection because failures in this step
could be crucial for the correct development in other parts of the face diarization system.
In our system, as we also used in Chapter 4, the face detector employed is a system of
alignment and detection based on a DNN which is called Multi-task Cascaded Convolu-
tional Networks (MTCCN) [241]. In this part, we employ this implemented system as it
is a proven and effective method for face detection. Furthermore, using this detector, we
can store the bounding boxes created by the algorithm that correspond to the coordinates
where a face is detected. This information is then employed in the tracking and identity
assignment process.

Change Shot Detection

The videos employed in this challenge are obtained from television programs, so these
programs are usually composed by a huge variability in the characteristics of the content
and by constant changes of shots and scenes. Thus, to aid the tracking and clustering step,
a change scene detection tool ? is employed, as this tool effectively detects these changes
using threshold-based detection mode. This detector finds areas where the difference
between two subsequent frames exceeds a threshold value.

13.3.2 Embedding Extraction

Once the video processing step is done, we process the face images using the bounding
boxes, apply mean and variance normalization. Then, as the images have been processed
with the information given by the face detector, the resulting images have centered faces.

Thttps://www.ffmpeg.org/
https://www.pyscenedetect.readthedocs.io/en/latest/

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as
204 Identity Representations

Therefore, a center crop can be applied to resize the images to 160 x 160 pixels. After that,
the processed images are passed through a trained model to obtain embedding represen-
tations. The indicated center crop is necessary since the model employed has been trained
using images with this format. In this system, as a face extractor, we have employed the
pretrained Inception ResNet [75] described in Chapter 4. This network was trained for
a classification task on the CASIA-WebFace dataset [231], but the embeddings extracted
from it have been proved previously in a verification task to check their discriminative
ability with state-of-the-art results on Labeled Faces-in-the-Wild (LFW) [229, 230]. For
this reason, we decide to use these embeddings of 128 dimensions to extract the repre-
sentations of the enrollment and test files of this challenge.

13.3.3 Training Face Enrollment Models

As we explained in Section 13.2, we have applied the approach based on enrollment mod-
els proposed in Chapter 12 as a back-end for the face verification task where we have
trained a model for each one of the 161 enrollment identities. To train these models, we
have used the embeddings of the enrollment images, and the video files of the develop-
ment and test sets of the IberSPEECH-RTVE 2020 Challenge [240] as positive or target
examples. While the enrollment files of the development and test sets of the IberSPEECH-
RTVE 2018 Challenge [239] are used as negative or non-target examples. Therefore, once
these embeddings are extracted, we train each face enrollment model with them using
aDCF loss. Figure 13.3 shows two examples of the steps presented in Section 13.2 of the
process of extracting embeddings and training an enrollment model for each identity
using the aforementioned data. Moreover, the impact of the amount of non-target data
employed to train these models will be discussed in the experimental section.

Non-enroliment IDs Enroliment ID1 Non-enroliment IDs Enrollment ID2

I' Embedding
Extraction

Enrollment
Model ID2

__

(a) Model ID1 (b) Model ID2

Training
Face
Enroliment
Models

Enroliment
Model ID1

Figure 13.3: (a) Left: Example of Embedding Extraction and Training Enrollment Model ID1, where the dashed
line indicates the two steps of the process. (b) Right: Example of Embedding Extraction and Training Enrollment
Model ID2, where the dashed line indicates the two steps of the process.

13.4 Speaker Subsystem 205

13.3.4 Clustering

As a source of complementary information, the face embeddings from the test videos
are used to perform a spectral clustering technique [313] that attempts to find strongly
connected segments. This technique provides an initial cluster assignment to group the
frames of the video sequence. In this chapter, we have employed this clustering combined
with the use of coordinates to improve the whole tracking process.

13.3.5 Tracking and Identity Assignment Scoring

Once all the above information is obtained, we have developed an algorithm to carry
out the tracking and identity assignment process, which is depicted in Figure 13.2 and
follows a similar philosophy to the one developed in [314]. In this algorithm, the tracking
process has been developed by shot, so a change of shot restarts the tracking. Therefore,
while the shot is the same, in Step 1 showed in Figure 13.2, the algorithm checks frame
by frame the clustering information and the correspondence between the coordinates
of the current frame and the previous frame to establish links to perform the tracking
process in Step 2 of Figure 13.2. When a relationship exists between both frames and has
a high confidence term, the identity assignment of the previous frame is used to select
the enrollment model and obtain the score. This score is compared with a confidence
threshold to determine whether the assigned identity is correct or not. However, when
there is no relationship between the coordinates of the current and previous frame or
the confidence term is low, the frame embedding is compared to all enrollment models
to obtain a score and determine whether it is a new identity to assign. Once the identity
assignment is performed on the current frame, the score is stored, the coordinates are
updated, and the algorithm checks whether the shot changes. These processes are carried
out in Step 3 of Figure 13.2.

Tracking is carried out with the above steps, but the identity assignment process per-
formed is only an initial assignment. When a shot change is detected in Step 4 of Figure
13.2, the system checks the identities and scores stored in the shot to remove inconsistent
segment assignments. After that, the final segments with their identity assignments are
written to the Rich Transcription Time Marked (RTTM) file. In addition, score confidence
values are stored when a final identity assignment is made. If these values are greater
than a more restrictive threshold which is set with the development set, we augment the
enrollment models with the current face embedding. The whole process is repeated with
all detected shots.

13.4 Speaker Subsystem

This section describes the speaker subsystem which consists of similar blocks to the face
subsystem, such as audio processing, embedding extraction, clustering, and identity as-

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as
206 Identity Representations

signment scoring, but using different approaches in each one. The different parts of just
this subsystem have been explained in more detail in [315]. Although as part of the mul-
timodal diarization system, the following sections present the main ideas for creating this
subsystem.

13.4.1 Audio Processing

In this subsystem, the audio processing step is also composed of three blocks: a front-
end, speech activity detection and speaker change point detection. Next, we will briefly
explain each of them.

Front-end & Speech Activity Detection

The first block of this subsystem is a front-end to obtain the Mel-Frequency Cepstral
Coefficients (MFCCs) features [96]. For a given audio, a stream of 32 coefficient feature
vectors is estimated according to a 25ms window with a 15ms overlap. No derivatives
are considered. Simultaneously, Speech Activity Detection (SAD) labels are estimated
each 10 ms [316]. Our approach for SAD is based on a deep learning solution that is
an evolution derived of our previous experience with SAD systems in different domains
[207]. We use a convolutional recurrent neural network (CRNN) consisting of 3 blocks
of 2D convolutional followed by 3 BiLSTM layers [317]. Then, the final speech score
is obtained through a linear layer. As input features, 64 Mel filter banks and the frame
energy are extracted from the raw audio and fed to the neural network. Cepstral Mean
and Variance Normalization (CMVN) [318] normalization is applied.

The CRNN is trained on a combination of different broadcast datasets. Specifically, we
include data from the Albayzin 2010 dataset (train and eval), Albayzin 2018 dataset (dev2
and eval) and a selection of data from the first MGB Challenge (train, dev.longitudinal
and task3 eval). Furthermore, audios are augmented with a variety of noises that can be
usually found in broadcast emissions (sitcom noises, crowd and laughter noises, babble,
street music and stadium noises).

Speaker Change Point Detection

Feature vectors and SAD labels obtained are fed into the Speaker Change Point Detection
(SCPD) block which is dedicated to infer the speaker turn boundaries. The differential
form of Bayesian Information Criterion (ABIC) [319] has been used. This estimation
works in terms of a 6-second sliding window, in which we assume there is, at most, a
speaker turn boundary. Each involved speaker in the analysis is modeled by means of
a full-covariance Gaussian distribution. Besides, the SAD labels delimit the parts of the
audio where the analysis is performed. In the given data, the described configuration
provides segments of an approximately 3-second length on average.

13.4 Speaker Subsystem 207

13.4.2 Embedding Extraction

Once the audio processing is done, each one of the identified segments will be converted
into a compact representation or embedding. For this purpose, we have opted for an
evolution of x-vectors [132] considering an extended version [320] of the Time Delay
Neural Network (TDNN) architecture [321]. The modification is the inclusion of multi-
head self-attention [268] in the pooling layer. This network, trained on VoxCeleb [282]
and VoxCeleb2 [137], provides embeddings of dimension 512. These embeddings undergo
centering and LDA whitening (reducing dimension to 200), both trained with MGB [322]
as well as the Albayzin training subset, and finally length normalization [323]. These
embeddings will be referred to as ®. A similar extraction pipeline working offline is in
charge of the enrollment audios. The enrollment embeddings will be named &,

13.4.3 Clustering

The obtained embeddings are modeled in a generative manner according to [324], where
a tree-based Probabilistic Linear Discriminant Analysis (PLDA) clustering is proposed.
This approach exploits the higher acoustic similarity of temporally close embeddings by
sequentially assigning these representations to the available clusters at each time. These
clusters are managed by the algorithm at the same time. This concept is boosted by [325],
which helps to find the best possible sequence of decisions. The considered model has
100-dimension speaker subspace and it is trained with both MGB and Albayzin training
subset.

13.4.4 Identity Assignment Scoring

The considered identity assignment block follows a state-of-the-art speaker recognition
PLDA backend followed by score normalization and calibration stages. By means of the
PLDA model, we estimate the score s;;, which represents how likely the diarization clus-
ter j shares the same speaker identity as the enrollment speaker i. Then, these scores
are normalized according to adaptive S-norm [215], using MGB as extra cohort. Finally,
normalized scores are calibrated according to a threshold e. Whenever the score s;; over-
comes the threshold, we consider the cluster j contains audio from the enrolled person i,
being different otherwise. Threshold ¢ is adjusted by Assignment Error Rate (AER) min-
imization according to a calibration subset ®,j;, and the enrollment embeddings ®cp,on
as follows:

€ = arg min(AER(Paiib, Penroll; €)) (13.4)

€

where @i, and Pepron represent the set of embeddings from calibration as well as the
enrollment speakers.

Final AER labels are obtained according to these normalized and calibrated scores.
The audio from cluster j is assigned to the ith enrolled identity with highest score if s;;

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as
208 Identity Representations

overcomes the calibration threshold. If s;; is below the threshold for any enrolled identity
i, the cluster is assigned to the generic unknown identity. Mathematically, the assigned
identity (6;) for a subset of embeddings j with respect to the enrolled identity i is:

6 - { arg max,(s;s; > €) if 3ils; > € (13.5)

Unknown ifvi,s;j < e

where s;; stands for the normalized PLDA log-likelihood ratio score between the embed-
ding j and the enrolled identity i. By means of these decision making, we do not exclude
the possibility of assigning multiple diarization clusters to the same identity. This design
choice is taken to allow the fix of some diarization errors.

13.5 Experiments and Results

In this chapter, several experiments have been carried out to show the effect of different
aspects on the face subsystem and the overall performance of both subsystems. First,
we compare the use of a cosine similarity metric directly on the embeddings extracted
from the pre-trained model (AverageEmbedding) to obtain the closest identity in each
instance with the training face enrollment models approach (EnrollmentModels) for the
identity assignment process. Moreover, in this first set of experiments, the relevance of
employing more non-target data to train the enrollment models is also analyzed. After
that, we have analyzed the behaviour of the system when different values of the aDCF
loss parameters are employed. To conclude, a summary of the best results of the face
subsystem in combination with the results of the speaker subsystem is presented.

13.5.1 Analysis of Training Enrollment Models for Face Subsys-
tem

In this section, we have analyzed the performance of the system when enrollment models
are trained and used for the identity assignment process or a cosine similarity is directly
employed to compare the average of all enrollment embeddings with each frame of the
video file. Furthermore, the effect of adding more non-target data to train the enrollment
models is also checked.

Table 13.1 shows DERY% results on the test set for the face subsystem with the differ-
ent back-end approaches. As we can observe, the training of face enrollment models to
characterize each enrollment identity achieves a large improvement over comparing each
segment directly against the average of the enrollment embeddings. Note that whether
the enrollment models are trained with more non-target examples, the variability that
the learnable vectors have to model is higher so these models learn better to represent
each identity and the DER% result obtained is lower.

13.5 Experiments and Results 209

Table 13.1: Experimental results on RTVE 2020 Multimodal Diarization test set, showing DER%. These results
were obtained to compare the back-end approach proposed and the cosine baseline.

Back-end Non-target Examples DER%
Average Embedding — 80.16
Enrollment Models 57 61.79
3302 56.86

13.5.2 Effect of aDCF Parameters y, for Training Face Enroll-
ment Models

A second set of experiments has been performed to observe the effect of training with
different aDCF loss parameters as was done in Chapter 11 for speaker verification. In
Table 13.2 and Figure 13.4, we observe that the system performance improves only ad-
justing the aDCF parameters without modifying the threshold values or the tracking and
identity assignment algorithm for the reference number of training epochs. As reference
number of epochs, we have considered 800 epochs since it is the number initially used
in the previous set of experiments. In view of this result, we have explored in depth the
behaviour of the training enrollment models for the different configurations of parame-
ter and number of epochs. As a result of this sweep, we have obtained that the original
parameter configuration, y = 0.75 and f = 0.25, has still room for improvement, and
training for 1200 epochs achieves the best result without modifying any other parame-
ter. Moreover, note that giving a higher cost relevance (f) of the probability of misses
during training with aDCF loss, regardless of the number of epochs, the results are worse
in all situations.

Table 13.2: Experimental results on RTVE 2020 Multimodal Diarization test set, showing DER%. These results
were obtained by sweeping of the parameters of aDCF loss function and by different number of training epochs.

Y B 600 epochs 800 epochs 1000 epochs 1200 epochs 1400 epochs
0.75 0.25 62.56 56.86 55.32 54.07 55.91
0.50 0.50 55.92 55.89 56.02 56.47 57.16
0.25 0.75 58.30 59.29 59.58 60.01 60.02

In addition to the above results, we have analyzed the behaviour of the three types of
errors that compose the DER% metric when the different possible system configurations
are used for the same number of training epochs. As we can see in Table 13.3 and Figure
13.5, giving a higher cost relevance to the probability of false alarms (y) in the aDCF loss
results in a lower number of false alarms in the decomposition of the DER%. While the
number of misses is higher than in the other two configurations. On the other hand, the
same trend can be seen in reverse when the relevance term (f) is higher for the probability
of misses.

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as

210 Identity Representations
63.00%
61.00%
59.00%
57.00%
55.00%
53.00%
600 epochs 800 epochs 1000 epochs 1200 epochs 1400 epochs
e=@==(0.75-0.25 0.50-0.50 0.25-0.75

Figure 13.4: Evolution of the DERY% results in function of the different parameter configurations.

Table 13.3: Experimental results on RTVE 2020 Multimodal Diarization test set, showing DER% and Decompo-
sition of the DER% results in Miss (MISS%), False Alarm (FA%) and Identity (ID%) Errors. These results were
obtained by sweeping of the parameters of aDCF loss function.

y B MISS% FA% ID% DER%
0.75 0.25 | 3260 12.80 8.70 | 54.07
050 0.50 | 30.70 16.00 9.80 | 56.47
025 0.75 | 28.30 19.80 12.00 | 60.01

13.5.3 Summary of Face and Speaker Results

In this section, we have collected the best result for the face and speaker subsystems,
and also, we have divided into development and test set the results to better observe the
difference behaviour of both subsystems. Moreover, our reference results obtained for
the challenge [11] have been included to better reflect the improvement achieved. Thus,
the results of the other two participating groups [326, 327] that are publicly available *
have also been introduced as reference of the difficulty of this multimodal diarization
challenge.

Table 13.4 shows the DER% results obtained in the development and test set for the
face and speaker modalities. In addition to the separate results, we show the average re-
sult of the face and speaker diarization errors (FACE + SPEAKER). These results indicate
a great mismatch between development and test results. We have analyzed what type of
video files composed both subsets and the length of these files, and we have found that the

Shttp://catedrartve.unizar.es/albayzin2020results.html

13.5 Experiments and Results 211

33.00% ®

28.00% \

23.00%

18.00%

13.00%

8.00%
0.75-0.25 0.50-0.50 0.25-0.75

=@=\iss ID FA

Figure 13.5: Evolution of the different types of errors (MISS%, FA%, ID%) for each different y, f parameter
configurations.

Table 13.4: Experimental results on RTVE 2020 Multimodal Diarization development and test sets, showing
DER%. These DER% values were the result of the improvements introduced in this work, and the reference
results for both modalities are also presented.

Subset Modality DER% DER% ours [11] DER% [326] DER% [327]

DEV FACE 51.26 51.66 - -
SPEAKER 37.45 47.90 - -
FACE+SPEAKER | 44.36 49.78 - -
TEST FACE 54.07 61.79 44.55 67.31
SPEAKER 60.34 72.63 61.61 131.59
FACE+SPEAKER | 57.20 67.21 53.08 99.45

development files are shorter and more similar than test files. Thus, we can see that the
face and speaker subsystems perform better in the development files which are shorter
videos, so the tracking process is easier to follow. Nevertheless, in the face subsystem,
we observe that this difference is smaller than in the speaker subsystem.

To better analyze these results, Table 13.5 presents a decomposition of the DER metric
into the three terms of error. Focusing on the face modality errors, in the case of the
development subset, we observe that the main cause of error is the probability of misses,
which indicates that a large number of segments of the target identities have not been
detected. Therefore, this effect can be motivated by the fact of using a threshold value that
is too restrictive. While in the test subset, misses term decreases and especially relevant
is the increase in false alarm errors as this fact illustrates the problems in discarding
segments of non-target faces when the number of enrollment identities is large. On the
other hand, the distribution of errors produced in the speaker subsystem is quite different,
as false alarms are much larger than misses in test subset of data. Note that it is also
related to the chosen threshold. However, in this case, the threshold is lower, so the

Chapter 13. Multimodal Diarization Systems by Training Face Enrollment Models as
212 Identity Representations

target segments are mostly detected, but as a result, a high number of enroll identities
are assigned to segments of unknown identity.

Table 13.5: Decomposition of the DER% results in Miss (MISS%), False Alarm (FA%) and Identity (ID%) Errors
for the development and test sets in both modalities.

Modality Subset MISS% FA% 1ID%
FACE DEV 41.70 5.10 4.50
TEST 32.60 12.80 8.70

SPEAKER DEV 26.10 9.60 1.75
TEST 8.70 39.00 12.64

13.6 Conclusions

This chapter presents the system submitted to the IberSPEECH-RTVE 2020 Multimodal
Diarization Challenge. In this chapter, we have developed two monomodal subsystems to
address separately face and speaker diarization. Each system is based on state-of-the-art
DNN approaches. In addition, we have introduced the new back-end approach proposed
in Chapter 12 for the face subsystem. This approach consists of training a learnable vec-
tor with aDCF loss to represent each face enrollment identity. Using these enrollment
models for the identity assignment process instead of just the cosine similarity, the re-
sults have achieved a relevant improvement over the average embedding directly and
the application of cosine similarity. We have demonstrated that there is still room for
improvement in each of the systems because the results obtained are too high in both
subsets and in both systems. Moreover, future work can be done on the fusion of both
systems, which could improve the final results, especially by disambiguating the identi-
fication process. The high DER values for misses and false alarms in the face and speaker
subsystem, respectively, should be addressed by that fusion.

Log-Likelihood Ratio Cost as Training
Objective Loss

14.1 Motivation 14.4 Experiments and Results
14.2 Log-Likelihood Ratio Cost Loss 14.4.1 Experimental Setup
14.3 Residual Network Architecture 14.4.2 Results with RSR2015-Part II

combined with Multi-head Self-
Attention and Memory Layers
using CLLR Loss

14.5 Conclusions

14.1 Motivation

Along this third part of the thesis, we have focused on the analysis and implementation
of suitable loss functions to train Deep Neural Network (DNN) architectures for verifica-
tion systems since these systems are usually trained without considering their main goal.
As we explained in Chapter 9, the recent research efforts have focused on the design of
new loss functions to train these systems in two lines of study, on one side, the redesign
of the identification loss function, and on the other side, the verification loss functions.
However, these new loss functions have not been oriented to the goal of these systems
which consists of providing a reliable binary decision of whether two samples belong to
the same identity or not. In order to make reliable decisions, verification systems must

213

214 Chapter 14. Log-Likelihood Ratio Cost as Training Objective Loss

obtain proper log-likelihood ratios (LLRs) and compare them against a convenient thresh-
old. The development of a method able to convert the outputs of the system into proper
LLRs is usually known as calibration [226]. This process takes into account parameters
such as the prior probability of a sample to belong to the legitimate identity and the costs
of making wrong decisions to adjust a few parameters to meet the requirements of the
application. In previous chapters, we presented different loss functions to address the
issue of training the system using one of the final evaluation metrics employed to check
whether this step has been correctly done. The first one implemented in Chapter 10 [3,7]
isaAUC loss, which is an approximation of Area Under the ROC Curve combined with the
triplet training philosophy. However, the use of a triplet strategy involves high compu-
tational cost and slows down the training process. While the second approach developed
in Chapter 11 [8,9] is aDCF loss which is an approximation inspired by Detection Cost
Function (DCF). This function is based on the measure of the decision errors in verifica-
tion systems. Unlike aAUC approach, aDCF loss is designed to address the minimization
of the decision errors as a function of a single threshold following the philosophy of the
existing multi-class loss function, so it is more efficient than the triplet training strategy.
Despite its efficiency, this loss function has a main drawback since it is an application-
dependent metric and needs some prior and cost parameters assumptions to be used as
objective loss function. Thus, using aDCF loss, the system is trained to meet the require-
ments of a specific application. Furthermore, we had to make an approximation of the
real DCF metric to train a neural network.

Therefore, the aim of this chapter is to propose a new objective loss function for train-
ing DNNs as an alternative to our previous aDCF loss to substitute the classical identifi-
cation losses. This function is based on another verification metric, Log-Likelihood Ratio
Cost (CLLR) [216, 226]. CLLR is an application-independent evaluation metric which
measures the overall quality of the scores for making soft decisions using the expected
costs where no assumptions of prior or cost parameters are needed. Moreover, CLLR has
a differentiable expression, so we do not have to approximate it as in the case of DCF.
Therefore, training with CLLR as objective loss allows the end-to-end system to learn
how to minimize the expected costs by obtaining good scores.

14.2 Log-Likelihood Ratio Cost Loss

Motivated by the fact that aDCF is a good choice to train the verification systems, but it
has the drawback of the fixed operating point, this chapter presents a loss function for
verification systems based on Log-Likelihood Ratio Cost (CLLR) [226]. This loss function
is a generalization of the previous aDCF since CLLR is formulated as an integral over all
possible operating points of DCF. Besides, it is also related to another widely employed
graph representation which is known as the Detection Error Trade-off (DET). DET curve
is a representation of what happens whether the decision threshold is swept across its
whole range, so CLLR can be viewed as a summary of the accuracy obtained over the

14.2 Log-Likelihood Ratio Cost Loss 215

whole DET curve. The integral of CLLR is defined as,
CLLR = / DCF(Q) dQ, (14.1)
Q

where Q is the overall spectrum of operating points to integrate over them.

This integral expression is not differentiable, so it can not be employed to train a
DNN. However, in [226], an analytical closed-form expression was presented to solve
this integral, so we do not need to make any approximation as we did in Chapter 11 with
DCF. Using this expression, we can introduce it directly in the DNN as objective loss to
optimize. CLLR defined with this differentiable solution measures a sum of the expected
log costs of target examples (Ctar) and the expected log costs of non-target examples
(Cnon). Ctar is defined by the sum of the cost for each target example where whether
the system assigns it correctly a high score for the target hypothesis, the cost will be low.
While Cnon is determined by the sum of the cost for each non-target example where this
cost will be low whether the assigned score is low. The expected log costs of target and
non-target can be written as,

Ctar(0) = Z log(1 + exp(-so(xi, y1))), (14.2)
YVi€Ytar

Cnon(6) = Y. log(1 + exp(so(xi, y1))), (14.3)
Yi€Ynon

where sg(x;, ;) is the score obtained from the last layer of the neural network. Further-
more, in the implementation used in our system, we have introduced a 1 parameter to
divide the scores which is known as temperature scaling parameter [328].

Combining the previous expressions, we propose to minimize CLLR loss as objective
loss defined as,

CLLR() =

1 <Ctar(9) X Cnon(9)> (14.4)

2 10g 2 Niar Nuon

where Ny, is the number of target identities, and N,,, are the non-target identities. Us-
ing this expression, we can apply it directly to our system without any other assumption.
As in Chapter 11, the optimization is performed iteratively by computing CLLR for each
minibatch and updating the model. Each minibacth is interpreted as a verification eval-
uation where the outputs of the last layer are interpreted as scores. Therefore, using the
class labels, we define the target and non-target scores. In Figure 14.1, a graphical ex-
ample of this process is depicted where we observe that target scores with lower values
produce high-cost value in (14.2) term, and non-target scores with higher values involves
a high-cost value in (14.3). Therefore, with the training process and the gradient back-
propagation, the system learns to minimize these costs.

In addition, note that CLLR metric can be also interpreted as a measure of loss of
information [216] since a CLLR value close to 0 represents that good scores have been

216 Chapter 14. Log-Likelihood Ratio Cost as Training Objective Loss

obtained. Therefore, this means that these scores store a large amount of information
which allows reducing the uncertainty about the identity hypothesis to accept or reject
one person. While whether a CLLR value higher is obtained, there is a great loss of
information, so the error rate is similar to the reference detector.

Batch IEmbedding I

Batch Scores e S—]_rad
Star | 11 1 T 1 1lesnontar \\\‘\
S targets "
nontargets ® ~dargets nontargets N
/\ /\ ‘.
: !
1
1
1
1

Crar(6) Cnon(6)

CLLR

Figure 14.1: Graphical example of the main idea behind how DNNs are optimized by minibatch using CLLR
loss. In this example, the target and non-target scores distributions are shown and the contribution of two
target and non-target scores to each cost of CLLR loss can be observed.

14.3 Residual Network Architecture combined with Multi-
head Self-Attention and Memory Layers using CLLR

Loss

In this section, we briefly present the system architecture used to evaluate the effective-
ness of the proposed CLLR loss in this chapter for text-dependent speaker verification
which is depicted in Figure 14.2. This architecture is the same introduced in Chapter 7
where the backbone is composed of two Residual Network blocks (ResBlock) with three
layers each block. Furthermore, this architecture needs positional information [268] for
the Multi-head Self-Attention (MSA) layers to provide good performance. Instead of us-
ing temporal positional information as many language modelling applications, we use
the output of a phonetic classifier bottleneck [269,275]. We concatenate this information
before each Residual block.

14.3 Residual Network Architecture combined with Multi-head Self-Attention and
Memory Layers using CLLR Loss 217

For the pooling part, two MSA layers with two memory layers are alternated. Since
we use a concatenation of MSA layers, it is equivalent to the encoder part of a transformer,
which can be seen analogously as an alignment method that allows assigning embeddings
to several categories. This approach has been found useful for text-dependent tasks [2,
279]. In addition, with the integration of the phoneme embeddings in the backbone part,
the performance of the attention mechanism improves since the phoneme embeddings
help to guide to the attention mask.

The main difference of the architecture used in this chapter with respect to the ar-
chitecture of Chapter 7 is that we have modified the part of the objective loss function to
introduce the proposed new CLLR loss and also, the previous developed aDCF loss and
A-Softmax loss.

X

il el Backbore,

ResBlock

ResBlock

Memory

Average
_____________ .
Linear/Cosing/ | == Cspk
Angle Layer TD speaker
Softmax + CE Loss/ | ©Mbedding

A-Softmax / aDCF Loss /
CLLR Loss

\ 4

Figure 14.2: Architecture for ResBlock, MSA and Memory layers network, composed of a backbone, a pooling
and a embedding extraction.

218 Chapter 14. Log-Likelihood Ratio Cost as Training Objective Loss

14.4 Experiments and Results

14.4.1 Experimental Setup

To develop our experiments with the previous architecture, RSR2015-Part IT has been em-
ployed. 20 dimensions Mel-Frequency Cepstral Coefficients (MFCCs) stacked with their
first and second derivates are used as input to train the architecture. Moreover, we have
extracted phonetic embeddings of 256 dimensions from a phonetic classifier network
which are employed as positional information. Unlike the previous chapters in this third
part of this thesis, for these experiments, we have trained a single DNN architecture with
all phrases of the database instead of one model for each phrase. Motivated by the fact
that we need to use more data to successfully train an architecture with a self-attention
mechanism. To train this architecture for the different experiments, we have used only
the bkg partition. The eval data is used for enrollment and test evaluation.

In this chapter, a set of experiments has been carried out to evaluate the new loss
function proposed. We compare the system trained using some of the state-of-the-art
loss functions with the proposed CLLR loss. The architecture of the different systems are
described in Tables A.20, A.21 and A.22 in Appendix A. Once these systems are trained,
we have evaluated them using only a cosine similarity without any score normalization
technique or calibration step to show the effectiveness of the scores obtained by training
with the different loss functions. Finally, a score normalization is applied to confirm that
the results have the same trend even then.

14.4.2 Results with RSR2015-Part II

Table 14.1 presents Equal Error Rate (EER%), minimum Detection Cost Function 08
(minDCF08), minimum Detection Cost Function 10 (minDCF10), and minimum Log-Like-
lihood Ratio Cost (minCLLR) for the mentioned loss functions. Observing these results,
we can conclude that the proposed CLLR loss achieves the best results within the four
metrics. Thus, we have checked that using this loss function to train the speaker veri-
fication system, we have improved the quality of the scores for all the operating points
since apart from the improvement of minCLLR, this system achieves the best results in
the operating points where EER and DCF are evaluated. Additionally to the previous
metrics, in the last two rows of the table, we present the relative improvement achieved
comparing the system with CLLR with CE+RL and aDCF systems. These comparatives
allow us to remark the fact that training with a loss function oriented to the goal task
improves significantly the whole system performance.

Moreover, note that these performances have been obtained training a single model
with all the phrases and without applying score normalization. Therefore, it shows that
speaker verification systems trained with one of the final verification metrics produce
good scores to achieve promising results without the need for normalization. Never-
theless, we have also included a score normalization (snorm) to confirm that the results

14.4 Experiments and Results 219

Table 14.1: Experimental results on RSR2015-Part II [124] eval set, showing EER%, minDCF08, minDCF10, and
minCLLR. These results were obtained by training with bkg subset to compare the approach proposed with
different loss functions.

Female

Loss Function EER% minDCF08 minDCF10 minCLLR
CE 5.87 0.286 0.740 0.214
CE+RL 4.64 0.228 0.669 0.171
A-Softmax 4.99 0.251 0.703 0.189
aDCF 4.20 0.201 0.660 0.158
CLLR 3.64 0.170 0.532 0.139
CLLR vs CE+RL (%) 21.55 25.43 20.47 18.71
CLLR vs aDCF (%) 13.33 15.42 19.39 12.02

(a) Female results

Male

Loss Function EER% minDCF08 minDCF10 minCLLR
CE 6.37 0.304 0.803 0.236
CE+RL 4.92 0.244 0.712 0.184
A-Softmax 6.44 0.309 0.777 0.239
aDCF 4.90 0.232 0.668 0.182
CLLR 4.07 0.200 0.588 0.157
CLLR vs CE+RL (%) | 17.27 18.03 17.41 14.67
CLLR vs aDCF (%) 16.94 13.79 11.97 13.73

(b) Male results

Female+Male

Loss Function EER% minDCF08 minDCF10 minCLLR
CE 6.23 0.302 0.784 0.229
CE+RL 4.80 0.237 0.706 0.179
A-Softmax 5.80 0.283 0.746 0.217
aDCF 4.64 0.226 0.677 0.175
CLLR 3.96 0.189 0.567 0.151
CLLR vs CE+RL (%) | 17.32 20.25 19.68 15.64
CLLR vs aDCF (%) 14.65 16.37 16.25 13.71

(c) Female+Male results

maintain the same trend than without score normalization and even improve slightly the
performance as we can see in Table 14.2.

In addition to the previous tables, Figures 14.3 and 14.4 depicts the DET curves which
represent the decision errors sweeping the threshold over all the operating points. These
curves show the results for female+male experiments. Note that these representations
clearly demonstrate that the DET curve obtained with CLLR system shows better results

220 Chapter 14. Log-Likelihood Ratio Cost as Training Objective Loss

Table 14.2: Experimental results on RSR2015-Part II [124] eval set, showing EER%, minDCF08, minDCF10, and
minCLLR. These results were obtained by training with bkg subset to compare the approach proposed with
different loss functions with normalization (snorm).

Female

Loss Function EER% minDCF08 minDCF10 minCLLR
CE 5.64 0.278 0.722 0.207
CE+RL 4.62 0.232 0.708 0.172
A-Softmax 4.67 0.236 0.706 0.178
aDCF 3.99 0.195 0.647 0.153
CLLR 3.46 0.167 0.543 0.135
CLLR vs CE+RL (%) 25.10 28.02 23.30 21.51
CLLR vs aDCF (%) 13.28 14.74 16.07 11.76

(a) Female results

Male

Loss Function EER% minDCF08 minDCF10 minCLLR
CE 6.19 0.304 0.813 0.232
CE+RL 4.93 0.246 0.738 0.186
A-Softmax 6.00 0.292 0.781 0.224
aDCF 4.83 0.241 0.674 0.184
CLLR 3.99 0.194 0.572 0.153
CLLR vs CE+RL (%) | 19.07 21.14 22.49 17.74
CLLR vs aDCF (%) 17.39 19.50 15.13 16.84

(b) Male results

Female+Male

Loss Function EER% minDCF08 minDCF10 minCLLR
CE 6.09 0.298 0.783 0.226
CE+RL 4.89 0.243 0.744 0.182
A-Softmax 5.42 0.267 0.753 0.205
aDCF 4.58 0.226 0.681 0.175
CLLR 3.91 0.186 0.584 0.149
CLLR vs CE+RL (%) | 20.08 23.46 21.50 18.13
CLLR vs aDCF (%) 14.84 17.69 14.24 14.85

(c) Female+Male results

in all the operating points while the DET of aDCF system only outperforms the DET
curve of CE+RL system in some points. This fact can be motivated by the assumption of
the selected parameters to train with aDCF the system. Furthermore, A-Softmax loss is
a sensitive method to the training parameters to achieve good results.

14.5 Conclusions

221

Figure 14.3: DET curves for female+male results using the different loss functions evaluated.

False Rejection Rate [In %]

False Rejection Rate [In %]

40

30 A

20

10

—— CE (EER= 6.23)
—— CE+RL (EER= 4.80)
—— A-Softmax (EER= 5.80)
—— aDCF (EER= 4.64)

—— CLLR (EER= 3.96)

40

1 2 5 10 20 30 40
False Acceptance Rate [In %]

30 o

20 A

10

CE (EER= 6.09)
CE+RL (EER= 4.89)
A-Softmax (EER= 5.42)
aDCF (EER= 4.58)
CLLR (EER= 3.91)

1 2 5 10 20 30 40
False Acceptance Rate [In %]

Figure 14.4: DET curves for female+male results using the different loss functions evaluated with normalization

(snorm).

14.5 Conclusions

In this chapter, we have presented a new loss function based on optimizing the quality
of the scores over all the operating points. This CLLR loss is an alternative to aDCF
loss to replace the traditional identification loss functions as CE loss without the need

222 Chapter 14. Log-Likelihood Ratio Cost as Training Objective Loss

of making prior or cost assumptions, and also we have not made any approximation of
the real metric. Moreover, the use of CLLR loss allows the system to learn how to reduce
the expected log costs of target and non-target examples. The evaluation was carried
out in the RSR2015-Part II text-dependent speaker verification database. Results confirm
that the speaker verification systems trained with specific verification metrics are a good
choice to improve the generalization of the learned representations.

Part1IV

Conclusions

223

15

Conclusions and Future Work

15.1 Conclusions 15.2.1 Award
15.1.1 Representation Learning 15.2.2 Journal Articles
15.1.2 Metric Learning 15.2.3 Conference Papers
15.2 Award and Research Contributions 15.3 Future Research

15.1 Conclusions

In recent years, deep learning techniques have became the dominant approaches in many
different fields and tasks, including biometric recognition. As advanced as these tech-
niques are, they still have some problems when the task has limited data or a successful
approach in one task is intended to be used for another task. Therefore, along this the-
sis, we have presented different alternative approaches to deal with these issues. First,
we have focused our efforts on improving the generation of signal representations, also
known as representation learning, for the text-dependent speaker verification task, since
this task has a strong dependency of the phonetic content. Thus, not only the informa-
tion related to the speaker identity is needed to generate a good enough representation
for the final verification process. While in the last part of the thesis, we have analyzed
the fact that the verification systems available in the state-of-the-art are not always op-
timized towards the goal task. Hence, we have proposed several approaches using new
training loss functions that are based on the final verification metrics. These training loss

225

226 Chapter 15. Conclusions and Future Work

functions can be applied for each verification task. The following subsections summarise
and present the conclusions for each specific part of this dissertation.

15.1.1 Representation Learning

At the beginning of this thesis, we established the baseline systems for face and text-
dependent speaker verification systems using state-of-the-art deep learning architec-
tures. However, in Chapter 4, we discovered that these architectures did not perform as
we expected for the text-dependent speaker verification task. Thus, an analysis of what
it could be happening was carried out in Chapter 5. With this analysis, we observed that
the use of deep neural networks (DNNs) combined with global average pooling was not
the most suitable approach for the text-dependent speaker verification task. This issue
could be motivated by the fact that the order of the phonetic information in this task is
relevant, since the speaker identity and the correct phrase are jointly verified to grant
access to the systems. For this reason, in this thesis, we presented a new successful ap-
proach based on replacing the global average pooling by an alignment mechanism. The
use of the alignment mechanism allows us to keep the temporal structure and encode
the speaker and phrase information in a neural network supervector as representation
for each utterance. Moreover, different types of alignment mechanism, such as Hidden
Markov Models (HMM) and Gaussian Mixture Models (GMM) combined with Maximum
A Posteriori (MAP), were employed to confirm that this approach achieved competitive
results on the RSR2015-Part I and Part II text-dependent speaker verification database.
On the other hand, the effect of varying the size of the training data was also studied to
check that an improvement could be achieved if the available training data was larger.

Aside from the issue of phonetic information, with the above analysis, we concluded
that the limited amount of training data in the RSR2015 database was another relevant
problem to the application of powerful DNNs such as those used in face or text-independent
speaker verification. This lack of data could produce overconfident predictions. To ad-
dress this problem in Chapter 6, we introduced an architecture based on the Knowl-
edge Distillation (KD) approach, which consists of two simultaneously trained networks,
known as teacher-student architecture. Using this architecture, the student network
learns to mimic the predictions of the teacher network. Thus, this approach provides
robustness to the systems during the training process. In addition, we included two al-
ternatives to introduce variability in the input of the networks with the Random Erasing
(RE) data augmentation technique which helps to handle a potential overfitting issue due
to the lack of data. The results achieved with the RSR2015-Part I and Part II database con-
firmed that the teacher-student architectures improved the generalization capability and
better model the variability introduced by the input signals.

The alignment mechanism introduced previously showed to be effective for the text-
dependent speaker verification task, but this technique has a main problem, since the
temporal alignment is obtained using an external method such as HMM or GMM. There-
fore, in Chapter 7, we presented an alternative architecture based on residual blocks with

15.1 Conclusions 227

a different type of processing for temporal information that is composed of Multi-head
Self-Attention (MSA) layers combined with phonetic embeddings and memory layers.
MSA layers allow the model to focus on the most relevant frames of the sequence to
keep phonetic information and better discriminate between utterances and speakers. The
use of phonetic embeddings compared to standard positional embeddings improves the
performance of attention mechanism, as these embeddings help to guide the attention
mask to focus on certain phonetic information. Furthermore, the model capacity was
improved by the use of the memory layers. Apart from these techniques, in Chapter 8,
we also introduced in the above architecture two learnable tokens which are called class
and distillation tokens. These tokens were concatenated to the input before the first
MSA layer and used to obtain a global utterance descriptor similar to a supervector ap-
proach. The combination of these techniques was evaluated on the RSR2015-Part II and
DeepMine-Part I text-dependent speaker verification databases. Results achieved shown
on both databases the power of this kind of approach, even for the RSR2015 database
which has suffered of overfitting problems when larger DNN architectures were used in
the initial attempts of this thesis due to the small size of the database.

15.1.2 Metric Learning

Throughout the previous part, robust representations were obtained using different ap-
proaches based on DNNs. Nevertheless, all the presented approaches were trained with
the same loss function which was the traditional Cross-Entropy (CE) loss combined with
Ring loss as complementary loss. Although this training strategy provided reasonably
good results, it was not designed oriented to optimize the verification task itself. More-
over, many systems trained with this strategy usually apply a back-end to perform the
verification process. Therefore, the first approach proposed in this part was the use of a
triplet neural network as back-end with a training loss function based on the Area Under
the ROC Curve (AUC) metric described in Chapter 10. This metric is employed to evaluate
performance in verification systems. Thus, we presented a differentiable approximation
of this metric called aAUC loss which allows training the triplet neural network with an
objective loss oriented to the goal task. In order to correctly train this kind of approach,
the triplet data selection employed was very important. For this reason, we implemented
a smart algorithm to carry out the selection of this triplet training data. The use of this
type of training strategy achieved a great influence on the performance of the system
for each of the verification tasks in which it was applied, since this approach was em-
ployed to develop text-dependent speaker, language and face verification systems using
the RSR2015 database, LRE databases and MOBIO dataset respectively.

Metric learning approaches such as the triplet neural network with aAUC loss pro-
posed in this thesis have achieved relevant success in improving the generalization ca-
pability of verification systems. However, these techniques combined with smart data
selection have a high computational cost. Therefore, different approaches were proposed
to take advantage of the efficiency and speed of multi-class training while a loss func-
tion focused on the goal task was optimized. In Chapter 11, approximated Detection

228 Chapter 15. Conclusions and Future Work

Cost Function (aDCF) was developed, since the original DCF metric was based on mea-
suring the cost of decision errors of verification systems in terms of misses and false
alarms. With this loss function, we trained a text-dependent verification system using
the RSR2015-Part I and Part II database and the results achieved a great performance
in both parts. Apart from evaluating the effectiveness of this loss function for training
multi-class DNN architectures, in this chapter, we also checked the effects of employing
a cosine layer as the last layer in the DNN architecture, and compared the performance
with some of the state-of-the-art loss functions. Nevertheless, the systems with aDCF
loss were trained using one model for each phrase, so it had some problems when score
normalization was not applied to achieve the final performance. Thus, motivated by this
issue, we presented a new straightforward back-end that was applied to the DNN ar-
chitecture trained with aDCF loss to improve the discrimination ability and mitigate the
effect of not using a score normalization. This novel back-end employed the matrix from
the last layer of the DNN architecture combined with the enrollment data to train en-
rollment models for each identity as a binary task. Thus, this training strategy mimicked
the final verification process which improved the system performance and also, the cal-
ibration of the resulting systems for the text-dependent speaker verification task with
the RSR2015-Part II database. Moreover, in Chapter 13, this new back-end approach was
applied to a multimodal diarization task where face enrollment models were trained for
each identity. The use of these models for identity assignment allowed us to achieve a
relevant improvement in the IberSPEECH-RTVE 2020 Multimodal Diarization Challenge
over average embeddings directly and the application of only a simple cosine similarity.

aDCF loss was proven to be an effective approach to train DNN architectures, but
this loss function had a major drawback since it was an application-dependent metric
and needed some prior or cost parameter assumptions to be used. In addition, an ap-
proximation of the real DCF metric had to be made to use it as objective loss function.
Hence, as an alternative approach with the same idea of aDCF loss, in Chapter 14, Log-
Likelihood Ratio Cost (CLLR) was implemented. CLLR is an application-independent
evaluation metric which measures the expected log costs of the scores generated for each
example by the systems. Therefore, using CLLR as objective loss, the end-to-end system
was trained to learn to minimize these costs by obtaining good scores. The performance
of systems trained with CLLR loss was evaluated on the RSR2015-Part II text-dependent
speaker verification database, and the results confirmed the improvement achieved in
the generalization of the learned representations when one of the specific verification
metrics was applied to develop the systems.

15.2 Award and Research Contributions

The research conducted during this PhD Thesis has produced multiple contributions to
peer-review journals and conference proceedings. These contributions are detailed be-
low.

15.2 Award and Research Contributions 229

15.2.1 Award

+ Best Paper Award. V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Differentiable
Supervector Extraction for Encoding Speaker and Phrase Information in
Text Dependent Speaker Verification. Proceedings of IberSPEECH 2018, pp. 1-5.

15.2.2 Journal Articles

« V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Supervector Extraction for
Encoding Speaker and Phrase Information with Neural Networks for Text-
Dependent Speaker Verification. Applied Sciences, vol. 9, no. 16, p. 3295, 2019.

« V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Optimization of the area un-
der the ROC curve using neural network supervectors for text-dependent
speaker verification. Computer Speech Language, vol. 63,p. 101078, 2020.

+ P. Gimeno, V. Mingote, A. Ortega, A. Miguel, and E. Lleida, Generalising AUC
Optimisation to Multiclass Classification for Audio Segmentation with Lim-
ited Training Data. IEEE Signal Processing Letters, vol.28, p. 1135-1139, 2021.

« V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, aDCF Loss Function
for Deep Metric Learning in End-to-End Text-Dependent Speaker Verifica-
tion Systems. IEEE/ACM Transactions on Audio, Speech and Language, vol. 30, pp.
772-784, 2022.

« V. Mingote, I. Vinals, P. Gimeno, A. Miguel, A. Ortega, and E. Lleida, Multimodal
Diarization Systems by Training Enrollment Models as Identity Represen-
tations. Applied Sciences, vol. 12, no. 3, p. 1141, 2022.

« V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Class Token and Knowledge
Distillation for Multi-head Self-Attention Speaker Verification Systems.
arXiv preprint arXiv:2111.03842, Submitted to IEEE/ACM Transactions on Audio,
Speech and Language.

15.2.3 Conference Papers

+ V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Differentiable Supervector Ex-
traction for Encoding Speaker and Phrase Information in Text Dependent
Speaker Verification. Proceedings of IberSPEECH 2018, pp. 1-5.

« V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, Optimization of False
Acceptance/Rejection Rates and Decision Threshold for End-to-End Text-
Dependent Speaker Verification Systems. Proceedings of INTERSPEECH 2019,
pp.2903-2907.

230

Chapter 15. Conclusions and Future Work

V. Mingote, D. Castan, M. McLaren, M. K. Nandwana, A. Ortega, and E. Lleida, A.
Miguel, Language Recognition using Triplet Neural Networks. Proceedings of
INTERSPEECH 2019, pp. 4025-4029.

I. Vinals, D. Ribas, V. Mingote, J. Llombart, P. Gimeno, A. Miguel, A. Ortega, and
E. Lleida, Phonetically-aware embeddings, Wide Residual Networks with
Time-Delay Neural Networks and Self Attention models for the 2018 NIST
Speaker Recognition Evaluation. Proceedings of INTERSPEECH 2019, pp. 4310-
4314.

V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, Knowledge Distilla-
tion and Random Erasing Data Augmentation for Text-Dependent Speaker
Verification. Proceedings of ICASSP 2020, pp. 6824-6828.

V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Training Speaker Enrollment
Models by Network Optimization. Proceedings of INTERSPEECH 2020, pp. 3810-
3814.

P. Gimeno, V. Mingote, A. Ortega, A. Miguel, and E. Lleida, Partial AUC Optimi-
sation using Recurrent Neural Networks for Music Detection with Limited
Training Data. Proceedings of INTERSPEECH 2020, pp. 3067-3071.

V. Mingote, 1. Vifals, P. Gimeno, A. Miguel, A. Ortega, and E. Lleida, ViVoLAB
Multimodal Diarization System for RTVE 2020 Challenge. Proceedings of
IberSPEECH 2020, pp. 76-80.

V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Memory Layers with Multi-
Head Attention Mechanism for Text Dependent Speaker Verification. Pro-
ceedings of ICASSP 2021, pp. 6154-6158.

V. Mingote, A. Miguel, A. Ortega, and E. Lleida, Log-Likelihood-Ratio Cost
Function as Objective Loss for Speaker Verification Systems. Proceedings of
INTERSPEECH 2021, pp. 2361-2365.

15.3 Future Research

Along this thesis, we have developed different approaches to enhance many parts of

the DNN architecture that improves the training process and the power to learn more

general representations. Although each of these approaches present improvements for

every shown scenario, there are still some limitations that may be solved in future works.

Furthermore, several new challenges have been created during this thesis. Some future

research lines to study and address the limitations and challenges are described below.

« As noted in the conclusions, architectures based on MSA layers combined with

memory layers and class and distillation tokens have shown to be very effective and

15.3 Future Research 231

promising for text-dependent speaker verification, even when the data available to
train the systems is not too large. In addition, the introduction of this MSA and
memory mechanism based on self-attention allows to enhance the results and also
the interpretability of them, as we showed in the initial analysis carried out in
Chapter 8. For this reason, an interesting line of research could be focused on a
wide analysis of the information learned by this type of mechanism that allows a
better understanding of the trained verification systems.

« Moreover, since the previous architectures employ the phonetic embeddings to
help to guide the attention mask of the MSA layers, we could also investigate the
option of replacing these embeddings with a learnable matrix which learns during
training similar information and avoids the need of this external information.

+ On the other hand, the audio processing step used in the architectures based on
MSA to obtain the features was initially fixed for each text-dependent speaker ver-
ification database and we did not do any exploration related to these configurations.
Thus, we could think about combining them or propose another alternatives to use
them as input for training the architectures.

+ Another line of future work could focus on improving the audiovisual systems
developed in this thesis. Therefore, we could also introduce MSA layers with class
token to fully train our own face verification system thanks to which we could
replace the pre-trained model used.

+ Furthermore, in the initial face processing stage of verification systems, the fun-
damental detection step produces as output the detected faces and also, the land-
marks of where the main points of these faces are located in the images. Thus,
this information could be included in the DNN training to keep the structure of
the face which would be similar to the states of the supervectors presented for
text-dependent speaker verification systems.

« Regarding the loss function employed to train the architectures based on MSA lay-
ers with class tokens, we used the traditional CE loss. So we conjecture that a
benefit could still be achieved by applying some of the approaches proposed in the
metric learning part of this thesis to train these architectures such as aDCF loss or
CLLR loss. In addition, we could also incorporate to develop our architectures for
face verification one of this loss function as objective training losses.

« In the case of multimodal diarization system, we noted that there is still much
room for improvement, so it could also be interesting to search effective fusion
strategies for the speaker and face subsystems. This fusion could involve a great
improvement as it could help to disambiguate the identification process.

« Finally, the vast majority of our findings can also be extended and applied to the
text-independent speaker verification systems, and also to other fields.

PartV

Appendix

233

Detailed Architectures

A.1 Introduction

This appendix provides a detailed explanation of the architectures employed through-
out this thesis to develop each proposed approach. To define the architectures used in
each part of the thesis, we have divided the information of the models into the following
two sections. The former contains the architectures of Part II, while the latter has the
architectures employed in Part IIL

A.2 Architectures Part I1

A.2.1 Baseline Systems

In this section, the architectures used to develop the baseline systems of this thesis are
explained. First, a Wide Residual Neural Network (WideResnet) has been implemented
in this thesis to establish the face verification baseline system detailed in Table A.1. On
the other hand, to develop the baseline system for text-dependent speaker verification,
two architectures have been employed, a WideResnet described in Table A.2 and a Con-
volutional Neural Network (CNN) detailed in Table A.3.

235

236

Chapter A. Detailed Architectures

Table A.1: Topology for WideResnet architecture for face verification baseline.

Layer Layer type Channels Output
Input 3 3x160x160
1 Conv2D-Relu 32 32x80x80
2 Conv2D-Relu 32 32x40x40
3 WRNBIlock-ReLU(x4) 160 160x20x20
4 WRNBIlock-ReLU(x4) 320 320x10x10
5 WRNBIlock-ReLU(x4) 640 640x5x5
6 BatchNorm2D 640 640x5x5
7 Average - 640
8 Linear+Softmax - N
CE Loss

Table A.2: Topology for WideResnet architecture for text-dependent speaker verification baseline.

Layer Layer type Channels Output
Input 60 60x200
1 Conv1D-LRelu 256 256x200
2 Conv1D-LRelu 256 256x200
3 WRNBIlock-LReLU(x4) 160 160x100
4 WRNBIlock-LReLU(x4) 320 320x50
5 WRNBlock-LReLU(x4) 640 640x25
6 BatchNorm1D 640 640x25
7 Average - 640
8 Linear+Softmax - N
CE Loss

Table A.3: Topology for CNN architecture for text-dependent speaker verification baseline.

Layer Layer type Channels Output
Input 60 60x200
1 Conv1D-LRelu 64 64x100
2 ConvlD-LRelu 128 128x50
3 Conv1D 32 32x25
4 Average - 32
5 Linear+Softmax - N

CE Loss + Ring Loss

A.2.2 Architectures based on Alignment Mechanism

The following section includes the description of the architectures developed in this the-
sis for text-dependent speaker verification systems to replace the global average pooling

A.2 Architectures Part II 237

of Deep Neural Networks (DNNs) by an alighment mechanism such as Hidden Markov
Model (HMM) or Gaussian Mixture Model (GMM) combined with Maximum A Posteriori
(MAP). First, different configurations of the number of layers of a CNN combined with
both alignment mechanisms are described in Tables A.4, A.5 and A.6, where SC indicates
the number of HMM states or GMM components used. Moreover, in this type of approach
using the alignment mechanisms, another philosophy of architecture based on Knowl-
edge Distillation (KD) and Teacher-Student architectures was proposed. Therefore, Table
A.7 and A.8 describe the configuration of the teacher network and the student network
employed.

Table A.4: Topology for CNN architecture with one convolutional layer combined with alignment mechanism
for text-dependent speaker verification. SC indicates the number of HMM states or GMM components, and N
is the number of classes.

Layer Layer type Channels Output
Input 60 60x200
1 ConvliD 32 32x200
2 Alignment Mechanism - 32+ SC
3 Linear+Softmax - N

CE Loss + Ring Loss

Table A.5: Topology for CNN architecture with three convolutional layers combined with alignment mechanism
for text-dependent speaker verification. SC indicates the number of HMM states or GMM components, and N
is the number of classes.

Layer Layer type Channels Output
Input 60 60x200
1 ConvlD-LRelu 64 64x200
2 Conv1D-LRelu 128 128x200
3 Conv1D 32 32x200
4 Alignment Mechanism - 32+ SC
5 Linear+Softmax - N

CE Loss + Ring Loss

238 Chapter A. Detailed Architectures

Table A.6: Topology for CNN architecture with four convolutional layers combined with alignment mechanism
for text-dependent speaker verification. SC indicates the number of HMM states or GMM components, and N
is the number of classes.

Layer Layer type Channels Output
Input 60 60x200
1 Conv1D-LRelu 64 64x200
2 Conv1D-LRelu 128 128x200
3 Conv1D-LRelu 256 256x200
4 Conv1D 32 32x200
5 Alignment Mechanism - 32+ SC
6 Linear+Softmax - N

CE Loss + Ring Loss

Table A.7: Topology for CNN architecture combined with alignment mechanism for teacher neural network
for text-dependent speaker verification. SC indicates the number of HMM states or GMM components, and N
is the number of classes.

Layer Layer type Channels Output
Input 60 60x200
1 Conv1D-LRelu 64 64x200
2 ConvlD 32 32x200
3 Alignment Mechanism - 32+« SC
4 Linear+Softmax - N

CE Loss + Ring Loss

Table A.8: Topology for CNN architecture combined with alignment mechanism for student neural network
for text-dependent speaker verification. SC indicates the number of HMM states or GMM components, and N
is the number of classes.

Layer Layer type Channels Output
Input 60 60x200
1 Conv1D-LRelu 64 64x200
2 ConvlD 32 32x200
3 Alignment Mechanism - 32+ SC
4 Linear+Softmax - N

KLD Loss + Ring Loss

A.2.3 Architectures with Multi-head Self-Attention and Memory
Layers

The last group of architectures employed in this part have been composed of Residual
Neural Network (ResBlock) combined with Multi-head Self-Attention (MSA) and Mem-
ory Layers. Table A.9 shows the basic architecture with these approaches and apply-
ing a global average pooling as reduction mechanism. As an evolution of this archi-

A.2 Architectures Part II 239

tecture, a teacher-student architecture has been developed. Thus, Table A.10 describes
the teacher network configuration and Table A.11 details the student network. Finally,
on this teacher-student architecture, a new approach has been proposed to replace the
global average pooling. In this approach, a class token for the teacher network and class
and distillation tokens for the student network are used as output representations. The
configuration of these two networks is shown in Tables A.12 and A.13.

Table A.9: Topology for ResBlock, MSA and Memory layers architecture for text-dependent speaker verifica-
tion. N is the number of classes.

Layer Layer type Channels Output
Input 60 60x300

1 Conv1D 128 128x300
2 ResBlock-ReLU(x3) 160 160x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9 Average - 256
10 Linear+Softmax - N

CE Loss + Ring Loss

Table A.10: Topology for ResBlock, MSA and Memory layers architecture for teacher neural network for text-
dependent speaker verification. N is the number of classes.

Layer Layer type Channels Output
Input 60 60x300

1 Conv1D 128 128x300
2 ResBlock-ReLU(x3) 160 160x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9 Average - 256
10 Linear+Softmax - N

CE Loss + Ring Loss

240 Chapter A. Detailed Architectures

Table A.11: Topology for ResBlock, MSA and Memory layers architecture for student neural network for text-
dependent speaker verification. N is the number of classes.

Layer Layer type Channels Output
Input 60 60x300
1 Conv1D 128 128x300
2 ResBlock-ReLU(x3) 160 160x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9 Average - 256
10 Linear+Softmax - N

KLD Loss + Ring Loss

Table A.12: Topology for ResBlock, MSA and Memory layers architecture with class token for teacher neural
network for text-dependent speaker verification. N is the number of classes.

Layer Layer type Channels Output
Input 60 60x300
1 Conv1D 128 128x300
2 ResBlock-ReLU(x3) 160 160x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9 Class Token - 256
10 Linear+Softmax - N

CE Loss + Ring Loss

A.3 Architectures Part III 241

Table A.13: Topology for ResBlock, MSA and Memory layers architecture with class and distillation tokens for
student neural network for text-dependent speaker verification. N is the number of classes.

Layer Layer type Channels Output
Input 60 60x300
1 ConvlD 128 128x300
2 ResBlock-ReLU(x3) 160 160%x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9a Distillation Token - 256
9b Class Token - 256
10a Linear+Softmax - N
10b Linear+Softmax - N

a KLD Loss + Ring Loss
b CE Loss + Ring Loss

A.3 Architectures Part II1

A.3.1 Triplet Neural Network as Back-end Network

The first type of architectures trained in Part III consists of triplet neural networks. These
networks are used as back-end network for different verification tasks. Table A.14 con-
tains the topology information of the architecture employed for the case of face and
speaker verification systems. Whereas Table A.15 shows the configuration of the triplet
neural network for language recognition systems.

Table A.14: Topology for Triplet Neural Network for back-end network for face and text-dependent speaker
verification. SC indicates the number of HMM states or GMM components.

Layer Layer type Channels Output
Input - 128/640/32 = SC
1 Linear - 3000
2 Linear - 1024
aAUC Loss

Table A.15: Topology for Triplet Neural Network for back-end network for language verification.

Layer Layer type Channels Output
Input - 512
1 Linear - 1024
aAUC Loss

242 Chapter A. Detailed Architectures

A.3.2 Convolutional Neural Networks for Metric Learning Loss
Functions

In this section, the CNN teacher-student architecture with alighment mechanism devel-
oped in Part II for the text-dependent speaker verification task is employed to implement
a new loss function oriented to the goal task. This function is aDCF loss and the exact
architecture is described in Tables A.16 and A.17. Moreover, to compare with other state-
of-the-art loss functions, the same architecture using Angular Softmax loss is developed
and detailed in Tables A.18 and A.19.

Table A.16: Topology for CNN architecture combined with alignment mechanism and aDCF loss for teacher
neural network for text-dependent speaker verification.

Layer Layer type Channels Output
Input 60 60x200
1 Conv1D-LRelu 64 64x200
2 ConvlD 32 32x200
3 Alignment Mechanism - 32 « 64
4 Linear/Cosine - N
aDCF Loss

Table A.17: Topology for CNN architecture combined with alignment mechanism and aDCF loss for student
neural network for text-dependent speaker verification.

Layer Layer type Channels Output
Input 60 60x200
1 ConvlD-LRelu 64 64x200
2 ConvlD 32 32x200
3 Alignment Mechanism - 32 « 64
4 Linear/Cosine - N
aDCF Loss

Table A.18: Topology for CNN architecture combined with alignment mechanism and A-Softmax loss for
teacher neural network for text-dependent speaker verification.

Layer Layer type Channels Output
Input 60 60x200
1 ConvlD-LRelu 64 64x200
2 Conv1D 32 32x200
3 Alignment Mechanism - 32 « 64
4 Angle Linear - N

A-Softmax Loss

A.3 Architectures Part III 243

Table A.19: Topology for CNN architecture combined with alignment mechanism and A-Softmax loss for stu-
dent neural network for text-dependent speaker verification.

Layer Layer type Channels Output
Input 60 60x200
1 Conv1D-LRelu 64 64x200
2 ConviD 32 32x200
3 Alignment Mechanism - 32 « 64
4 Angle Linear - N

A-Softmax Loss

A.3.3 Residual Neural Networks with Multi-head Self-Attention
and Memory Layers for Metric Learning Loss Functions

To conclude, the last architectures developed in this thesis are based on the Residual Neu-
ral Networks (ResBlock) with Multi-head Self-Attention (MSA) and Memory layers im-
plemented in Part II. Taking the basic architecture of Table A.9, we have modified the loss
function used in that architecture to validate the proposed new loss functions and also
other state-of-the-art loss function for text-dependent speaker verification tasks. There-
fore, Table A.20 presents the architecture with CLLR loss, Table A.21 has the modified
architecture for aDCF loss, and finally, Table A.22 shows the architecture with A-Softmax
loss.

Table A.20: Topology for ResBlock, MSA and Memory layers architecture with CLLR loss for text-dependent
speaker verification.

Layer Layer type Channels Output
Input 60 60x300
1 ConvlD 128 128x300
2 ResBlock-ReLU(x3) 160 160x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9 Average - 256
10 Cosine - N

CLLR Loss

244 Chapter A. Detailed Architectures

Table A.21: Topology for ResBlock, MSA and Memory layers architecture with aDCF loss for text-dependent
speaker verification.

Layer Layer type Channels Output
Input 60 60x300
1 Conv1D 128 128x300
2 ResBlock-ReLU(x3) 160 160x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9 Average - 256
10 Cosine - N
aDCF Loss

Table A.22: Topology for ResBlock, MSA and Memory layers architecture with A-Softmax loss for text-
dependent speaker verification.

Layer Layer type Channels Output
Input 60 60x300
1 ConvlD 128 128x300
2 ResBlock-ReLU(x3) 160 160x300
3 ResBlock-ReLU(x3) 256 256x300
4 BatchNorm1D 256 256x300
5 MSA (heads=16) 256 256x300
6 Memory 256 256x300
7 MSA (heads=16) 256 256x300
8 Memory 256 256x300
9 Average - 256
10 Angle Linear - N

A-Softmax Loss

[1]

3]

References

V. Mingote, A. Miguel, A. Ortega, and E. Lleida, “Differentiable Supervector
Extraction for Encoding Speaker and Phrase Information in Text Dependent
Speaker Verification,” Proceedings of IberSPEECH 2018, pp. 1-5, 2018. [Online].
Available: http://dx.doi.org/10.21437/IberSPEECH.2018-1

——, “Supervector Extraction for Encoding Speaker and Phrase Information with
Neural Networks for Text-Dependent Speaker Verification,” Applied Sciences, vol. 9,
no. 16, p. 3295, 2019.

——, “Optimization of the area under the ROC curve using neural network su-
pervectors for text-dependent speaker verification,” Computer Speech & Language,
vol. 63, p. 101078, 2020.

V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, “Knowledge Distillation
and Random Erasing Data Augmentation for Text-Dependent Speaker Verifica-
tion,” 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6824-6828, 2020.

V. Mingote, A. Miguel, A. Ortega, and E. Lleida, “Memory Layers with Multi-Head
Attention Mechanisms for Text-Dependent Speaker Verification,” 2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6154—
6158, 2021.

——, “Class Token and Knowledge Distillation for Multi-head Self-Attention
Speaker Verification Systems,” arXiv preprint arXiv:2111.03842, 2021.

V. Mingote, D. Castan, M. McLaren, M. K. Nandwana, A. Ortega, E. Lleida, and
A. Miguel, “Language Recognition Using Triplet Neural Networks.” Proceedings of
INTERSPEECH 2019, pp. 4025-4029, 2019.

V. Mingote, A. Miguel, D. Ribas, A. Ortega, and E. Lleida, “Optimization of False Ac-
ceptance/Rejection Rates and Decision Threshold for End-to-End Text-Dependent
Speaker Verification Systems,” Proceedings of INTERSPEECH 2019, pp. 2903-2907,
2019.

——, “aDCF Loss Function for Deep Metric Learning in End-to-End Text-Dependent
Speaker Verification Systems,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 30, pp. 772-784, 2022.

245

246

References

[10]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

V. Mingote, A. Miguel, A. Ortega, and E. Lleida, “Training Speaker Enrollment
Models by Network Optimization,” Proceedings of INTERSPEECH 2020, pp. 3810—
3814, 2020.

V. Mingote, I. Vinals, P. Gimeno, A. Miguel, A. Ortega, and E. Lleida, “ViVoLAB
Multimodal Diarization System for RTVE 2020 Challenge,” Proceedings of Iber-
SPEECH 2021, pp. 76-80, 2021.

——, “Multimodal Diarization Systems by Training Enrollment Models as Identity
Representations,” Applied Sciences, vol. 12, no. 3, p. 1141, 2022.

V. Mingote, A. Miguel, A. Ortega, and E. Lleida, “Log-Likelihood-Ratio Cost Func-
tion as Objective Loss for Speaker Verification Systems,” Proceedings of INTER-
SPEECH 2021, pp. 2361-2365, 2021.

R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and machine recognition of
faces: A survey,” Proceedings of the IEEE, vol. 83, no. 5, pp. 705-741, 1995.

W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A litera-
ture survey,” ACM computing surveys (CSUR), vol. 35, no. 4, pp. 399-458, 2003.

R. Jafri and H. R. Arabnia, “A survey of face recognition techniques,” Journal of
information processing systems, vol. 5, no. 2, pp. 41-68, 2009.

M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol.
429, pp. 215-244, 2021.

M. Taskiran, N. Kahraman, and C. E. Erdem, “Face recognition: Past, present and
future (a review),” Digital Signal Processing, p. 102809, 2020.

L. Adjabi, A. Ouahabi, A. Benzaoui, and A. Taleb-Ahmed, “Past, present, and future
of face recognition: A review,” Electronics, vol. 9, no. 8, p. 1188, 2020.

Y. Kortli, M. Jridi, A. Al Falou, and M. Atri, “Face recognition systems: A survey,’
Sensors, vol. 20, no. 2, p. 342, 2020.

[21] J. P. Campbell, “Speaker recognition: A tutorial,” Proceedings of the IEEE, vol. 85,

[22]

[24]

no. 9, pp. 1437-1462, 1997.

F. Bimbot,].-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau,
S. Meignier, T. Merlin, J. Ortega-Garcia, D. Petrovska-Delacrétaz, and D. A.
Reynolds, “A tutorial on text-independent speaker verification,” EURASIP Journal
on Advances in Signal Processing, no. 4, pp. 1-22, 2004.

S. Furui, “50 years of progress in speech and speaker recognition research,” ECTI
Transactions on Computer and Information Technology (ECTI-CIT), vol. 1, no. 2, pp.
64-74, 2005.

T. Kinnunen and H. Li, “An overview of text-independent speaker recognition:
From features to supervectors,” Speech communication, vol. 52, no. 1, pp. 12-40,
2010.

REFERENCES 247

[25]

[29]

[30]

[36]

[37]

[38]

S. Debnath, B. Soni, U. Baruah, and D. Sah, “Text-dependent speaker verification
system: A review, 2015 IEEE 9th International Conference on Intelligent Systems and
Control (ISCO), pp. 1-7, 2015.

C. D. Shaver and J. M. Acken, “A brief review of speaker recognition technology,’
2016.

Z. Bai and X.-L. Zhang, “Speaker recognition based on deep learning: An
overview, Neural Networks, vol. 140, pp. 65-99, 2021.

R. M. Hanifa, K. Isa, and S. Mohamad, “A review on speaker recognition: Technol-
ogy and challenges,” Computers & Electrical Engineering, vol. 90, p. 107005, 2021.

Y. Muthusamy, A review of research in automatic language identification. Citeseer,
1992.

D. Martinez Gonzalez, E. Lleida Solano, and A. Miguel Artiaga, “Subspace Gaussian
Mixture Models for Language Identification and Dysarthric Speech Intelligibility
Assessment,” Ph.D. dissertation, Universidad de Zaragoza, 2015.

O. P. Singh, “Exploration of sparse representation techniques in language recogni-
tion,” Ph.D. dissertation, 2019.

L. S. Bruner and R. Tagiuri, “The perception of people,” Handbook of Social Psychol-
ogy, vol. 2, p. 634-654, 1954.

W. W. Bledsoe, “The model method in facial recognition,” Panoramic research Inc.,
Palo Alto, CA, Tech. Rep., 1964.

M. D. Kelly, Visual identification of people by computer. Department of Computer
Science, Stanford University., 1970, no. 130.

T. Kanade, “Picture processing system by computer complex and recognition of
human faces,” 1974.

L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of
human faces,” Josa a, vol. 4, no. 3, pp. 519-524, 1987.

H. Hotelling, “Analysis of a complex of statistical variables into principal compo-
nents.” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” Proceedings.
1991 IEEE computer society conference on computer vision and pattern recognition,
pp- 586-587, 1991.

B. Moghaddam and A. Pentland, “Probabilistic visual learning for object represen-
tation,” IEEE Transactions on pattern analysis and machine intelligence, vol. 19, no. 7,
pp. 696-710, 1997.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals
of eugenics, vol. 7, no. 2, pp. 179-188, 1936.

248

References

[41]

[42]

[43]

[44]

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 19, no. 7, pp. 711-720, 1997.

M. S. Bartlett and T. J. Sejnowski, “Independent components of face images: A rep-
resentation for face recognition,” Proceedings of 4th Annual J. Symp. Neural Com-
putation, pp. 3—10, 1997.

L. Wiskott, N. Kriiger, N. Kuiger, and C. Von Der Malsburg, “Face recognition by
elastic bunch graph matching,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 19, no. 7, pp. 775-779, 1997.

A. Lanitis, C. J. Taylor, and T. F. Cootes, “Automatic face identification system
using flexible appearance models,” Image and vision computing, vol. 13, no. 5, pp.
393-401, 1995.

[45] J.F.G. Pérez, A.F. Frangi, E. L. Solano, and K. Lukas, “Lip reading for robust speech

[49]

[50]

[51]

recognition on embedded devices,” 2005 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. 1, pp. I-473, 2005.

N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE transac-
tions on Computers, vol. 100, no. 1, pp. 90-93, 1974.

C. I Podilchuk and X. Zhang, “Face recognition using DCT-based feature vectors,’
Sep. 1 1998, uS Patent 5,802,208.

L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.

F. Samaria and S. Young, “Hmm-based architecture for face identification,” Image
and vision computing, vol. 12, no. 8, pp. 537-543, 1994.

B. Achermann and H. Bunke, “Combination of face classifiers for person identifi-
cation,” Proceedings of 13th International Conference on Pattern Recognition, vol. 3,
pp. 416-420, 1996.

A. V. Nefian and M. H. Hayes, “Face detection and recognition using hidden
Markov models,” Proceedings 1998 international conference on image processing
(ICIP), vol. 1, pp. 141-145, 1998.

V. V. Kohir and U. B. Desai, “Face recognition using a DCT-HMM approach,” Pro-
ceedings Fourth IEEE Workshop on Applications of Computer Vision. (WACV), pp.
226-231, 1998.

P. Phillips, “Support vector machines applied to face recognition,” Advances in Neu-
ral Information Processing Systems, vol. 11, pp. 803-809, 1998.

G. Guo, S. Z. Li, and K. Chan, “Face recognition by support vector machines,” Pro-
ceedings fourth IEEE international conference on automatic face and gesture recogni-
tion, pp. 196-201, 2000.

REFERENCES 249

[55]

[61]

[62]

[63]

[64]

[67]

O. Déniz, M. Castrillon, and M. Hernandez, “Face recognition using indepen-
dent component analysis and support vector machines,” Pattern recognition letters,
vol. 24, no. 13, pp. 2153-2157, 2003.

A. Tefas, C. Kotropoulos, and L. Pitas, “Using support vector machines to enhance
the performance of elastic graph matching for frontal face authentication,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 7, pp. 735-
746, 2001.

K. Fukunaga, Instruction to Statistical Pattern Recognition. Elsevier, 1972.

R. O. Duda, P. E. Hart et al., Pattern classification and scene analysis. Wiley New
York, 1973, vol. 3.

R. Gross, J. Yang, and A. Waibel, “Growing Gaussian mixture models for pose
invariant face recognition,” Proceedings 15th International Conference on Pattern
Recognition (ICPR), vol. 1, pp. 1088-1091, 2000.

C. Sanderson and K. K. Paliwal, “Fast features for face authentication under illumi-
nation direction changes,” Pattern Recognition Letters, vol. 24, no. 14, pp. 2409-2419,
2003.

S. Lucey and T. Chen, “A GMM parts based face representation for improved veri-
fication through relevance adaptation,” Proceedings of the 2004 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. II-11,
2004.

T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 24, no. 7, pp. 971-987, 2002.

T. Ahonen, A. Hadid, and M. Pietikdinen, “Face recognition with local binary pat-
terns,” European conference on computer vision, pp. 469-481, 2004.

T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local binary pat-
terns: Application to face recognition,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 28, no. 12, pp. 2037-2041, 2006.

S.J. Prince and J. H. Elder, “Tied Factor Analysis for Face Recognition Across Large
Pose Changes.” BMVC, vol. 3, pp. 889-898, 2006.

S.J. Prince, J. H. Elder, J. Warrell, and F. M. Felisberti, “Tied factor analysis for face
recognition across large pose differences,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 30, no. 6, pp. 970-984, 2008.

S. Ioffe, “Probabilistic linear discriminant analysis,” European Conference on Com-
puter Vision, pp. 531-542, 2006.

250

References

[68]

[70]

[71]

[72]

[74]

[75]

[76]

[79]

[80]

S.J. Prince and J. H. Elder, “Probabilistic linear discriminant analysis for inferences
about identity,” 2007 IEEE 11th International Conference on Computer Vision, pp. 1-8,
2007.

R. Wallace, M. McLaren, C. McCool, and S. Marcel, “Inter-session variability mod-
elling and joint factor analysis for face authentication,” 2011 International Joint
Conference on Biometrics (IJCB), pp. 1-8, 2011.

R. Wallace and M. McLaren, “Total variability modelling for face verification,” Iet
Biometrics, vol. 1, no. 4, pp. 188-199, 2012.

A. Krizhevsky, I. Sulskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Advances in Neural Information and Processing
Systems (NIPS), pp. 1-9, 2012.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the Gap to
Human-Level Performance in Face Verification,” 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1701-1708, 2014.

S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively,
with application to face verification,” 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 539-546, 2005.

H. V. Nguyen and L. Bai, “Cosine similarity metric learning for face verification,”
Asian conference on computer vision, pp. 709-720, 2010.

F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 815-823, 2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” Proceedings of the
IEEE conference on computer vision and pattern recognition (ICCV), pp. 1-9, 2015.

O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” 2015.

X. Wu, R. He, Z. Sun, and T. Tan, “A light cnn for deep face representation with
noisy labels,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 11,
pp. 28842896, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,’
Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao, “Range loss for deep face recognition
with long-tailed training data,” Proceedings of the IEEE International Conference on
Computer Vision, pp. 5409-5418, 2017.

REFERENCES 251

[81]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere
embedding for face recognition,” Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 212-220, 2017.

S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” Arxiv, pp. 1-15, 2016.
[Online]. Available: http://arxiv.org/abs/1605.07146

Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach
for deep face recognition,” European conference on computer vision, pp. 499-515,
2016.

Y. Zheng, D. K. Pal, and M. Savvides, “Ring loss: Convex feature normalization for
face recognition,” Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5089-5097, 2018.

H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface:
Large margin cosine loss for deep face recognition,” Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 5265-5274, 2018.

J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss
for deep face recognition,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4690-4699, 2019.

R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an
invariant mapping,” 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 2, pp. 1735-1742, 2006.

G. Fant, Acoustic theory of speech production. Walter de Gruyter, 1970, no. 2.

L. G. Kersta, “Voiceprint identification,” The Journal of the Acoustical Society of
America, vol. 34, no. 5, pp. 725-725, 1962.

S. Pruzansky, “Pattern-Matching Procedure for Automatic Talker Recognition,” The
Journal of the Acoustical Society of America, vol. 35, no. 3, pp. 354-358, 1963.

G.R.Doddington, “A Method or Speaker Verification,” The Journal of the Acoustical
Society of America, vol. 49, no. 1A, pp. 139-139, 1971.

J. E. Luck, “Automatic speaker verification using cepstral measurements,” The Jour-
nal of the Acoustical Society of America, vol. 46, no. 4B, pp. 1026-1032, 1969.

B. S. Atal, “Effectiveness of linear prediction characteristics of the speech wave
for automatic speaker identification and verification,” the Journal of the Acoustical
Society of America, vol. 55, no. 6, pp. 1304-1312, 1974.

S. Furui, “Cepstral analysis technique for automatic speaker verification,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 2, pp. 254-272,
1981.

252

References

[95]

[97]

[98]

K. Li and E. Wrench Jr, “Text-independent speaker recognition with short utter-
ances,” The Journal of the Acoustical Society of America, vol. 72, no. S1, pp. S29-S30,
1982.

S. Davis and P. Mermelstein, “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357-366, 1980.

G. R. Doddington, “Speaker recognition—Identifying people by their voices,” Pro-
ceedings of the IEEE, vol. 73, no. 11, pp. 1651-1664, 1985.

F.K.Soong, A.E. Rosenberg, B.-H. Juang, and L. R. Rabiner, “Report: A vector quan-
tization approach to speaker recognition,” AT&T technical journal, vol. 66, no. 2, pp.
14-26, 1987.

[99] J. Buck, D. Burton, and J. Shore, “Text-dependent speaker recognition using vector

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

quantization,” 1985 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 10, pp. 391-394, 1985.

A. Higgins and R. Wohlford, “A new method of text-independent speaker recogni-
tion,” 1986 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 11, pp. 869-872, 1986.

M. Savic and S. K. Gupta, “Variable parameter speaker verification system based on
hidden Markov modeling,” 1990 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 281-284, 1990.

N. Z. Tisby, “On the application of mixture AR hidden Markov models to text inde-
pendent speaker recognition,” IEEE Transactions on Signal Processing, vol. 39, no. 3,
pp. 563570, 1991.

C. Che and Q. Lin, “Speaker recognition using HMM with experiments on the
YOHO database,” Fourth European Conference on Speech Communication and Tech-
nology, 1995.

D. A. Reynolds, “Speaker identification and verification using Gaussian mixture
speaker models,” Speech communication, vol. 17, no. 1-2, pp. 91-108, 1995.

D. A. Reynolds and B. A. Carlson, “Text-dependent speaker verification using de-
coupled and integrated speaker and speech recognizers.” Eurospeech, 1995.

D. A. Reynolds, R. C. Rose et al., “Robust text-independent speaker identification
using Gaussian mixture speaker models,” IEEE Transactions on Speech and Audio
Processing, vol. 3, no. 1, pp. 72-83, 1995.

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted
Gaussian mixture models,” Digital signal processing, vol. 10, no. 1-3, pp. 19-41, 2000.

REFERENCES 253

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

R. Kuhn, P. Nguyen, J.-C. Junqua, L. Goldwasser, N. Niedzielski, S. Fincke, K. Field,
and M. Contolini, “Eigenvoices for speaker adaptation,” Fifth International Confer-
ence on Spoken Language Processing, 1998.

O. Thyes, R. Kuhn, P. Nguyen, and J.-C. Junqua, “Speaker identification and verifi-
cation using eigenvoices,” Sixth International Conference on Spoken Language Pro-
cessing, 2000.

P. Nguyen, R. Kuhn, J.-C. Junqua, N. Niedzielski, and C. Wellekens, “Eigenvoices:
a compact representation of speakers in model space,” Annales des télécommunica-
tions, vol. 55, no. 3, pp. 163-171, 2000.

R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid speaker adaptation in
eigenvoice space,” IEEE Transactions on Speech and Audio Processing, vol. 8, no. 6,
pp. 695-707, 2000.

G.-]. Jang, S.-J. Yun, and Y.-H. Oh, “Feature vector transformation using indepen-
dent component analysis and its application to speaker identification,” Sixth Euro-
pean Conference on Speech Communication and Technology, 1999.

G.-]J. Jang, T.-W. Lee, and Y.-H. Oh, “Learning statistically efficient features for
speaker recognition,” Neurocomputing, vol. 49, no. 1-4, pp. 329-348, 2002.

A. F. Martin and M. A. Przybocki, “The NIST speaker recognition evaluations:
1996-2001," 2001: A Speaker Odyssey-The Speaker Recognition Workshop, 2001.

V. Wan and W. M. Campbell, “Support vector machines for speaker verification
and identification,” Proceedings of the 2000 IEEE Signal Processing Society Workshop,
vol. 2, pp. 775-784, 2000.

W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vector machines using
gmm supervectors for speaker verification,” IEEE Signal Processing Letters, vol. 13,
no. 5, pp. 308-311, 2006.

P. Kenny and P. Dumouchel, “Experiments in speaker verification using factor
analysis likelihood ratios,” Proceedings of Odyssey, 2004.

P. Kenny, “Joint factor analysis of speaker and session variability: Theory and al-
gorithms,” CRIM, Montreal,(Report) CRIM-06/08-13, vol. 14, no. 28-29, p. 2, 2005.

N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor
analysis for speaker verification,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 4, pp. 788-798, 2010.

P. Kenny, “Bayesian speaker verification with heavy-tailed priors” Proceedings of
Odyssey 2010, vol. 14, 2010.

C. Dong, Y. Dong, J. Li, and H. Wang, “Support vector machines based text depen-
dent speaker verification using HMM supervectors,” Proceedings of Odyssey 2008,
p. 31, 2008.

254

References

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

H. Aronowitz, “Text dependent speaker verification using a small development set,”
Proceedings of Odyssey 2012.

A. Larcher, K. A. Lee, B. Ma, and H. Li, “RSR2015: Database for text-dependent
speaker verification using multiple pass-phrases,” Thirteenth Annual Conference of
the International Speech Communication Association, 2012.

——, “Text-dependent speaker verification: Classifiers, databases and RSR2015,”
Speech Communication, vol. 60, pp. 5677, 2014.

S. Cumani, N. Brimmer, L. Burget, P. Laface, O. Plchot, and V. Vasilakakis, “Pair-
wise Discriminative Speaker Verification in the I-Vector Space,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 21, no. 6, pp. 1217-1227, 2013.

J. Franco-Pedroso and J. Gonzalez-Rodriguez, “Linguistically-constrained formant-
based i-vectors for automatic speaker recognition,” Speech Communication, vol. 76,
pp- 61-81, 2016.

C.-T. Do, C. Barras, V.-B. Le, and A. Sarkar, “Augmenting short-term cepstral fea-
tures with long-term discriminative features for speaker verification of telephone
data,” Proceedings of INTERSPEECH 2013.

A. K. Sarkar, C.-T. Do, V.-B. Le, and C. Barras, “Combination of cepstral and pho-
netically discriminative features for speaker verification,” IEEE Signal Processing
Letters, vol. 21, no. 9, pp. 1040-1044, 2014.

A. Lozano-Diez, A. Silnova, P. Matejka, O. Glembek, O. Plchot, J. Pesan, L. Burget,
and J. Gonzalez-Rodriguez, “Analysis and optimization of bottleneck features for
speaker recognition,” Proceedings of Odyssey 2016, pp. 352-357, 2016.

Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for speaker recogni-
tion using a phonetically-aware deep neural network,” 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1695-1699, 2014.

O. Ghahabi and J. Hernando, “Deep belief networks for i-vector based speaker
recognition,” 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1700-1704, 2014.

D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel, and S. Khu-
danpur, “Deep neural network-based speaker embeddings for end-to-end speaker
verification,” 2016 IEEE Spoken Language Technology Workshop (SLT), pp. 165-170,
2016.

J. Rohdin, A. Silnova, M. Diez, O. Plchot, P. Matéjka, and L. Burget, “End-to-end
DNN based speaker recognition inspired by i-vector and PLDA,” 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4874—
4878, 2018.

REFERENCES 255

[134]

[135]

[136]

G. Bhattacharya, M. J. Alam, and P. Kenny, “Deep Speaker Embeddings for Short-
Duration Speaker Verification,” Proceedings of INTERSPEECH 2017, pp. 1517-1521,
2017.

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors: Ro-
bust DNN embeddings for speaker recognition,” 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5329-5333, 2018.

D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep Neural Net-
work Embeddings for Text-Independent Speaker Verification.” Proceedings of IN-
TERSPEECH 2017, pp. 999-1003, 2017.

[137] J.S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep Speaker Recognition,”

Proceedings of INTERSPEECH 2018, pp. 1086-1090, 2018.

[138] J.-W. Jung, H.-S. Heo, L.-H. Yang, H.-J. Shim, and H.-J. Yu, “Avoiding speaker over-

fitting in end-to-end dnns using raw waveform for text-independent speaker ver-
ification,” Proceedings of INTERSPEECH 2018, pp. 3583-3587, 2018.

[139] J. Jung, H. Heo, J. Kim, H. Shim, and H. Yu, “RawNet: Advanced End-to-End Deep

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Neural Network Using Raw Waveforms for Text-Independent Speaker Verifica-
tion,” Proceedings of INTERSPEECH 2019, pp. 1268-1272, 2019.

M. India, P. Safari, and J. Hernando, “Self multi-head attention for speaker recog-
nition,” Proceedings of INTERSPEECH 2019, pp. 4305-4309, 20109.

C. Zhang and K. Koishida, “End-to-End Text-Independent Speaker Verification
with Triplet Loss on Short Utterances.” Proceedings of INTERSPEECH 2017, pp.
1487-1491, 2017.

C. Zhang, K. Koishida, and J. H. Hansen, “Text-independent speaker verification
based on triplet convolutional neural network embeddings,” IEEE/ACM Transac-
tions on Audio, Speech and Language Processing, vol. 26, no. 9, pp. 1633-1644, 2018.

Y. Liu, L. He, and J. Liu, “Large Margin Softmax Loss for Speaker Verification,”
Proceedings of INTERSPEECH 2019, pp. 2873-2877, 2019.

W. Cai, J. Chen, and M. Li, “Exploring the Encoding Layer and Loss Function in
End-to-End Speaker and Language Recognition System,” Proceedings of Odyssey
2018, pp. 74-81, 2018.

Y. Li, F. Gao, Z. Ou, and J. Sun, “Angular softmax loss for end-to-end speaker verifi-
cation,” 2018 11th International Symposium on Chinese Spoken Language Processing
(ISCSLP), pp. 190194, 2018.

Z. Bai, X. Zhang, and J. Chen, “Partial AUC Optimization Based Deep Speaker
Embeddings with Class-Center Learning for Text-Independent Speaker Verifica-
tion,” 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6819-6823, 2020.

256

References

[147]

[148]

[149]

P. Gimeno, V. Mingote, A. Ortega, A. Miguel, and E. Lleida, “Partial AUC Optimisa-
tion Using Recurrent Neural Networks for Music Detection with Limited Training
Data.” Proceedings of INTERSPEECH 2020, pp. 3067-3071, 2020.

——, “Generalising AUC Optimisation to Multiclass Classification for Audio Seg-
mentation with Limited Training Data,” IEEE Signal Processing Letters, vol. 28, pp.
1135-1139, 2021.

S. Ramoji, P. Krishnan, and S. Ganapathy, “NPLDA: A Deep Neural PLDA Model
for Speaker Verification,” Proceedings of Odyssey 2020, pp. 202—209, 2020.

[150] J. S. Chung, J. Huh, S. Mun, M. Lee, H.-S. Heo, S. Choe, C. Ham, S. Jung, B.-J. Lee,

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

and I. Han, “In Defence of Metric Learning for Speaker Recognition,” Proceedings
of INTERSPEECH 2020, pp. 2977-2981, 2020.

A. Miguel, J. Villalba, A. Ortega, E. Lleida, and C. Vaquero, “Factor Analysis with
Sampling Methods for Text Dependent Speaker Recognition,” Proceedings of IN-
TERSPEECH 2014, pp. 1342-1346, 2014.

T. Stafylakis, P. Kenny, M. J. Alam, and M. Kockmann, “Speaker and channel factors
in text-dependent speaker recognition,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 24, no. 1, pp. 65-78, 2015.

T. Stafylakis, M. J. Alam, and P. Kenny, “Text-dependent speaker recognition with
random digit strings,” IEEE/ACM Transactions on Audio, Speech and Language Pro-
cessing, vol. 24, no. 7, pp. 1194-1203, 2016.

H. Zeinali, H. Sameti, and L. Burget, “HMM-based phrase-independent i-vector ex-
tractor for text-dependent speaker verification,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 25, no. 7, pp. 1421-1435, 2017.

G. Valenti, A. Daniel, and N. W. Evans, “On the Influence of Text Content on Pass-
Phrase Strength for Short-Duration Text-Dependent Automatic Speaker Authen-
tication.” Proceedings of INTERSPEECH 2016, pp. 3623-3627, 2016.

R. K. Das, M. Madhavi, and H. Li, “Compensating Utterance Information in Fixed
Phrase Speaker Verification,” 2018 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC), pp. 1708-1712, 2018.

H. You, W. Li, L. Li, and J. Zhu, “Lexicon-based local representation for text-
dependent speaker verification,” IEICE TRANSACTIONS on Information and Sys-
tems, vol. 100, no. 3, pp. 587-589, 2017.

A. Larcher, P.-M. Bousquet, K. A. Lee, D. Matrouf, H. Li, and J.-F. Bonastre, “I-
vectors in the context of phonetically-constrained short utterances for speaker

verification,” 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4773-4776, 2012.

REFERENCES 257

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

H. Zeinali, L. Burget, H. Sameti, O. Glembek, and O. Plchot, “Deep neural networks
and hidden Markov models in i-vector-based text-dependent speaker verification,”
Proceedings of Odyssey 2016, pp. 24-30, 2016.

Y. Huang, Y. Zou, and Y. Liu, “Investigating the stacked phonetic bottleneck feature
for speaker verification with short voice commands,” 2017 4th IAPR Asian Confer-
ence on Pattern Recognition (ACPR), pp. 706-711, 2017.

S. Dey, S. Madikeri, M. Ferras, and P. Motlicek, “Deep neural network based pos-
teriors for text-dependent speaker verification,” 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5050-5054, 2016.

A. Miguel, J. Llombart, A. Ortega, and E. Lleida, “Tied Hidden Factors in Neural
Networks for End-to-End Speaker Recognition,” Proceedings of INTERSPEECH 2017,
pp. 2819-2823, 2017.

E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez, “Deep
neural networks for small footprint text-dependent speaker verification,” 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
4052-4056, 2014.

G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end text-dependent
speaker verification,” 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5115-5119, 2016.

Y. Liu, Y. Qian, N. Chen, T. Fu, Y. Zhang, and K. Yu, “Deep feature for
text-dependent speaker verification,” Speech Communication, vol. 73, pp. 1-13,
2015. [Online]. Available: http://dx.doi.org/10.1016/j.specom.2015.07.003

E. Malykh, S. Novoselov, and O. Kudashev, “On residual CNN in text-dependent
speaker verification task,” International Conference on Speech and Computer, pp.
593-601, 2017.

F. R. rahman Chowdhury, Q. Wang, I. L. Moreno, and L. Wan, “Attention-based
models for text-dependent speaker verification,” 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5359-5363, 2018.

L. Wan, Q. Wang, A. Papir, and . L. Moreno, “Generalized end-to-end loss for
speaker verification,” 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4879-4883, 2018.

S. Dey, S. Madikeri, and P. Motlicek, “End-to-end text-dependent speaker verifica-
tion using novel distance measures,” Proceedings of INTERSPEECH 2018, pp. 3598—
3602, 2018.

R. G. Leonard and G. R. Doddington, “Automatic Language Identification.” TEXAS
INSTRUMENTS INC DALLAS CENTRAL RESEARCH LABS, Tech. Rep., 1974.

——, “Automatic Language Identification.” TEXAS INSTRUMENTS INC DALLAS
CENTRAL RESEARCH LABS, Tech. Rep., 1975.

258

References

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

——, “Automatic Language Discrimination.” TEXAS INSTRUMENTS INC DALLAS
CENTRAL RESEARCH LABS, Tech. Rep., 1978.

R. G. Leonard, “Language Recognition Test and Evaluation.” TEXAS INSTRU-
MENTS INC DALLAS CENTRAL RESEARCH LABS, Tech. Rep., 1980.

K. Li and T. Edwards, “Statistical models for automatic language identification,”
1980 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 5, pp. 884-887, 1980.

D. Cimarusti and R. Ives, “Development of an automatic identification system of
spoken languages: Phase I,” 1982 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), vol. 7, pp. 1661-1663, 1982.

J. Foil, “Language identification using noisy speech,” 1986 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 11, pp. 861-864,
1986.

M. Sugiyama, “Automatic language recognition using acoustic features,” 1991 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.
813-816, 1991.

S. Nakagawa, Y. Ueda, and T. Seino, “Speaker-independent, text-independent lan-
guage identification by hmm,” Second International Conference on Spoken Language
Processing, 1992.

Y. Muthusamy, K. Berkling, T. Arai, R. Cole, and E. Barnard, “A comparison of
approaches to automatic language identification using telephone speech,” Third
European Conference on Speech Communication and Technology, vol. 1, pp. 1307-
1310, 1993.

S. Itahashi, J. X. Zhou, and K. Tanaka, “Spoken language discrimination using
speech fundamental frequency,” Third International Conference on Spoken Language
Processing, 1994.

E. Wong and S. Sridharan, “Methods to improve Gaussian mixture model based lan-
guage identification system,” Seventh International Conference on Spoken Language
Processing, 2002.

P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. J. Greene, D. A. Reynolds, and
J. R. Deller Jr, “Approaches to language identification using gaussian mixture mod-
els and shifted delta cepstral features,” Seventh international conference on spoken
language processing, 2002.

E. Singer, P. A. Torres-Carrasquillo, T. P. Gleason, W. M. Campbell, and D. A.
Reynolds, “Acoustic, phonetic, and discriminative approaches to automatic lan-
guage identification,” Eighth European conference on speech communication and
technology, 2003.

REFERENCES 259

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

W. M. Campbell, E. Singer, P. A. Torres-Carrasquillo, and D. A. Reynolds, “Lan-
guage recognition with support vector machines,” Proceedings of Odyssey 2004,
vol. 4, p. 3, 2004.

F. Castaldo, E. Dalmasso, P. Laface, D. Colibro, and C. Vair, “Language identification
using acoustic models and speaker compensated cepstral-time matrices,” 2007 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 4,
pp. IV-1013, 2007.

F. Castaldo, S. Cumani, P. Laface, and D. Colibro, “Language recognition using lan-
guage factors,” Tenth Annual Conference of the International Speech Communication
Association, 2009.

N. Briimmer, A. Strasheim, V. Hubeika, P. Matéjka, L. Burget, and O. Glembek, “Dis-
criminative acoustic language recognition via channel-compensated GMM statis-
tics,” Tenth Annual Conference of the International Speech Communication Associa-
tion, 2009.

D. Martinez, O. Plchot, L. Burget, O. Glembek, and P. Matéjka, “Language recogni-
tion in ivectors space,” Twelfth Annual Conference of the International Speech Com-
munication Association, 2011.

N. Dehak, P. A. Torres-Carrasquillo, D. Reynolds, and R. Dehak, “Language recog-
nition via i-vectors and dimensionality reduction,” Twelfth annual conference of the
international speech communication association, 2011.

M. Penagarikano, A. Varona, M. Diez, L. J. Rodriguez-Fuentes, and G. Bordel,
“Study of different backends in a state-of-the-art language recognition system,’
Thirteenth Annual Conference of the International Speech Communication Associa-
tion, 2012.

L. Ferrer, Y. Lei, M. McLaren, and N. Scheffer, “Study of senone-based deep neural
network approaches for spoken language recognition,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 24, no. 1, pp. 105-116, 2016.

M. K. Rai, M. S. Fahad, J. Yadav, K. S. Rao et al, “Language identification using
PLDA based on I-vector in noisy environment,” 2016 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pp. 1014-1020,
2016.

Y. Song, B. Jiang, Y. Bao, S. Wei, and L.-R. Dai, “I-vector representation based on
bottleneck features for language identification,” Electronics Letters, vol. 49, no. 24,
pp. 1569-1570, 2013.

Y. Lei, L. Ferrer, A. Lawson, M. McLaren, and N. Scheffer, “Application of Convolu-
tional Neural Networks to Language Identification in Noisy Conditions.” Proceed-
ings of Odyssey 2014, 2014.

260

References

[195]

[196]

R. Fér, P. Matéjka, F. Grézl, O. Plchot, and J. Cernocky, “Multilingual bottleneck
features for language recognition,” Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot, D. Martinez, J. Gonzalez-
Rodriguez, and P. Moreno, “Automatic language identification using deep neural
networks,” 2014 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 5337-5341, 2014.

[197] J. Gonzalez-Dominguez, I. Lopez-Moreno, H. Sak, J. Gonzalez-Rodriguez, and P. J.

[198]

[199]

[200]

[201]

Moreno, “Automatic language identification using long short-term memory recur-
rent neural networks,” Fifteenth Annual Conference of the International Speech Com-
munication Association, 2014.

Z.Tang, D. Wang, Y. Chen, L. Li, and A. Abel, “Phonetic temporal neural model for
language identification,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 1, pp. 134-144, 2017.

S. O. Sadjadi, T. Kheyrkhah, A. Tong, C. Greenberg, D. Reynolds, E. Singer, L. Ma-
son, and J. Hernandez-Cordero, “The 2017 NIST Language Recognition Evaluation
;. Proceedings of Odyssey 2018, pp. 82-89, 2018.

A. Lozano-Diez, O. Plchot, P. Matejka, and J. Gonzalez-Rodriguez, “Dnn based em-
beddings for language recognition,” 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 5184-5188, 2018.

D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, D. Povey, and S. Khudanpur,
“Spoken language recognition using x-vectors,” Proceedings of Odyssey 2018, pp.
105-111, 2018.

[202] J. Villalba, N. Brimmer, and N. Dehak, “End-to-end versus embedding neural net-

[203]

[204]

[205]

[206]

works for language recognition in mismatched conditions,” Proceedings of Odyssey
2018, pp. 112-119, 2018.

M. McLaren, A. Lawson, Y. Lei, and N. Scheffer, “Adaptive Gaussian backend for
robust language identification.” Proceedings of INTERSPEECH 2013, pp. 84-88, 2013.

G. Gelly and J. Gauvain, “Spoken Language Identification Using LSTM-Based An-
gular Proximity,” Proceedings of INTERSPEECH 2017, pp. 2566—2570, 2017.

R. Duroselle, D. Jouvet, and L. Illina, “Metric learning loss functions to reduce do-
main mismatch in the x-vector space for language recognition,” Proceedings of IN-
TERSPEECH 2020, pp. 447-451, 2020.

Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmenta-
tion,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07,
pp. 13001-13 008, 2020.

REFERENCES 261

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

L. Vinals, P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “Estimation of the Num-
ber of Speakers with Variational Bayesian PLDA in the DIHARD Diarization Chal-
lenge,” Proceedings of INTERSPEECH 2018, pp. 2803-2807, 2018.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L.D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541-551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” International Conference on Medical image com-
puting and computer-assisted intervention, pp. 234-241, 2015.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” International conference on machine learning, pp. 6105-6114, 2019.

R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normalization for text-
independent speaker verification systems,” Digital Signal Processing, vol. 10, no.
1-3, pp. 42-54, 2000.

N. Britmmer and A. Strasheim, “Agnitio’s speaker recognition system for evalita
2009,” The 11th Conference of the Italian Association for Artificial Intelligence, 2009.

N. Britmmer and J. Du Preez, “Application-independent evaluation of speaker de-
tection,” Computer Speech & Language, vol. 20, no. 2-3, pp. 230-275, 2006.

D. A. Van Leeuwen and N. Brummer, “Channel-dependent gmm and multi-class
logistic regression models for language recognition,” Proceedings of Odyssey 2006,
pp. 1-8, 2006.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons,
2012.

A. K. Jain, A. Ross, S. Prabhakar et al., “An introduction to biometric recognition,”
IEEE Transactions on circuits and systems for video technology, vol. 14, no. 1, 2004.

[220] J. Gonzalez-Rodriguez, “Evaluating automatic speaker recognition systems: An

[221]

overview of the nist speaker recognition evaluations (1996-2014),” Loquens, 2014.

S. Z. Li, Encyclopedia of Biometrics, 1st ed. Springer Publishing Company, Incor-
porated, 2009.

262

References

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

R. Togneri and D. Pullella, “An overview of speaker identification: Accuracy and
robustness issues,” IEEE Circuits and Systems Magazine, vol. 11, no. 2, pp. 23-61,
2011.

Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li, “Spoofing
and countermeasures for speaker verification: A survey, Speech Communication,
vol. 66, pp. 130-153, 2015.

T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters, vol. 27,
no. 8, pp. 861-874, 2006.

J. M. Bernardo and A. F. Smith, Bayesian theory. John Wiley & Sons, 2009, vol.
405.

D. A. Van Leeuwen and N. Briimmer, “An introduction to application-independent
evaluation of speaker recognition systems,” Speaker classification I, pp. 330-353,
2007.

“The NIST Year 2008 Speaker Recognition Evaluation Plan,” 2008. [Online].
Available: https://www.nist.gov/sites/default/files/documents/2017/09/26/sre08$_
$evalplan$_$release4.pdf

“The NIST Year 2010 Speaker Recognition Evaluation Plan,” 2010. [Online].
Available: https://www.nist.gov/sites/default/files/documents/itl/iad/mig/NIST$_
$SRE10$_$evalplan-r6.pdf.

G.B.Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A
database forstudying face recognition in unconstrained environments,” Workshop
on faces in’Real-Life’Images: detection, alignment, and recognition, 2008.

G. Huang, M. Mattar, H. Lee, and E. G. Learned-Miller, “Learning to align from
scratch,” Advances in neural information processing systems, pp. 764-772, 2012.

D.Yi, Z.Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” arXiv
preprint arXiv:1411.7923, 2014.

C. McCool, S. Marcel, A. Hadid, M. Pietikdinen, P. Matejka, J. Cernocky, N. Poh,
J. Kittler, A. Larcher, C. Levy et al., “Bi-modal person recognition on a mobile
phone: using mobile phone data,” 2012 IEEE International Conference on Multimedia
and Expo Workshops, pp. 635-640, 2012.

H. Zeinali, L. Burget, and]J. Cernocky, “A Multi Purpose and Large Scale Speech
Corpus in Persian and English for Speaker and Speech Recognition: the DeepMine
Database,” 2019 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 397-402, 2019.

H. Zeinali, K. A. Lee, J. Alam, and L. Burget, “Short-duration Speaker Verifi-
cation (SdSV) Challenge 2020: the Challenge Evaluation Plan.” arXiv preprint
arXiv:1912.06311, Tech. Rep., 2020.

REFERENCES 263

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

“The 2009 NIST language recognition evaluation plan, 2009.” [Online]. Available:
http://www.itl.nist.gov/iad/mig/tests/Ire/2009.

M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “Calibration Approaches for
Language Detection.” Proceedings of INTERSPEECH 2017, pp. 2804-2808, 2017.

“The 2015 NIST language recognition evaluation plan, 2015.” [Online]. Available:
https://www.nist.gov/itl/iad/mig/upload/LRE15$_$Eval$_$Plan$_$v23.pdf.

“NIST 2017 Language recognition evaluation plan, 2017.” [Online].
Available: https://www.nist.gov/sites/default/files/documents/2017/09/29/1re17$_
$eval$_$plan-2017-09-29$_$v1.pdf.

E. Lleida, A. Ortega, A. Miguel, V. Bazan-Gil, C. Pérez, M. Gémez, and A. de Prada,
“Albayzin 2018 evaluation: the iberspeech-RTVE challenge on speech technologies
for spanish broadcast media,” Applied Sciences, vol. 9, no. 24, p. 5412, 2019.

E. Lleida, A. Ortega, A. Miguel, V. Bazan, C. Pérez, M. Gémez, and A. de Prada,
“Albayzin evaluation: IberSPEECH-RTVE 2020 Multimodal Diarization and Scene
Description Challenge,” Tech. Rep., 2020.

K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using
multitask cascaded convolutional networks,” IEEE Signal Processing Letters, vol. 23,
no. 10, pp. 1499-1503, 2016.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning,” Thirty-first AAAI conference
on artificial intelligence, 2017.

V. Mingote Bueno and A. Miguel Artiaga, “Estudio de técnicas de aprendizaje
automatico basado en redes neuronales para reconocimiento biométrico de per-
sonas.” Master’s thesis, Universidad de Zaragoza, 2016.

S. Marcel, C. McCool, P. Matejka, T. Ahonen, and J. Cernocky, “Mobile Biometry
(MOBIO) Face and Speaker Verification Evaluation,” Idiap, Tech. Rep., 2010.

P. Mermelstein, “Distance measures for speech recognition, psychological and in-
strumental,” Pattern recognition and artificial intelligence, vol. 116, pp. 374-388,
1976.

X.Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide to Theory,
Algorithm, and System Development, 1st ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2001.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” International conference on machine learning,
pp. 448-456, 2015.

D. P.Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Proceedings
of ICLR, pp. 1-15, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

264

References

[249]

[250]

[251]

[252]

[253]

[254]

[255]

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” NIPS-W,
2017.

T. Stafylakis, P. Kenny, P. Ouellet, J. Perez, M. Kockmann, and P. Dumouchel, “I-
Vector/PLDA variants for text-dependent speaker recognition,” Centre de Recherche
Informatique de Montreal (CRIM), 2013.

P.Kenny, T. Stafylakis, P. Ouellet, and M. J. Alam, “JFA-based front ends for speaker
recognition,” 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1705-1709, 2014.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.

G. E. Hinton, O. Vinyals, and]J. Dean, “Distilling the Knowledge in a Neural Net-
work,” Journal of Animal and Plant Sciences, vol. 27, no. 3, pp. 797-802, 2015.

A. Korattikara, V. Rathod, K. Murphy, and M. Welling, “Bayesian dark knowledge,”
Proceedings of the 28th International Conference on Neural Information Processing
Systems, pp. 3438-3446, 2015.

B. B. Sau and V. N. Balasubramanian, “Deep model compression: Distilling knowl-
edge from noisy teachers,” arXiv preprint arXiv:1610.09650, 2016.

[256] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning small-size DNN with output-

[257]

[258]

[259]

[260]

distribution-based criteria,” Proceedings of INTERSPEECH 2014, pp. 1910-1914,
2014.

Y. Chebotar and A. Waters, “Distilling Knowledge from Ensembles of Neural Net-
works for Speech Recognition.” Proceedings of INTERSPEECH 2016, pp. 3439-3443,
2016.

M. Huang, Y. You, Z. Chen, Y. Qian, and K. Yu, “Knowledge Distillation for Se-
quence Model.” Proceedings of INTERSPEECH 2018, pp. 3703-3707, 2018.

P. Shen, X. Lu, S. Li, and H. Kawai, “Feature Representation of Short Utterances
Based on Knowledge Distillation for Spoken Language Identification.” Proceedings
of INTERSPEECH 2018, pp. 1813-1817, 2018.

——, “Interactive Learning of Teacher-student Model for Short Utterance Spoken
Language Identification,” 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5981-5985, 2019.

[261] J. Li, R. Zhao, Z. Chen, C. Liu, X. Xiao, G. Ye, and Y. Gong, “Developing far-field

speaker system via teacher-student learning,” 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5699-5703, 2018.

REFERENCES 265

[262]

C. Bucilug, R. Caruana, and A. Niculescu-Mizil, “Model compression,” Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 535-541, 2006.

[263] J. Ba and R. Caruana, “Do deep nets really need to be deep?” Advances in Neural

[264]

[265]

[266]

Information Processing Systems (NIPS) 27, pp. 2654-2662, 2014.

S. Wang, Y. Yang, T. Wang, Y. Qian, and K. Yu, “Knowledge Distillation for Small
Foot-print Deep Speaker Embedding,” 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 6021-6025, 2019.

D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-divergence regularized deep neural
network adaptation for improved large vocabulary speech recognition,” 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
7893-7897, 2013.

M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient Langevin
dynamics,” Proceedings of ICML, pp. 681-688, 2011.

[267] J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based

[268]

[269]

models for speech recognition,” Advances in neural information processing systems,
pp. 577-585, 2015.

A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
L. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, pp. 5998-6008, 2017.

I. Vinals, D. Ribas, V. Mingote, J. Llombart, P. Gimeno, A. Miguel, A. Ortega, and
E. Lleida, “Phonetically-Aware Embeddings, Wide Residual Networks with Time-
Delay Neural Networks and Self Attention Models for the 2018 NIST Speaker
Recognition Evaluation,” Proceedings of INTERSPEECH 2019, pp. 4310-4314, 2019.

[270] J.D.M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep bidirectional

[271]

[272]

[273]

transformers for language understanding,” Proceedings of NAACL-HLT, pp. 4171~
4186, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale,” Pro-
ceedings of ICLR 2021, 2021.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training
data-efficient image transformers & distillation through attention,” International
Conference on Machine Learning, pp. 10 347-10 357, 2021.

F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszko-
reit, A. Dosovitskiy, and T. Kipf, “Object-Centric Learning with Slot Attention,”
NeurlIPS 2020, vol. 33, pp. 11 525-11 538, 2020.

266

References

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

G. Lample, A. Sablayrolles, M. Ranzato, L. Denoyer, and H. Jégou, “Large memory
layers with product keys,” Advances in Neural Information Processing Systems, pp.
8546-8557, 2019.

T. Zhou, Y. Zhao, J. Li, Y. Gong, and J. Wu, “CNN with phonetic attention for
text-independent speaker verification,” 2019 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), pp. 718-725, 2019.

A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” preprint
arXiv:1410.5401, 2014.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska,
S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou et al., “Hybrid comput-
ing using a neural network with dynamic external memory,” Nature, vol. 538, no.
7626, pp. 471-476, 2016.

M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,”
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10 781-10 790, 2020.

W. Cai, Z. Cai, X. Zhang, X. Wang, and M. Li, “A novel learnable dictionary encod-
ing layer for end-to-end language identification,” 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 5189-5193, 2018.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An ASR cor-
pus based on public domain audio books,” 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206-5210, 2015.

H. Zeinali, K. A. Lee, J. Alam, and L. Burget, “SdSV Challenge 2020: Large-Scale
Evaluation of Short-Duration Speaker Verification.” Proceedings of INTERSPEECH
2020, pp. 731-735, 2020.

A.Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: A Large-Scale Speaker Iden-
tification Dataset,” Proceedings of INTERSPEECH 2017, pp. 2616-2620, 2017.

G. Hinton, O. Vinyals, and]. Dean, “Distilling the Knowledge in a Neural
Network,” NIPS 2014 Deep Learning Workshop, pp. 1-9, 2015. [Online]. Available:
http://arxiv.org/abs/1503.02531

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty
in neural network,” International Conference on Machine Learning, pp. 1613-1622,
2015.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

Y. Srivastava, V. Murali, and S. R. Dubey, “A performance evaluation of loss func-
tions for deep face recognition,” National Conference on Computer Vision, Pattern
Recognition, Image Processing, and Graphics, pp. 322-332, 20109.

REFERENCES 267

[287]

[288]

[289]

[290]

[291]

[292]

[293]

[294]

[295]

[296]

[297]

[298]

[299]

P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study of inters-
peaker variability in speaker verification,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 16, no. 5, pp. 980-988, 2008.

N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor
analysis for speaker verification,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 4, pp. 788-798, 2011.

E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9370, no. 2010, pp. 84-92, 2015.

L. P. Garcia-Perera, J. A. Nolazco-Flores, B. Raj, and R. Stern, “Optimization of the
DET curve in speaker verification,” 2012 IEEE Spoken Language Technology Work-
shop (SLT), pp. 318-323, 2012.

K.-A. Toh, J. Kim, and S. Lee, “Maximizing area under ROC curve for biometric
scores fusion,” Pattern Recognition, vol. 41, no. 11, pp. 3373-3392, 2008.

A. Herschtal and B. Raskutti, “Optimising area under the roc curve using gradient
descent,” Proceedings of the twenty-first international conference on Machine learn-
ing, p. 49, 2004.

A. Soriano, L. Vergara, B. Ahmed, and A. Salazar, “Fusion of scores in a detection
context based on Alpha integration,” Neural Computation, vol. 27, no. 9, pp. 1983—
2010, 2015.

S. Novoselov, V. Shchemelinin, A. Shulipa, A. Kozlov, and I. Kremnev, “Triplet Loss
Based Cosine Similarity Metric Learning for Text-independent Speaker Recogni-
tion,” Proceedings of INTERSPEECH 2018, pp. 22422246, 2018.

M. McLaren, D. Castan, M. Nandwana, L. Ferrer, and E. Yilmaz, “How to train your
speaker embeddings extractor,” Proceedings of Odyssey 2018, pp. 327-334, 2018.

K.Lee, H. Li, L. Deng, V. Hautaméaki, W. Rao, X. Xiao, A. Larcher, H. Sun, T. Nguyen,
G. Wang et al., “The 2015 NIST language recognition evaluation: the shared view
of I2R, Fantastic4 and SingaMS,” Proceedings of INTERSPEECH 2016, pp. 3211-3215,
2016.

O. Plchot, P. Matejka, O. Glembek, R. Fer, O. Novotny, J. Pesan, L. Burget, N. Brum-
mer, and S. Cumani, “BAT System Description for NIST LRE 2015,” Proceedings of
Odyssey 2016, pp. 166—173, 2016.

A. Martin and M. Przybocki, “The NIST 1999 speaker recognition evaluation—An
overview, Digital signal processing, vol. 10, no. 1-3, pp. 1-18, 2000.

S. Bengio and J. Mariéthoz, “The expected performance curve: a new assessment
measure for person authentication,” IDIAP, Tech. Rep., 2003.

268

References

[300]

[301]

[302]

[303]

I. Kukanov, T. N. Trong, V. Hautamaéki, S. M. Siniscalchi, V. M. Salerno, and K. A.
Lee, “Maximal Figure-of-Merit Framework to Detect Multi-Label Phonetic Features
for Spoken Language Recognition,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 28, pp. 682-695, 2020.

R. Ranjan, C. D. Castillo, and R. Chellappa, “L2-constrained Softmax Loss for
Discriminative Face Verification,” 2017. [Online]. Available: http://arxiv.org/abs/
1703.09507

F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, “Normface: L2 hypersphere embed-
ding for face verification,” Proceedings of the 25th ACM international conference on
Multimedia, pp. 1041-1049, 2017.

T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks,” Proceedings of the 30th International
Conference on Neural Information Processing Systems, vol. 29, pp. 901-909, 2016.

[304] J. Poignant, H. Bredin, and C. Barras, “Multimodal person discovery in broadcast

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

tv at mediaeval 2015,” MediaEval 2015 working notes proceedings, 2015.

H. Bredin, C. Barras, and C. Guinaudeau, “Multimodal person discovery in broad-
cast TV at MediaEval 2016,” MediaEval 2016 working notes proceedings, 2016.

O. Sadjadi, C. Greenberg, E. Singer, D. Reynolds, L. Mason, and J. Hernandez-
Cordero, “The 2019 NIST Audio-Visual Speaker Recognition Evaluation,” Proceed-
ings of Odyssey 2020, pp. 259-265, 2020.

R. K. Das, R. Tao, J. Yang, W. Rao, C. Yu, and H. Li, “HLT-NUS Submission for NIST
2019 Multimedia Speaker Recognition Evaluation,” arXiv preprint arXiv:2010.03905,
2020.

D. Garcia-Romero, D. Snyder, G. Sell, D. Povey, and A. McCree, “Speaker diariza-
tion using deep neural network embeddings,” 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 4930-4934, 2017.

L. Vidals, P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “In-domain Adaptation
Solutions for the RTVE 2018 Diarization Challenge,” Proceedings of IberSPEECH
2018, pp. 220223, 2018.

E. Khoury, P. Gay, and J.-M. Odobez, “Fusing matching and biometric similarity
measures for face diarization in video,” Proceedings of the 3rd ACM conference on
International conference on multimedia retrieval, pp. 97-104, 2013.

N. Le, A. Heili, D. Wu, and J.-M. Odobez, “Efficient and Accurate Tracking for Face
Diarization via Periodical Detection,” International Conference on Pattern Recogni-
tion, no. CONF, 2016.

A. Ortega, A. Miguel, E. Lleida, V. Bazan, C. Pérez, M. Gomez, and A. de Prada,
“Albayzin evaluation: IberSPEECH-RTVE 2020 Speaker Diarization and Identity
Assignment,” Tech. Rep., 2020.

REFERENCES 269

[313] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Tech. Rep., 2000.

[314]

[315]

[316]

[317]

[318]

[319]

E. Ramos-Muguerza, L. Docio-Fernandez, and J. L. Alba-Castro, “The GTM-UVIGO
System for Audiovisual Diarization,” Proceedings of IberSPEECH 2018, pp. 204-207,
2018.

L. Vifals, A. Ortega, A. Miguel, and E. Lleida, “The Domain Mismatch Problem in
the Broadcast Speaker Attribution Task,” Applied Sciences, vol. 11, no. 18, p. 8521,
2021.

P. Gimeno, D. Ribas, A. Ortega, A. Miguel, and E. Lleida, “Convolutional recurrent
neural networks for speech activity detection in naturalistic audio from apollo mis-
sions,” Proceedings of IberSPEECH 2021, pp. 26-30, 2021.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735-1780, 1997.

M.]. Alam, P. Ouellet, P. Kenny, and D. O’Shaughnessy, “Comparative evaluation of
feature normalization techniques for speaker verification,” International Conference
on Nonlinear Speech Processing, pp. 246—253, 2011.

S. Chen, P. Gopalakrishnan et al, “Speaker, environment and channel change
detection and clustering via the bayesian information criterion,” Proceedings of
DARPA broadcast news transcription and understanding workshop, vol. 8, pp. 127-
132, 1998.

[320]]J. Villalba, N. Chen, D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, J. Borgstrom,

[321]

[322]

[323]

[324]

F. Richardson, S. Shon, F. Grondin et al., “State-of-the-Art Speaker Recognition for
Telephone and Video Speech: The JHU-MIT Submission for NIST SRE18.” Proceed-
ings OfINTERSPEECH 2019, pp. 1488-1492, 2019.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recog-
nition using time-delay neural networks,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 37, no. 3, pp. 328-339, 1989.

P. Bell, M.]J. Gales, T. Hain, J. Kilgour, P. Lanchantin, X. Liu, A. McParland, S. Re-
nals, O. Saz, M. Wester et al., “The mgb challenge: Evaluating multi-genre broad-
cast media recognition,” 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pp. 687-693, 2015.

D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector length normaliza-
tion in speaker recognition systems,” Twelfth annual conference of the international
speech communication association, 2011.

L. Vidals, P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “ViVoLAB Speaker Di-
arization System for the DIHARD 2019 Challenge.” Proceedings of INTERSPEECH
2019, pp. 988-992, 2019.

270 References

[325] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE transactions on Information Theory, vol. 13, no. 2, pp.
260-269, 1967.

[326] M. Porta-Lorenzo, J. L. Alba-Castro, and L. Docio-Fernandez, “The GTM-UVIGO
System for Audiovisual Diarization 2020,” Proceedings of IberSPEECH 2021, pp. 81—
85, 2021.

[327] C. Luna-Jiménez, R. Kleinlein, F. Fernandez-Martinez, J. Manuel, and J. M. M.-F.
Pardo-Munoz, “GTH-UPM System for Albayzin Multimodal Diarization Challenge
2020,” Proceedings of IberSPEECH 2021, pp. 71-75, 2021.

[328] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural
networks,” International Conference on Machine Learning, pp. 1321-1330, 2017.

