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This Letter discusses two retrodictions of the theory of ratchet universality which explain previous
experimental results concerning directed ratchet transport of cold atoms in dissipative optical lattices
in one case and of fluxons in uniform annular Josephson junctions in the other, both driven by
biharmonic fields. It has to be emphasized that these retrodictions are in sharp contrast with the
current standard explanation of such experimental results, and they offer optimal control of the
ratchet-like motion of such entities. New experimental proposals with cold atoms and fluxons are
discussed, providing additional tests for novel predictions from ratchet universality.

PACS numbers:

I. INTRODUCTION

Symmetry principles constrain the possible forms of
the laws of nature by constituting a synthesis of those
regularities which are independent of the specific dynam-
ics. They usually play a deep and subtle role in the sense
that many physical phenomena ultimately come to be ex-
plained in terms of mechanisms of symmetry breaking. A
notable instance is the so-called ratchet effect [1-3], i.e.,
the possibility of generating directed transport from a
fluctuating environment without any net external force.
Indeed, it has been a fundamental research topic in di-
verse areas of science and technology since the end of
the last century partly because of its potential applica-
tions for manipulating such systems as coupled Josephson
junctions [4] and molecular motors [5], as well as for de-
signing micro- and nano-devices suitable for on-chip im-
plementation. Directed ratchet transport (DRT) is now
qualitatively understood to be a result of the interplay of
nonlinearity, symmetry breaking [6], and non-equilibrium
fluctuations including temporal noise [2], spatial disorder
[7], and quenched temporal disorder [8].

The symmetry analysis alone, however, is insufficient
to predict the direction and strength of the DRT. Re-
cently, some of such fundamental aspects, including cur-
rent reversals [9] and the quantitative dependence of DRT
strength on the system’s parameters [10], have begun to
be elucidated. In this regard, the theory of ratchet uni-
versality (RU) [11-13] predicts that there exists a uni-
versal force waveform which optimally enhances directed
transport by symmetry breaking. The theory of RU
refers to the criticality scenario that emerges when the
generalized parity symmetry and the generalized time-
reversal symmetry are broken, regardless of the nature of
the dynamic equation in which the breaking of such sym-
metries results in DRT. For noiseless ratchets, the effec-

tiveness of this theory has been demonstrated in diverse
physical contexts in which the driving forces are chosen to
be biharmonic, such as in the cases of topological solitons
[8], Bose-Einstein condensates exposed to a sawtooth-like
optical lattice potential [14], matter-wave solitons [10],
one-dimensional granular chains [15], and Bose-Einstein
condensates under an unbiased periodic driving potential
[16]. Thus, the effectiveness of RU in quantum systems
has been previously demonstrated, including the cases
of directed transport of atoms in a Hamiltonian quan-
tum ratchet (the values of the parameters used, which
were chosen to maximize the directed transport, corre-
spond to those of the universal biharmonic waveform,
cf. Ref. [14]) and driven Bose-Einstein condensates (the
authors show that the ratchet current is maximum for
the values of the parameters that correspond to those of
the ratchet potential associated with the universal bihar-
monic waveform, cf. Ref. [16]). There have also been
quantitative explanations in coherence with the degree-
of-symmetry-breaking mechanism, as predicted by the
theory of RU [11,12], of the interplay between thermal
noise and symmetry breaking in the DRT of a Brown-
ian particle moving on a periodic substrate subjected to
a homogeneous temporal biharmonic force [17-19], and
of a driven Brownian particle subjected to a vibrating
periodic potential [20]. Numerical analyses of a driven
Brownian particle in the presence of non-Gaussian noise
[21] and coupled Brownian motors with stochastic inter-
actions in a crowded environment [22] have confirmed
the RU predictions. Additionally, RU has recently been
demonstrated in the bidirectional escape from a symmet-
ric potential well [23].

This present paper discusses two retrodictions of the
theory of RU which explain previous experimental results
concerning DRT of cold atoms in dissipative optical lat-
tices [24] in one case (Sec. II), and magnetic flux quanta
(fluxons) in uniform annular Josephson junctions [25] in
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the other (Sec. III), both driven by biharmonic fields.
It has to be emphasized that these retrodictions are in
sharp contrast with the current standard explanation of
such experimental results, and they suggest new aspects
for experimental testing. Finally, we conclude with Sec.
IV by summarizing our conclusions and discussing future
work.

II. COLD ATOMS

Motivated by investigation into the mechanisms that
yield directed diffusion in a symmetric periodic potential,
Schiavoni et al. [24] made an experimental and numeri-
cal study of cold atoms in a one-dimensional dissipative
optical lattice where directed motion appears as a result
of the breaking of the system’s temporal symmetry after
applying a biharmonic phase modulation to one of the
lattice beams. In the accelerated reference frame, the
atoms experience a stationary optical potential together
with an inertial force

F (t) = γ [A cos (ωt) +B cos (2ωt− φ)] , (1)

where γ is an amplitude factor, A = 1 − B, and the
parameters B ∈ [0, 1] and φ ∈ [0, 2π] are the relative am-
plitude and initial phase difference of the two harmonics,
respectively. Commenting on their experimental results,
the authors claimed that: “By increasing B from the zero
value the atoms are set into directed motion, and a max-
imum for the c.m. velocity is reached for B ' 0.5, i.e.,
for about equal amplitudes of the even and odd harmon-
ics.” This statement has had the unfortunate consequence
that most subsequent publications citing Ref. [24] have
considered B = 1/2 to be the condition that maximizes
ratchet transport in systems subjected to a biharmonic
temporal force.

It will be shown below that the maximum c.m. ve-
locity is reached for B = 1/3, as predicted by the the-
ory of RU [11-13]. Indeed, it has been demonstrated for
temporal and spatial biharmonic forces that optimal en-
hancement of DRT is achieved when maximally effective
(i.e., critical) symmetry breaking occurs, which implies
the existence of a particular universal waveform [11-13].
Specifically, the optimal value of the relative amplitude
B comes from the condition that the amplitude of the
odd harmonic must be twice that of the even harmonic
in Eq. (1), i.e., 1−Bopt = 2Bopt =⇒ Bopt = 1/3. Notice
that this means that the contributions of the amplitudes
of the two harmonics to the directed motion of the atoms
are not independent, which in Ref. [24] is solely taken
into account in the estimate of the optical pumping rate
(escape rate) Γ′∼ sin2 k∆z, with ∆z ∼ A2B being the
displacement of the centre of oscillation of the atoms in
a potential well from the well centre, after the substitu-
tion A = 1−B. In such a case, one has that Γ′ = Γ′ (B)
presents a single maximum at Bopt = 1/3 for which the
asymmetry between the escape rates towards the left and
right wells is maximal, and hence one again expects a

FIG. 1: Velocity of the centre of mass of the atomic cloud
for φ = π/2 (dots are the experimental data from Fig. 3 in
Ref. [1]), and the curves Sφ=π/2 = C1Fφ=π/2 (B) (solid line),

Sφ=0 = C2Fφ=0 (B) (dashed line), and C3 (1−B)2B (dotted
line) as functions of the relative amplitude B [see the text;
Eq. (1)]. Fixed parameters: C1 = 6.6, C2 = 1.95, C3 = 6.9
[26].
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maximal nonzero current of atoms for B = 1/3, as is
indeed confirmed by the experimental results [24] (see
Fig. 1). RU predicts that the strength of the nonzero
mean current, 〈v〉, has the functional dependence

〈v〉 ∼ S (B) p (φ) (2)

[12], where S(B) accounts for the degree of breakage of
the shift symmetry F (t+ T/2) = −F (t), while the 2π-
periodic function p (φ) accounts for the degree of break-
age of the time-reversal symmetry F (−t) = F (t) and has
two extrema at the optimal values φopt = {π/2, 3π/2}.
This dependence on φ is indeed confirmed by the ex-
perimental results shown in Fig. 2 of Ref. [24]. Also,
S (B) presents features similar to those of the normal-
ized version of the biharmonic force [Eq. (1)], F ∗ (t), for
any value of φ (see Ref. [12] for additional details). Fig-
ure 1 shows plots of the optical pumping rate Γ′ (B) and
the function S (B) for two limiting cases of the initial
phase difference: one of the optimal values (φopt = π/2)
and one of the least favourable values (φopt = 0) [26].
These curves fit the experimental data reasonably well,
and present a single maximum at B = 1/3, as expected
[11,12]. This retrodiction therefore indicates that the re-
sults of Ref. [24] provide a first experimental proof of RU
in the context of cold atoms in optical lattices.

Further experiments with cold atoms could readily dis-
criminate between the RU and the harmonic-mixing per-
turbation theory predictions by considering the inertial
force γ [α(1−B) cos (ωt) +B cos (2ωt− φ)], with α > 0,
instead of that given by Eq. (1). In such a case, one ob-

tains that Γ′ (B) ∼ α2 (1−B)
2
B presents again a single

maximum at Bopt = 1/3, irrespective of the particular
value of parameter α, while RU predicts an α-dependent
maximal current of atoms for

Bopt = α/ (2 + α) . (3)
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III. MAGNETIC FLUX QUANTA

Motivated by investigation into the mechanisms that
yield DRT of solitons in long Josephson junctions, Usti-
nov et al. [25] studied experimentally the rectified dc volt-
age induced by the ratchet-like motion of a fluxon driven
by a biharmonic microwave force of zero mean, applied
to a spatially uniform long Josephson junction. The dy-
namics of the superconducting phase difference across the
junction is described by the perturbed sine-Gordon equa-
tion

ϕtt − ϕxx + sinϕ = −αϕt + γ + γ̃(t),

γ̃(t) ≡ γ̃1 sin (Ωt) + γ̃2 sin (2Ωt+ θ) , (4)

with the boundary conditions ϕ (l) = ϕ (0)+2π, ϕx (l) =
ϕx (0), where α is the dissipation constant due to quasi-
particle tunneling current, γ and γ̃1, γ̃2 are the dc and ac
normalized amplitudes (bias current densities), respec-
tively, θ is the initial phase difference of the two mi-
crowave harmonics, and the ac power levels P1 and P2

satisfy the scaling γ̃i ∼
√
Pi, i = 1, 2. The breakage

of the shift symmetry of the ac field γ̃(t) leads to the
ratchet-like motion of a fluxon, which is manifested in
the nonzero rectified voltage across the junction at zero
bias current. Commenting on their experimental and nu-
merical results, the authors claimed that: “The results
of the experimental measurements and numerical simu-
lations [of Eq. (4)] are in good correspondence with the
results of the first order (point-particle approximation)
soliton perturbation theory... . Using this approach, the
mean fluxon velocity (in the absence of dc bias) can be
computed...as follows”:

〈v〉 ∼ γ̃21 γ̃2 sin (θ + θ0) ∼ P1

√
P2 sin (θ + θ0) , (5)

where θ0 = arctan
{

2 (Ω/α) /
[
3 + (α/Ω)

2
]}

. The au-

thors assumed a sufficiently high dissipation constant α
such that θ0 ≈ 0, and found that the rectified voltage
presents a 2π-periodic dependence on θ with two extrema
at the optimal values θopt = {π/2, 3π/2} (cf. Fig. 3 in
Ref. [25]). This dependence on θ is indeed predicted from
RU for the biharmonic field γ̃1 sin (Ωt) + γ̃2 sin (2Ωt+ θ)
when the dissipation phase θ0 + π/2 reaches its high-
est value, i.e., when θ0 → 0 [11]. Remarkably, their
experimental results (see Fig. 2) indicate that the max-
imum amplitude of the rectified voltage, Vmax, presents,
as a function of the relative power dB = dB1(2) ≡
10 log

[
P1(2)/P2(1)

]
, a maximum at some optimum value

of the power level P1 (P2) while keeping the other power
level P2 (P1) constant. The following remarks would now
seem to be in order. First, the theoretical prediction
given by Eq. (5) indicates that Vmax should present a
monotonous behaviour as a function of dB for both data
series, thus failing to explain the experimental results
shown in Fig. 2. Second, RU predicts again that optimal
enhancement of DRT of fluxons requires that the am-
plitude of the odd harmonic must be twice that of the

-21 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15
0

3

6

9

12

 

 

re
ct

ifi
ed

 v
ol

ta
ge

 a
m

pl
itu

de
 V

m
ax

 (
V

)

relative power P (dB)

FIG. 2: Maximum amplitude of the rectified dc voltage versus
relative power dB ≡ 10 log

[
P1(2)/P2(1)

]
of the two harmon-

ics (experimental data from Fig. 4 in Ref. [25]; P1 = const
(squares), P2 = const (circles)). Vertical dotted lines indicate
the values dB = ±6.02 (see the text).

even harmonic in Eq. (4), i.e., γ̃1 = 2γ̃2 =⇒ P1 ∼ 4P2,
and hence that Vmax should present an absolute maxi-
mum at dBmax ∼ 6 (−6) when the power level P2 (P1) is
kept constant (see Fig. 2), thereby explaining the overall
behaviour of the experimental data. Notice that the val-
ues dB ∼ ±6 are independent of the particular values of
the power levels which are kept constant (not stated in
Ref. [25]) in each of the two data series. This retrodiction
therefore indicates that the results of Ref. [25] provide a
first experimental proof of RU in the context of fluxons in
annular Josephson junctions driven by biharmonic fields.

Finally, we propose additional experimental tests with
fluxons by considering the ac field

γ̃(t) ≡ γ [η sin (Ωt) + α (1− η) sin (2Ωt+ θ)] (6)

instead of that given by Eq. (4), where γ is an am-
plitude factor, α > 0, and η ∈ [0, 1]. This means

that P1 ∼ γ2η2, P2 ∼ α2γ2 (1− η)
2
, and hence

dB1 ≡ 20 log [η/ (α (1− η))] = −dB2. Now, the
theoretical prediction given by Eq. (5) reads 〈v〉 ∼
αγ3η2 (1− η) sin (θ + θ0), which presents a single max-
imum at ηopt = 2/3, irrespective of the particular value
of parameter α, and hence the amplitude of the recti-
fied voltage should present single maxima at dBmax =
±20 log (2/α), thus indicating an explicit dependence on
parameter α. In contrast, RU predicts once again that
optimal enhancement of DRT of fluxons requires that the
amplitude of the odd harmonic must be twice that of the
even harmonic in Eq. (6), i.e., ηopt = 2α/ (1 + 2α) =⇒
P1 ∼ 4P2, and hence that the amplitude of the rec-
tified voltage should present again absolute maxima at
dBmax ∼ ±6, irrespective of the particular value of pa-
rameter α. Also, RU predicts that the mean fluxon ve-
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FIG. 3: Mean fluxon velocity as a function of the relative
power dB = ±20 log {η/ [α (1− η)]} [see the text; Eq. (7)] for
θ = θopt ≡ π/2 and α = {1, 2, 3} [curves S(dB1) = C1L (dB1)
and S(dB2) = C2L (dB2) with maxima at dBmax = −6.02 and
dBmax = 6.02, respectively]. Vertical dashed lines indicate
the values dB = ±6.02. Fixed parameters: C1 = 50, C2 = 60
[27].

locity has the functional dependence

〈v〉 ∼ S (dB) p (θ) , (7)

[12] where p (θ) is a 2π-periodic function, while S (dB)
presents features similar to those of the normalized ver-
sion of the biharmonic field [Eq. (6)], γ̃∗ (t), for any value
of θ (see Ref. [12] for additional details). Figure 3 shows
plots of the functions S (dB1,2) for one of the optimal val-
ues of the initial phase difference (θopt = π/2) and three
values of α [27]. One finds indeed that the respective

curves are identical for any value of α and present max-
ima at dBmax ∼ ±6, as predicted by RU, while resem-
bling the corresponding experimental data series shown
in Fig. 2.

IV. SUMMARY AND OUTLOOK

In conclusion, we have discussed two retrodictions of
the theory of RU which explain previous experimental
results concerning DRT of cold atoms in dissipative op-
tical lattices in one case, and fluxons in uniform annular
Josephson junctions in the other, both driven by bihar-
monic fields (rocking ratchets). We expect that the the-
ory of RU will explain other different implementations
of the ratchet effect, such as gating ratchets [28], di-
rected transport in coupled systems without external bias
[29], and ratchets without any periodic substrate poten-
tial [30]. Our current work is aimed at exploring these
cases [31].
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