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Resumen

Hoy en día, cualquier organización que esté conectada a Internet es susceptible de sufrir
incidentes de ciberseguridad y por tanto, debe contar con un plan de respuesta a incidentes.
Este plan ayuda a prevenir, detectar, priorizar y gestionar los incidentes de ciberseguridad. Uno
de los pasos para gestionar estos incidentes es la fase de eliminación, que se encarga de neu-
tralizar la persistencia de los ataques, evaluar el alcance de los mismos e identi�car el grado
de compromiso. Uno de los puntos clave de esta fase es la identicación mediante triaje de la
información que es relevante en el incidente. Esto suele hacerse comparando los elementos
disponibles con información conocida, centrándose así en aquellos elementos que tienen rele-
vancia para la investigación (llamados evidencias).

Este objetivo puede alcanzarse estudiando dos fuentes de información. Por un lado,median-
te el análisis de los datos persistentes, como los datos de los discos duros o los dispositivos USB.
Por otro lado, mediante el análisis de los datos volátiles, como los datos de la memoria RAM.
A diferencia del análisis de datos persistentes, el análisis de datos volátiles permite determinar
el alcance de algunos tipos de ataque que no guardan su código en dispositivos de persistencia
o cuando los archivos ejecutables almacenados en el disco están cifrados; cuyo código sólo se
muestra cuando está en la memoria y se está ejecutado.

Existe una limitación en el uso de hashes criptográ�cos, comúnmente utilizados en el caso
de identi�cación de evidencias en datos persistentes, para identi�car evidencias de memoria.
Esta limitación se debe a que las evidencias nunca serán idénticas porque la ejecuciónmodi�ca
el contenido de lamemoria constantemente. Además, es imposible adquirir lamemoriamás de
una vez con todos los programas en el mismo punto de ejecución. Por lo tanto, los hashes son
unmétodo de identi�cación inválido para el triaje dememoria. Como solución a este problema,
en esta tesis se propone el uso de algoritmos de similitud de digest, quemiden la similitud entre
dos entradas de manera aproximada.

Las principales aportaciones de esta tesis son tres. En primer lugar, se realiza un estudio
del dominio del problema en el que se evalúa la gestión de la memoria y la modi�cación de la
misma en ejecución. A continuación, se estudian los algoritmos de similitud de digest, desarro-
llando una clasi�cación de sus fases y de los ataques contra estos algoritmos, correlacionando
las características de la primera clasi�cación con los ataques identi�cados. Por último, se pro-
ponen dos métodos de preprocesamiento del contenido de volcados de memoria para mejorar
la identi�cación de los elementos de interés para el análisis.

Como conclusión, en esta tesis se muestra que la modi�cación de bytes dispersos afecta
negativamente a los cálculos de similitud entre evidencias de memoria. Esta modi�cación se
produce principalmente por el gestor de memoria del sistema operativo. Además, se muestra
que las técnicas propuestas para preprocesar el contenido de volcados de memoria permiten
mejorar el proceso de identi�cación de evidencias en memoria.





Preface

Today, any organization that is connected to the Internet is susceptible to cybersecurity in-
cidents and therefore must have an incident response plan. This plan helps prevent, detect,
prioritize, and manage cybersecurity incidents. One of the steps to manage an incident is the
removal stage, which is responsible to eliminate the persistence of attacks, evaluate the scope
of the attacks, and identify the point of compromise. The key point in this phase is identifying
by triage the information that is relevant to the incident. This is usually done by comparing the
available elements with known information, thus focusing on those elements that are relevant
to the investigation (called evidence).

This goal can be achieved by studying two sources of information. On the one hand, by
analyzing persistent data, such as data from hard drives or USB devices. On the other hand,
by analyzing volatile data, such as data from RAM. Unlike the analysis of persistent data, the
analysis of volatile data allows determining the scope of some types of attack that do not keep
their code on persistence devices or when executable �les stored on disk are encrypted; whose
code is only shown when it is in memory and being executed.

There is a limitation in the use of cryptography hashes to identify memory evidences, com-
monly used to identify evidences in persistent data. This limitation is due to the fact that the
evidences will never be identical because the execution constantly modi�es the memory con-
tent. Furthermore, it is impossible to acquire memory more than once with all programs at the
same point of execution. Therefore, hashes are an invalid identi�cation method for memory
triage. As a solution to this problem, this thesis proposes the use of Similarity Digest Algorithms,
which measure the similarity between two inputs in an approximate manner.

The main contributions of this thesis are threefold. First, a study of the problem domain
is carried out in which memory management and its modi�cation in execution are evaluated.
Then, the Similarity Digest Algorithms are studied, developing a classi�cation of their phases
and the attacks against these algorithms, correlating the characteristics of the �rst classi�cation
with the identi�ed attacks. Finally, two methods of pre-processing the contents of memory
dumps are proposed to improve the identi�cation of the elements of interest for the analysis.

As a conclusion, this thesis shows that the modi�cation of sparse bytes negatively a�ects
the calculation of similarity between evidences from memory. This modi�cation is produced
mainly by the operating system memory manager. In addition, it is shown that the proposed
preprocessing techniques allow to improve the process of identifying evidences in memory.
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Context
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Chapter 1

Introduction

This initial chapter contains the motivation for this dissertation, which is a brief description of
the problems related to incident response, followed by a summary of the contributions of the
thesis.

1.1 Motivation

Incident response aims to discover what happened in a security incident and, more impor-
tantly, preserve incident-related evidence that can then be used to take legal action, trying to
respond to the known 6W (what,who,why, how,when, andwhere) [Cichonski et al., 2012]. An
important activity carried out during the incident response process is digital forensics, which
in the event of a computer incident is performed on the computers or network where the in-
cident occurred [Granc et al., 2006]. While computer forensics tries to �nd evidence on com-
puters and digital storage media, network forensics deals with the acquisition and analysis of
network tra�c.

Computer forensics is divided into di�erent branches, depending on the digital evidence
that is analyzed. In particular, this dissertation focuses onmemory forensics, which deals with
the retrieval of digital evidence from computermemory rather than from computer storageme-
dia, as disk forensics does. Memory forensics is useful in scenarios where encrypted or remote
storage is used, improving traditional forensic techniques more focused on non-volatile stor-
age [Ligh et al., 2014]. For instance, memory forensics enables a forensic examiner to retrieve
encryption keys or analyze malware that resides solely in RAM. In addition, triage in memory
forensic is faster since the amount of data to be analyzed is less than in disk forensics. At the
same time, it is more accurate as it only contains information related to running processes.

The memory of a computer system can be acquired by di�erent means, which are highly
dependent on the underlying operating system and the hardware architecture of the system.
A recent and comprehensive review of the latest memory acquisition techniques is provided
in [Latzo et al., 2019]. Thememory acquisition process retrieves the current state of the system,
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Section 1.1 1. Introduction

re�ected as it is in memory, and dumps it into a snapshot �le (known as amemory dump). This
�le is then taken o�-site and analyzed with dedicated software for evidence (such as Volatil-
ity [Walters and Petroni, 2007], Rekall [Rekall, 2014], or Helix3, to name a few).

A memory dump contains data relevant to the analysis of the incident. In forensic termi-
nology, these items are called memory artifacts and include items such as running processes,
open �les, logged in users, or open network connections at the time of memory acquisition.
Additionally, a memory dump can also contain recently used artifacts that have been freed but
not yet zeroed, such as residual IP packets, Ethernet frames, or other associated data struc-
tures [Beverly et al., 2011]. Many of these artifacts are more likely to reside in memory than on
disk, due to their volatile nature.

The Windows operating system (Windows, for short) is still the most predominant target
of observed malware families [FireEye, 2021]. For this reason, we focus on Windows in this
dissertation. In Windows, an executable, shared dynamic library, or driver �le that was loaded
as part of the kernel or user-mode processes is named image, while the �le is named an image
�le. Finally, both an image and a process are represented internally by a module [Microsoft
Docs, 2017]. In what follows, we adhere to this terminology.

In the event of a malware-related security incident, it is likely that malicious modules exist
in a memory dump, as the malicious image �le and its dependent images were loaded into
memory for execution. However, to what extent can we trust the contents of a memory dump?
This content may be inaccurate due to the way the memory management subsystem works.
This inaccuracy problem, called page smearing, is particularly visible when we acquire mem-
ory on a live system: while the operating system is running, the references to memory in the
running processes are constantly updated and, therefore, memory inconsistencies can occur
since the acquisition process is usually carried out non-atomically [Pagani et al., 2019]. Fur-
thermore, the size image may be larger than the image �le due to memory alignment issues,
as the granularity of the memory subsystem operating system manager determines the mini-
mum quantity of memory space that is allocated (for instance, 4 KiB inWindows, macOS, and
GNU/Linux).

Additionally, some optimization or defense methods performed by the memory manage-
ment subsystem and the operating system itself can also a�ect the data in amemory dump. For
example, page swapping, which refers to copying pages from the process’s virtual address space
to the swap device (which is typically non-volatile secondarymemory storage), or vice versa. In
the same way, on-demand paging (also known as deferred paging) delays loading a page from
disk until it is absolutely necessary. Finally, the Address Space Layout Randomization defense
relocates the modules in a random base address each time they are loaded to memory. This se-
curity mechanism forces the image loader to adjust themodule content on the basis of the new
base address. These methods a�ect the contents of a memory dump since parts of memory are
likely to be swapped or not loaded at the time of acquisition. Therefore, false negative results
are likely to occur when looking for evidence of malware exclusively in memory.

At the same time, a memory forensic analyst can triage the list of processes and modules
running at the acquisition time to rule out known modules or to focus on a few in particular.

4



1. Introduction Section 1.2

Thus, they need to somehow identify the modules of interest. In disk forensics, cryptographic
(one-way) hash functions [Goldreich, 2006] such as MD5, SHA-1, or SHA-256 functions are
commonly used for data integrity and �le identi�cation of a seized device [Harichandran et al.,
2016]. A desirable property of any cryptographic hash function is the avalanche e�ect prop-
erty [Webster and Tavares, 1986], which guarantees that the hash values of two similar, but not
identical inputs (e.g., inputs that have only been changed one bit) produce radically di�erent
outputs. Due to this property and page smearing, these crypto hash functions are unsuitable for
identifying common modules that belong to the same image �le, but in di�erent executions.

Similarity Digest Algorithms (SDA1), which are a subtype of Approximate Matching Al-
gorithms, have emerged in recent years as a prominent approach to overcome these limita-
tions [Harichandran et al., 2016]. A similarity digest algorithm identi�es similarities between
two digital artifacts by providing a measure of similarity, typically in the range of [0, 100]. This
similarity score allows the analyst to �nd out if the artifacts resemble each other or if an artifact
is contained in another artifact [Breitinger et al., 2014a].

Over the past decade, many similarity digest algorithms have been released to the digital
forensics community. However, there is a lack of a clear classi�cation scheme, which makes
comparison di�cult. Therefore, this dissertation �rst discusses the relationship between ap-
proximate matching algorithms and similarity digest algorithms, which require an intermedi-
ate representation (e.g., a �ngerprint, a similarity digest) that can be compared. Focusing on
SDA, we present a classi�cation scheme that makes easy to describe and compare these algo-
rithms. The proposed classi�cation scheme can be helpful for newcomers, practitioners, and
experts to discuss approaches or identify limitations. In addition, we present a study of possi-
ble attacks on SDA, correlating each type of attack with the set of characteristics that allow the
attack.

However, as mentioned above, there are some di�erences betweenmodules that are mainly
motivated by the work of the relocation process, as well as by the memory subsystem. These
di�erences, in turn, negatively a�ect the similarity scores provided by the similarity digest
algorithms (in some cases they even result in close to zero similarity). Therefore, this thesis
proposes di�erent approaches to minimize these di�erences as much as possible to a�ect the
similarity score as little as possible.

1.2 Contribution

In summary, the contribution of this dissertation is threefold. First, a detailed analysis of how
these paging issues a�ect the user-mode modules that reside in memory on aWindows system
with di�erentmemoryworkloads. Then, we study the SDA and present a classi�cation scheme
that facilitates their description and comparison, as well as a set of attacks against them con-
sidering this classi�cation. We also highlight the desirable properties that an SDA must have
to be robust against these identi�ed attacks.

1In this dissertation, we use the SDA interchangeably as a singular and plural acronym.
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Section 1.3 1. Introduction

Finally, to minimize the adverse e�ect of memory behavior on the use of SDA, we propose
two methods to process the input given to an SDA before calculating its similarity digest. Both
pre-processing methods undo the work done by the relocation process, but in di�erent ways:
the method called Guided De-relocation relies on particular kernel-space structures that
may be contained in the memory dump, while the Linear Sweep De-relocation method
performs a linear sweep disassembly of the binary code of an image.

In addition, we integrate both methods into a tool to facilitate the calculation of similarity
digest in memory dumps. Our tool, dubbed Similarity Unrelocated Module, is a plugin for
Volatility 2.6 that has been publicly released and licensed under GNU/GPLv3 for the sake of
open science and to further research in this area.

1.3 Structure of this Dissertation

After explaining in this chapter the motivation of this thesis, the remaining document is struc-
tured as follows. Chapter 2 details key concepts that are relevant to the ideas behind this dis-
sertation. Chapter 3 describes the state of the art in which the current work is contextualized.
Chapter 4 characterizes the issues that arise from theWindowsMemory Management and the
Address Space Layout Randomization defense. These chapters form Part I.

Part II focuses on the Similarity Digest Algorithms. Chapter 5 proposes a classi�cation of
the phases and the characteristics of an SDA, applying it to most of the algorithms used in the
area. Chapter 6 presents a classi�cation of attacks against SDA, correlating them with the set
of previously identi�ed characteristics. This chapter also includes a description of the attacks
that are possible and the characteristics that allow attacks to occur for each SDA considered in
this dissertation.

Part III describes the proposed solutions to alleviate the problems referred to above and fa-
cilitate �nding similarities between modules acquired from memory in a more e�ective way.
Chapter 7 describes the two methods proposed in this thesis, while the details of our tool im-
plementation and the experimental results that validate the proposed methods are described
in Chapter 8.

Finally, Part IV closes this dissertationwith Chapter 9, which summarizes the contributions
and lists possible improvements and future work related to this research.
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Chapter 2

Background

This chapter introduces some basic concepts that are necessary to follow the rest of this disser-
tation.We start by de�ning theWindows PE Format, which speci�es the structure ofWindows
executable �les. Next, we describe the base address randomization of executables and DLLs,
which creates a private memory address space and maps images to a random location. Finally,
we explain the Windows Memory Management.

2.1 TheWindows PE Format

The Windows Portable Executable (PE) format is the standard format used by Windows to
represent executable �les [Microsoft Software Developer Network, 2019a]. Windows PE was
introduced from WinNT 3.1 onward as a replacement for the previous executable format, the
Common Object File Format (COFF). As an interesting historical comment, let us remember
that COFF was also used on Unix-based systems before being superseded by the Executable
and Linkable Format (ELF), the current format of executable �les on these systems.

The Windows PE format is a data structure de�ned in the WinNT.h �le of the Windows
SDK, divided into di�erent parts as sketched in Figure 2.1. First, there areMS-DOS headers for
backward compatibility. These headers comprise the MS-DOS header and the MS-DOS stub,
which is a code snippet to report that the binary program cannot be run in DOS mode. Next
come the PE/COFF headers, which include the magic bytes of the PE signature as an ASCII
string (“PE” followed by two null bytes), the PE �le header—which de�nes the characteristics
of the program binary such as the architecture of the machine the PE �le was compiled for, the
endianness, if stripped, etc.—, and optionally the PE optional header.

This last part of the PE/COFF headers is only optional for object �les and is always present
for executable �les. The optional header includes important information about the binary pro-
gram, such as its preferred virtual memory address and a structure called DataDirectory,
which contains relevant data such as the export and import directories of the binary program,
as well as its relocation table. The image loader uses the relocation table to change any instruc-
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Figure 2.1: The Windows PE format.
(source: https://en.wikipedia.org/wiki/Portable_Executable)
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tion or data references when the binary program is mapped to a virtual address other than its
preferred one.

The Section headers appear after the PE/COFF headers. For each section contained within
the binary program, a section header de�nes the size of the section in the binary �le as well
as in memory, in addition to other characteristics (if the section data is executable, readable,
writable, etc.). Finally, the content of each section follows as a linear byte stream. The start and
end limits of each section are de�ned in the section header itself.

2.2 Randomization of base addresses of executables and DLLs

To create a process in Windows, the system carries out several stages [Yosifovich et al., 2017]:
converts and validates parameters and �ags; opens the �le image; creates aWindows executive
process object to represent the process and performs various kernel-related initialization tasks,
such as creating the initial process address space; creates the initial thread and its stack and
context; performs subsystem-speci�c initialization; and starts execution of the initial thread,
performing initialization in the context of the new process.

Most of the above work is done outside the kernel by the image loader, which is found in the
user-mode system DLL Ntdll.dll. So it behaves like standard code, however it is the �rst part of
the code to run in usermode as part of a new process. One of its functions is to parse the Import
Address Table (IAT) to �nd all the DLLs that the process requires, loading and unloading the
DLLs at runtime, and maintaining a list of all loaded modules. The IAT is an array of function
pointerswhere the image loaderwrites the address of the imported function (that is, an external
function whose code is provided by a DLL).

The user space where the executable, DLLs, stacks, and heaps are stored is created dynami-
cally, as is the case in the kernel. Typically, the base address where these parts are stored is ran-
domly assigned via the Address Space Layout Randomizationmechanism (ASLR). The ASLR,
combined with non-executable memory pages (inWindows, this protection is calledData Exe-
cution Prevention), make exploitation of a system throughmemorymanipulationmore di�cult
to achieve.

In Windows, ASLR starts at the image level with the �rst loaded module, the executable,
for the process and its dependent DLLs. For executables, the system relocates the image by
an o�set by calculating a delta value each time an executable is loaded (if ASLR is enabled
in the PE �le). For DLLs, the system calculates the image o�set globally for the current boot.
This value is called image bias and is stored in a global memory state structure. In either case,
the system has to adjust the code to correctly address the new code and data position. For
this purpose, the compiler adds a new section to the image, called .reloc, which contains
the position of all the required modi�cations [Microsoft Software Developer Network, 2019b].
Furthermore, all these positions are grouped by the page that they occupy when they are in
memory. This structure is due to the lazy evaluation performed by Windows (it does not load
a page in memory until it is accessed) [Pietrek, 2019].
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2.3 WindowsMemory Management

The virtual memory manager is a separate Windows process, primarily responsible for man-
aging physical memory usage. To do this, it tracks each page of physical memory and ensures
that when a thread (in the context of a process) reads/writes to addresses in its virtual memory
space, it refers to the correct physical addresses thanks to the page table entries (PTE), which
map a page of process virtual memory to a page of physical memory. The virtual manager will
allocate a page of physical memory via a page table entry at the time a process accesses a com-
mitted or shareable page [Yosifovich et al., 2017]. As a consequence, any application program
operates only with virtual addresses, avoiding the need to use physical addresses.

The memory unit by which Windows manages memory is called the memory page [Hu�-
man, 2015]. Amemory page de�nes a contiguous block of virtual memory of �xed length. Page
sizes can be small or large. The small page size is 4 KiB, while the large page size ranges from
2 MiB (on x86 and x64 architectures) to 4 MiB (on ARM) [Yosifovich et al., 2017].

Since the virtual address space of the process may be larger than the physical memory on
the machine, the Windows memory subsystem must maintain these page table entries to en-
sure that all reads/writes to virtual addresses refer to the correct physical addresses [Microsoft
Docs, 2018a]. Likewise, when thememory required by running processes exceeds the available
physical memory, it also sends some pages to disk that are later retrieved by returning them to
physical memory when necessary (that is, when accessed).

A page of a virtual address space of a process can be in di�erent states [Microsoft Docs,
2018b]: free, when the page has never been used or is no longer used (initial state of all pages
of a process). A free page is not accessible for the process but can be reserved, committed, or si-
multaneously reserved and committed; reserved, when the process has reserved somememory
pages within its virtual address space for future use. These pages are not yet accessible to the
process, but their address range cannot be used by other memory allocation functions; com-
mitted, when the page has been allocated from RAM and paging �les on disk, ready to be used
by the process.

In addition, the processes keep track of the virtual addresses that are reserved or used in
the process address space through the Virtual Address Descriptor (VAD) tree [Yosifovich et al.,
2017]. The VAD tree is a self-balancing AVL tree that has a root (named Vadroot) and leafs
(namedVadnodes) [Dolan-Gavitt, 2007]. The nodes are created by the virtualmemorymanager
when amemory chunk is allocated and contain the information about this continuousmemory
region and additional extra information, such as the type of initial access allowed and the type
of memory (reserved versus committed versus mapped). This structure is queried when a page
is �rst accessed and thememorymanager has to populate the PTE and commit a physical page.

Thememorymanager uses lazy evaluation to improve performance. Thismeans that a phys-
ical page is not actually mapped to a virtual address until the virtual address is accessed for the
�rst time, and PTEs are not created until they are queried for the �rst time. When a process
tries to read/write an address in a page that does not reside in memory, a page fault exception
is generated, which is detected and handled by the memory manager. There are two causes for
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this exception: i) The page is accessed for the �rst time and there is no PTE. Then the memory
manager has to query the VAD, create a PTE with this information, commit a physical page,
and copy the content (if it exists); ii) the page has been paged to disk. In this case, there is a
PTE for the virtual address, but the content of the page must be copied from disk to a new page
in physical memory.

Shared Dynamic Libraries betweenWindows Processes

Shared memory is de�ned as memory that is present in more than one process virtual address
space [Yosifovich et al., 2017]. This type of memory is commonly used when two processes use
the same dynamic library, as illustrated in Figure 2.2: the library is loaded into physical mem-
ory only once, and the corresponding (physical) pages are shared between all processes that
map that library. In particular, each process maintains the shared code and data pages of the
shared libraries in its virtual address space.When a process loads a shared dynamic library into
memory, its associated pages are allocated as copy-on-write. Furthermore, the process exclu-
sively maintains references in its page table to the pages in the shared library that are strictly
needed. Figure 2.2 illustrates this behavior between two processes of di�erent �le images (oth-
erwise their code pages would also be shared). As shown, Process A uses code pages 0, 4, and 5,
while Process B uses code pages 0, 5, and 6. Similarly, Process B maintains a private data page
(highlighted in gray). As explained above, the pages are mapped as copy-on-write, that is, a
private copy of a particular page will be made only if the process using that page modi�es it.

2.4 The Volatility Framework

Volatility is an open-source memory forensics framework for memory investigations, incident
responses, and digital forensics [Ligh et al., 2014]. It is implemented in Python but it also has
compiled versions for Windows, Linux, and macOS. Additionally, it supports memory dumps
from Windows, Linux, and macOS; providing a set of common (and speci�c) functions for
processes, network, or kernel memory. Furthermore, the framework allows developers to con-
tribute with their own plugins, making use of the functionalities provided by Volatility.

This framework provides a multitude of core plugins and functionalities [Volatility
Foundation, 2020]. We only brie�y describe the ones we use in this dissertation be-
low. Regarding processes and modules, we can select the process by name or PID us-
ing the functions get_proc_by_name() and get_proc_by_pid(), respectively. The function
get_load_modules() returns a list of load modules in a process, including the main program
module. For each module, we can use the vtop() function to get the physical page associated
with each virtual page that belongs to the module. When this function returns a null pointer
means that the page does not reside in memory. The dlldump plugin extracts the content of a
module from the user space of a process to a �le. When a page does not reside in memory, it
�lls its space with zeros to maintain the alignment of the module content. With regard to �les,
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Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Figure 2.2: Example of page tables of di�erent processes sharing a dynamic library.

the plugin filescan �nds open �les and returns a list of FILE OBJECTs in physical memory,
which represent the memory mapped �les in the kernel memory, acting as the logical inter-
face between the kernel and user-mode processes and the corresponding �le data stored on
the physical disk [Uroz and Rodríguez, 2020].

The new plugins can use any core function. In addition, they can call other plugins, ad-
justing the initial parameters for them. The new plugins only need to de�ne one function,
calculate(), that is called by the Volatility framework to perform the analysis task of the
plugin. Other functions can be overwritten with new functionality. For example, the writer
function that formats the output can be modi�ed for the new data structure and information
generated by the plugins.
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Chapter 3

State of the Art

This chapter discusses the state of the art by introducing works of the literature related to the
topics covered by this thesis, namely: memory forensics, similarity digest algorithms, and pre-
processing of input data. Theseworks are introduced by brie�y describing and comparing them
with our work.

3.1 Memory Forensics

Forensic analysis of user-space memory has been approached in di�erent ways. The work
in [White et al., 2012] introduces an approach based on VAD [Dolan-Gavitt, 2007] that identi-
�es all user allocations and then determines their purpose using kernel and user-space meta-
data sources. Based on an extensive analysis of the Windows XP SP3 32-bit and Windows 7
SP1 32-bit operating systems, the authors created two Volatility plugins to describe the content
of allocations within user-space memory and to verify whether a virtual address of a process
not described by a VAD is assigned to a page of physical memory. Paging is an important issue
for this approach, as some metadata sources can be paged to disk, thus preventing extraction
of their related metadata. This thesis complements this approach by providing insight into the
internals of the Windows memory manager with regard to paging.

A utility dubbed PageDumper that captures traces of attacks based on runtimememory pro-
tection tampering in the Linux operating system is proposed in [Parida and Das, 2020]. Im-
plemented as a kernel module, it helps analyze kernel and user-process address spaces, pars-
ing page table entries in both kernel and user contexts. Rather, we focus on Windows and a
post-mortem analysis of a complete memory dump. In any case, PageDumper can be a good
complement to our solution when analyzing a Linux operating system memory dump.

With regard to malware detection in memory forensics, most works use Virtual Machine
Introspection (VMI) techniques to avoid inaccuracy due tomemory acquisition on live systems.
The fundamental papers in this area are [Hay and Nance, 2008; Nance et al., 2009]. In [Dolan-
Gavitt et al., 2011], the authors demonstrated that thememory forensic community candevelop
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tools using VMI and proceedmuchmore quicklywithmemory analysis. In this regard, in [Tien
et al., 2017] the authors introduce a VMI-based system on top of Xen that can detect malware
in virtual machines using Volatility by comparing memory dumps acquired before and after
executing a suspicious image �le.

Other work focuses on using memory forensics as the basis for malware analysis. The dif-
ferences between applying YARA signatures to disk or in-memory �les and how these can be
improved to e�ectively search formalware inmemory are discussed in [Cohen, 2017]. YARA is
a very popular open-source and multi-platform tool to identify and classify malware samples.
In [Aghaeikheirabady et al., 2014], the e�ectiveness of di�erent machine-learning classi�ers is
evaluated using information from VADs, registry hives, and other internal process structures
such as EPROCESS. However, the software used to recover thesememory artifacts is unclear. The
work in [Duan et al., 2015] uses the prevalence of certain dynamic link libraries in processes
contained in a memory dump as a characteristic of malicious behavior. The work in [Mosli
et al., 2016] presents a machine learning model that uses some features (such as registry keys,
imported shared libraries, and called operating system functions) extracted from the reports
provided by Cuckoo Sandbox (a sandbox system for malware analysis) to obtain information
about a memory dump. Similarly, the work in [Rathnayaka and Jamdagni, 2017] presents an
analysis system composed of Cuckoo Sandbox and Volatility in which, as a �nal analysis step,
the results obtained are comparedwith the results of VirusTotal. Thework in [Case et al., 2020]
introduces hooktracer_messagehooks, a Volatility plugin that helps analyze hooks in a Win-
dows memory dump to determine if they are associated with a malicious keylogger or with
benign software. Finally, the authors introduce a system in [Bozkir et al., 2021] that �rst uses
the Procdump tool, a Microsoft command line tool, to dump processes from memory in Win-
dows 10 version 1903 systems and then converts them into RGB images for classi�cation using
machine learning algorithms.

With regard to malware focused on hiding its presence, in [Block and Dewald, 2019] an
approach is presented to discover executable pages despite the use of stealthy techniques so
that they are not reported by current detection tools. The authors implement it in a plugin
for the Rekall memory forensic framework and evaluate it against own implementations of
di�erent stealthy techniques, as well as against real-world malware samples. Instead of VAD,
this approach relies on PTEs that are listed through paging structures to avoid certain (ad-
vanced) stealthy techniques. However, as before this approach does not work if the page tables
are paged and the paging �le is not provided. A similar work is [Balzarotti et al., 2015], which
introduces di�erent techniques that malware can adopt to hide its presence using GPU mem-
ory. This work is very interesting, since the malware that resides in that memory cannot leave
a trace in the physical memory. The analysis of another type of memory instead of the physical
memory, though, is beyond the scope of this dissertation.
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3.2 Similarity Digest Algorithms

Prior works primarily focused on directly comparing two or more algorithms and mostly rely
on the metrics such as runtime e�ciency or precision and recall [Roussev, 2011; Lee and Atk-
ison, 2017]. On the other hand, some researchers dedicated their time to inspecting imple-
mentations in all detail. For instance, Breitinger et al. [2012] ran various tests on sdhash and
found that the implementation does not consider every byte for the similarity digest genera-
tion, which they denote by coverage. As a result, it is possible that two similarity digests are
completely identical despite the artifacts been (slightly) di�erent. Likewise, NIST SP 800-168
discusses various use cases as well as properties of special interest [Breitinger et al., 2014b].

However, there is not a clear,well-establishedway to provide direct comparisons between all
existing algorithms.We aim at �lling this gap in this dissertation. To the best of our knowledge,
we are the �rst to establish a classi�cation of SDA to facilitate the description and comparison
of these algorithms.

Similarity digest algorithms have been appliedmainly in the forensics analysis area to iden-
tify total or partial �les [Harbour, 2002; Kornblum, 2006; Roussev, 2010; Oliver et al., 2013].
Likewise, the authors in [Breitinger and Baggili, 2014] proposed these algorithms to identify
known �les in network tra�c. These algorithms have also been proposed to cluster malware,
since they allow similarities between binary �les to be captured [Li et al., 2015; Upchurch and
Zhou, 2015]. Unlike this dissertation, these works only consider executable �les as they are
stored on disk.

In 2014, the NIST published a technical report establishing a common de�nition and termi-
nology for approximate matching [Breitinger et al., 2014a]. The list of desirable properties for
a new similarity digest was recently proposed in [Moia and Henriques, 2017b]. Among others,
these properties are a high compression rate, full coverage, ease of digest generation and com-
parison, obfuscation resistance, random noise resistance, and a GPU-based design to speed up
the generation and comparison function. Some of these properties are inherited from crypto-
graphic hashes while others are the consequences of common issues detected among similarity
digest algorithms.

Several authors have studied how similarity digest algorithms behave in terms of perfor-
mance and robustness. Their performance has been extensively studied [Breitinger et al., 2013,
2014c; Breitinger and Roussev, 2014]. These articles propose and develop a generic framework
to evaluate similarity digest algorithms. The authors consider ssdeep, sdhash, and mrsh for
comparison. The robustness of similarity digest algorithms against random byte modi�cation
attacks is evaluated in [Oliver et al., 2014a]. In particular, they study the e�ects of imagemanip-
ulation, text �lemanipulation, and executablemanipulation (that is, themodi�cation of source
code before compiling the executable). In this study, the authors evaluate ssdeep, sdhash and
TLSH. Finally, in [Pagani et al., 2018] the authors study the similarity score of sdhash, TLSH,
and mrsh-v2, which is an enhancement of ssdeep that uses a similar feature function with a
minimal feature size and Bloom �lters to store features [Breitinger and Baier, 2012b]. In par-
ticular, they evaluated the similarity scores in three di�erent scenarios: library identi�cation,
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di�erent tool-chains and optimizations, and di�erent versions of an application. The authors
stated that sdhash was better when dealing with compilation tool-chain changes, while TLSH
is preferable when the changes involve source code modi�cations.

3.3 Pre-processing of input data

Regarding pre-processing methods, in [Moia et al., 2020] the authors propose excluding com-
mon features to enhance the performance of sdhash and mrsh-v2. In particular, the features
that appear above a given threshold are considered as a common feature and are thus discarded.
Unlike their method, our methods (presented in Chapter 7) are independent of the particular
digest algorithm used to calculate the similarity, since our pre-processing inputs work on the
input rather than on the inner working of the algorithms.

Finally, the authors in [White et al., 2013] propose a pre-processing method that normal-
izes the bytes a�ected by the relocation process and the imported functions of a binary �le by
overwriting the full addresses with constant values. In the �rst phase, their approach recreates
the Windows PE loader, transforming the PE into its virtual layout. The method uses a cryp-
tographic hash to create one signature per memory page and stores the o�set of normalized
addresses. When they need to validate a page, making sure that the page has been unmodi�ed
in the memory, the method uses the stored o�sets to normalize the addresses within the page
and to compare the computed hash on the page. Unlike their approach, our pre-processing
methods do not need image �les to identify the bytes a�ected by relocation. In addition, we are
less conservative as we normalize the possible bytes a�ected by relocation (or ASLR) consid-
ering the 64-byte memory alignment.
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Chapter 4

On the E�ect of Paging and ASLR on
Memory Forensics in Windows

In this chapter, we �rst study in detail and quantify the e�ect of paging inWindows user-space
modules. Our work provides information on the operation of paging in Windows, which is a
problem for the detection of malware through memory forensic analysis [Martín-Pérez and
Rodríguez, 2021]. In addition, the e�ects of the ASLR defense in the similarity score for the
most common SDA are also studied. We show how the variability introduced by this defense
reduces the usability of these algorithms when the input is not pre-processed [Martín-Pérez et
al., 2021a]. Apart from this assessment, we have also studied to what extent the similarity score
of each similarity digest algorithm is a�ected when the bytes are changed.

4.1 E�ect of the Windows Paging Mechanism

In this section, we �rst describe the experiments carried out to quantify and characterize the
e�ect of paging on Windows and then discuss the results.

4.1.1 Description of Experiments

As an experimental scenario, we use a virtual machine with a base installation of Windows
10 64-bit version 19041 running on the VirtualBox 6.1.18 hypervisor with default paravirtual-
ization and large paging disabled. Note that in the default paravirtualization, VirtualBox only
supports paravirtualized clocks, APIC frequency reporting, guest debugging, guest crash re-
porting, and relaxed timer checks. Therefore, the behavior of the guest memory management
unit is not a�ected by paravirtualization. Furthermore, we use a virtual machine to avoid the
problem of page smearing, since we are interested in quantifying paging, which is a�ected by
page swapping and on-demand paging. We consider two con�gurations of physical memory,
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4GiB and 8GiB, with an Intel Core i7-6700 3.40GHz dual-core processor. The Internet has been
disconnected after updating the machines.

As memory workloads, we consider 25%, 50%, 75%, 100%, 125%, and 150% of the total phys-
ical memory. We have developed a simple C tool to allocate the amount of memory needed to
reach the speci�ed percentage of memory used (that is, the tool allocates between 1GiB and
6GiB and between 2GiB and 12GiB, for the memory con�gurations of 4GiB and 8GiB, respec-
tively). In particular, the tool allocates memory and writes a random byte every 4KiB to ensure
that pages are constantly used and avoid their paging as much as possible. Note that this tool
will consume a large chunk of memory and will leave less space for the pages of other user-
space processes, regardless of the use of these pages (recall that both anonymous mappings
and �le mappings are backed by the system paging �le [Chen, 2013]).

Under these conditions, the systemmemory has been acquired at various runtimes for each
memory workload. First, we initialize the virtual machine and wait 5 minutes for the machine
to reach a stable state. Immediately after, we pause the virtual machine and acquire the initial
dump. Then we launch the memory allocation tool explained above and dump the memory
every 15 seconds for one minute, pausing and resuming the execution of the virtual machine
before and after memory acquisition. After the �rst minute, we continue to capture the mem-
ory every minute for an additional 4 minutes, also pausing and resuming the execution of the
virtual machine between memory acquisitions. These memory dumps constitute the �rst ob-
servation moment. We then stop the memory allocation process, pause the execution of the
virtual machine, and dump the memory using the same pattern: every 15 seconds for the �rst
minute and every 1minute for the next 4 minutes. Thesememory dumps are part of the second
observationmoment. Finally, we shut down and reboot the virtual machine to restart the dump
process with another memory workload.

For eachmemory dump, we get the number of recoverablemodules and howmany resident
pages are in each module. The process of memory acquisition and calculation of recoverable
data has been replicated 10 times to increase the reliability of the evaluation. We �nally took
into account the average of the 10 independent repetitions for each recoverable module. To
help us obtain the recoverable data from the modules, we have implemented a tool, dubbed
residentmem, as a Volatility plugin released under GNU/GPL version 3 license and publicly
available at [Martín-Pérez, 2021]. The plugin iterates through the processes contained in the
memory dump and, for each process, checks the memory pages assigned to each module as-
sociated with that process through internal Volatility structures. As input, the plugin needs a
memory dump. As output, it returns a list of the recoverable modules with the resident pages
and the total number of pages of each module, the process to which the module belongs, the
path where it is stored in the �le system, and other information of interest related to the mod-
ule (such as its version, base address, and its process identi�er, among other information). In
addition, it allows to obtain the speci�c list of physical pages associated to each resident page
of a recoverable module.

The plugin analysis work�ow is as follows. We �rst get the list of processes that were run-
ning at the time of memory acquisition through Volatility’s internal structures. We then iterate
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through this list, accessing its memory address space and validating with a 4096-byte step (the
size of a small page) if each memory address is resident. This gives us the number of resident
and total memory pages for each process and its related modules.

4.1.2 Discussion of Results

We only discuss the 75%, 100%, and 125%memory workloads because we have empirically ob-
served that experiments below 75% and above 125% behave equal to 75% and 125%, respectively.
Likewise, we do not plot all the instants of time because otherwise the graphs are overloaded
and di�cult to understand. For this reason, we only show the Initial (before execution) (be-
fore any interaction with the system), 0 minutes (just after interacting with the system, that is,
starting or stopping the memory allocation tool); and 0.5, 1, 3, and 5 minutes, a subset of the
observed instants of time that accurately represent the complete behavior.

In addition, one more moment, Initial (just before ending), has been incorporated for the
graphs relative to the second observation moment to show how the system is just before in-
teracting with it. This instant of time is actually the same as the 5 minutes instant of the �rst
observation moment. The graphs of both observation moments show Initial (before execution)
to have a common reference that allows comparing the results.

Modules of executable image �les. Figure 4.1 shows the resident pages of the recoverable
modules of executable �les under di�erent memory workloads for 4GiB and 8GiB of physical
memory (Figures 4.1a and 4.1b, respectively), for both observation moments. Each plot shows
the distributions of two variables (the size of a module �le in log-base 10, on the x-axis, and the
percentage of resident pages, on the y-axis) through color intensity. The darker the region, the
more data is in that region. The subplots at the top and right of themain plots show a smoothed
version of the size and resident pages data frequencies, revealing the distribution of resident
pages and module �le sizes.

Looking at the �rst observation moment, the initial conditions show that almost 80% of
the executable module pages reside in memory. With a memory workload of 75%, there are
no signi�cant changes to the resident pages because there is still enough free memory, regard-
less of the size of the physical memory. A slight reduction in recoverable modules is observed
throughout the acquisition times, which may be motivated by the paging of unused modules,
while the resident pages remain constant. Note that the colored areas aremostly identical.With
regard to 100% memory workload, in 0.5 minutes most modules are expelled and the number
of resident pages for recoverable modules is drastically reduced. With the 125%memory work-
load, there is again a large reduction in recoverable modules. In this case, the graph shows two
well-de�ned areas: an area that contains the �rst two moments of time and another area that
contains the remaining rime moments on a diagonal below 60% resident pages. The 8GiB re-
sults show greater variability in this workload, as indicated by the larger color areas below the60% diagonal.
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Figure 4.1: Resident pages of recoverable executable modules at the �rst (�rst and third row)
and at the second observation moments (second and fourth), with memory workloads of 75%,100%, and 125% (�rst, second, and third column, respectively).
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With regard to the second observationmoment, the results are the same as in the �rst obser-
vationmoment with amemory workload of 75%. With the 100% and 125%memory workloads,
it is observed that the modules progressively come back to memory, but the ratio of resident
pages for recoverable modules never goes above 25%. Signi�cant increases in 0.5 minutes and
in 3 minutes are seen for both memory con�gurations, although the number of recoverable
modules is less for a 125% workload.

Modules of shared dynamic library image �les. Figure 4.2 shows the distribution graphs
of resident pages of recoverable modules of shared dynamic libraries under di�erent memory
workloads for 4GiB and 8GiB of physicalmemory (Figures 4.2a and 4.2b, respectively), for both
observationmoments. In this case, most modules only have 20% of their pages resident and are
in the range 105 to 106 bytes. The maximum percentage of resident pages is 75%.

Regarding the �rst observation moment, no signi�cant changes are observed with 75% of
memory workload, similarly to the results of the type of module studied previously. A slight
decrease in recoverablemodules is observed, but with no e�ect on resident pages.With 100% of
memory workload, the system begins expelling modules for any size in 0.5 minutes. The num-
ber of recoverable modules is reduced, but the distribution shape is similar in both memory
con�gurations. A more aggressive expelling of modules is observed in 8GiB of physical mem-
ory. In any case, most modules have only less than 5% of their pages resident. With 125%, the
results are very similar. As before, there is a small colored area at the bottom of the graph,
which indicates that the percentage of the resident pages is approaching 5% again.

With regard to the second observationmoment, the results with amemory workload of 75%
are very similar to the results of the �rst observationmoment.With 100% ofmemoryworkload,
the number of recoverable modules slowly increases, but the percentage of resident pages for
most modules is still close to 5%. Similar behavior is observed with the memory workload of125%, where fewmodules return tomemory but the percentage of resident pages remains close
to 5% for most of them.

4.2 E�ect of ASLR

The relocation process randomizes the memory segment locations where a binary program is
mapped, including the code and data memory segments. Likewise, ASLR ensures this reloca-
tion occurs as a software defense technique to thwart control-�ow hijacking attacks [Szekeres
et al., 2013]. ASLR can be seen as a special relocation process. By default, these code and data
relocation processes are performed in the Windows system libraries each time the OS is re-
booted.

Note that these byte modi�cations can a�ect the similarity score of the bytewise similar-
ity digest algorithms, as discussed in Chapter 5. To assess this possibility, we have evaluated
the extent to which the relocation processes a�ect each of these bytewise similarity digest al-
gorithms when comparing similarity between modules. In this regard, we have calculated the
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Figure 4.2: Resident pages of recoverable shared dynamic library modules at the �rst (�rst
and third row) and at the second observation moments (second and fourth), with memory
workloads of 75%, 100%, and 125% (�rst, second, and third column, respectively).

22



4. On the E�ect of Paging and ASLR onMemory Forensics in Windows Section 4.2

similarity score and the number of di�erent bytes between pairs of pages. In particular, we have
considered 868,673 comparisons over 44,398 valid pages of common modules extracted from
10 dumps (per machine) of virtual machines running three 32-bit Windows operating systems
(speci�cally, Windows 7 6.1.7601, Windows 8.1 6.3.9600, and Windows 10 10.0.14393).

Figure 4.3 shows boxplots of the similarity scores for each algorithmwith respect to the ratio
of di�erent bytes. The mean values of the boxplots are plotted with a dot. Our results indicate
that more than 46% of the pages compared contain di�erent bytes, and the similarity score of
all the algorithms drops rapidly when the proportion of di�erent bytes is between 1% and 10%.
Note that the similarity score of TLSH is normalized to be comparable to the other scores.

Based on these results, we consider that the bytewise similarity digest algorithms stud-
ied do not provide a good degree of con�dence for a forensic analysis due to the simi-
larity scores drop when the number of di�erent bytes grows slightly, as well as due to
the high variability of the similarity score. As we have explained above, these byte di�erences
in the images that come of the same image �le are due to the relocation of the binary program.
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Figure 4.3: Similarity scores with respect to the ratio of dissimilar bytes. The similarity score of
TLSH is normalized to be comparable with the other scores.
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E�ect of Byte Changes on Similarity Score

As a �nal experiment, we evaluate the extent to which the similarity score of each similarity
digest algorithm is a�ected when an arbitrary number of bytes is changed. In particular, we
use 102214 pairs of resident pages retrieved from 8 typical modules on di�erent executions.
We calculate the similarity score for each pair with di�erent similarity algorithms (speci�cally,
dcfldd, ssdeep, sdhash, and TLSH). Next, we group the pages according to the similarity score.
Finally, we look for the pair of pages with the fewest di�erent bytes in each value of the simi-
larity score. The results are shown in Figure 4.4.

It is worth mentioning that the trend seems to be similar in all cases, having di�erent sen-
sitivity to byte di�erences. The left-side of the plot shows high similarity scores, in which we
only appreciate the di�erent sensitivity between the algorithms. In this regard, dcfldd is the
algorithm more sensitive to byte changes while TLSH is the algorithm less sensitive.

The algorithms tend to show di�erent behavior when the similarity score is under 50 (right-
side of the plot). For ssdeep, the number of di�erent bytes seems to growuntil a similarity score
value of 20, with 1200 di�erent bytes. Note that the function seems to be a stepwise function,
mainly caused by the granularity of the algorithm: ssdeep generates 64 features as amaximum,
and thus the number of bytes is always limited. Likewise, ssdeep does not yield any score under
approximately 20, as this algorithm requires at least 7 common consecutive features between
two digests to reduce false positives [Baier andBreitinger, 2011]. Based on our �ndings, we con-
clude that the randomness of the bytes a�ected by the relocation process causes this necessary
condition to not hold and then the similarity score drops quickly to zero.

Similarly, sdhash shows stable behavior until the last value. According to the plot, there is
one pair of identical pages having zero similarity. This value is caused by the low entropy of the
pages, as sdhash does not select features with low entropy, as well as the number of selected
features in the digest is fewer than the minimum number required by sdhash to compare a
digest. We have empirically corroborated that the generated digests in the last value contain
less than 16 features and thus they are incomparable, yielding to a similarity score of zero
value [Roussev and Quates, 2013]. TLSH exhibits the most stable behavior, although it requires
the fewest di�erent bytes to provide a similarity score of zero value.
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Figure 4.4: Minimum number of di�erent bytes in a small page (4096 bytes) that drops simi-
larity score.
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Similarity Digest Algorithms
Classi�cation and Attacks
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Chapter 5

Classi�cation of Similarity Digest
Algorithms

This chapter summarizes the main contribution of the dissertation related to the study of
Similarity Digest Algorithms (SDA). The study proposes a novel classi�cation about Similar-
ity Digest Algorithms and new categories based on the approach of the state-of-the-art algo-
rithms [Martín-Pérez et al., 2021b]. Finally, we apply the proposed classi�cation to the current
state-of-the-art SDA, as a way to validate it.

5.1 Similarity Digest Algorithms

Approximate matching algorithms identify similarities between two or more artifacts at three
di�erent levels of abstraction: bytewise, when the comparison is based on the raw sequence of
bytes thatmakeupdigital artifacts; syntactic, when the internal structures of the digital artifacts
under analysis are used instead of simply byte sequences; or semantic, when the comparison
is based on contextual attributes to interpret digital artifacts and estimate their similarity.

In addition, these algorithms can directly compare artifacts (e.g., Levenshtein distance or
Hamming distance), or they can �rst convert them to an intermediate representation (e.g., a
�ngerprint, hash, digest) which can then be compared. This latter case is often referred to as
Similarity Digest Algorithms. Other authors also call them fuzzy hashing or similarity hash-
ing. The goal of these algorithms is to complement cryptographic hash functions by allowing
the identi�cation of similar objects rather than completely identical objects.

Similarity Digest Algorithms (SDA) transform digital artifacts into an intermediate repre-
sentation to allow e�cient (fast) identi�cation of similar objects. These algorithms select fea-
tures (sometimes also called chunks in literature), compress them, and merge them to form
a �nal signature (similarity digest) that can be compared to another and produce a similarity
score.

According to NIST SP 800-168, “approximate matching is a promising technology designed to
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identify similarities between two digital artifacts” [Breitinger et al., 2014b]. SDA is a subtype of
these algorithms characterized by comparing artifacts through the comparison of their digests.
SDAgained a lot of popularity over the last decadewith new algorithms developed and released
to the digital forensic community.

SDA may be a feasible solution to do a initial triage of the artifacts of a memory dump to
identify as much as possible their similarity among other artifacts. In the following sections we
present a summary of the characteristics of these algorithms together with their strengths and
weaknesses. The goal is to understand which algorithms have the most suitable feature set for
memory forensics.

On the other hand, when algorithms are published (e.g., as part of a scienti�c publication),
they are often compared with other algorithms to describe the bene�ts (and sometimes also
the weaknesses) of the proposed approach. However, given the wide variety of algorithms and
approaches, it is impossible to provide direct comparisons with all existing algorithms. To solve
this, we present the �rst SDA classi�cation that allows algorithm comparisons and an easier
description. Therefore, we �rst review the existing literature to understand the techniques used
by various algorithms and to become familiar with common terminology. Our �ndings allow
us to develop a categorization that is largely based on the terminology proposed by NIST SP
800-168.We believe that this contribution helps newcomers, practitioners, and experts to better
compare algorithms, understand their potential, as well as the characteristics and implications
they may have for forensic investigations.

5.2 Terminology, methodology, and background

This section introduces the terminology related to SDA that we use in this dissertation. We
also describe the methodology applied to �nd the literature and algorithms and to derive the
classi�cation scheme. Finally, we explain the Bloom �lter, a data structure used by several
algorithms to store features.

5.2.1 Terminology

Due to the novelty of this area, there is no consensus on terminology. Although all the works
use a terminology that is consistent in itself, it is easy to �nd several articles that name the same
concept with di�erent terms or use the same term for di�erent concepts. For example, hash is
used in most articles to denote di�erent concepts (e.g, hash as a digest or hash as a function).
This section introduces the terminology and concepts that we follow in this and subsequent
chapters, which is similar to NIST SP 800-168 [Breitinger et al., 2014b]:

Features are the basic characteristics that can be extracted from digital artifacts and allow
the comparison between two or more objects. Sample features can be a single bit, byte
sequences, or o�sets in an object.
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Mapping functions allow the processing of features, (e.g., to compress them or encrypt them
using cryptographic hashing). Note that the NIST, as well as other literature, frequently
use the term compression functions as this is the most common behavior of this function.
However, we think that mapping function is more accurate as theoretically the function
can also expand the feature. We refer to the features obtained as a result of the mapping
functions as processed features.

Similarity digests are the �nal output of SDA and can be seen as an aggregation of processed
features.

Similarity functions allow the comparison of two similarity digests, returning a similarity
score that is often a numeric value. This value, although it often ranges from 0 to 100, is
not necessarily a percentage value.

5.2.2 Methodology

To derive the classi�cation scheme, we review the relevant literature, i.e., descriptions of the
various algorithms, as well as secondary literature such as comparisons of algorithms, security
evaluations, or suggested properties for approximatematching (e.g., as suggested by [Breitinger
and Baier, 2012a]). Our starting point are articles that discuss properties and security features
of algorithms. Thus, we start with more general/broader articles followed by articles describ-
ing speci�c algorithms and implementations. For each article, we extract relevant information
(characteristics) describing behavior, features, and peculiarities of algorithms. Last, we try to
align these characteristics as best as possible.

Table 5.1 shows the algorithms thatwe consider in this chapter, presenting their old andnew
classi�cation that are discussed in Section 5.4 considering our proposed classi�cation scheme.
For each algorithm we also detail their main literature references.

5.2.3 The Bloom Filter

The Bloom �lter is a probabilistic structure with a good space/time trade-o� based on hash
functions and used to represent sets of elements, introduced in 1970 by Bloom [Bloom, 1970].
This structure is widely used by SDA to store and compare sets of signi�cant elements.

A Bloom �lter (BF) is a representation of a set S = {s1, s2, ..., sn} of n elements from U. The
�lter consists of a vector of m bits, initially set to 0, and k independent sub-hash functions
that support �ltering operations. The sub-hash functions uniformly maps the elements ofU to
the range [0,m − 1]. To insert an element s into the �lter, the structure calculates the k sub-
hash values of s and sets the k positions of m that are pointed by the k sub-hash values to 1,
increasing the number n of elements within the �lter by 1. To see if an element is inside a BF,
it calculates the k sub-hash functions and checks the pointed positions. If all bits are 1, the
element is inside the BF. However, there is a probability P = (1 − (1 − 1∕m)kn)k that a query

31



Section 5.3 5. Classi�cation of Similarity Digest Algorithms

Algorithm Reference Previous classi�cation New classi�cation
dcfldd [Harbour, 2002] Block-Based Hashing Feature Sequence Hashing
ssdeep [Kornblum, 2006] Context Trigger Piecewise Hashing Feature Sequence Hashing
md5bloom [Roussev et al., 2006] Block-Based Hashing Feature Sequence Hashing
MRS hash [Roussev et al., 2007] Context Trigger Piecewise Hashing Feature Sequence Hashing
sdhash [Roussev, 2010] Statistically-Improbable Features Feature Sequence Hashing
MRSH-v2 [Breitinger and Baier, 2012b] Context Trigger Piecewise Hashing Feature Sequence Hashing
SimHash [Sadowski and Levin, 2007] Block-Based Rebuilding Byte Sequence Existence
mvHash-B [Breitinger et al., 2013] Block-Based Rebuilding Byte Sequence Existence
LZJD [Ra� and Nicholas, 2017] (none) Byte Sequence Existence
Nilsimsa [Damiani et al., 2004] Locality-Sensitive Hashing Locality-Sensitive Hashing
TLSH [Oliver et al., 2013] Locality-Sensitive Hashing Locality-Sensitive Hashing
saHash [Breitinger et al., 2014d] (none) Locality-Sensitive Hashing
FbHash [Chang et al., 2019] (none) Locality-Sensitive Hashing

Table 5.1: Proposed classi�cation for state-of-the-art similarity digest algorithms; the last two
columns are discussed in Section 5.4.

will receive a false positive because the marked bits are 1 due to other elements. In contrast,
the probability of a false negative is 0.

To address a position in anm-bit vector, log2m bits are needed. So, to add a new element it is
necessary to generate klog2m independent bits. Taking advantage of this fact, SDA implement-
ing BF calculate only one hash with enough output bits and divided it into k, using them as
sub-hash values. Since only one hash is computed, SDA performance is improved by reducing
computation time.

At the same time, SDA limit the number of elements inside �lters to keep the probability of
false positive low, concatenating a new �lter when the previous one reaches a �xed threshold.

5.3 Proposed Classi�cation Scheme

To develop the classi�cation scheme, we reviewed the most widely used algorithms and im-
plementations, as well as some niche ones, summarized in Table 5.1. First, we describe the
general phases of SDA, and then, we detail the procedures/dimensions and characteristics of
each phase.

5.3.1 Phases of a Similarity Digest Algorithm

Similar to traditional hash functions, SDA have two main stages of work:

1. During the artifact processing and digest generation phases, an algorithm receives
data (i.e., a sequence of bytes) as input, processes the input, and returns a similarity
digest. In detail, there are several phases: First, the features are extracted from the in-
put (feature generation phase), which are then processed (feature processing). Some al-
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gorithms may have an optional phase to select the features that will make up the digest
(feature selection phase). If this phase does not exist, all the features form the digest. In
addition, some algorithmsmay have an optional phase to remove duplicate features (fea-
tures deduplication phase). This phase can be associated with the next stage when it uses
digests instead of features as input. Finally, the processed features are transformed to
form the similarity digest (digest generation phase), which is the �nal result of the SDA.
Note that the order of phases is not �xed, as each algorithm can implement the phases in
a di�erent order. For instance, one algorithm may �rst select features and then perform
processing, while other algorithms may implement the generation phase in conjunction
with the feature deduplication phase due to the underlying storage structure used.

2. The digest comparison phase is a separate phase that requires two similarity digests
as input (obtained from the same SDA). Using some similarity metric, the digests are
compared and a similarity score is returned. This score provides information about the
similarity (or dissimilarity) between the digests.

These phases led to our classi�cation scheme as summarized in Table 5.2 where we identi-
�ed several dimensions/procedures for each phase, each with various characteristics.

5.3.2 Feature Generation Phase

To begin, SDA process the input at the byte level with the goal of identifying and extracting fea-
tures. We distinguish between the following dimensions/procedures: The length of the feature
can be a �xed length (static) or variable (dynamic). In the latter case, the features are generally
identi�ed with a splitting function that allows to identify the limits of the features. Currently,
we di�erentiate between two di�erent splitting functions. A trigger function compares its out-
put to a prede�ned value to determine the feature boundaries. On the other hand, a unique
function can be used to construct a set of unique features from the input using set theory2.
When the feature size is static, an SDA may not need a splitting function to identify bound-
aries. These cases are indicated with none. An example of static features would be dcfldd,
which uses 512 bytes. In contrast, ssdeep and MRSH-v2 use trigger functions (rolling hashes)
to identify features, resulting in features of variable size.

The intersection dimension in the feature generation phase can be yes (a byte can belong
to more than one feature) or no (a byte can belong to exactly one feature). Some examples are
ssdeep and sdhash, which have distinct and overlapping features, respectively.

The fourth dimension is cardinality, which describes the number of features that SDA try
to produce for a given input which can be �xed or variablewhere it often depends on the input
length L. For instance, ssdeep has amaximumof 64 features (�xed) while dcfldd and MRSH-v2
produceL∕512 andL∕320, respectively (variable). In otherwords, cardinality is strongly related
to the length dimension of the feature.

2Onemay consider this as part of the feature selection phase.However, in this particular case the feature changes
if it is in the set. Therefore, we placed it in feature generation.
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Dimension/Phase Procedure Characteristic
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Feature generation

Length Static; Dynamic
Splitting function Trigger; Unique; None
Intersection Yes; No
Cardinality Fixed; Variable

Feature processing Mapping function Hash; Encoding; Identi�er; None
Bit reduction Ratio; None

Feature selection
Selection function Minimum probability; Block matching;

Block similarity; Minimum value; None
Domain Feature; Processed feature
Coverage Complete; Partial

Digest generation

Digest size Fixed; Input dependent; Input dependent with max

Storage structure Processed feature concatenation;
Set concatenation; Set; Counter

Order Absolute; Set-absolute; Processed feature–aware;
None

Generation
requirements

Minimum features; Diversity; Document frequency;
None

Type Consecutive; In-scope; NoneFeature deduplication Occurrence phase Digest generation; Digest comparison

Method
Common feature ratio;Weighted edit distance;
Average Hamming distance; Jaccard index;
Cosine similarity

Comparison
requirements

Minimum commonality; Minimum cardinality;
Similar cardinality; Ordered cardinality;
Equal feature parameter; None

Output score Binary value; Interval; Half-bounded
Score trend Ascending; Descending

Digest comparison

Spatial sensitivity Partial; Total; None

Table 5.2: Categorization scheme for similarity digests algorithms. The possible values for each
dimension/procedure are separated by semicolons.

5.3.3 Feature Processing Phase

After identifying the features, theremay be a processing phasewhich includes two dimensions.
A mapping function (or compression function, as suggested by NIST) applies some form of
mapping to the feature which can be hash, encoding, or identi�er. We only found one algo-
rithm, saHash, which does not apply any compression function since its feature size is already
small. Most commonly, SDA use a hash to obtain pseudo-random processed features where
cryptographic and non-cryptographic algorithms are used. For instance, MRSH-v2 uses FNV-1a
function [Fowler et al., 2011] to reduce features from320 bytes to 64 bits, while sdhash relies on
SHA-1 as mapping function. Instead of hash, the mapping function can be a more general en-
coding function to process the features. For instance, mvHash-B applies a majority voting step
followed by Run Length Encoding to compress the sequences of the chosen identi�ers. The
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last approach we found is a feature identi�er function (which works like a mapped feature)
and generates feature identi�ers of selected features from a �xed set. For instance, SimHash
generates an identi�er for each feature that matches one of its 16 �xed features.

The mapping function is usually followed by a bit reduction procedure that consists of
selecting a few bytes (or bits) of the mapped feature. This bit reduction can be expressed as a
ratio between output and input. For instance, the MRSH-v2 input to the bit reduction function
is a 64-bit FNV-1a hash that results in 55-bit output. Hence, the ratio is 55/64. Similarly, the
sdhash inputs are 160-bit SHA-1 hashes, while the outputs are 55 bits, resulting in a 55/160
ratio. We have used none when the SDA does not have a bit reduction procedure (that is, all
the bits of the mapped feature are used). For completeness in Table 5.3, in these cases we have
written the output size (in bits) in parenthesis.

5.3.4 Feature Selection Phase

This phase, carried out by some algorithms, selects speci�c features (e.g., themost exclusive) to
build a digest. Its implementation can be distributed over several functions of di�erent phases.
As a theoretical example, an algorithm can implement a feature generation phase that does not
produce features for long chunks of zeros. Then it can select some of the generated features for
the digest. Hence, this phase should be considered as a transversal phase.

The selection function characterizes the main approach of this phase, which can be based
on:minimum probability (i.e., themost unique), when the features with the least probability of
occurring are selected since the most signi�cant features are considered (e.g., sdhash); block
matching, when a prede�ned set of blocks is used to �nd and replace the sequence of features
with a sequence of block identi�ers (e.g., SimHash); block similarity, when the most similar
blocks are identi�ed (e.g., mvHash-B);minimum values, when the algorithm selects a subset of
processed features with the lowest values (e.g., LZJD).

The domain of these selection functions is feature or processed feature. For instance, sdhash
selects features by their entropy and then calculates the processed features, which are �nally
added to the digest. On the contrary, LZJD �rst calculates the processed features and then se-
lects which of them will form the digest.

Coverage re�ectswhether all bytes of the input are considered in the similarity digest. It can
be complete (such as ssdeep or MRSH-v2) or partial (such as sdhash, where there may be gaps
between features). In the latter case, it is important to understand that two inputs can produce
a perfect SDAmatch but they may not be identical (i.e., they have di�erent cryptographic hash
values).

5.3.5 Digest Generation Phase

This phase includes the construction of a similarity digest. The digest size can be �xedwhen it
is always the same length, regardless of the input length (e.g., FbHash or saHash); input depen-
dent, when there is a correlation between input size and digest size (e.g., dcfldd concatenates
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the MD5 hash for each 512-bytes feature); or input dependent with max, when size depends
on input length but has a maximum length (e.g., ssdeep produces a digest between 32 and 64
characters, but may not reach its maximum for small inputs).

Regarding the storage structure, it can be a processed feature concatenation (i.e., the pro-
cessed features are simply concatenated, as dcfldd or ssdeep do) or it can be set concatenation,
which describes the idea of adding processed features to a set with amaximum capacity. When
the set reaches its capacity (that is, it is full), a new empty set is added. So far, all implementa-
tions of the set concatenation method use Bloom �lters and the comparison process described
by [Roussev et al., 2006; Roussev, 2010, 2012]. When the number of processed features is lim-
ited, they can be stored in a single set as in the case of LZJD. Finally, during the selection phase,
some algorithms (e.g., Nilsimsa and SimHash) add features according to counters.

The storing order between features is also a characteristic of SDA. Possible values are: ab-
solute, when the position of each feature is preserved (for instance, dcfldd or ssdeep store all
features in order); set-absolute, when the generated digest maintains the order between di�er-
ent sets of features, but does not know the order of featureswithin a particular set. For example,
SDA that use set concatenation (based on Bloom �lters) for feature storing have this character-
istic value, as the Bloom Filters do not maintain the order (e.g., md5bloom); processed feature–
aware, when the storage structure does notmaintain the order of the features containedwithin,
but the processed feature itself helps determine the order. Thus, the intersection between fea-
tures allows to detect changes (i.e., the similarity score varies) when the input is rearranged
(e.g., TLSH and saHash); or none, when the SDA does not consider the order between features
(e.g., SimHash and LZJD).

Some algorithms have generation requirements to produce a digest. The requirements
can be to achieve minimum features, to have su�cient diversity in the input, or to have a doc-
ument frequency that contains the frequency of each feature in a training set. When SDA has
no requirements, we use none. In this regard, some algorithms have a feedback phase, during
which they make con�guration adjustments and restart the process from the beginning when
the generated digests do not meet the minimum expected requirements.

5.3.6 Features Deduplication Phase

The features deduplication phase is an optional phase implemented by some algorithms to elim-
inate duplicate or redundant processed features. The type can be consecutive, when several
consecutive features are reduced to a short sequence; or in-scope, when identical features in
the same scope are removed. When this phase does not exist, the type is none. This phase can
take place (occurrence phase) at two di�erent sites, either during the digest generation or dur-
ing the digest comparison phases. For example, algorithms that use Bloom Filters deduplicate
by design during the generation phase, since these �lters behave as sets and thus do not store
duplicate features.
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5.3.7 Digest Comparison Phase

This phase allows two digests to be compared, resulting in a similarity score, i.e., how similar or
di�erent these two digests are. There are severalmethods to calculate the similarity between
two digests: common feature ratio, which calculates the number of common elements divided
by the maximum digest size; weighted edit distance (Damerau–Levenshtein distance), which
is the edit distance between two sequences of features [Levenshtein, 1966; Damerau, 1964];
average Hamming distance, when the digests are composed of storage substructures and the
similarity is measured by adding the Hamming distance between substructures [Hamming,
1950]); Jaccard similarity (similarity coe�cient), which calculates the common elements be-
tween sets divided by the union of elements in both sets [Jaccard, 1908]; or cosine similarity,
which is the sum of multiplying the normalized frequency of each pair of terms with each
other [Salton and Buckley, 1988].

To return a similarity (or dissimilarity) score, some algorithms impose one or more com-
parison requirements. When these requirements are not met, the phase can return a non-
similarity value or a comparison error. Comparison of digests can require a minimum com-
monality among digests, aminimum cardinality of features in each digest, a similar cardinality
of both inputs, ordered cardinality (where the cardinality of the �rst digest has to be greater/less
than second one; usually ordered by the implementation), or equal feature parameter (when
the feature generation process has some parameter that can dynamically change but this pa-
rameter needs to match between compared digests; e.g. trigger value or feature size).

The output score is the similarity score between two given digests and can be a binary value,
i.e., inputs are similar or not (yes/no), an interval (usually between [0, 1] or [0, 100]), or half-
bounded. The latter case indicates that there is only one lower (or upper) limit. This is common
when dissimilarity is measured such that 0 is (almost) identical, but there is no upper bound.
Related to the output score is the score trend, which can be ascending (the higher the output
score, the greater the similarity of the digests) or descending, otherwise.

Another characteristic of the comparison function is its spatial sensitivity, which expresses
whether the function is sensitive to a di�erent order of the same features. This sensitivity can
be total, when the total order of the features is considered; or partial, when the order of features
is only partially considered.

5.4 Classi�cation of state-of-the-art SDA

Tables 5.3, 5.4 and 5.5 classify the state-of-the-art SDA that we have considered in this dis-
sertation in chronological order. In total, we reviewed 13 algorithms released between 2002
and 2019. For readability, we have divided the results into three tables: Table 5.3 contains the
feature generation and feature processing phases; Table 5.4 details feature selection and digest
generation phases; and Table 5.5 describes feature deduplication and digest comparison phases.

Before discussing the existing algorithms regarding our classi�cation, let us take a look at
the existing classi�cations that are mainly based on the categories that the creators assigned
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Feature generation Feature ProcessingAlgorithm Length Splitting Function Intersection Cardinality Mapping Function Bit Reduction
dcfldd Static (512) None No Variable (L∕512) Hash None (128)
Nilsimsa Static (3) None Yes Variable (6L) Hash None (8)
ssdeep Dynamic (L∕64) Trigger No Fixed (64) Hash Ratio (6/32)
md5bloom Static (512) None No Variable (L∕512) Hash Ratio (40/128)
MRS hash Dynamic (256) Trigger No Variable (L∕234) Hash Ratio (44/128)
SimHash Static (1) None Yes Variable (8L) Identi�er None (8)
sdhash Static (64) None Yes Variable (L) Hash Ratio (55/160)
MRSH-v2 Dynamic (320) Trigger No Variable (L∕320) Hash Ratio (55/64)
mvHash-B Static (21, 51) None Yes Variable (L) Encoding Ratio (1/32)
TLSH Static (3) None Yes Variable (6L) Hash None (8)
saHash Static (1) None Yes Variable (2L) None None (8)
LZJD Dynamic (1 + log256 L) Unique No Variable (L∕(1 + log256 L)) Hash None (128)
FbHash Static (7) None Yes Variable (L) Hash None (64)

Table 5.3: Classi�cation of similarity digest algorithms according to our proposed classi�cation
scheme (feature generation and feature processing phases).

Feature Selection Digest generation
Algorithm Selection Function Domain Coverage Digest Size Storage Structure Order Generation

requirements

dcfldd None (n/a) Complete Input dependent Processed feature
concatenation Absolute None

Nilsimsa None (n/a) Complete Fixed Counter Processed
feature–aware None

ssdeep None (n/a) Complete Input dependent
with max

Processed feature
concatenation Absolute Minimum

features
md5bloom None (n/a) Complete Input dependent Set concatenation Set-absolute None
MRS hash None (n/a) Complete Input dependent Set concatenation Set-absolute None
SimHash Block matching Feature Partial Fixed Counter None None
sdhash Minimum probability Feature Partial Input dependent Set concatenation Set-absolute Diversity
MRSH-v2 None (n/a) Complete Input dependent Set concatenation Set-absolute None
mvHash-B Block similarity Feature Complete Input dependent Set concatenation Set-absolute Diversity

TLSH None (n/a) Complete Fixed Counter Processed
feature–aware Diversity

saHash None (n/a) Complete Fixed Counter Processed
feature–aware None

LZJD Minimum value Processed feature Partial Fixed Set None None

FbHash None (n/a) Complete Fixed Counter Processed
feature–aware

Document
frequency

Table 5.4: Classi�cation of similarity digest algorithms according to our proposed classi�cation
scheme (feature selection and digest generation phases).

Feature Deduplication Digest comparisonAlgorithm Type Occurrence Method Comparison requirements Output Score Score Trend Spatial Sensitivity
dcfldd None (n/a) Common feature ratio None Interval Ascending Total
Nilsimsa None (n/a) Weighted edit distance None Interval Ascending Partial

ssdeep Consecutive Comparison Weighted edit distance Minimum commonality,
Equal feature parameter Interval Ascending Total

md5bloom In-scope Generation Average Hamming distance None Interval Ascending Partial
MRS hash In-scope Generation Average Hamming distance None Interval Ascending Partial
SimHash None (n/a) Weighted edit distance Similar cardinality Half-bounded Descending None

sdhash In-scope Generation Average Hamming distance
Ordered cardinality,
Minimum cardinality,
Minimum commonality

Interval Ascending Partial

MRSH-v2 In-scope Generation Average Hamming distance
Ordered cardinality,
Minimum cardinality,
Minimum commonality

Interval Ascending Partial

mvHash-B In-scope Generation Average Hamming distance Similar cardinality Interval Ascending Partial
TLSH None (n/a) Weighted edit distance None Half-bounded Descending None
saHash None (n/a) Weighted edit distance None Binary (n/a) Total
LZJD None (n/a) Jaccard similarity None Interval Ascending None
FbHash None (n/a) Cosine similarity None Interval Ascending None

Table 5.5: Classi�cation of similarity digest algorithms according to our proposed classi�cation
scheme (feature deduplication and digest comparison phases).
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to their algorithms. Based on [Gayoso Martínez et al., 2014; Lee and Atkison, 2017; Moia and
Henriques, 2017a], there are the following categories:

Block-Hased Hashing, which consists of algorithms that use cryptographic hashes, gener-
ating and storing features for each block of a �xed size;

Context Trigger Piecewise Hashing, which is made up of algorithms that divide the input
into contexts, de�ned as a sliding window on the input bytes when the trigger function
�res;

Statistically-Improbable Features, comprising algorithms that use a selection function
based on statistically improbable features, as its name implies;

Block-Based Rebuilding, which consists of algorithms that choose blocks (randomly se-
lected or preset) and generate the digests by selecting the blocksmost similar to the input;
and

Locality-Sensitive Hashing, which is made up of algorithms that map objects in buckets,
grouping similar objects in the same bucket with high probability.

However, these categories only consider speci�c aspects of the algorithms, rather than a
complete view of the complete behavior of the algorithms. This leads to a misunderstanding
of how an algorithm works, which can eventually lead to wrong decisions when selecting an
SDA for a speci�c purpose (for example, comparing algorithms with totally di�erent behavior
or even not comparing them with other similar algorithms). Therefore, we propose a new and
simpler classi�cation based on the complete behavior as follows:

Feature Sequence Hashing, which encompasses the algorithms that divide the input into
features and map them, measuring similarity by feature sequences.

Byte Sequence Existence, this category comprises the algorithms that identify the existence
(or similarity) of byte sequences (called blocks) in the input. The similarity score is cal-
culated by comparing the number of common blocks between similarity digests.

Locality-Sensitive Hashing, this category is as in the previous classi�cation. It is made up
of algorithms that map objects in buckets, grouping similar objects in the same bucket
with high probability.

5.5 Applicability of the Proposed Scheme

Finally, we validate our proposed classi�cation scheme by applying it to all relevant algorithms
(presented in chronological order) and discussing the new classi�cation with respect to the
previous one:

39



Section 5.5 5. Classi�cation of Similarity Digest Algorithms

5.5.1 dcfldd

dcfldd is an improved version of the GNU dd Unix program [Harbour, 2002]. Developed by
Nicholas Harbour in 2002, it ensures copy integrity by ensuring the integrity of the blocks. It
has been used to measure the similarity between artifacts by counting how many blocks are
equal. Next, we describe dcfldd using our classi�cation scheme.

dcfldd generates features (Feature generation) by dividing the input into disjoint 512-
byte blocks. This means that the splitting function is none because the features have a static
length with no intersection. Cardinality is variable because it depends on the input length
(L∕512).

In the next phase, feature processing, dcfldd calculates (mapping function) a cryp-
tographic hash for each feature, allowing di�erent algorithms to be used: MD5, SHA1, SHA2.
All processed features are considered in the digest, so there is no feature selection phase.
Therefore, the selection function is none and coverage is complete.

In the digest generation phase, the storage structure is a processed features concatena-
tionwhere the cryptographic hashes are concatenated in order of occurrence (absolute) into a
string, separating the processed features by a colon. The digest size is input dependent. This
phase does not have generation requirements (none). For this algorithm, there is no fea-
ture deduplication phase (type: none).

For the digest comparison phase, dcfldd uses the common features ratiomethod, which
considers the number of equal features in the same position within the digest to calculate sim-
ilarity. For this comparison approach, the spatial sensitivity is total, the output score is
within an interval with an ascending score trend, and the comparison requirements are
none.

dcfldd is considered as a Block-Base Hashing because it divides the data into �xed-size
blocks and hashes them [GayosoMartínez et al., 2014;Moia andHenriques, 2017a]. According
to our proposed classi�cation, it is a Feature Sequence Hashing as it measures similarity by
feature sequences.

5.5.2 Nilsimsa

Nilsimsa is an anti-spam algorithm originally proposed in 2001 and reviewed by Ernesto
Damiani et al. in 2004 [Damiani et al., 2004]. The most signi�cant di�erences between both
works are in the generation digest phase, as explained below, and on the threshold to identify
the same message, which is beyond the scope of this dissertation.

In the feature generation phase, Nilsimsa generates all possible trigrams (3 bytes)
within a 5-bytes sliding window as features. Therefore, the features have a static length so
the algorithm splitting function is none. There is intersection (yes) between features. Car-
dinality is variable (6L), depending on input size.

In the next phase, feature processing, the trigrams are processed by a hash function
(mapping function) to obtain a byte identi�er that is used as the processed feature. Hence,

40



5. Classi�cation of Similarity Digest Algorithms Section 5.5

the bit reduction is none.
This algorithm does not rule out features. So in the feature selection phase, the selec-

tion function is none and the coverage is complete.
To build the digest, in thedigestgenerationphase, Nilsimsa adds the processed features

in 256 counters (storage structure). In the original implementation of Nilsimsa, it yields a
value of 1 for each counterwhose cardinality is above themean of all, otherwise it yields a value
of 0. In contrast, in the revised version the relative frequency of each counter is compared with
the average counter frequency of a large collection. Then, a value of 1 bit is obtained for each
counter if the ratio of the counter is greater than the average of the counter ratios. In both cases,
the digest is a sequence of 32 values of 1 and 0, each of which represents a counter. Therefore,
the digest size is �xed and generation requirements to build a digest are none. Regarding
the order, the sequence of features generated from the sliding window allows to identify if
two arbitrary byte sequences are swapped between similar inputs, implementing a processed
feature–aware. Since this algorithm creates the digest based on the frequency of the features,
it cannot do any type (none) of feature deduplication.

To compare two digests, digest comparison phase, Nilsimsa implements a weighted edit
distance as a comparison method where it counts how many bits are equal in the same po-
sitions minus 128—this value is because each bit represents one counter and the average of
equal bits between a pair of random inputs is 128. The output score is an interval with an
ascending score trend. The comparison requirements are none and spatial sensitivity is
partial, since a random swap of byte sequences can cause a variation in the sequence of gener-
ated features due to the overlap between features.

Our classi�cation is the same as that given by the authors in [Damiani et al., 2004], Locality-
Sensitive Hashing.

5.5.3 ssdeep

ssdeepwas developed in 2006 by Jesse Kornblum [Kornblum, 2006]. This is the �rst algorithm
that proposed to dynamically split the input based on the content of the input itself.

In the feature generation phase, ssdeep uses Adler32 checksum function [Deutsch
and Gailly, 1996] (trigger) as a splitting function to divide the input into approximately 64
distinct features (dynamic length, no intersection, and �xed cardinality). The rolling hash
function is con�gured with an initial block size b = 3 ⋅ 2⌊log2( n64⋅3 )⌋, where n is input size. In
addition, the remaining input after the 63rd feature is considered the last feature.

In the next phase, feature processing, features are processed and hashed with the FNV
algorithm [Fowler et al., 2011] (mapping function). The least relevant 6 bits of the 32-bit FNV
output are selected (ratio bit reduction) to generate a base64-encoded character.

With regard to the features selection phase, all the processed features belong to the
digest (complete coverage), so the feature selection phase is skipped (selection function is
none).

41



Section 5.5 5. Classi�cation of Similarity Digest Algorithms

The digest generation phase creates a digest that is a processed feature concatenation
(storage structure), maintaining the absolute order. This algorithm has a generation re-
quirement that is minimum features: if the generated features are less than 32, ssdeep does
not produce a digest and restarts the entire process, dynamically readjusting the block size to
produce twice as many features (b = b∕2). On the other hand, the digest size is input depen-
dent withmax because the generation phase produces amaximumof 64 features. Aswe explain
below, the comparison process requires digests obtained from the same trigger value b. There-
fore, the ssdeep digest contains two feature sequences for block size b and 2b to maximize the
likelihood of comparison.

ssdeep implements the feature deduplication phase within the comparison phase
(occurrence). It reduces the sequences of consecutive (type) repeated features to three. The di-
gest comparison phase assesses the necessary comparison requirements: i) equal feature
parameter: the same block size is required to compare two sequences of features; ii)minimum
commonality: there are at least 7 consecutive common features among the digests for compar-
ison. Finally, a weighted edit distancemethod between features sequences is used to calculate
the similarity score, which is in an interval [0, 100] (output score) where 0 indicates no sim-
ilarity while 100 indicates identical inputs. That is, it has an ascending score trend. Feature
concatenation and edit weight distance provide total spatial sensitivity.

ssdeep is classi�ed as Context Trigger Piecewise Hashing due to the novel method used in
the feature generation phase. However, under our consideration, a classi�cation as Feature
Sequence Hashing is more general and accurate.

5.5.4 md5bloom

In 2006, Vassil Roussev et al. explored the use of Bloom �lters [Bloom, 1970] to add and search
for hash information. They implemented their proposal in md5bloom, de�ned as “a Bloom�lter
manipulation tool that can be incorporated into forensics practice” [Roussev et al., 2006]. The
tool requires hashes as input and the authors propose a method to compare sets of hashes, so
the tool can be considered as a SDA.

In the feature generation phase, md5bloom splits inputs into disjoint features (no in-
tersection) of 512 bytes (static length). The splitting function is none and the cardinality
is variable (L∕512).

In the next phase, feature processing, the mapping function is the MD5 hash algo-
rithm. Regarding bit reduction, the algorithm only considers 40 bits of the 128 bits of MD5
output (ratio). On the other hand, the feature selection phase has complete coverage be-
cause the selection function is none.

Then, in the digest generation phase, the processed features are added to a Bloom �lter
until the maximum capacity is reached, at which point an empty Bloom �lter is added to the
end of the digest. Therefore, a digest is a sequence of Bloom �lters whose digest size is input
dependent and the storage structure is a set concatenation, while the order between features
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contained in di�erent sets is preserved by concatenating the Bloom �lters (set-absolute). This
phase has no generation requirements (none).

The feature deduplication phase is integrated with the digest generation phase
(occurrence) because the Bloom �lters discard duplicated features that belong to the same
�lter (in-scope type).

As we havementioned above, md5bloom is the �rst approach that proposes the use of Bloom
�lters to store and compare features. Therefore, its comparison digest phase is a bit weak.
The comparisonmethodmeasures the number of matching bits between �lters using an aver-
age Hamming distance. This number of common bits allows the probability of their matching
by chance to be calculated. The ratio between matching bits and the number of bits set to 1
works in both �lters compared as an output score of interval with an ascending score trend.
The spatial sensitivity inherits its characteristic from the digest order, and it is partial as
Bloom �lters do not maintain the order between features, so only when the features belong to
di�erent sets, they can cause a variation in the similarity score. This algorithm has no com-
parison requirements (none).

md5bloom is considered a Block-Base Hashing because it divides the data into �xed-size
blocks and converts them to hashes. However, we consider it a Feature Sequence Hashing be-
cause of the concatenation of all processed features in Bloom �lters.

5.5.5 MRS hash

In 2007, Vassil Rousev et al. proposedMulti-resolution similarity hashing (MRS hash) [Roussev
et al., 2007]. In their study, they compared the performance of various algorithms for di�erent
functionalities, e.g, splitting function or mapping function, with the results of their algorithm.

They �nally implemented the following characteristics: as feature generation, MRS
hash uses a trigger function as a splitting function to split the input into multiples features.
Speci�cally, MRS hash uses djb2—apolynomial hash—in a 7-byte sliding window, which com-
pares the generated valuewith a trigger value (t = 8), con�gured to produce features of approx-
imately 256 bytes, dynamic length. To ensure that the features are not too small, a minimum
feature size is entered, which is 1∕4 of the expected average byte sequence size. This means
that after matching the output of the trigger function, 64 bytes of the input are added directly
to the next feature. So, there is not intersection between the features and the cardinality is
variable (L∕256).

In the next phase, feature processing, MRS hash calculates the MD5 of the features—
hash mapping function— and selects 4 sets of 11 bits as hash values for the Bloom �lter.
Hence, the bit reduction ratio is 44∕128. Regarding the feature selection phase, this al-
gorithm adds all the generated features to the digest, so the selection function is none and
the coverage is complete.

In the digest generation phase, MRS hash uses a sequence of Bloom �lters (set concate-
nation) as the storage structure. Therefore, the digest size is input dependent, the order
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is set-absolute, and the generation requirements are none. The feature deduplication
phase is integrated into the digest generation phase (occurrence) by the behavior of the Bloom
�lters, which deduplicate the repeated features in-scope (type) of a Bloom �lter.

For the last phase, digest comparison, V. Rousev et al. proposed a di�erent comparison
function than in their previous work, md5bloom. In this work, the authors calculate a similar-
ity score called Z-score for a pair of Bloom �lters based on the number of zero bits within the
�lters and the number of zero bits in the inner product, which is a kind of Hamming distance.
To measure similarity between two digests, they average the maximum values of comparing
each Bloom �lter from one digest with each �lter from the other digest, a kind of average
Hamming distance method. The comparison requirements are none for this comparison
function, while its output score is an interval with ascending score trend and the spatial
sensitivity is partial.

MRS hash is considered as aContext Trigger PiecewiseHashing algorithmby the trigger func-
tion of the feature generation phase. However, we believe that it is more accurate to consider
it as Feature Sequence Hashing for its behavior.

5.5.6 SimHash

In 2007, Sadowski and Levin published SimHash [Sadowski and Levin, 2007], which is based
on the idea of counting the occurrences of certain binary strings within a �le.

In the feature generation phase, this algorithm considers any byte with a di�erence of
one bit from the input. Hence, the length is static (1 byte) without splitting function (none),
there is intersection (yes), and the cardinality is variable (8L).

The feature selection phase selects features (domain) by block matching to a set of
16 �xed blocks (selection function). Any selected feature cannot share bits with any other
selected feature. The coverage of this approach is partial.

The feature processing phase then generates an identi�er for each selected feature
(mapping function). The bit reduction of the identi�er is none.

The digest generation phase adds the identi�ers in counters (storage structure), cre-
ating a �xed digest size that does not consider any order between the features (none order).
The generation requirements are none for this process.

Regarding the feature deduplication phase, this algorithm does not implement any
type of deduplication (none type).

Finally, the digest comparison phase implements a weighted Hamming distance
(method) between the digests with a similar cardinality (comparison requirements). The
output score starts at 0 when the inputs are very similar or the same without a clear upper
limit (half-bounded), so the similarity score trend is descending. The spatial sensitivity is
none due to aggregation in counters.

SimHash is classi�ed as a Block-Based Rebuilding. Under our consideration the algorithm is
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of type Byte Sequence Existence since it only veri�es the existence of the sequence of bytes, as
the name of the category itself indicates.

5.5.7 sdhash

In 2010, Vassil Roussev proposed a new approach based on Statistically-Improbable Fea-
tures, which is based on selecting features that are less likely to occur in other objects by
chance [Roussev, 2010]. This approach was implemented in sdhash.

In the feature generation phase, sdhash extracts overlapping 64-byte blocks as fea-
tures, which di�er by one byte. This means that features have a static length, so a splitting
function is not necessary (none). There is (yes) intersection due to overlap between features.
Cardinality (L − 63) is variable, depending on the input size.

Then, the feature selection phase takes place, in which a subset of features (domain) is
chosen based on theminimum probability (selection function). In particular, this algorithm
obtains a preceding rank value for each feature based on its entropy and empirical observation
of the frequency of appearance of each entropy value. Features with extremely high or low
entropy are directly discarded, which means that the coverage is partial. After ranking the
features, the most popular features (popularity ≥ 16) are selected to compose the digest. They
earn a popularity point each time they are the feature with the leftmost preceding rank value
in a 64-feature sliding window.

Next, sdhash performs the processing features phase, processing the selected features
with the SHA-1 hash (mapping function) and using 55 bits of the 160-bit SHA-1 hash value
(ratio bit reduction).

The processed features are then inserted into Bloom�lters (set concatenation storage struc-
ture), beginning the digest generation phase. When a �lter is full, a new �lter is created
and added to the end of the digest (the digest size is input dependent). The �lters are con-
catenated in the order of creation, so we consider that the digest has a set-absolute order. In
addition, since the selection phase discards the features with extremely high or low entropy,
sdhash has the generation requirement of input diversity to produce the features. Finally,
the feature deduplication phase is implemented in the generation phase (occurrence). If
a processed feature is already included in-scope of the current �lter (type), it is discarded.

Regarding the digest comparison phase, sdhash calculates the similarity based on the
similarity between the Bloom �lters, considering only the greatest similarity between each
pair of �lters (average Hamming distancemethod). It has three comparison requirements:
i) it requires an ordered cardinality, where the �rst Bloom �lter has elements less than or equal
to the second. The comparison function solves this requirement, by sorting the Bloom �lters
before the comparison; ii) it requires aminimum cardinality per �lter (16 features) to calculate
the similarity between two �lters; and iii) it requires aminimum commonality (more than 30%
of the maximum possible common bytes minus the common bytes by chance) between �lters.
When any of these requirements is not ful�lled, the similarity score is zero. The similarity
between the Bloom Filters that share between 30% and 100% of common bytes is assigned in
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the range of 0 to 100. Therefore, the similarity score is an interval [0, 100], where 0 indicates
no similarity while 100 indicates identical inputs (interval output score and ascending score
trend). Finally, Bloom �lters do not maintain any order in the elements contained in the �lter,
so the algorithm cannot know if two sets of features maintain the same order (partial spatial
sensitivity).

sdhash is classi�ed as a Statistically-Improbable Features algorithm for its proposal to select
features.However,we believe it should beFeature SequenceHashing due to its general behavior.

5.5.8 MRSH-v2

In 2012, Frank Breitinger and Harld Baier conducted a study on the security properties of Sim-
ilarity Digest Algorithms. As a result, they presented MRSH-v2, a new version of MRS hash that
meets their proposed security properties [Breitinger and Baier, 2012b].

In the generation features phase, MRSH-v2 uses a trigger function as a splitting func-
tion. Speci�cally, it goes back to the ssdeep original rolling hash because its performance is
superior. The trigger function is able to calculate the next output based on the previous cal-
culation, removing the e�ect of the �rst byte and adding the e�ect of a new byte. MRSH-v2
maintains the minimum feature size of its predecessor. Thus, the feature length is dynamic
with an expected length of 320 bytes with no intersection and variable cardinality (L∕320).

In the next phase, feature processing, it processes the features with the FNV-1a hash
function (mapping function). Then 55 bits out of 64 are considered to make up the processed
feature which de�nes the bit reduction ratio.

Regarding the feature selection phase, this algorithm selects all the generated features
to build the digest. Hence, the selection function is none and the coverage is complete.

To build a digest, in the digest generation phase, MRSH-v2 uses Bloom �lters (set con-
catenation) as storage structure with none generation requirements. Like all algorithms
that use Bloom �lters, the digest size is input dependent and the order is set-absolute. Like-
wise, the feature deduplication phase is implemented by the Bloom �lter (occurrence in
generation), eliminating duplicate features that belong to the same �lter (in-scope type).

In the last phase, the digest comparison phase, MRSH-v2 uses the comparison method
proposed by Roussev for sdhash, the average Hamming distance between Bloom Filters, with
the same three comparison requirements: i) the ordered cardinality resolved by the imple-
mentation; ii) theminimum cardinality of features (8 features); and iii) theminimum common-
ality, 30% to begin to re�ect any similarity. The output score is in an interval of ascending
score trend and the spatial sensitivity is partial due to the Bloom �lters.

This algorithm is considered a Context Trigger Piecewise Hashing by the trigger function.
However, we consider it to be a Feature Sequence Hashing due to the concatenation of all the
processed features in the Bloom �lters.
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5.5.9 mvHash-B

Frank Breitinger et al. published mvHash-B in 2013. As the authors state, “the algorithm is based
on the idea of majority voting in conjunction with run length encoding to compress the input data
and uses Bloom �lters to represent the �ngerprint”/digest [Breitinger et al., 2013].

In the �rst phase, feature generation, the algorithm divides the inputs into statics fea-
tures whose length are 21 or 51 bytes, depending on the type of input. Therefore, the splitting
function is not required (none). There is (yes) intersection between features and the cardi-
nality is L as a feature is produced for each byte of the input.

As a second step, there is a non-strict feature selection phase that returns an identi�er
from a �xed set based on block similarity (selection function). In particular, the algorithm
implements a majority voting approach to return a byte of ones or zeros when the number of
ones is over or below a threshold t. This process is repeated for all features (domain).We a�rm
that it is not strictly a selection phase because it generates an identi�er for all features from the
previous phase, so the coverage is complete. This phase can be viewed as a standard feature
selection phase, establishing two thresholds that creates a gap of unselected features between
them.

The sequence of identi�ers is then processed in the feature processing phase, encoding
(mapping function) the sequence with a Run Length Encoding (RLE) algorithm—“RLE sim-
ply counts the amount of identical consecutive bytes and returns this number” [Breitinger et al.,
2013]. After that, each value is reduced modulo 2 to 1 bit. Hence, the bit reduction is a ratio
of one bit per 32-bit integer, 1∕32.

In the next phase, digest generation, mvHash-B groups 11-bit sequences from a sliding
window with 2-bit steps. These groups are added to a set concatenation (Bloom �lters) that is
used as the storage structure. Thedigest size is input dependent and the order is set-absolute.
The generation requirement for this approach is diversity to generate 11 identi�er sequences
and obtain at least 1 element for the Bloom �lter. As in the previous cases where the storage
structure is a concatenation of BF, this algorithm implements a feature deduplication
phase in the generation phase (occurrence) in which duplicate features are discarded when
they are stored in the same BF (in-scope type).

Finally, in the digest comparison phase, the algorithm makes a comparison of all with
all of the Bloom �lters—computing the Hamming distance between �lters—and averages the
lowest distance score (average Hamming distance method). The comparison requirement
is a similar cardinality, less than 4 Bloom �lters apart. The output score generated by this
approach is an intervalwith ascending score trend that has partial spatial sensitivity due to
the concatenation of the Bloom �lters.

Gayoso et al. [Gayoso Martínez et al., 2014] consider this algorithm as a Block-Based Re-
building. However, we believe it is a Byte Sequence Existence algorithm because it calculates
the similarity between each feature and a �xed set and produces identi�ers. As we explained
above, there are only 2 �xed sequences and the feature selection phase always returns an iden-
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ti�er, but it can be adjusted by thresholds.

5.5.10 TLSH

In 2013, Oliver et al. published TLSH, a similarity digest algorithm based on LSH [Oliver et al.,
2013].

As a feature generation phase, this algorithm generates all possible trigrams without
repetition from a 5-bytes sliding window. This means that the length of the features is static,
3 bytes; there is (yes) intersection between features, but splitting function is not necessary
(none), and the cardinality is variable (6L).

Then, in the feature processingphase, the trigrams/features are hashed (hashmapping
function) with the Pearson hash, producing a byte that is directly used as an identi�er/pro-
cessed feature in the following phases. The bit reduction is none in this case.

Regarding the feature selection phase, the algorithm considers all features, so there is
no selection function (none) and the coverage is complete.

In the digest generation phase, feature identi�ers are aggregated across 128 counters
to calculate their quartiles. The digest consists of the logarithm of the input size and the ratio
between quartiles as the heading, while the identi�er of the quartiles for all the counters is
the body. Therefore, the digest size is �xed and uses counters as storage structure. The or-
der between the input sequences is maintained by the intersection between the features and
the section of all features, processed feature–aware. The algorithm has a generation require-
ment: the input must have enough diversity to ensure that the quartile values are di�erent.
Furthermore, it does not implement a feature deduplication phase (none type) because
it calculates the similarity between two inputs by comparing the ratio of equal features.

For the digest comparison phase, TLSH uses a weighted edit distance as the comparison
method. This method compares the quartile of each pair of counters and adds a value based
on howmany quartiles there are between them. For this algorithm, the comparison require-
ments are none while it has a half-bound output score and descending score trend with no
spatial sensitivity (none).

In both cases (the previous classi�cation and our proposal), TLSH is a Locality-Sensitive
Hashing algorithm.

5.5.11 saHash

In 2014, Breitinger et al. presented saHash, an SDA based on a modular design and operating
in linear time [Breitinger et al., 2014d].

The feature generation phase for saHash divides the inputs into bytes to generate fea-
tures. Therefore, the feature length is static and the splitting function is none. In addition,
it considers transition between bytes, making a four-bit circular shift to the left of the input
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and producing one-byte features of the new input (transition features), so there is (yes) inter-
section between features. This generation of double features makes a variable cardinality
(2L).

Since the features are already one-byte and all are considered for the digest, there are no
features processing (nonemapping function and none bit reduction) or features se-
lection (none selection function and complete coverage) phases.

In the digest generation phase, four sub-hashes functions process the features. The �rst
function simply returns the input length. The second function returns the frequency of each
feature. The third returns the frequency of the transition features (4-bit circular left shift). The
last function returns the standard deviation of each byte frequency. These four results are con-
catenated to build the digest, generating a �xed digest size formed by the counters (storage
structure). The order between features is maintained by the last two sub-hashes (processed
feature-aware). For this phase, there are no generation requirements (none). As before, there
is no feature deduplication phase (none type) because the algorithm considers the fre-
quency of the features.

In the comparison digest phase, there is a comparison function for each sub-hash, all
based on the weight edit distance (method). Their results are aggregated to generate a pair of
values. These values are compared with two thresholds to determine whether or not there is
similarity. Hence, the output score is a binary value. In addition, the spatial sensitivity is
total because the digest re�ects any changes to the input. The comparison requirements are
none for this algorithm.

There is no pre-classi�cation for this algorithm, but we consider it to be a Locality-Sensitive
Hash due to the use of the byte frequency and its transition.

5.5.12 LZJD

In 2017, Edward Ra� and Charles Nicholas presented a new metric, Lempel-Ziv Jaccard Dis-
tance (LZJD), to calculate distances between sequences of bytes. Their approach is based on the
Normalized Compression Distance (NCD) [Ra� and Nicholas, 2017].

The feature generation phase of LZJD converts a sequence of bytes into a set of sub-
sequences of bytes, creating a set of unique sequences (splitting function). The idea is that,
starting with an empty set and a one character subsequence, it adds all the subsequences to
the set where the current subsequence does not belong to the set, starting a new subsequence
with the next character. If the current subsequence belongs to the set, a character is added
to the current subsequence and its membership is checked again. This approach generates
features with dynamic length, (1 + log256 L), with no intersection and variable cardinality
(L∕(1 + log256 L)).

The features are then processed in the feature processing phase. Each feature is pro-
cessed with the MD5 hash function (mapping function). For this algorithm, the bit reduc-
tion is none. As a feature selection phase, 1000 processed features (domain) with themin-
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imum value (selection function) are selected to construct the digest and therefore the cover-
age is partial.

In the digest generation phase, the set (storage structure) of the 1000 features pro-
duces a �xed digest size, while the order is none. The generation requirements are also
none.

The feature deduplication phase is not required (type none) for this algorithm due to
the selection of unique features and then the computation of cryptographic hashes without bit
reduction. Therefore, the processed features in the digest must be unique. This method has the
same collision probability as the MD5 hash algorithm.

For digest comparison, LZJD uses the Jaccard similarity method to measure the simi-
larity between pairs of sets/digests. The comparison requirements are none, while the com-
parison method produces a similarity score in an interval (output score) with an ascending
score trend. Since the digest is an unordered set, the spatial sensitivity of the comparison is
none too.

There is no pre-classi�cation for this algorithm. We consider it to be a Byte Sequence Exis-
tence algorithm because it measures the similarity between two inputs by the number of equal
sequences within both.

5.5.13 FbHash

Donghoon Chang et al. published FbHash in 2019 [Chang et al., 2019], which is based on the
Term Frequency - Inverse Document Frequency (TF-IDF) numerical statistic.

The generation feature phase of this algorithm splits the input into 7-byte features
(static length) with (yes) intersection. There is one byte di�erence between consecutive fea-
tures. This schema does not need (none) splitting function and the cardinality is variable
(L).

In the next phase, feature processing, the features are processed with a rolling hash
(hash mapping function) that produces a 64-bit unsigned integer. The rolling hash needs a
parameter n, which is a large prime number n ∈ (252, 264) to limit the output value below n.
This algorithm does not (none) make bit reduction, since it uses all bits as identi�er of the
processed feature.

In the feature selection phase, there is no selection function (none) so the coverage
is complete.

To produce a digest, the digest generation phase has a generation requirement, a
document frequency that stores how often each feature is unique in a set of training documents.
With the frequency of the input features and in the document frequency, FbHash calculates
a weighted frequency of each feature, using an array of counters as the storage structure.
The digest size is �xed by the n parameter of the feature processing phase because it sets the
number of di�erent features. Finally, the order between the features is maintained by overlap
between them, processed feature-aware.
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This algorithm does not implement the feature deduplication phase, so the type is
none.

In the digest comparison phase, the similarity between digest is calculated by the cosine
similarity of the digest. The comparison requirements are none for this algorithm, while it
produces an interval output score with ascending score trend. Finally, the spatial sensitiv-
ity is none because the algorithm only considers the frequency of the features and not their
position.

Neither the authors nor the related literature have proposed a classi�cation for the FbHash
algorithm. We have classi�ed it as a Locality-Sensitive Hashing algorithm because it splits the
input intomany small features and aggregates the processed values into a small set of counters.
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Chapter 6

Attacks against Similarity Digest
Algorithms

This chapter summarizes themain contributions of this dissertation related to the classi�cation
of attacks against SDA according to their purpose [Martín-Pérez et al., 2021b]. Furthermore,
for each algorithm considered, we study the characteristics that make them vulnerable to each
type of attack, explaining a known attack or a theoretical attack for each possible case. In par-
ticular, we are interested in knowing how robust the algorithms are against attacks, �nding
the characteristics that make them more vulnerable to manipulation by adversaries. We �rst
de�ne our adversary model and then introduce the classi�cation of attacks against SDA.

6.1 Adversary model

We assume an intelligent adversary who knows the processes and techniques used by the SDA
that she wants to attack. Therefore, the adversary can classify the SDA according to our clas-
si�cation scheme, either by reverse engineering, by performing a source code analysis, or by
reviewing the available literature/documentation of the algorithm.

Regarding the attack scenarios, for the sake of simplicity and without loss of generality we
assume that the lowest value of the SDA similarity score (value of 0) indicates that there is
no similarity, while the highest value (value of 100) indicates perfect similarity (that is, the
similarity score trend is trending upward).

6.2 Classi�cation of SDA attacks

As mentioned before, we study the possible attacks against SDA and the characteristics of the
algorithms that facilitate these attacks. We do not claim that this section is complete, as other
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Attacks against the similarity score Attacks that bypass any of the phases of an SDAAlgorithm Similarity Reduction Similarity Emulation Bypassing the Digest Generation Phase Bypassing the Digest Comparison Phase

dcfldd Intersection: No
Length: Static None None None

Nilsimsa Intersection: Yes None None None

ssdeep Minimum commonality
Comparison requirements:

Bit reduction: Low Ratio
Splitting function: Trigger

Cardinality: Fixed

Minimum features
Generation requirements:

Minimum commonality
Comparison requirements:
Occurrence: Comparison

Type: Consecutive

md5bloom Intersection: No
Length: Static None None None

MRS hash Storage structure: Set concatenation None None None
SimHash Selection function: Block matching Coverage: Partial None None

sdhash Storage structure: Set concatenation
Ordered cardinality

Comparison requirement:
Coverage: Partial

Diversity
Generation requirement:

Minimum cardinality
Comparison requirement:

MRSH-v2 Storage structure: Set concatenation None Minimum cardinality
Comparison requirement:

Minimum cardinality
Comparison requirement:

mvHash-B Selection function: Block similarity None Diversity
Generation requirement: None

TLSH Intersection: Yes None Diversity
Generation requirement: None

saHash None None None None
LZJD Selection Function:Minimum value Coverage: Partial None None
FbHash Intersection: Yes None None None

Table 6.1: Sets of characteristics that allow attacks, grouped by attack type and algorithm.

attacks may exist. However, as far as we know, this is the �rst methodological approach to
de�ning attacks against SDA.

We distinguish two types of attacks: Attacks against the similarity score and Attacks that
bypass any of the phases of an SDA. In Table 6.1, we summarize the set of characteristics that
allow themost feasible attack for each algorithm.We explain these attacks inmore detail below.

6.2.1 Attacks Against the Similarity Score

The goal of these attacks is to a�ect the similarity score of a crafted artifact when it is compared
to an original artifact. An adversary can construct an input that generates a digest that returns
a certain value when compared to a target digest. We distinguish two subtypes of this attack:
similarity reduction and similarity emulation.

Similarity Reduction

These attacks aim to minimize the similarity score between two inputs. Consequently, the ad-
versary is interested in creating a new digital artifact (crafted artifact) from a given artifact
knowing that they will eventually be compared.

The attack that a�ects SDA the most is the modi�cation of random bytes. This attack takes
advantage of hash or identi�ermapping functions. For SDA with these characteristics, mod-
ifying a byte of a feature makes the processed feature di�erent due to the avalanche e�ect of
the hash function (meaning that despite how similar two inputs are, their outputs will di�er by
approximately 50% of the bits) or due to the inconsistency of the feature with its corresponding
identi�er. Thus, the similarity is reduced to zero when enough bytes aremodi�ed. As an exam-
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ple, [Oliver et al., 2014b] showed that random changes in the input can reduce the similarity
score. In particular, they evaluated these attacks against ssdeep, sdhash, and TLSH.

One of the most trivial methods to achieve the above attack is to add or delete a byte at
the beginning of the input, when the algorithm has static length and no intersection charac-
teristics. By doing this, all subsequente features are modi�ed (because all o�sets are shifted).
This kind of attack, for example, was described in [Baier and Breitinger, 2011] against dcfldd,
although it is also viable against md5bloom.

On the other hand, when SDAhave intersection (yes) between features, randombytemod-
i�cation ismore e�ective because a simplemodi�cation can a�ectmultiple processed features.
For example, the authors of Nilsimsa state that the similarity between two related input drops
under the required threshold by randomlymodifying 20%of the input, because each single-byte
modi�cation changes 24 processed features [Damiani et al., 2004]. TLSH is also a�ected by this
weakness because it is based on Nilsimsa and has the same feature generation and feature
processing phases.

In theory, it is possible to optimize randommodi�cation when the comparison phase has a
comparison requirement of minimum commonality. An attacker only needs to ensure that
this requirement is not met. Baier and Breitinger [2011] demonstrate this attack for ssdeep.
Since the algorithm needs 7 consecutive common features, the attacker must simply modify 1
of the 7 features to reduce the similarity score to zero. Recall that the trigger function of ssdeep
generates up to 64 features, and thus, it is su�cient to modify at most ⌊64∕7⌋ = 9 bytes.

Similarly, an SDA that selects features based on blockmatching orminimum values can be
defeated by �nding these particular sets of blocks or features and modifying them accordingly.
For instance, SimHash counts the number of 16 blocks of 1 byte [Sadowski and Levin, 2007]. If
an adversary looks for these blocks andmodi�es them in the crafted input, the similarity score
is reduced. Likewise, LZJD stores the lowest 1000 hashes of the features [Ra� and Nicholas,
2017]. Hence, an adversary who detects the input characteristics used to form these features
can modify them to reduce the similarity between objects.

SDA that use set concatenation as the storage structure are currently based on Bloom �l-
ters. While this is a space-e�cient probabilistic data structure, it has a problem that is often
denoted as shifting,meaning that half of the features fromone �lter are shifted to the next �lter.
For instance, consider two Bloom�lters, BF1 and BF2, with amaximum capacity of 10 features
and containing 10 features each. If an adversary adds 5 features to BF1 (e.g., adds data to the
beginning of the artifact), their overlap (similarity) drops to 50. This attack works well for MRS
hash or MRSH-v2. In addition, when the algorithm also has the comparison requirement of
minimumcommonality, then the similarity result is worse. This is the case of sdhash, forwhich
[Breitinger and Baier, 2012a] showed that this attack reduces the similarity to approximately
28.

Last, mvHash-B is the only SDA that uses a Run Length Encoding algorithm (encodingmap-
ping function), which returns the number of consecutive equal identi�ers. It then performs
modulo 2 of each RLE element, getting the lowest bit reduction ratio among all SDA consid-
ered in this thesis—processed features are 1 bit in size. These characteristics make mvHash-B
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vulnerable to similarity reduction attacks. As demonstrated by [Singh et al., 2016], an intelli-
gent adversary canmodify features to produce di�erent identi�ers. Changing an identi�er will
cause modi�cations to the encoding sequence, dividing the quantity of each a�ected number
into three elements or moving one identi�er between consecutive RLE elements. In the �rst
case, two new processed features are added after the original. In the second case, two pro-
cessed features are modi�ed. Both cases produce a signi�cant change that modi�es several BF
elements. Repeating the attack at di�erent input positions, Singh et al. [2016]manage to reduce
the similarity score to 4 by modifying only 3% of the input.

Similarity Emulation

The opposite attack to the one presented above is similarity emulation, where an adversary is
interested in creating a new digital artifact that produces a high similarity score compared to
a known artifact.

When a SDA has a �xed cardinality, a trigger function such as a splitting function and a
low bit reduction ratio, an adversary can create an input that generates several small features
with the beginning of the input, which then generate an arbitrary sequence of processed fea-
tures. For instance, [Baier and Breitinger, 2011] showed that it is possible for ssdeep to include
trigger sequences (i.e., features) in an EXIF image data. Consequently, the authors were able
to manipulate an image to match any similarity digest.

Partial coverage allows an adversary to modify the gaps taking care that these modi�ca-
tions do not alter the feature generation and selection phases. For sdhash, according to [Bre-
itinger et al., 2012], up to 20% of the content of an input can be modi�ed without in�uencing
the generated digest. This claimwas later demonstrated by [Chang et al., 2015]. SimHash is also
vulnerable to this attack: an adversary can modify any byte of the input if these modi�ed bytes
do not match with any of the �xed blocks. Similarly, in LZJD any data can be altered after the
last selected feature, as long as it does not generate a processed feature with a value less than
the maximum of the selected processed features.

There is also a more sophisticated attack against sdhash based on partial coverage and
ordered cardinality (comparison requirements). To compare two digest, sdhash swaps the
input digest to ful�ll the ordered cardinality (|d1| < |d2|) if necessary. It then calculates the
average similarity of themaximum score between each �lter in the smallest digest against each
�lters in the other. Therefore, if one digest has only one �lter, the comparison method only
compares themaximum similarity of this �lter to each �lter in the second digest. Therefore, an
adversary can obtain themaximumsimilarity by creating a newartifact that copies the �rst part
of a known artifact, where there are features that make up the �rst �lter, and then by adding
content not selectable by the selection function. For example, to create an artifact similar to
an application �le, it can start with the same content of the legitimate program �le, and then
�ll the remaining content with short sequences of instructions that end in a jump assembler
instruction. The jump chains the current sequence with the next, creating spaces between the
sequences. The content of the gapsmust ensure that the selection function discards them. Low

56



6. Attacks against Similarity Digest Algorithms Section 6.2

entropy gaps are viable, but high entropy gaps avoid highlighting the attack sequence. Finally,
the comparison requirement ofminimum cardinality in a �lter is not necessary, but it does
make it easy to create an emulated digest.

6.2.2 Attacks that bypass any of the phases of an SDA

The objective of these attacks is to a�ect the operation of the SDAs by a�ecting some of their
phases, either to avoid the generation or comparison of digests.

Bypassing the Digest Generation Phase

The goal of the adversary is to complicate the generation of the digest, i.e., tomodify an input so
that the algorithm cannot generate a similarity digest due to the lack of necessary conditions.
These attacks can take advantage of the previous phases to obtain the necessary conditions to
avoid the digest generation.

SDA that need a minimum features as a generation requirement are vulnerable to this
type of attack. This is possible because the trigger function (splitting function) can be ma-
nipulated by means of a forged input to produce insu�cient features to generate the digest.
For example, ssdeep can be attacked with an input that intentionally avoids byte sequences
matching the value of the trigger function. As a result, only a few features are generated and
therefore ssdeep cannot create the digest. Note that the algorithms can implement counter-
measures such as adjusting the splitting function appropriately.

Other algorithms need input diversity as a generation requirement. This requirement
can also be exploited by an intelligent adversary. For instance, sdhash discards all features and
does not generate a digest if the entropy of the input features is too high or too low. Likewise,
mvHash-B compares the features with two blocks and keeps the identi�er of the most similar
block. The generation of digest is based on how many consecutive identi�ers of a given type
are found. Hence, if all the features are similar to a single block, there is only one sequence of
identi�ers, which is insu�cient to generate the digest. This attack can require a lot of changes
and therefore may be impractical for real world scenarios.

Finally, TLSH is a special case of diversity as a generation requirement. It has no explicit
requirement of diversity but calculates, as part of the digest, the ratio between quartiles of
the counters (q1∕q3 and q2∕q3). So, if the diversity in the input is too low, and adding all the
identi�ers in 25% of the counters or less it is obtained that q3 is equal to 0, division by zero are
generated that prevent the generation of digests.

Bypassing the Digest Comparison Phase

In this case, we contemplate an adversary with the aim of hindering the digest comparison
process. To achieve this, the adversary constructs an input so that the generated similarity
digest cannot be compared or, if comparable, the similarity score means dissimilarity.
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Algorithms that have a feature deduplication phase of the type consecutivewith the occur-
rence in the digest comparison phase and also need aminimumcommonality as a comparison
requirement to compare digests are vulnerable to this type of attack. An intelligent adversary
can create an input so that the digest, calculated after deduplication, has fewer common el-
ements than expected, and therefore the digest is incomparable. For instance, ssdeep can be
attacked with an initial sequence of 63 times a small feature that matches the trigger function,
followed by any content. The digest generated in this case is a sequence of a processed fea-
ture repeated 63 times and a random trailing character. At comparison time, the deduplication
phasewill replace the 63 characters with 3 characters, generating a 4-item digest that will never
meet the minimum commonality comparison requirement.

Likewise, if SDAhave aminimum cardinality as a comparison requirement, an adversary
can create an input so that the algorithm produces a similarity digest with fewer items than is
necessary for comparison. For instance, sdhash needs 16 features per Bloom Filter to compare
two �lters [Roussev and Quates, 2013]. However, because its selection function (feature selec-
tion phase) is based on entropy, an adversary canmanipulate an input to have extremely low or
high entropy so that features are discarded. If the input generates a similarity digest with only
one �lter and fewer than 16 features, the comparison is impossible. A similar attack is possible
against MRSH-v2: an adversary can create an input to avoid the match of the trigger function,
generating so few features that the sets do not meet the comparison requirements.

6.3 Towards Building a Robust SDA

This section describes the characteristics that we consider desirable to build a robust SDA,
where robust is de�ned with respect to resilience against attacks. This section can be viewed
as a guideline to building a robust similarity digest algorithm. Note that we are not focusing on
perfect error rates or runtime e�ciency.

For the feature generation phase, we consider that the lengthmust be static and with
(yes) intersections—the overlap between features is desirable because it allows detecting the
interchange of features (processed feature–aware order). This last characteristic is not neces-
sary if the selection phase has complete coverage—and with variable cardinality.

Algorithms that use a dynamic feature size need a splitting function that divides the in-
put in some way. However, this function is susceptible to being attacked by manipulating the
sequence of features. Therefore, it should be avoided.

Regarding the feature processing phase, a mapping function that generates simi-
lar outputs for similar inputs is preferable. For example, the block similarity function used by
mvHash-B as the selection function is a good choice. Bit reduction is acceptable if the out-
put provided by the mapping function output is large enough. However, the �nal amount of
bits used must be resistant to collision attacks and must preserve the similarity relationship
between the outputs.

In contrast, using of a hash mapping function implies that a small change in one feature
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(e.g., modifying just one byte) causes a totally di�erent processed feature, whereas low bit re-
duction rate can allow an attacker to create an artifact with a desirable digest (e.g., similarity
emulation against ssdeep).

In the feature selection phase, complete coverage is absolutely necessary to avoid un-
covered gaps that can be used to hide data and still get good similarity scores, whereas a se-
lection function can be a good option to reduce the digest size when the feature generation
phase has intersection.

For the digest generation phase, the desirable characteristics are input dependent size
with absolute order and no generation requirements (none). The requirements in the digest
generation phase impose conditions in which an adversary can focus to hamper the digest
generation process. Similarly, a feature deduplication phase is undesirable because it
removes information.

Regarding the digest comparison phase, having comparison requirements makes it
easier for an adversary to obstruct the comparison process, as explained before. Finally, a com-
parison functionwith total spatial sensitivity is also desirable, since it allows to identifymod-
i�cations in the order of the features.

Discussion about digest size. The desired digest size is di�cult to answer. As stated by
Breitinger et al. [2014b], a �xed-size digest is preferable. However, our study of SDA revealed
that it is di�cult to design a robust algorithmwith this characteristic.We have found three SDA
that have this characteristic, but they all have some limitations. For instance, using features
with dynamic length and a �xed-size digest has trouble comparing inputs with very di�erent
sizes (for example, ssdeep). Likewise, the selection of a limited cardinality of features such as
the representation of the whole (as LZJD does) implies a partial coverage, leaving gaps that can
be exploited by an attacker inserting arbitrary content. Finally, counting features in a limited
set of counters (as TLSH and Nilsimsa do) causes loss of order between features, allowing reor-
ganization of the input without a�ecting the similarity score. This problem is partially solved
by considering feature intersection (processed feature–aware). The latter case is the solution
least vulnerable to attacks, but we still believe that maintaining order between features with
an input-dependent digest is more valuable than having better performance for using a �xed
size digest. More research is needed in this regard.
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Chapter 7

Pre-Processing Methods for
Normalizing the Variability of
Modules

In this chapter, we describe our proposed solutions to mitigate the side e�ects produced by
ASLR, which causes an unintended reduction of the similarity between modules. As shown in
Section 4.2, an easy way to reduce the similarity of any SDA is to modify sparse bytes. In fact,
this is exactly what ASLR does as a side e�ect.

Tomitigate this behavior and to be able to use SDA to identify runningmodules, we propose
to normalize all the a�ected bytes, setting them to zero. In particular, we present two solutions:
i) Guided De-relocation, a method that attempts to retrieve the information that has been
used by image loader to relocate the module; and ii) Linear Sweep De-relocation, another
method that identi�es modi�ed bytes when the information required by the previous method
is inaccessible. This method searches the longest sequence of plausible instructions to �nd the
a�ected addresses. Both methods are published in [Martín-Pérez et al., 2021a].

M1,1…M1,N
…

MN,1…MN,N′

Rawmodules

Pre-
processing
method

m1,1…m1,N
…mN,1…mN,N′

Unrelocated modules

Calculate
similarity score of(mi,j, mi,k)for eachMi,j

for each pair(mi,j, mi,k),j ≠ k,1 ≤ j ≤ N,1 ≤ k ≤ N′
Figure 7.1: Sketch of the systemmodel. The place where our proposed methods can take place
has been highlighted.
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Figure 7.1 sketches the systemmodel of our problem. The rawmodules {Mi,1, ...,Mi,N} from
a memory dump, obtained in a forensically sound manner, are pre-processed with any of the
pre-processing methods proposed in this work. The extracted modules {mi,j} have been ap-
propriately derelocated and thus the similarity scores of each pair (mi,j, mi,k), j ≠ k, 1 ≤ j ≤N, 1 ≤ k ≤ N′, N ≠ N′ aremore accurate than when the pre-processingmethod is not applied.
We have highlighted in the �gure where the pre-processing methods that we propose can take
place.

7.1 Pre-Processing Methods

To formally present the algorithms of the pre-processing methods, we have adopted the no-
tation described in Table 7.1. Below, we explain in detail how our proposed pre-processing
methods work.

7.1.1 Method 1: Guided De-relocation

We have named the �rst method Guided De-relocation, since it simply “undoes” the work
performed by the Windows OS due to the program binary relocation process guided by infor-
mation contained within PE modules. Roughly speaking, this method identi�es and changes
each byte a�ected by the program binary relocation process by relying on the .reloc section
of an image �le.

The .reloc section is a section within the Windows PE structure (see Section 2.1) added
to a program binary by the compiler/linker. It contains the necessary information to allow
the image loader to make any adjustment needed in the program binary code and data of the
application due to relocation.

The information of the .reloc section is divided into blocks, where each block represents
the adjustments needed for a 4K page. Each block contains an IMAGE_BASE_RELOCATION struc-
ture,which contains theRVAof the page and the block size. The block size �eld is then followed
by any number of 2-byte entries (i.e., a word size), which codi�es a value that indicates the type
of base relocation to be applied (�rst 4 bits of the word) and an o�set from the RVA of the page
that speci�es where the base relocation is to be applied (the remaining 12 bits).

However, the .reloc section is unnecessary to the normal execution of the process, be-
cause the kernel is the one who copies pages into memory and does the relocation in the pages
when the process requires them. The .reloc section is rarely accessed by the process and thus
it is rarely copied into the user-space. Luckily, a memory dump may contain other elements
rather than the image �le that represent the image �le and contain a .reloc section, such as
File Objects [Microsoft Corporation, 2019]. A File Object is an internal Windows struc-
ture which represents the �les mapped into the kernel memory, and acts as the logical inter-
face between the kernel and the user-space and the corresponding data �le stored in a physical
disk [Yosifovich et al., 2017].
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Notation DescriptionD = ⟨ℱD,ℳD⟩ Amemory dumpD.ℱD = {f1, ..., fN} Set of �le objects contained inD.ℳD = {m1, ..., mM} Set of modules contained inD.
memory_range(m) Returns the range of virtual memory addresses of a modulem.

PEheader_datadir(m) Returns the �elds of the PE header and data directories of a modulem.
points_to(p) Returns the address pointed by the �eld p.

derelocate(m, a) De-relocates the address a in the modulem.
�le_object(m) Returns the �le object associated with a modulem.
sections(f) Returns the set of section names of a �le object f.
copy(m) Returns a byte copy of the modulem.
blocks(f) Returns the set of blocks of the .reloc section of a �le object f.

rvaddress(b) Returns the relative virtual address of the block b.
entries(b) Returns the set of entries of a block b.
o�set(e) Returns the o�set of an entry e.

section_code(m) Returns the bytes contained in the code section of a modulem.
lookup_tables(C) Returns the set of lookup tables contained in C.
32bit_image(m) Returns a boolean indicating whether the modulem is a 32-bit image.

strings_padding(C) Returns the set of (UNICODE and ASCII) strings and padding bytes
contained in C.

byte_patterns(C) Returns the set of common byte patterns in C.
subsequent(p) Returns the subsequent bytes of a pattern p.

build_sequences(b) Returns the sequences of valid assembly instructions, considering as
�rst byte of each sequence bi, 0 ≤ i ≤ 14, b0 = b (see further explana-
tion and example in Section 7.1.2).

memoperand(i) Returns the memory operand of an assembly instruction i.
non-visited_map(s) Returns an array initialised as non-visited of size s.

visit(V, S) Mark in the array V the bytes of the set S as visited.

Table 7.1: Summary of the formal notation used in the pre-processing algorithms.
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Input: Amemory dumpD = ⟨ℱD,ℳD⟩
Output: Set of unrelocated modules U

1 U = ∅
2 ℱ ← ℱD = {f1, ..., fN}
3 foreachm ∈ ℳD do
4 A ← memory_range(m)
5 ∀p ∈ PEheader_datadir(m) ∶ points_to(p) ∈ A ∴ derelocate(m, p)
6 if ∃f ∈ ℱ ∶ �le_object(m) = f, sections(f)⋂{“.reloc”} ≠ ∅ then
7 ℬ ← blocks(f)
8 foreach b ∈ ℬ do
9 a ← rvaddress(b)
10 ℰ ← entries(b)
11 foreach e ∈ ℰ do
12 derelocate(m, am + o�set(e))
13 end
14 end
15 U = U⋃{m}
16 end
17 end

Algorithm 1: Guided De-relocation pre-processing method.

In particular, this kernel-level structure contains a pointer to another structure which
in turn is made up of three opaque pointers: DataSectionObject, SharedCacheMap, and
ImageSectionObject. An opaque pointer points to a data structure whose contents are un-
known at the time of its de�nition. From these structures, both DataSectionObject and
ImageSectionObject may point to a memory zone where the program binary was mapped
either as a data �le (that is, containing all its content as in the program binary itself) or as
an image �le (that is, once the image loader has relocated it). Both memory representations
contain the .reloc section of the program binary, as stated in [Uroz and Rodríguez, 2020].

Algorithm 1 shows the pseudo-algorithm of the Guided De-relocation pre-processing
method. As input, it takes a memory dump D = ⟨ℱD,ℳD⟩, where ℱD = {f1, ..., fN} andℳD = {m1, ..., mM} are the set of �le objects and modules contained in D, respectively. As
output, it returns the list of unrelocated modulesU obtained fromD. Line 1 initializesU with
empty set. Then, the list of �le objectsℱ is retrieved fromD (line 2). In this regard,wehave used
the Volatility plugin filescan, which �nds File Object structures in physical memory using
pool tag scanning [Schuster, 2009a,c,b]. Next, we iterate for each module m inℳD (line 3)—
the list of modules ofℳD is obtained using the Volatility plugin dlllist. We �rst retrieve the
rangeA of virtual memory addresses ofm, obtaining its base address and its image size (which
is the size of the image �le in virtual memory) (line 4). Then, we walk through the PE structure
looking for each PE �eld which is a memory address pointing within A (line 5). When found,
we leave the two-less signi�cant bytes of such a �eld unmodi�ed, while zeroing the others (for
the sake of brevity, in the following we refer to this process as the de-relocation process). We
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then check if f ∈ ℱ such that f corresponds to the retrieved modulem and if f has a .reloc
section (line 6). If so, the de-relocation process inm is performed, using the information given
by the .reloc section of f (lines 7–14). First, the set of blocks contained in the .reloc section
is retrieved and stored in ℬ (line 7). Then, for each block b ∈ ℬ (line 8) the RVA of its page is
taken as a (line 9). The set of entries of the block b is stored in ℰ (line 10). Next, for each entry
block e ∈ ℰ (line 11), the memory address a plus the o�set of the entry e is unrelocated in the
module m (line 12). Recall that we leave the two-less signi�cant bytes of the address [a + o]
inm unmodi�ed while zeroing the others, since we assume that the relocation process always
takes place with 64-byte alignment (as ASLR indeed does [Yosifovich et al., 2017]). Once the
de-relocation process �nishes, the modulem is added to the set U (line 15).

7.1.2 Method 2: Linear Sweep De-relocation

Our previous pre-processingmethod, sketched inAlgorithm1, relies heavily on the existence of
.reloc sections in the File Object structures retrieved from amemory dump. However, this
section is not always found in the �le objects of a memory dump. In addition, it may happen
that the physical page into which the .reloc section was mapped has been out swapped to
disk and so it cannot be fully retrieved. Therefore, we propose a second pre-processingmethod,
named Linear Sweep De-relocation, which works independently from the File Object
structures.

Algorithm 2 shows the pseudo-algorithm of the new pre-processing method. As input, it
takes a memory dump D = ⟨ℳD⟩, whereℳD = {m1, ..., mM} is the set of modules contained
in D. Line 1 initializes U with empty set. Then, we iterate for each module m that can be
retrieved from ℳD (line 2). We use again the plugin dlllist of Volatility. In line 3, we �rst
initialize an array V with length sizem as non-visited. Then we identify all pages of 4096 bytes
swapped out frommemory by means of the Volatility framework. In particular, we retrieve the
memory address space of each module and then check whether the �rst byte of each page is
valid. A page is valid if it resides in the memory. Each byte of the outswapped page is tagged
as visited (line 4). Then, in line 5 we retrieve the range A of virtual memory addresses of m,
obtaining its base address and its image size.

This algorithmworks in two phases. In the �rst phase, it processes all the structured data of
the PE of m, walking through the PE structure and tagging each byte within the PE structure
as visited byte (lines 6 and 7). In addition, we also look for �elds in the PE structure which are
memory addresses pointing toA and if found, the de-relocation process takes place (line 8). As
before, we assume that the relocation process always takes place with 64-byte alignment [Yosi-
fovich et al., 2017]. In this part of the PE structure processing, the entries of the import address
table of the module are de-relocated and tagged.

Then, the second phase of the algorithm begins (from line 9 to the end). We �rst retrieve
the memory space C ⊂ A into which the code section of m is mapped (line 9). In this phase,
our aim is to locate sequences of bytes which are memory addresses targeting to C. Therefore,
di�erent work is needed depending on the target architecture of the modulem.

67



Section 7.1 7. Pre-Processing Methods for Normalizing the Variability of Modules

Input: Amemory dumpD = ⟨ℳD⟩
Output: Set of unrelocated modules U

1 U = ∅
2 foreachm ∈ ℳD do
3 V = non-visited_map(length(m))
4 visit(V, empty(m))
5 A ← memory_range(m)

/* Phase 1: structured data processing */
6 P ← PEheader_datadir(m)
7 visit(V, P)
8 ∀p ∈ P ∶ points_to(p) ∈ A ∴ derelocate(m, p)

/* Phase 2: unstructured data processing */
9 C ← section_code(m)

/* Tag lookup tables */
10 ℒ ← lookup_tables(C)
11 visit(V,ℒ)
12 ∀l ∈ ℒ ∶ points_to(l) ∈ A ∴ derelocate(m, l)
13 if 32bit_image(m) then

/* Tag strings */
14 S ← strings_padding(C)
15 visit(V, S)

/* Tag byte patterns */
16 ℬ ← byte_patterns(C)
17 ∀p ∈ ℬ,U ← subsequent(p) ∶ a = points_to(U) ∈ A∴derelocate(m, a)
18 visit(V,ℬ)

/* Process the rest of bytes in C */
19 while ∃b ∈ C|b = non-visited do
20 ℐ ← build_sequences(b)
21 I = {I ∈ ℐ ∶ ∀Si ∈ ℐ, Si ≠ I, |Si| < |I|}
22 ∀i ∈ I ∶ a = memoperand(i) ∈ A∴derelocate(m, a)
23 visit(V, ℐ)
24 end
25 end
26 U = U⋃{m}
27 end

Algorithm 2: Linear Sweep De-relocation pre-processing method.

Note that the 64-bit mode in Intel introduced a new addressing form named relative In-
struction Pointer addressing (RIP-relative addressing), which is the default for many 64-bit in-
structions that reference memory in any of their operands [Intel Corporation, 2016]. There-
fore, none of the 64-bits instructions contain absolute memory addresses targeting to C and
hence there is no need to locate and de-relocate them. Ifm is a 64-bit image �le, we only need
to identify lookup tables of memory addresses targeting to C and mark them as visited bytes
(line 10 and 11). For each entry of these tables, the de-relocation process takes place if the en-
try targets to C (line 12). Note that six bytes would be zeroed in this case, assuming a 64-byte
alignment [Yosifovich et al., 2017]. The same process is applied when the modulem is a 32-bit
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image, although zeroing two bytes instead of six.
In addition, ifm is a 32-bit image�le (line 13), a littlemorework is needed (line 14 to line 25).

We �rst aim to identify known byte patterns (lines 14 to 18). In this regard, we identify null-
terminated UNICODE and ASCII strings in C, looking for sequences of printable characters.
We have set a minimum of 5 characters to identify the byte sequence as a string (line 14).
Each byte of the identi�ed strings is tagged as a visited byte (line 15). In our experiments, we
found that some bytes that make up a memory address were preceded by easily recognized
byte patterns. Therefore, as a next step we identify common byte patterns in C, looking for
sequences of bytes such as FE FF FF FF or FE FF (line 16). For each match, we check if the
next two double words are memory addresses that point to A. If so, the de-relocation process
takes place (line 17). As before, each pattern byte identi�ed and the subsequent addresses are
also tagged as visited bytes (line 18).

Finally, the last part of the algorithm (line 19 to 24) iterates while exist bytes b ∈ C that they
were not visited by any of the aforementioned processes. For each non-visited byte (line 19),
we build sequences of valid assembly instruction ℐ (line 20). In this regard, we get slices of
the contiguous 15 bytes starting at the address of b, considering the maximum length of In-
tel assembly instructions [Intel Corporation, 2016]. Note that we get the contiguous bytes ofb, regardless of whether they are visited bytes or not. Then, we get a set of sequences of valid
instructions ℐi starting at bi, 0 ≤ i ≤ 14, b0 = b, and whose bytes are not already visited . Our
algorithm processes these sequences in an optimized way to avoid redundant disassembling.
In particular, we iterate in each instruction of the sequence, marking the beginning of each in-
struction in an auxiliary structure until we detect an instruction which was previously marked
as the beginning of an instruction in another sequence. In such a case, we discard the current
sequence of instructions since we have reached a subsequent sequence of instructions already
recognized by another previous sequence of instructions and thus, the previous sequence will
always be greater in length than the current one. We rely on the Capstone disassembly frame-
work [Capstone, 2020] to obtain the valid sequences of instructions.

Then, we select the longest byte sequence of valid assembly instructions I ∈ ℐ (line 21). We
iterate in each instruction in this sequence, tagging each byte of the instruction as a visited byte
and checking if the instruction i ∈ I has an operand which is a memory address that points
toA. If so, the de-relocation process takes place (line 22). This iteration �nishes marking each
byte of the instructions stored in ℐ as visited (line 23).

The iteration process of the algorithm ends adding the modi�ed module m to the set of
unrelocated modules U (line 26). Note that unlike Algorithm 1, this algorithm is more com-
plete since U contains all the modules retrievable from the given memory dump (recall that
Algorithm 1 only returns themodules that have a relocation section). The computational com-
plexity can be expressed as O(M ⋅ 4S), where M is the number of modules contained in the
memory dump and S is the total size of the code section (in bytes) per module. Note that each
operation of Algorithm 2 that works on C is iterating in each byte contained in C. Compared
with the previous algorithm, note that B ⋅ E < S, since blocks and entries are subparts of a
module. Likewise, F ≪ S, since S is much greater than the number of �le objects available in
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a memory dump (about three orders of magnitude greater).

Detailed example

Let us illustrate how the processing of sequences of instructions works by providing an exam-
ple. Assume the following snippet of real assembly code of aWindows library (instructions are
shown in hexadecimal representation and in mnemonics) whose bytes were not identi�ed by
any of the previous steps of the algorithm:

Listing 7.1: Code example
0x1000: FC CLD
0x1001: FEFF ???
0x1003: FFFF ???
0x1005: E8 39000000 CALL 0x1043
0x100a: 8B45 08 MOV EAX ,DWORD PTR SS:[EBP+0x8]
0x100d: E8 A487FFFF CALL KernelBa .752917 F0
0x1012: C2 0C00 RETN 0xC
0x1015: 90 NOP
0x1016: FE ???
0x1017: FFFF ???
0x1019: FF00 INC DWORD PTR DS:[EAX]
0x101b: 0000 ADD BYTE PTR DS:[EAX],AL
0x101d: 00CC ADD AH ,CL
0x101f: FFFF ???

We �rst get a slice of 15 bytes, starting at byte FC. Figure 7.2 shows the initial condition of a
scenario where no bytes in the slice were previously visited. The sequence of valid instructions
starting at FC is as follows (for the sake of simplicity, we consider 0x1000 as the base address
of the code snippet):

0x1000: cld

This sequence is solely one byte. In each iteration in the slice, we have highlighted in yellow
the byte considered as the starting byte. As an optimization method, to avoid the selection of
bytes that we already knowmake up some other valid sequence, we de�ne a length vector and
iterate in each instruction of the sequence, setting a value of -1 in the length vector in the byte
following the end byte of the instruction. In this case, the second position in the length vector
is updatedwith -1 to indicate the end of this instruction. In addition, the �rst component of the
length vector is updatedwith the value of 1, which is the length of the sequence of instructions
already processed and starting at byte FC. Then, we move to the next non-visited byte in the
slice and whose length is still set to zero value in the length vector.

The byte FF at 0x1002 is then considered. Since this constitutes an empty sequence of valid
instructions, its position in the length vector is updated with a -1 value. The same situation
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occurs with the following bytes, until the byte E8 at 0x1005 is reached. The valid sequence of
assembly instructions is:

0x1005: E8 39000000 CALL 0x1043
0x100a: 8B45 08 MOV EAX ,DWORD PTR SS:[EBP+0x8]
0x100d: E8 A487FFFF CALL KernelBa .752917 F0
0x1012: C2 0C00 RETN 0xC
0x1015: 90 NOP

In this case, the sixth component of the length vector is updated with the value of 17, while
the eleventh and fourteenth components are updated with the value of -1 because they are the
�rst bytes of instructions which we have considered in the current sequence. However, since
the next instruction in the sequence is out of the current slice, the length vector is no longer
updated, but the list of instruction addresses is stored and checked for all instructions found.
Starting the disassembly in byte 39, the sequence of valid instructions is:

0x1006: 3900 CMP DWORD PTR [RAX], EAX
0x1008: 0000 ADD BYTE PTR [RAX], AL
0x100a: 8B4508 MOV EAX ,DWORD PTR SS:[EBP+0x8]
0x100d: E8 A487FFFF CALL KernelBa .752917 F0
0x1012: C2 0C00 RETN 0xC
0x1015: 90 NOP

Here, �rst the ninth component is updated with a value of -1 (the beginning of instruc-
tion ADD BYTE PTR [RAX], AL). When processing the next instruction, our optimization al-
gorithm sees that the instruction at byte 0x100ahas already been visited by a previous sequence
of instructions. In this case, the processing of this sequence is skipped and the seventh com-
ponent of the vector is updated with -1. Therefore, the rest of the instructions in the sequence
after the third instruction are no longer disassembled.

Then, we move to the byte 00 at 0x1007, obtaining the following sequence:

0x1007: 0000 ADD BYTE PTR [RAX], AL
0x1009: 008B 4508 E8A4 ADD BYTE PTR [RBX - 0x5b17f7bb], CL
0x100f: 87FF XCHG EDI , EDI
0x1011: FFC2 INC EDX
0x1013: 0C00 OR AL, 0
0x1015: 90 NOP

This sequence has a size of 14 bytes. However, since its last instruction is the same as the
last instruction in the previous sequence, its component is updatedwith -1. Note that the tenth
component of the vector is also updated with a value of -1. The next byte to be considered as a
starting byte is therefore 45:
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0x100b: 45 INC EBP
0x100c: 08E8 OR R8B , R13B
0x100e: A4 MOVSB BYTE PTR [RDI], BYTE PTR [RSI]
0x100f: 87FF XCHG EDI , EDI
0x1011: FFC2 INC EDX
0x1013: 0C00 OR AL, 0
0x1015: 90 NOP

Again, its component in the length vector is updated with -1 since the fourth instruction
in the sequence has already been processed. Prior to reaching the repeated instruction, the
thirteenth and the last component are also set to the value of -1.

Since all bytes in the slice have been checked, now the sequence starting at the sixth byte
is considered as the longest sequence of instructions. All considered bytes are now marked
as visited, as well as all the bytes that make up the sequence obtained starting at byte E8. In
addition, if any of the instructions in this sequence has a memory operand that targets to A,
its address is de-relocated. The next slice of 15-byte length would start at the byte FE at 0x1016
which follows the NOP assembly instruction (22 bytes after the previous slice), since all the
previous bytes are now marked as visited.
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slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Initial condition

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

After processing the sequence of instructions starting at FC

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

After processing the sequence of instructions starting at FF

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 0 0 0 0 -1 0 0 -1 0

After processing the sequence of instructions starting at E8

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 0 -1 0 -1 0 0 -1 0

After processing the sequence of instructions starting at 39

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 0 0 -1 0

After processing the sequence of instructions starting at 00

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1

After processing the sequence of instructions starting at 45

Figure 7.2: Example of selection of the longest sequence of instructions, per 15-byte slices.
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Chapter 8

Evaluation of Pre-Processing
Methods

This chapter introduces our Volatility plugin, Similarity Unrelocated Module, which im-
plements the methods presented in the previous chapter. We also describe and discuss the
experiments performed to validate both pre-processing methods. The tool is publicly accessi-
ble under GNU/GPLv3 license in [Martín-Pérez, 2020] and was published together with the
results of the experiments in [Martín-Pérez et al., 2021a].

8.1 The Similarity Unrelocated Module Tool

We have implemented both pre-processing methods presented in Chapter 7 in a plugin for
the Volatility memory analysis framework [Walters, 2007]. Our plugin, dubbed Similarity
Unrelocated Module (SUM), is an improvement of the previous tool introduced in [Rodríguez
et al., 2018]. We have released the code of SUM under the GNUGPLv3 license in [Martín-Pérez,
2020].

Unlike the previous tool, SUM generates a similarity digest for each resident page of each
module that is retrieved from a memory dump, while the comparison is an array of simi-
larity scores per page. A forensic examiner can choose to pre-process each module with the
Guided De-relocationmethod only (when the .reloc section is retrievable), with the Lin-
ear Sweep De-relocation method only (applicable in all cases), or with both (SUM �rst
tries to retrieve the .reloc section to apply the Guided De-relocation method; the Lin-
ear Sweep De-relocation method is applied if the previous one fails). By default, SUM does
not apply any pre-processing method.

The plugin also supports the use of more than one similarity digest algorithm at a time, the
selection of only speci�c sections of themodules for comparison of similarity, and the selection
of processes by PID or processes and shared libraries by name. The actual implementation of
SUM has integrated the most relevant SDA in the literature (namely, dcfldd, ssdeep, sdhash,
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and TLSH). Nevertheless, the tool has amodular design that allows new SDA to be easily added.

8.2 Experiments and Discussion

In this section, we assess our pre-processing methods measuring the similarity between mod-
ules with di�erent similarity digest algorithms (speci�cally, dcfldd, ssdeep, sdhash, and
TLSH).

Description of Experiments

As experimental settings, we have considered three versions ofWindows (Windows 7 6.1.7601,
Windows 8.1 6.3.9600, andWindows 10 10.0.14393) in both 32-bit and 64-bit architectures, run-
ning on top of the VirtualBox hypervisor. We acquired the memory of these virtual machines
ten minutes after a fresh boot, without interacting with the virtual system. This process was
repeated ten times. The virtual machines were rebooted between consecutive memory acqui-
sitions to guarantee that ASLR takes place and thus system modules are relocated.

As experimental software, we have used Volatility 2.6.1 and Capstone 4.0.0 for the disas-
sembling process performed by our Linear Sweep De-relocation pre-processing method.

For comparison, we have selected three sets of modules such that they have a .reloc sec-
tion and thus are valid for our �rst pre-processing method: system libraries, which are used
in almost all processes (we chose ntdll.dll, kernel32.dll, and advapi32.dll); system pro-
grams, which are system processes common to all Windows OS considered in the evaluation
(we chose winlogon.exe, lsass.exe, and spoolsv.exe); and workstation programs, which
include commonworkstation software such as Notepad++ version v7.5.8 and vlc version 3.0.4.

For each memory dump, we extracted these modules and computed the similarity hashes
under three scenarios: no pre-processing (we termed this as Raw scenario), applying the
Guided De-relocation pre-processing method (Guided De-relocation scenario), and
applying the Linear Sweep De-relocation method (Linear Sweep De-relocation sce-
nario).

Since our pre-processing methods work mainly on the PE header and the code section of
modules, we only consider as input for the similarity digest algorithms the �rst page of each
module (this usually contains the PE header since the header size is commonly less than 4KiB)
plus the pages containing the code section (that is, a subset of the pages of each module).

The similarity of the modules is computed as an aggregate similarity score of pairs of pages
of the modules that are comparable. As similarity digest algorithms, we use dcfldd, ssdeep,
sdhash, and TLSH (described in Section 5.5). Since the score provided by TLSH has a half-bound
output and works in a reverse mode (descending score trend), it is di�cult to compare TLSH
with other similarity digest algorithms. Therefore, we normalize the similarity score yielded
by TLSH as follows.
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Based on our experiments, we set the value of 80 as a threshold, t, to indicate that there is no
relation between twopages. The value t = 80 is near to 85,which is the threshold for comparing
versions of program applications proposed in [Oliver et al., 2013]. The normalization function

is de�ned as: TLSHnorm(x) = ⎧⎨⎩100
(1 − xt ) , if x ≤ t0 , otherwise

Related Comparison

In this case, we compare resident pages in the same relative o�set, using the same pre-
processing method. We have considered here all memory dumps. In total, we have 16710 resi-
dent pages from 38800 total pages in 32-bit scenarios, and a similar number of resident pages
(namely, 16831 resident pages) from42350 total pages in 64-bit scenarios. On average, the num-
ber of resident pages obtained in the memory dumps is around 40%, a similar result to that
shown in the Section 4.1.2.

We discuss below the results for each comparison scenario. The results are plotted using
violin plots [Hintze and Nelson, 1998], which show the median as an inner mark, a thick ver-
tical bar that represents the interquartile range, and the lower/upper adjacent values to the
�rst quartile and third quartile (the thin vertical lines stretching from the thick bar). For the
sake of readability, we have set for each similarity digest algorithm a di�erent mark and color:⬢ dcfldd,$ ssdeep,' sdhash, and▴ TLSH.

Note also that we compare pages versus pages instead of pages versus PE �les as on disk.
While the latter comparison would provide a better ground truth, the former comparison is
also applicable to situations where data from disk is not present, such as when data comes
from packed executables or other types of dynamic-generated code.

Raw scenario. Figure 8.1 shows the aggregated similarity scores considering the sixty mem-
ory dumps, for each selected module in 32-bit Windows (upper section of the �gure) and in
64-bit Windows (lower section), when no pre-processing method is applied. In total, we have
performed a total of 102214 and 99842 comparisons for each algorithm in 32-bit and 64-bit
architectures, respectively.

The results in 64-bit architecture are more stable than in 32-bit architecture. Note that the
median of the similarity score is near to 100 for all algorithms and all modules. Only the lower
adjacent values of advapi32.dll, lsass.exe, and spoolsv.exehave awider interval.Wehave
manually checked these results and found that they are due to themodules retrieved fromWin-
dows 8. In particular, the dissimilar bytes are caused by lookup tables within the code section
of the modules. These good results for 64-bit architecture may be due to the new addressing
form introduced with the 64-bit mode in Intel. As explained previously, Intel introduced RIP-
relative addressing, which guarantees that no assembly instruction incorporates an absolute
memory address within the binary representation of the instruction itself.

77



Section 8.2 8. Evaluation of Pre-Processing Methods

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100
Si

m
ila

rit
y 

sc
or

e

(a) 32-bit architecture

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y 
sc

or
e

(b) 64-bit architecture⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 8.1: Related comparison: similarity scores when none pre-processing method is applied
(Raw scenario).

In the case of 32-bit architecture, the similarity scores aremore dispersed and the lower/up-
per adjacent values are normally all in the range of possible scores, independently of the mod-
ule or the algorithm. Regarding the values of similarity score, sdhash has the lowest score,
followed by TLSH.

Note that the similarity scores are especially low for 32-bit Windows OS and very good for
64-bit, with some data dispersion for some modules. Nevertheless, the results on both archi-
tectures improve by applying our pre-processing methods.

GuidedDe-relocation scenario. Figure 8.2 shows the results of the similarity scorewhen
theGuidedDe-relocationpre-processingmethod is applied in themodules of eachmemory
dump. Recall that this pre-processing method is only applicable when the .reloc section is
retrievable. Although the selected modules have a .reloc section, sometimes the pages where
itwasmappedwere not present in someof thememory dumps of 32-bitWindowsOSmachines.
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(b) 64-bit architecture⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 8.2: Related comparison: similarity scores when the Guided De-relocation pre-
processing method is applied (Guided De-relocation scenario).

In particular, we found this issue when dealing with memory dumps in 32-bit Windows 7. In
this case, we performed a total of 72036 and 99842 comparisons for each algorithm in 32-bit
and 64-bit architectures, respectively.

The results show that the Guided De-relocation pre-processing method performs par-
ticularly well, having the median values at the top of the plots for each algorithm and each
module in both architectures. Some outside values appear in the case of sdhash. This issue
is caused by the sdhash way of working. As explained in Section 5.5, sdhash has a selection
function based onminimum probability. In addition, the algorithm requires aminimum cardi-
nality of features, at least 16, to compare a digest. When this minimum threshold of features is
not reached, the similarity score is zero. In our experiments, we found that some pages, which
were located at the end of the memory address space of the module, contained a few non-zero
bytes followed by a large quantity of zero bytes as padding bytes. However, these data are in-
su�cient to yield 16 valid features, so although sdhash is able to produce digests, these digests
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Figure 8.3: Related comparison: similarity scores when the Linear Sweep De-relocation
pre-processing method is applied (Linear Sweep De-relocation scenario).

are incomparable. Nevertheless, the number of these outsider values are insigni�cant.
Note that after applying the Guided de-relocation pre-processing method there are still

di�erences among certain pages. However, the percentage of these pages is quite low (only 180
out of the 2327720 comparisons). Furthermore, almost all of them occurred in the �rst page
of the code section, which usually contains the IAT. We have empirically observed that these
changes are caused by the IAT of the modules, which unfortunately was not covered by the
.reloc section.

Linear SweepDe-relocation scenario. Last, Figure 8.3 shows the results of comparisons
when the Linear Sweep De-relocation pre-processing method is applied. As in the �rst
scenario, we performed a total of 102214 and 99842 comparisons for each algorithm in 32-bit
and 64-bit architectures, respectively.

As in the previous scenario, the results of the similarity scores are extremely good. Note that

80



8. Evaluation of Pre-Processing Methods Section 8.2

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y 
sc

or
e

⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 8.4: Unrelated comparison: similarity scores aggregated for all Windows OS and sce-
narios considered.

we are now considering all the memory dumps of 32-bit Windows OS, unlike the previous sce-
nario in which we discarded the memory modules whose .reloc sections are unrecoverable.
Thus, comparing these similarity scores with those shown in Figure 8.1a, it is proved that the
application of the Linear Sweep De-relocation pre-processing method helps to improve
the similarity scores of the modules. In 32-bit architecture, the median values range from 90 to
100 while the lower adjacent values are over 80 for all the algorithms, except for sdhash and
TLSH, which have lower adjacent values of less than 80 for lsass and notepad++modules. We
havemanually veri�ed these results, and found that they are caused by pages with very limited
content and large portions of zero bytes.

Similarly to the previous scenario, the results in the case of 64-bit architecture have almost
perfect similarity, having some outsider values in the case of the sdhash algorithm. As before,
these almost perfect results may be motivated due to RIP-relative addressing.

Unrelated Comparison

In this section, we compare resident pages from di�erent modules (but with the same relative
o�set within the module) using the same pre-processing method. To limit the number of com-
parisons, we have restricted them tomodules coming from the samememory dump. Figure 8.4
shows the results in this case. As the results are very similar in all systems and architectures,
regardless of the pre-processing method applied, we decided to aggregate all the results in a
single plot. We performed a total of 990776 and of 1055685 comparisons in 32-bit and 64-bit
architectures, respectively.

In this case, only dcfldd has similarity scores greater than 0 in somemodules, while all the
other algorithms �nd no similarity. We have manually veri�ed these dcfldd results and found
that they occur because the algorithm considers sequences of zero bytes as relevant data. Thus,
the similarity score of the end padding bytes of pages yields a non-zero value.

81



Section 8.2 8. Evaluation of Pre-Processing Methods

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100
Si

m
ila

rit
y 

sc
or

e

(a) 32-bit architecture

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y 
sc

or
e

(b) 64-bit architecture⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 8.5: Related comparison with cross pre-processing methods.

Related Comparison with Cross Pre-processing Methods

As with the �rst comparison method, we now compare resident pages with the same rela-
tive o�set. However, we pre-process the pages to compare using the di�erent methods (either
Guided De-relocation or Linear Sweep De-relocation). The idea of this experiment is
to evaluate whether comparing similarity digests from one pre-processing method against the
other method is feasible. For this experiment, we performed 160198 and 221967 comparisons
in 32-bit and 64-bit architectures, respectively.

Figure 8.5 plots the results of this experiment. As shown, the results in this experiment are
very similar to those obtained in the Linear Sweep De-relocation scenario of the related
comparison experiment. Therefore, these results prove that both pre-processing methods are
comparable and that the similarity score results in this experiment are similar to the worst
results obtained when applying the pre-processing methods individually.
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Chapter 9

Conclusions and Open Problems

This �nal chapter presents the summary of this dissertation, detailing its contribution and
describing the future work and open problems that can be investigated in the future.

9.1 Thesis Summary

The problems of automatic identi�cation of the contents of a RAMmemory of a possibly com-
promised system are caused by several factors, mainly related to the memory management
performed by the operating system. These problems make the content of the memory dumps
inaccurate and incomplete, making it di�cult to detect potential malware in these dumps.

On the one hand, on-demand paging and page swapping mean that not all module pages
are in memory, and therefore not in the dump either. Also, when the pages have not been used
for a long period, the system swaps them to the page �le. These problems have been described
in more depth in Section 4.1. As we have shown, pagination behaves di�erently depending on
the type ofmodule. Almost 80% of the executablemodule pages and 20% of the shared dynamic
librarymodule pages reside on a systemwith typical memory workload. However, these values
are drastically lowered whenmemory is required by the operating system, asmost modules are
ejected from memory and thus because unrecoverable in a memory dump.

On the other hand, the relocation to a random base address performed by the ASLR defense
forces the image loader to adjust the contents of the modules based on the assigned base ad-
dress. As explained in Section 4.2, these adjustments cause scattered modi�cations across the
pages, making it di�cult to check the similarity between modules with traditional techniques
such as cryptographic hashes.

As a possible solution to identify memory content, we have studied the Similarity Digest
Algorithms (SDA). These algorithms allow identi�cation by approximate match rather than
exact match like cryptographic hashes do. Chapters 5 and 6 of this dissertation are dedicated
to studying these algorithms from a formal point of view. In Chapter 5, we have studied the
most used SDA, as well as some niche ones, and created a classi�cation scheme, proposing a
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classi�cation based on the global behavior of the algorithm, unlike previous classi�cations. In
Chapter 6, we have discussed the limitations of the SDA, de�ning the possible attacks and the
set of desirable properties that a robust SDA must meet.

As a conclusion of this part, the general behavior of most SDA is similar. They divide the
input into features to create a feature identi�er, which is typically generated using a hash func-
tion. The processed features are then aggregated or added in a storage structure, creating a
similarity digest. Finally, the digests are compared to generate a similarity score. With regard
to the attacks, we have found that sometimes they are possible due to just one characteristic,
but other times the attack needs to chain several weak characteristics. In our proposal for a set
of robust characteristics, we avoid the selection of critical features as well as weak characteris-
tics.

Finally, Chapters 7 and 8 are devoted to ways to improve the similarity score betweenmem-
ory dump modules. In particular, we have proposed two preprocessing methods to �nd the
ASLR modi�ed bytes and normalize them by setting them to zero. Both methods are detailed
in Chapter 7. The �rst method, Guided De-relocation, looks for the information of these
bytes using structures of the operating system itself and the structure of the executable �les
themselves. This method scans memory for a particular section of the executable �le for each
loaded module. If found, the method uses this information to normalize the a�ected bytes. We
have developed a second method when this information is unrecoverable, Linear Sweep De-
relocation, which attempts to identify the a�ected bytes by looking for the longest sequence
of disassembled instructions. This method considers that a subsequence of bytes is a�ected by
the relocation process when it encounters any instruction in this sequence that represents an
address within the memory space of the module itself. In Chapter 8, we describe the details of
the implementation of the proposed methods in a Volatility plugin, dubbed SUM. This tool is
publicly available and released under GNU/GPLv3 license. In addition, the experiments that
validate our proposals are explained and analyzed.

As a conclusion of this part and based on the experimental results, we conclude that SDAare
suitable algorithms for identifying modules of memory dumps, despite the memory problems
discussed in this dissertation. However, preprocessing the memory dumps is a necessary step
to reduce variability in similarity results. Regarding the presented methods, the Guided De-
relocationmethodhas better results than the LinearSweepDe-relocationmethod. This
result was as expected, since the �rst method uses information that allows it to know exactly
the bytes a�ected by the relocation process.

9.2 Detailed Contributions

This section summarizes the contributions of this dissertation:

• Detailed analysis of paging issues in modules that reside in memory.We have studied how
thememorymanagement a�ects user-modemodules onWindows systemswith di�erent
memory workloads. Only 80% of the executable pages and 20% of shared library pages
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reside in memory, while the workload is below 75% of the total physical memory. When
the load value increases, the percentage of resident pages decreases up to 20% and 5%,
respectively.

• A tool to extract the number of resident pages. We have developed a Volatility plugin,
dubbed residentmem, which lets us know which pages of each module are in a mem-
ory dump. Therefore, it provides forensic analysis with information and the amount of
binary data that cannot be analyzed correctly.

• Categorization for Similarity Digest Algorithms.Our identi�cation of the di�erent phases
of SDA and their characteristics can allow the community to better discuss and compare
existing algorithms. In addition, our classi�cation groups the SDA by their main behav-
ior, not only by one of their phases behavior as other proposals do.

• Description of possible attacks. We have described the possible attacks against the SDA.
Some of them are published and we have only correlated with the set of characteristics
that allow the attack to exist. Other attacks are novel and are based on the knowledge
gained from our previous classi�cation.

• Guidelines to build a robust SDA against the attacks studied.We also provide insights on
the desirable properties to build a robust algorithm, selecting the set of characteristics
that theoretically prevent tampering the similarity.

• Two pre-processingmethods that normalize the relocation performed byWindows.Wehave
developed two pre-processing methods to �nd and normalize the bytes a�ected by relo-
cation. The �rst method, Guided De-relocation, relies on �nding the .reloc section
from image �les. The second method, Linear Sweep De-relocation, identi�es the
a�ected bytes by looking for the longest sequence of instructions and identifying the
operands that point to the memory space of the module.

• A tool to normalize the relocation e�ects in modules fromWindows dumps.We have devel-
oped a Volatility plugin, dubbed Similarity Unrelocation Module, that implements
the presented pre-processing methods and allows a forensic analyzer to apply them to a
memory dump, generate the digests, and compare the content with other previous cal-
culated digests.

9.3 Future Work and Open Problems

Despite the contributions of this dissertation, there are still several open problems that are
planned for future work:
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• Deeper analysis of the e�ects of relocation. In this dissertation, we have found that the
relocation produced by the ASLR defense negatively a�ects the similarity of the compar-
isons.We plan to do a speci�c study of how thesemodi�cations a�ect memory and relate
them to the result of pre-processing methods to improve them.

• Development of proofs of concept for the theoretical attacks against the Similarity Digest
Algorithms.Our goal is to validate our de�nition of potential attacks against SDA, devel-
oping proof of concept of these attacks. We hope these proof of concepts help identify
new algorithm limitations, as well as improve the guidance for building a robust SDA.

• Development of a robust SDA algorithm.We plan to develop an SDA following the set of
characteristics that we have proposed in the guidance to obtain a robust SDA algorithm.

• Improve the recoverable content of memory dumps by considering page �les. Due to page
swapping, memory content is incomplete. Therefore, we plan to consider page �les dur-
ing the analysis process to increase the number of pages retrieved.

• Improve the Guided De-relocation pre-processing method using page �les.We plan to
improve the scanning process of this method by considering page �les so that we can
retrieve the .reloc section of modules when their corresponding �le objects are not in
memory.

• Improve the Linear Sweep De-relocation pre-processingmethod using a recursive dis-
assembly algorithm.We plan to improve the accuracy of this method by incorporating a
new phase after recognizing the PE structure. This new phase will implement a recursive
disassembler that starts at true instruction addresses retrieved from the memory dump.
These addresses can be retrieved via return addresses on the stack or function addresses
obtained from the symbol table.

In addition to all the future work mentioned above, we aim to apply all the �ndings of this
dissertation to other domains, such as memory forensics of mobile phones or IoT devices, as
well as to extend this work to other desktop operating systems such asmacOS andGNU/Linux.
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