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ABSTRACT
In present times, there has been a substantial endeavor to generalize the classical
notion of iterated function system (IFS). We introduce a new type of non-linear
contraction namely cyclic Meir-Keeler contraction, which is more generic than the
famous Banach contraction. We show the perseverance and uniqueness of the fixed
point for the cyclic Meir-Keeler contraction. Using this result, we propose the cyclic
Meir-Keeler IFS in the literature for construction of fractals. Furthermore, we extend
the theory of countable IFS and generalized IFS by using these cyclic Meir-Keeler
contraction maps.
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1. Introduction

The notion of fractals was coined by Mandelbrot [12] in 1975 to bring most of objects
or sets having self-affine (self-similar) characteristics in nature and sciences to a sin-
gle platform. An object is said to be self-affine (self-similar) if it can be written as
finite union of transformed copies of itself with different (fixed) contractions. Iterated
function system (IFS) was conscripted by Hutchinson in his fundamental work [8] as
a finite set of contraction maps defined on a compact set K of an Euclidean space
Rn, where n ∈ N. The IFS is denoted by I = {K; f1, f2, . . . fM}. By Gluing Lemma,
one can find that there exists a compact set K satisfying the self-referential equation

K =
M⋃
k=1

gk(K), and K is referred as an invariant set or an attractor with respect to I.

Hutchinson’s idea gives that the invariant compact set K is fully determined by I, and
also K is the limit of a sequence of prefractal sets that can be built by the members
of I. Following this work, Barnsley [2] popularized the theory of IFS by modelling
and classifying a broad class of fractals through different types of IFSs. Since classical
fractals like Cantor sets, Sierpiński triangles, dragon curves are traditionally seen as

Email: pasupathi4074@gmail.com, chand@iitm.ac.in, manavas@unizar.es



being produced by a process of successive microscopic refinement taken to the limit,
it makes sense to approximate them through invariant sets associated with suitable
IFSs. The existence of invariant sets of IFS proceeds from the Banach fixed point the-
orem in a complete metric space. IFS portrays a decisive role in the development and
applications of fractal interpolation functions in approximation theory and geometric
modelling, see for instance [4–6,9,13,17–19,25,26].

Many researchers have been worked on various extensions of this IFS structure
to more generic spaces, generic contractions and with infinite number of maps or
more broadly multifunction systems, etc. Infinite IFS was introduced by Wicks [27].
Miculescu and Mihail [15] investigated the shift space amalgamated to invariant sets
of infinite IFSs associated with a complete metric spaces. Further, they introduced
generalized iterated function system (GIFS), which abides of a finite number of Lip-
schitz contractions g1, . . . , gM : Xl → X, where (X, τ) is a complete metric space and
M, l ∈ N, and study various properties of its attractor in [16]. Strobin and Swaczyna
[24] sharpen the conclusions of Miculescu and Mihail by taking into account the GIFS
consisting of ϕ-contractions. Leśniak studied a multivalued approach of infinite iter-
ated function systems in [11]. Secelean [20,21] introduced the existence of a compact
attractor for countable IFSs, and he studied the IFS composed of a countable family of
F -contractions in [22]. Further, Secelean [23] investigated IFSs placed with generalized
contractions on the product space XJ into X, where X is a metric space and J is an
arbitrary set of natural numbers.

The fixed point theory plays a very important role for the existence of invariant sets
in different types of IFSs. In various mathematical problems, we need the existence of
a solution, which can be put in an equivalent form as the existence of a fixed point
for a suitable transformation. It shows that the existence of a fixed point is vital in
different areas of mathematics and other sciences. Over the last 50 years many authors
discussed variety of fixed point results and their applications (see for instance: [3], [7],
[10]). Meir and Keeler [14] constructed a generalization of the contraction map, and
demonstrated the perseverance of fixed point for their map, namely a Meir-Keeler
contraction. Also, Dumitru studied the generalized IFS with Meir-Keeler type map-
pings. Kirk et. al [10] proposed cyclic contraction maps in several metric spaces, and
proved the presence of proximity points and fixed points for these maps. It is found
that cyclic contraction maps are not used in construction of IFSs and fractal func-
tions in the literature. Therefore, we have proposed the Mier-Keeler cyclic contraction
map, and proved the existence of its fixed point. Using this novel Mier-Keeler cyclic
contraction, we have shown the existence fixed point for an IFS in the corresponding
hyperspace. We have constructed a fractal function using the Mier-Keeler cyclic IFS.
Further, we have extended our results to an IFS consisting of countable number of
maps and to an IFS consists with generalized contractions from XJ into X.

In this paper, we construct a generalization of Meir-Keeler contraction by employing
the concepts of cyclic contraction[10] and Meir-Keeler[14] contraction, namely cyclic
Meir-Keeler contraction, and discuss the presence of the fixed point for this map and
and its uniqueness in Section 3. This generalization is the strict generalization that
is, every Meir-Keeler contraction is a cyclic Meir-Keeler contraction, but there exist
some cyclic Meir-Keeler contractions which may not be a Meir-Keeler contraction (see
Example 3.3). We introduce novel IFSs namely cyclic Meir-Keeler IFS and countable
cyclic Meir-Keeler IFS, and establish the perseverance of the attractors of these IFSs
and their uniqueness in Section 4. We validate the presence of the fixed point or fractal
of the generalized cyclic Meir-Keeler contraction in Section 5 to construct a generalized
cyclic Meir-Keeler IFS.
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2. Preliminary Facts

In the current section, we revise the basic theory of IFS, countable IFS, Meir-Keeler
contraction and fractal interpolation function that are required for our work. The
details can be found in [2,10,14,20,21].
A map g on a metric space (X, τ) is said to be contraction in nature if g ascertains

τ(g(p), g(q)) ≤ sτ(p, q) for any p, q ∈ X, s ∈ [0, 1),

where the contractivity factor of g is s. In 1922, Banach[1] established the most im-
portant and widely used fixed point result acknowledged as ‘the Banach contraction
criterion’:

Theorem 2.1. Suppose g is a contraction map on a complete metric space (X, τ).
Then g has a unique fixed point p̃ (say). This fixed point p̃ can be obtained from the
convergence of a sequence (gm(p))∞m=1, i.e., lim

m→∞
gm(p) = p̃, where p ∈ X is arbitrary.

Theorem 2.1 confirms the perseverance of fixed point of several self-maps of complete
metric spaces along with its uniqueness, and this provides an effective method to
compute fixed points of these contractions. A generalization of the Banach contraction
principle is given by Meir and Keeler[14] by using a cyclic map, which is described in
the following:

Definition 2.2. [10] Assume that {Cj}rj=1 is a finite collection of subsets of a metric

space (X, τ) with Cr+1 := C1. If a map g :
r
∪
j=1

Cj →
r
∪
j=1

Cj satisfies g(Cj) ⊆ Cj+1 for

all j ∈ Nr, then g is termed a cyclic map, where Nq denote the first q natural numbers
.

Definition 2.3. [14] g is called a Meir-Keeler contraction map on a metric space
(X, τ) if for all ζ > 0, there exists η > 0 such that for any p, q ∈ X,

ζ ≤ τ(p, q) < ζ + η ⇒ τ(g(p), g(q)) < ζ.

Definition 2.4. g is called a contractive map on a metric space (X, τ) if it satisfies

for all p, q ∈ X with p 6= q ⇒ τ(g(p), g(q)) < τ(p, q).

Remark 2.5. (i) Meir-Keeler contraction map is a more general formulation of Ba-
nach contraction map, i.e., every contraction map is a Meir-Keeler contraction map
(for every ζ > 0, choose η = 1−k

k ζ, where k is the contractivity factor of the Banach
contraction map). But the converse need not be true. A Meir-Keeler contraction map
is given in example 2.6, which is not a contraction map.
(ii) Each Meir-Keeler contraction map is also contractive: choose ζ = τ(p, q) for p 6= q
in the definition of Meir-Keeler contraction. It is easy to observe that each contractive
map is continuous. Consequently, we confirm that

contraction⇒ Meir-Keeler contraction contractive⇒ continuous.

(iii) In Section 3, we introduce the cyclic Meir-Keeler contraction which need not be
continuous and hence need not be both contraction and contractive. Note that this
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cyclic map is a generalization of Meir-Keeler contraction map.

Example 2.6. Let X = [0, 1] ∪ {4, 5, 8, 9, . . . , 4m, 4m + 1, . . .} be endowed with the
Euclidean distance. Define a self-map g on X as

g(p) =


p/4 for p ∈ [0, 1],

0 for p = 4m,

1− 1
m+3 for p = 4m+ 1.

The function g is a Meir-Keeler contraction map (for the case ζ < 1, choose η =
min{ζ, 1− ζ} and for ζ ≥ 1, choose η = ζ). But g is not a contraction map.
Take pm = 4m and qm = 4m+ 1. Therefore, |pm − qm| = 1 and

|g(pm)− g(qm)| = 1− 1

m+ 3
=
m+ 2

m+ 3
,

⇒ sup{|g(pm)− g(qm)|
|pm − qm|

} = 1.

Theorem 2.7. [14] Assume that g is a Meir-Keeler contraction map on a metric
space (X, τ), which is also complete. Then g has a unique fixed point p̄ ∈ X, where p̄
can be computed from a sequence as described in Theorem 2.1.

We will introduce the cyclic Meir-Keeler contraction and prove the perseverance of
its fixed point in Section 3.
Let (X, τ) be a metric space and H(X) be the collection of all non-empty compact
subsets of X. For p ∈ X and P,Q ∈ H(X), define τ(p,Q) = inf{τ(p, q) : q ∈ Q} and
D(P,Q) = sup{τ(p,Q) : p ∈ P}. Clearly, both D(P,Q) and D(Q,P ) exist and are
non-negative. We define the Hausdorff metric between P and Q as

h(P,Q) = max{D(P,Q),D(Q,P )}. (1)

It is known that the Hausdorff metric space (H(X), h) is complete (compact) whenever
the metric space (X, τ) is complete (compact) respectively.
A finite collection of contraction maps (gk)Mk=1 on a complete metric space (X, τ) is
called an iterated function systems (IFS). This system induces a set valued map G
known as Hutchinson map on (H(X), h) as

G(C) =
M
∪

k=1
gk(C),

where gk(C) = {gk(p) : p ∈ C}. Here G is also a contraction map on (H(X), h)
with the contraction factor max{s1, . . . , sM}, where s′ks are contractivity factors of gk
respectively. By the Banach contraction criterion, G has a unique fixed point K in
H(X). i.e,

K = G(K) =

M⋃
k=1

gk(K).
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Moreover, K = lim
m→∞

Gm(C) for any C ∈ H(X), where Gm = G ◦G ◦ · · ·m-times. This

K is called the invariant set as G(K) = K. It is also an attractor since it is the limit
of any sequence {Gm(C)}∞m=1, C ∈ H(X).

A countable iterated function system (CIFS) is defined as a sequence of con-
traction maps (gk)k≥1 on a compact metric space (X, τ) such that supk sk < 1, where
sk is the contractivity factors gk for each k. The corresponding Hutchinson map G on
H(X) is defined by

G(C) =
∞
∪

k=1
gk(C), ∀C ∈ H(X).

Here the bar represents the topological closure of the countable union of all these sets.
Since G(C) is closed in the compact metric space X, G is a well-defined map, and it
maps compact sets into compact sets. Since supk sk < 1, G is a contraction map on
the complete metric space (H(X), h). Consequently, G has a unique attractor K in
H(X), and for any C ∈ H(X),Gm(C) converges to K, that is

K = G(K) =

∞⋃
k=1

gk(K) and lim
m→∞

Gm(C) = K,∀ C ∈ H(X).

In the following, we provide an IFS whose fixed point or fractal is the graph of a
function called as fractal interpolation function (FIF).
Consider an interpolating data set {(pj , qj) ∈ R2 : j ∈ {0} ∪ NM}, where −∞ < p0 <
p1 < · · · < pM <∞. Let J = [p0, pM ] and Jj = [pj−1, pj ] for j ∈ NM . For j ∈ NM , the
functions Lj : J → Jj are contraction homeomorphisms so that for all p, q ∈ J and
0 ≤ rj < 1,

|Lj(p)− Lj(q)| ≤ rj |p− q|; Lj(p0) = pj−1, Lj(pM ) = pj .

Further, consider M continuous functions Fj : J ×R→ R abiding by the following set
of rules:

|Fj(p, q)− Fj(p, q
′)| ≤ αj |q − q′|; ∀p ∈ J, q, q′ ∈ R, αj ∈ [0, 1),

Fj(p0, q0) = qj−1, Fj(pM , qM ) = qj .

Define tj : J × R→ Jj × R by

tj(p, q) = (Lj(p), Fj(p, q)) ∀ j ∈ NM .

The desired IFS for construction of a FIF is {J × R, tj : j ∈ NM}. Now, define the

associated Hutchinson map T : H(X)→ H(X) as T (C) =
M
∪
j=1

tj(C), Barnsley [2] proved

the following fundamental result:

Theorem 2.8. (i) The Hutchinson map T is a contraction map and it has a unique
invariant set G ∈ H(X). Also, G is the graph of a continuous function g : J → R
verifying g(pj) = qj for all j ∈ N ∪ {0}.
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(ii) Let C∗(J) = {g : J → R | g is continuous, g(p0) = q0, g(pM ) = qM} be endowed
with the metric ρ induced from the uniform norm. Define a Read-Bajraktarev́ıc operator
T on the complete metric space (C∗(J), ρ) as (Tg)(p) = Fj(L

−1
j (p), g ◦ L−1j (p)) ∀p ∈

Jj , j ∈ NM . Since the contraction factor of T is α = max{|αj | : j ∈ NM} < 1, the
unique fixed point of T is g as described in (i), and it is described iteratively from the
following equation:

g(Lj(p)) = Fj(p, g(p)), p ∈ J, j ∈ NM .

Definition 2.9. The above implicit function g in Theorem 2.8 is known as a frac-
tal interpolation function which varies depending on the choice scale vector α =
(α1, α2, . . . , αM ) and the choice of Fj(p, q), j ∈ NM .

3. Cyclic Meir-Keeler contractions

Definition 3.1. Suppose that {Cj}rj=1 is a collection of non-null subsets of a metric

space (X, τ) with Cr+1 = C1. A map g on
r
∪
j=1

Cj to be christened as a cyclic Meir-Keeler

contraction if it verifies the following two conditions:

(1) g(Cj) ⊆ Cj+1 for all j ∈ Nr,
(2) ∀ ζ > 0, ∃ η > 0 such that ζ ≤ τ(p, q) < ζ + η implies τ(g(p), g(q)) < ζ ∀p ∈

Cj , q ∈ Cj+1 and for all j ∈ Nr.

Example 3.2. Let C1 = [0, 1], C2 = [0, 3]. For m ≥ 2, define g : C1 ∪C2 → C1 ∪C2

by

g(p) =

{
p/m for p ∈ [0, 2],

1/m for p ∈ (2, 3].

We confirm that g is a cyclic Meir-Keeler contraction on C1 ∪ C2. Observe that

g(C1) = [0,
1

m
] ⊆ C2, g(C2) = [0,

2

m
] ⊆ C1.

For ζ > 0, choose η = (m− 1)ζ. Let p ∈ C1, q ∈ C2 and ζ ≤ |p− q| < mζ.
(i) If p ∈ [0, 1], q ∈ [0, 2];

|g(p)− g(q)| = 1

m
|p− q| < 1

m
(mζ) = ζ.

(ii)If p ∈ [0, 1], q ∈ (2, 3];

|g(p)− g(q)| = 1

m
|p− 1| ≤ 1

m
|p− q| < ζ.

Therefore, the above map g is a cyclic Meir-Keeler contraction. Here g is not a Meir-
Keeler contraction due to the fact that g is not a continuous function.
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Example 3.3. Suppose X = R embedded with the Euclidean distance. Take C1 =
[0, 1], C2 = [12 ,

3
2 ]. Define a self-map g on X by

g(p) =


11/10− p whenever p ∈ [0, 1

10 ],

1 whenever p ∈ [ 1
10 ,

1
2 ],

21/20− p/10 whenever p ∈ [12 ,
3
2 ].

Let ζ > 0 and choose η = ζ. Let p ∈ C1 and q ∈ C2 be arbitrary satisfying ζ ≤ |p−q| <
2ζ.

Case 1. Consider p ∈ [0, 1
10 ]. Here |g(p)−g(q)| = |(1110−p)− (2120−

q
10)| = | q10−p+ 1

20 |.
Since 0 ≤ q

10 − p+ 1
20 ≤ 1/5 and |p− q| ≥ 2/5, we obtain

|g(p)− g(q)| ≤ 1/5 ≤ 1

2
|p− q| < 1

2
(2ζ) = ζ.

Case 2. For p ∈ [ 1
10 ,

1
2 ], |g(p)−g(q)| = | 120 −

q
10 | =

1
10 |

1
2 − q| ≤

1
10 |p− q| <

1
10(2ζ) < ζ.

Case 3. For p ∈ [12 , 1], |g(p)−g(q)| = |(2120−
p
10)− (2120−

q
10)| = 1

10 |p−q| <
1
10(2ζ) < ζ.

Moreover, g([0, 1]) ⊆ [12 ,
3
2 ] and g([12 ,

3
2 ]) ⊆ [0, 1]. Therefore, g proposed in this

example is a cyclic Meir-Keeler contraction, and hence it is continuous also.
Finally, consider p, q ∈ [0, 1

10 ]. In this case,

|g(p)− g(q)| =
∣∣∣∣11

10
− p− (

11

10
− q)

∣∣∣∣ = |p− q|.

This implies g is not a Meir-Keeler contraction.

Theorem 3.4. Let {Cj}rj=1 be a finite number of non-null closed subsets of a complete

metric space (X, τ). If g :
r
∪
j=1

Cj →
r
∪
j=1

Cj is a cyclic Meir-Keeler contraction map, then

g has fixed point p̄ (say) that is unique, and it is computed as lim
m→∞

gm(p) = p̄, p ∈
r
∪
j=1

Cj .

Proof. Let p0 ∈
r
∪
j=1

Cj , then there exists at least one j ∈ Nr such that p0 ∈ Cj . Let

pm = gm(p0), m ∈ N. By cyclic condition of g, p1 = g(p0) ∈ Cj+1 and

τ(p1, p2) = τ(g(p0), g(p1)) < τ(p0, p1).

Inductively, we can write

τ(pm, pm+1)) < τ(pm−1, pm) for all m ∈ N. (2)

Let τm = τ(pm, pm+1),m ∈ N. By (2), (τm)∞m=1 is a strictly decreasing sequence and
bounded below by 0, then lim τm ↓ ζ (say). We need to prove ζ = 0. If not, let ζ > 0.
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By definition of g, there exists η > 0 such that

ζ ≤ τ(p, q) < ζ + η ⇒ τ(g(p), g(q)) < ζ ∀p ∈ Cj , q ∈ Cj+1 and ∀j ∈ Nr. (3)

The above one is not true for p = pm, q = qm+1. Therefore, we get contradiction, and
hence ζ = 0.
Now, we try to prove that (pm)∞m=1 is Cauchy. Suppose that there exists no ζ > 0 such
that lim sup τ(pm, pn) > 2ζ. Again by definition of g, there exists a η > 0 satisfying
(3) for this ζ. It will be also true for η replaced by η′ = min(η, ζ).
Since lim

m→∞
τm = 0, there exists M > 0 such that dM < η′/2r + 1. Select m,n > M

such that τ(pm, pn) > 2ζ. For m ≤ j ≤ n ,

|τ(pm, pj)− τ(pm, pj+1)| ≤ τj < η′/2r + 1.

This implies since τ(pm, pm+1) < ζ and τ(pm, pn) > ζ + η′, that there exists j1,
m ≤ j1 ≤ n such that

ζ +
2rη′

2r + 1
< τ(pm, pj1) < ζ + η′.

From this, there exists j2, m ≤ j2 ≤ n such that

ζ +
(2r − 1)η′

2r + 1
< τ(pm, pj2) < ζ +

2η′

2r + 1
.

Continuing this process, there exists jr, m ≤ jr ≤ n such that

ζ +
(r + 1)η′

2r + 1
< τ(pm, pjr) < ζ +

(r + 2)η′

2r + 1

⇒ ζ +
rη′

2r + 1
< τ(pm, pjr−1) < ζ +

(r + 3)η′

2r + 1
.

Successively, we get

ζ +
2η′

2r + 1
< τ(pm, pjr−(r−1)) < ζ + η′.

We now conclude

ζ +
2η′

2r + 1
< τ(pm, pjr−k) < ζ + η′ for all k ∈ Nr−1 ∪ {0}. (4)

Note that pm ∈ Cj for some j ∈ Nr, there exists k ∈ {jr, jr − 1, . . . , jr − (r − 1)} such
that pk ∈ Cj+1. By hypothesis, τ(pm+1, pk+1) < ζ. Therefore,

τ(pm, pk) ≤ τ(pm, pm+1) + τ(pm+1, pk+1) + τ(pk+1, pk)

≤ η′

2r + 1
+ ζ +

η′

2r + 1
= ζ +

2η′

2r + 1
.
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which contradicts (4). Therefore (pm)∞m=1 is a Cauchy sequence in a complete metric
space (X, τ), and the sequence (pm)∞m=1 converges to a point p̄ in X. Then, we find

infinitely many elements of the sequence (pm)∞m=1 remain in each Cj . Hence p̄ ∈
r
∩
j=1

Cj .

If pm = p̄ for some m, then p̄ is a fixed point of g, otherwise

τ(pm+1, g(p̄)) = τ(g(pm), g(p̄)) < τ(pm, p̄) for m ∈ N.

We conclude (pm+1)
∞
m=1 converges to g(p̄) and hence, p̄ is a fixed point of g .

Suppose there exist two different fixed points p and q, then p, q ∈
r
∩
j=1

Cj . Then, we

have arrived at contradiction: τ(p, q) = τ(g(p), g(q)) < τ(p, q).

4. Cyclic Meir-Keeler Iterated Function Systems

Lemma 4.1. Let P,Q ∈ H(X). Then for given p ∈ P , we can find a q ∈ Q such that
τ(p, q) ≤ h(P,Q).

Proof. Let p ∈ P be arbitrary. Since Q is compact, there exists q ∈ Q for which
τ(p, q) = inf

q′∈Q
τ(p, q′) ≤ D(P,Q) ≤ h(P,Q).

Lemma 4.2. Suppose P is closed in a metric space (X, τ) which is complete. Then,
H(P ) is closed in (H(X), h).

Proof. Since P is a closed in a complete metric space, P is complete. Therefore,
(H(P ), h) is also complete, and the result follows.

Theorem 4.3. Let Cj ⊂ X and Cj 6= ∅ for j ∈ Nr with Cr+1 = C1, where (X, τ)

is a metric space. Let gk :
r
∪
j=1

Cj →
r
∪
j=1

Cj , k ∈ NM be continuous cyclic Meir-

Keeler contraction maps. Then Hutchinson map G :
r
∪
j=1

H(Cj) →
r
∪
j=1

H(Cj) defined

by G(C) :=
M
∪

k=1
gk(C) for every C ∈

r
∪
j=1

H(Cj), (where gk(C) = {gk(p) : p ∈ C}) is

a cyclic Meir-Keeler contraction map with respect to the induced metric h defined in
(1).

Proof. Let P ∈ H(Cj) for some j ∈ Nr. Since each gk is cyclic, we have G(P ) ⊆ Cj+1.
Since each gk is continuous, then G(P ) is a compact set. Thus G(P ) ∈ H(Cj+1), and
we conclude that G(H(Cj)) ⊆ H(Cj+1) for each j ∈ Nr. For given ζ > 0, we can find
a ηk > 0, k ∈ NM for whoch the following is true:

ζ ≤ τ(p, q) < ζ + ηk ⇒ τ(gk(p), gk(q)) < ζ,∀p ∈ Cj , q ∈ Cj+1, j ∈ Nr.

Let P ∈ H(Cj), Q ∈ H(Cj+1) such that ζ ≤ h(P,Q) < ζ + η, where η = min{ηk : k ∈
NM}. Our claim is h(G(P ),G(Q)) < ζ.
Let v ∈ G(P ) be arbitrary. Then there exists l ∈ NM and p ∈ P ⊂ Cj such that v =
gl(p). By Lemma 4.1, there exists q ∈ Q ⊂ Cj+1 satisfying τ(p, q) ≤ h(P,Q) < ζ + η.
If τ(p, q) ≥ ζ, then ζ ≤ τ(p, q) < ζ+η and p ∈ Cj , q ∈ Cj+1 implies τ(gl(p), gl(q)) < ζ.
Otherwise τ(p, q) < ζ, then τ(gl(p), gl(q)) < τ(p, q) < ζ.
Therefore τ(v,G(Q)) < ζ. Since v ∈ G(P ) is arbitrary and G(P ) is compact, we obtain
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that D(G(P ),G(Q)) < ζ. The proof of D(G(Q),G(P )) < ζ follows from similar lines.
Consequently, we obtain h(G(P ),G(Q)) < ζ that verifies G is also a cyclic Meir-Keeler
contraction.

Corollary 4.4. Let Cj ⊂ X and Cj 6= ∅ be closed for j ∈ Nr with Cr+1 = C1,

where (X, τ) is a complete metric space. Let gk :
r
∪
j=1

Cj →
r
∪
j=1

Cj , k ∈ NM , be

continuous cyclic Meir-Keeler contraction maps. Define G :
r
∪
j=1

H(Cj) →
r
∪
j=1

H(Cj)

by G(C) :=
M
∪

k=1
gk(C) for every C ∈

r
∪
j=1

H(Cj). Then, the unique fixed point K of G
satisfies the self-affine equation

K = G(K) =
M
∪

k=1
gk(K).

Moreover, the attractor can be obtained as K = lim
m→∞

Gm(C) for any C ∈
r
∪
j=1

H(Cj).

Proof. We know that since the original space (X, τ) is a complete, then so is the
hyperspace (H(X), h). According to Lemma 4.2, we find that all non-empty subsets
H(Cj), j ∈ Nr are closed in H(X). Employing Theorem 3.4, we conclude that the

proposed set-valued map G is a cyclic Meir-Keeler contraction on
r
∪
j=1

H(Cj). The results

pertaining to the unique fixed point K follow from Theorem 3.1.

Definition 4.5. Consider a finite collection of nonempty closed subsets C1, C2 . . . Cr,
r ∈ N of a complete metric space (X, τ), where Cr+1 = C1. Let gk, k ∈ NM be a finite

number of continuous cyclic Meir-Keeler contraction mappings on
r
∪
j=1

Cj. Then, we

call these collection {(X, C1, C2, . . . Cr); gk : k = 1, 2, . . .M} as a cyclic Meir-Keeler
IFS, and we denote it by ICMK .

Define the associated Hutchinson operator G on
r
∪
j=1

H(Cj) for the above IFS ICMK by

G(C) =
M
∪

k=1
gk(C) for each C ∈

r
∪
j=1

H(Cj). According to Corollary 4.4, the fixed point

K of G is given by K = lim
m→∞

Gm(C) for any C ∈
r
∪
j=1

H(Cj) and K is called the fractal

of this cyclic Meir-Keeler IFS ICMK .

Example 4.6. Let X = R2 and C1 = [−1, 1] × R, C2 = [−0.5, 1] × R. Let g2 be the
linear spline to the data {(0, 1), (15 , 6), (25 , 2), (35 , 7), (45 , 1), (1, 0)}. Let g1 be the line

joining (0, 1) and (1, 0). Let pj = j
5 for j ∈ N5. Let Lj : [p0, p5] → [pj−1, pj ] as

Lj(p) = ajp + bj for j ∈ N5. Define Gj(p, q) = αjq + g2(Lj(p)) − g1(p) for j ∈ N5.
Define gj(p, q) = (Lj(p), Fj(p, q)) for j ∈ N5. If the scaling factors are chosen as
αj = 0.3 for j ∈ N5, then according to Corollary 4.4, the fixed point K of the cyclic
Meir-Keeler IFS ICMK ≡ {(X, C1, C2); gj , j ∈ N5} is the required fractal function, and
its graph is plotted in Figure 1 by using Section 2.

In the following, we consider a countable collection of maps {gm}∞m=1 and X is
compact.

Theorem 4.7. Let Cj ⊂ X and Cj 6= ∅ be closed for j ∈ Nr with Cr+1 = C1, where
(X, τ) is a complete metric space. Let (gk)∞k=1 be a sequence of cyclic Meir-Keeler
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Figure 1. Attractor of cyclic IFS which is graph of a fractal function

contraction mappings on
r
∪
j=1

Cj obeying the following condition:

For any ζ > 0, there exists η > 0 for which

∀p ∈ Cj , q ∈ Cj+1 and ζ ≤ τ(p, q) < ζ + η =⇒ sup
k
τ(gk(p), gk(q)) < ζ. (5)

Then, the set-valued map G on
r
∪
j=1

H(Cj) defined by G(C) := ∪
k>1

gk(C) for every

C ∈
r
∪
j=1

H(Cj) is a cyclic Meir-Keeler contraction, where the bar is used to write the

topological closure of the union of sets.

Proof. Suppose C ∈ H(Cj) for some j ∈ Nr. Since all gk, k ∈ N are cyclic Meir-
Keeler contraction maps, we have ∪

k>1
gk(C) ⊆ Cj+1. Now Cj+1 is closed, and G(C) =

∪
k>1

gk(C) ⊆ Cj+1. Since X is compact, then so is Cj+1. Consequently, we obtain G(C) ∈

H(Cj+1). Therefore we have G is a cyclic map on {H(Cj)}rj=1.
Suppose that for given ζ > 0, there exists η > 0 such that it satisfies (5). Consider
two sets P and Q such that P ∈ H(Cj), Q ∈ H(Cj+1) for some j ∈ Nr for which
ζ ≤ h(P,Q) < ζ + η. Using compactness of P and Q, we can find p ∈ P and q ∈ Q
such that τ(p, q) ≤ h(P,Q) < ζ + η.
Whenever ζ ≤ τ(p, q), we get ζ ≤ τ(p, q) < ζ + η. In this case for p ∈ Cj , q ∈ Cj+1, we
have sup

k
τ(gk(p), gk(q)) < ζ. Otherwise if τ(p, q) < ζ, then τ(gk(p), gk(q)) < τ(p, q) <

ζ for all k ∈ N . Thus,

sup
k
τ(gk(p), gk(q)) < ζ for p ∈ Cj , q ∈ Cj+1.

11



Therefore for any p ∈ P we have inf
q∈Q

sup
k

τ(gk(p), gk(q)) < ζ. Since P ∈ H(Cj), we

conclude that sup
p∈P

inf
q∈Q

sup
k
τ(gk(p), gk(q)) < ζ. Using this result, it is straight forward

to see

sup
k

D(gk(P ), gk(Q)) = sup
k

sup
p∈P

inf
q∈Q

τ(gk(p), gk(q)) ≤ sup
p∈P

inf
q∈Q

sup
k

τ(gk(p), gk(q)) < ζ.

Similarly, sup
k

D(gk(Q), gk(P )) < ζ, and we obtain supk h(gk(P ), gk(Q)) < ζ. Finally,

using the standard property of Hausdorff metric, we get

h(G(P ),G(Q)) = h( ∪
k>1

gk(P ), ∪
k>1

gk(Q)) ≤ sup
k
h(gk(P ), gk(Q)) < ζ.

Thus, G verifies all the conditions of a cyclic Meir-Keeler contraction map on
{H(Cj)}rj=1.

Countable Cyclic Meir-Keeler Iterated Function Systems: Suppose Cj ⊂ X
and Cj 6= ∅ is closed for j ∈ Nr with Cr+1 = C1, where (X, τ) is a compact metric
space. Suppose a sequence of cyclic maps (gk)k>1 on {Cj}rj=1 obeys the following:

For given ζ > 0, there exists η > 0 such that for all p ∈ Cj , q ∈ Cj+1,

ζ ≤ τ(p, q) < ζ + η implies sup
k
τ(gk(p), gk(q)) < ζ.

Then, {(X, C1, C2, . . . Cr); gk : k ∈ N} is termed as a countable cyclic Meir-Keeler IFS.

In this case, the Hutchinson operator G is defined on
r
∪
j=1

H(Cj) as

G(C) =
⋃
k>1

gk(C).

Utilizing Theorem 4.7, we observe that G is a cyclic Meir-Keeler contraction on the

complete metric space
r
∪
j=1

H as it is closed in (H(X), h). According to Theorem 3.4, we

can find a unique non-empty set K ∈
r
∩
j=1

H(Cj) satisfying the self-referential relation

K = G(K) =
⋃
k>1

gk(K) = lim
m→∞

Gm(C) for any non-empty C ∈
r
∪
j=1

H(Cj).

Here K is called the fractal or attractor of the countable cyclic Meir-Keeler IFS
{(X, C1, C2, . . . Cr);
gk : k ∈ N}.
Note that the functions in the countable cyclic Meir-Keeler IFS need not be continu-
ous. The following is an example of a collection of non-continuous maps which forms
a countable cyclic Meir-Keeler IFS.

Example 4.8. We construct a sequence of functions using Example 3.2:
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Let C1 = [0, 1], C2 = [0, 3]. For all m ∈ N, define gm : C1 ∪ C2 → C1 ∪ C2 by

gm(p) =

{
p

m+1 if p ∈ [0, 2],
1

m+1 if p ∈ (2, 3].

Observe that

gm(C1) = [0,
1

m+ 1
] ⊆ C2, gm(C2) = [0,

2

m+ 1
] ⊆ C1.

For ζ > 0, choose η = ζ. Let p ∈ C1, q ∈ C2 and ζ ≤ |p− q| < 2ζ.
(i) If p ∈ [0, 1], q ∈ [0, 2], then

sup
m
|gm(p)− gm(q)| = sup

m
| p

m+ 1
− q

m+ 1
| = sup

m

1

m+ 1
|p− q| < 1

2
(2ζ) = ζ.

(ii)If p ∈ [0, 1], q ∈ (2, 3], then

sup
m
|gm(p)− gm(q))| = sup

m
| p

m+ 1
− 1

m+ 1
| = sup

m

1

m+ 1
|p− 1| ≤ 1

2
|p− q| < ζ.

Therefore, the collection {gm}∞m=1 is a countable cyclic Meir-Keeler IFS with each gm’s
being non-continuous.

5. Generalized Cyclic Meir-Keeler IFS.

Definition 5.1. Suppose that Cj ⊂ X and Cj 6= ∅ are closed for j ∈ Nr with Cr+1 =
C1, where (X, τ) is a metric space. We consider the metric on Xl for l ∈ N,

τ̄((p1, . . . , pl), (q1, . . . , ql)) = max{τ(p1, q1), . . . , τ(pl, ql)}.

The induced product map g : (
r
∪
j=1

Cj)
l →

r
∪
j=1

Cj is called a generalized cyclic Meir-

Keeler contraction on {Cj}rj=1 if g satisfies:

(1) g(Cj × . . .× Cj) ⊆ Cj+1 for 1 ≤ j ≤ r,
(2) for all ζ > 0, ∃η > 0 such that for each i ∈ Nl and ji ∈ Nr, pi ∈ Pji , qi ∈ Pji+1,

ζ ≤ τ̄((p1, . . . , pl), (q1, . . . , ql)) < ζ + η =⇒ τ(g(p1, ..., pl), g(q1, ..., ql)) < ζ.

If this product map g obeys only the first axiom (1), then g is termed as a generalized
cyclic map.

Note that, for l = 1, the generalized cyclic Meir-Keeler contraction coincide with
the classical cyclic Meir-Keeler contraction. Thus, each cyclic Meir-Keeler contraction
map is a generalized cyclic Meir-Keeler contraction map.

Example 5.2. For 0 ≤ k < 1, let C1 = [0, 12 ] and C2 = [0, 1].
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Define g : C1 ∪ C2 × C1 ∪ C2 → C1 ∪ C2 by

g(p, q) =


kp if (p, q) ∈ [0, 12 ]× [0, 1],
k
2 if (p, q) ∈ (12 ,

3
4 ]× [0, 1],

k
4 if (p, q) ∈ (34 , 1]× [0, 1].

Observe that g(C1 × C1) ⊆ C2 and g(C2 × C2) ⊆ C1.
For ζ > 0, choose η = 1−k

k ζ.
We want to prove for j ∈ {1, 2}, pj ∈ Cj , qj ∈ Cj+1,

ζ ≤ max{|p1 − q1|, |p2 − q2|} <
ζ

k
implies |f(p1, p2)− f(q1, q2)| < ζ.

We discuss only one case: (p1, p2) ∈ C1 × C1, (q1, q2) ∈ C2 × C2. The other cases
follow similarly.
Sub-case (i) : If (q1, q2) ∈ [0, 34 ]× [0, 1], then

|g(p1, p2)− g(q1, q2)| ≤ k|p1 − q1| ≤ kmax{|p1 − q1|, |p2 − q2|} < ζ.

Sub-case (ii) : If (q1, q2) ∈ (34 , 1]× [0, 1], then

|g(p1, p2)− g(q1, q2)| ≤ k|p1 −
1

4
| ≤ k|p1 − q1| ≤ kmax{|p1 − q1|, |p2 − q2|} < ζ.

Thus, g is a generalized cyclic Meir-Keeler contraction map.

Definition 5.3. Let g : Xl → X a function for some l ∈ N. Then we declare that
p ∈ X is a fixed point for g if g(p, . . . , p) = p.

Theorem 5.4. Let Cj ⊂ X and Cj 6= ∅ be closed for j ∈ Nr with Cr+1 = C1, where

(X, τ) is a complete metric space. If g : (
r
∪
j=1

Cj)
l →

r
∪
j=1

Cj is a generalized cyclic Meir-

Keeler contraction map, then g possesses a unique fixed point p∗ (say). Additionally,

if for every p0 ∈
r
∪
i=1
Cj, consider pm := g(pm−1, . . . , pm−1), m ∈ N, then the sequence

(pm)∞m=1 converges to this fixed point p∗.

Proof. Define T :
r
∪
j=1

Cj →
r
∪
j=1

Cj by T (p) = g(p, ..., p) for all p ∈
r
∪
j=1

Cj .

Now our claim is T is cyclic Meir-Keeler contraction on
r
∪
j=1

Cj . Observe that T (Cj) ⊂

g(Cj × ...×Cj) for each j ∈ Nr. Since T is a generalized cyclic map, g(Cj × ...×Cj) ⊂
Cj+1, and this implies T (Cj) ⊂ Cj+1 for all j ∈ Nr.
Since T is cyclic Meir-Keeler contraction, for given ζ > 0, we can find a η > 0 so that
for each i ∈ Nl and ji ∈ Nr, pi ∈ Cji , qi ∈ Cji+1,
ζ ≤ τ̄((p1, . . . , pl), (q1, . . . , ql)) < ζ + η =⇒ τ(g(p1, ..., pl), g(q1, ..., ql)) < ζ.
Let p ∈ Cj , q ∈ Cj+1 for arbitrary j ∈ Nr. Assume that ζ ≤ τ(p, q) < ζ + η. Then we
get
ζ ≤ τ̄((p, ..., p), (q, ..., q)) < ζ + η which implies τ(g(p, ..., p), g(q, ..., q)) < ζ, and this
condition is equivalent to τ(T (p), T (q)) < ζ. Thus, we have proved that T is a cyclic

Meir-Keeler contraction on
r
∪
j=1

Cj .
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According to Theorem 3.4, T possesses a unique fixed point p∗ for which T (p∗) = p∗

and for all p ∈
r
∪
j=1

Cj , T
m(p) → p∗ as m → ∞. Consequently, g(p∗, ..., p∗) = p∗

confirms that g has a fixed point p∗. For any p ∈
r
∪
j=1

Cj , define p1 := g(p, ..., p) and

pm := g(pm−1, ..., pm−1) for m ∈ N. Then this sequence (pm)∞m=1 converges to this
unique fixed point p∗.

For the uniqueness of this fixed point, if there exist two fixed points p∗, q∗ ∈
r
∪
j=1

Cj

such that g(p∗, ..., p∗) = p∗ and g(q∗, ..., q∗) = q∗, then we can write T (p∗) = p∗ and
T (q∗) = q∗. But the fixed point of T is unique, and hence p∗ = q∗.

Theorem 5.5. Let Cj ⊂ X and Cj 6= ∅ for j ∈ Nr with Cr+1 = C1, where (X, τ) is

a metric space. If gk : (
r
∪
j=1

Cj)
l →

r
∪
j=1

Cj are continuous generalized cyclic Meir-Keeler

contraction maps, then the Hutchinson map G : (
r
∪
j=1

H(Cj))
l →

r
∪
j=1

H(Cj) is again a

generalized cyclic Meir-Keeler contraction map with respect to the induced Hausdorff

metric h, where G is defined as G(Q1 × ... × Ql) :=
M
∪

k=1
gk(Q1 × ... × Ql) for every

Q1 × ...×Ql ∈ (
r
∪
j=1

H(Cj))
l and gk(Q1 × ...×Ql) = {gk(p1, ..., pl) : pj ∈ Qj ,∀j ∈ Nl}.

Proof. Let Qi ∈ H(Cj) for some j ∈ Nr and for each i ∈ Nl. By generalized cyclic
condition of g′ks,

G(Q1 × ...×Ql) ⊆ G(Cj × ...× Cj) ⊆ Cj+1

and by continuity of g′ks, G(Q1 × ... × Ql) ∈ H(Cj+1). This implies G(H(Cj) × ... ×
H(Cj)) ⊆ H(Cj+1) for each j ∈ Nr.
We know that for given ζ > 0, there exists ηk > 0 for each k ∈ NM so that for each
i ∈ Nl and ji ∈ Nr, pi ∈ Cji , qi ∈ Cji+1, ζ ≤ τ̄((p1, . . . , pl), (q1, . . . , ql)) < ζ + ηk =⇒
τ(gk(p1, ..., pl), gk(q1, ..., ql)) < ζ.
Let Pi ∈ H(Cji), Qi ∈ H(Cji+1) such that for each i ∈ Nl and corresponding ji ∈ Nr,
assume that the following relation is true:

ζ ≤ max
1≤i≤l

{h(Pi, Qi)} < ζ + η, where η := max{ηk : k ∈ NM}.

Let z ∈ G(P1 × ... × Pl), then there exist k ∈ NM and pi ∈ Pi, for each i ∈ Nl,
such that gk(p1, ..., pl) = z. By Lemma 4.1 there exists qi ∈ Qi such that for each
i ∈ Nl, τ(pi, qi) ≤ h(Pi, Qi) < ζ + η.
If there exists i ∈ Nl such that ζ ≤ τ(pi, qi), then ζ ≤ max

1≤i≤l
{τ(pi, qi)} < ζ + η, and in

this case for pi ∈ Cji , qi ∈ Cji+1 for each i ∈ Nl, we obtain

∀k ∈ NM , τ(gk(p1, ..., pl), gk(q1, ..., ql)) < ζ.

Otherwise, for all i ∈ Nl, τ(pi, qi) < ζ and for the case all i ∈ Nl, pi = qi is trivial. There-
fore assume that there exists i ∈ Nl such that pi 6= qi. Let η = τ̄((p1, ..., pl), (q1, ..., ql)).
We know pi ∈ Cji , qi ∈ Cji+1 for each i ∈ Nl implies

τ(gk(p1, ..., pl), gk(q1, ..., ql)) < η = max
1≤i≤l

{τ(pi, qi)} < ζ.
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From this we conclude that τ(gk(p1, ..., pl),G(Q1×...×Ql)) < ζ. Since G(X1×...×Xm)
is compact, we have D(G(P1 × ... × Pl),G(Q1 × ... × Ql)) < ζ. Similarly, one can
prove that D(G(Q1 × ...×Ql),G(P1 × ...× Pl)) < ζ. Consequently, we conclude that
h(G(P1× ...×Pl),G(Q1× ...×Ql)) < ζ to confirm G is a generalized cyclic Meir-Keeler
contraction map.

Corollary 5.6. Let Cj ⊂ X and Cj 6= ∅ be non-empty for j ∈ Nr with Cr+1 = C1,

where (X, τ) is a complete metric space. Let gk : (
r
∪
j=1

Cj)
l →

r
∪
j=1

Cj, k ∈ NM be

continuous generalized cyclic Meir-Keeler contraction maps. Define G : (
r
∪
j=1

H(Cj))
l →

r
∪
j=1

H(Cj) by G(C1 × . . . × Cl) :=
M
∪

k=1
gk(C1 × . . . × Cl), for every C1 × . . . × Cl ∈

(
r
∪
j=1

H(Cj))
l. Then G has a unique fractal K (say). That is

K = G(K × . . .×K) =
M
∪

k=1
gk(K × . . .×K).

Moreover, for every P0 ∈
r
∪
j=1

H(Cj), consider Pm := G(Pm−1, . . . , Pm−1) for each

m ∈ N, then the sequence (Pm)∞m=1 converges to K.

Definition 5.7. Suppose that Cj ⊂ X and Cj 6= ∅ are closed for j ∈ Nr with Cr+1 =

C1, where (X, τ) is a complete metric space. For l ∈ N,M ∈ N, let gk : (
r
∪
j=1

Cj)
l →

r
∪
j=1

Cj, k ∈ NM be the generalized cyclic Meir-Keeler contraction on {Cj}rj=1. Then,

IGCMK = {Xl, (C1, C2, . . . , Cr), ; gk, k ∈ NM} is called a generalized cyclic Meir-Keeler
IFS. According to Corollary 5.6, the fractal of IGCMK is unique.

6. Conclusion

In this paper, we introduced a new type of non-linear contraction namely cyclic Meir-
Keeler contraction, which is a more general class of Banach contraction and we studied
the existence and uniqueness of fixed point for the cyclic Meir-Keeler contraction
mappings. For the application of fractal, we developed new IFSs consisting of cyclic
Meir-Keeler contraction called cyclic Meir-Keeler IFS and countable cyclic Meir-Keeler
IFS, which are strict generalization of classical Hutchinson-Barnsley theory of IFS
and countable IFS respectively. The existence and uniqueness of attractor for these
IFSs were proved. Finally, we proposed a generalized cyclic Meir-Keeler contraction
to construct generalized cyclic Meir-Keeler IFS.
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