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the chiral solitons of monoaxial helimag-
nets. These solitonic states appear easily 
in chiral magnets, characterized by the 
presence of an important Dzyaloshinskii–
Moriya interaction (DMI). Domain walls 
and their magnonics, with and without 
DMI, are being extensively studied.[4–12] 
Comparatively, monoaxial helimagnets, in 
which the DMI acts only along one axis 
(the DMI axis), have received much less 
attention, although many experimental 
and theoretical results concerning their 
equilibrium[13–31] and dynamical[32–44] prop-
erties have been obtained.

Generically, the theoretical study of 
spin waves in noncollinear states faces 
some mathematical difficulties related to 
the nature of the spin wave equation. The 
problem is not merely technical, but rather 
raises the question of whether a spectral 
representation for the spin waves exists in 
general, that is, whether a general solution 

of the linearized Landau–Lifshitz–Gilbert (LLG) equation can be 
expressed as a combination of well defined spin wave modes.

In this work we develop a method that provides the solution 
of the spectral spin wave problem in terms of the spectrum 
of a diagonalizable linear operator, for special cases including 
the domain walls of many systems and the isolated soliton 
and the chiral soliton lattice (CSL) of monoaxial helimag-
nets. By applying this method to the spin wave scattering by a 
soliton in a monoaxial helimagnet, we predict the existence of 
a lateral displacement of the scattered waves analogous to the 
Goos–Hänchen effect of optics. We argue that this lateral shift 
is a generic feature of the scattering by 1D solitons. Before 
presenting the method, in Section  2 we analyze the general 
problem of magnonics, proving that the spectral representation 
of spin waves should exist in general. In Section 3 we present 
the method, which applies to the interesting class of problems 
described above. In Section 4 the method is applied to the char-
acterization of the spin wave spectrum of an isolated soliton in a 
monoaxial helimagnet. Section 5 is devoted to the detailed study 
of the scattering of spin waves by these chiral solitons, and to 
the analysis of the Goos–Hänchen effect. Finally, in Section  6 
we summarize the conclusions. Additional developments and 
results are gathered in Supporting Information.[45]

2. General Features

Consider a generic magnetic system described by a magnetiza-
tion vector field sMM nnM= , with constant modulus, Ms, and direc-
tion given by the unit vector nn. Its energy is given by an energy 
functional E[ ]nn . The stationary states are those at which the 
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1. Introduction

Magnonics has been a subject of much interest in recent years 
since it is a promising field that could transform the design of 
devices for information technology.[1] Replacing electric cur-
rents by spin waves as information carriers in electronic devices 
would imply a large reduction of heat production and energy 
consumption, due to the absence of Joule heating. Conceptual 
designs of devices based on spin waves have already been pro-
posed.[2,3] One of the main challenges with spin waves involves 
their control and manipulation. This control can be achieved in 
part by using the magnetic modulations of nanometric scale that 
are (meta)stable in some materials: domain walls, skyrmions, or 
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variational derivative of E[ ]nn  vanishes. The (meta)stable states 
are the local minima of E[ ]nn , a subset of the stationary states. Let 

0nn  be one stationary point of the energy. Small deviations from 
0nn  can be written in terms of two real fields, ξ1 and ξ2, as

(1 )1
2

2
2 1/2

0 1 1 2 2nn nn ee eeξ ξ ξ ξ= − − + + 	 (1)

where { , , }1 2 0ee ee nn  is an orthonormal triad. These two fields can 
be grouped into a two-component field, ξ, represented by the 
column vector ξ = [ξ1, ξ2]T. We use the notation

( , ) d ( ) ( )3 rr rrf g r f g= ∫ ∗ 	 (2)

for the scalar product of two functions and

, ( , ) ( , )1 1 2 2ξ η ξ η ξ η= + 	 (3)

for the scalar product of the two-component fields ξ and η.
Let us expand E[ ]nn  in powers of ξi to quadratic order

E E , ( )0
3A K Oξ ξ ξ= + + 	 (4)

The linear term in ξ vanishes because 0nn  is a stationary state. 
The constant A has dimensions of energy per unit length and K 
is a Hermitian operator of the form

11 12

12
†

22

K
K K
K K

=






	 (5)

where Kαβ are linear second order integro-differential opera-
tors, with K11 and K22 Hermitian. Second order means that the 
action of the operator involves second order derivatives of ξ, but 
not higher order derivatives. The integral part of the operator is 
due to the nonlocal dipolar interaction.

To avoid the complications induced by the boundary condi-
tions in finite bodies, we consider an infinite system, which 
approximates a large enough system. Any disturbance, ξ, of the 
(meta)stable state, 0nn , has a finite energy, and therefore 〈ξ, Kξ〉 
has to be finite. This condition is satisfied if the components of 
ξ are square integrable functions. Hence, K acts on the space of 
two-component fields whose components are square integrable 
functions defined in the whole R3.[46] Thus, the boundary condi-
tions are that ( )rrξ  has to vanish rapidly enough as | |rr → ∞.

Since 0nn  is a (meta)stable state, K has to be positive (semi)
definite, because any small variation described by ξ has to 
increase the energy. Had K not be positive semidefinite, there 
would exist a variation ξ such that 〈ξ, Kξ〉 < 0, and therefore this 
variation would decrease the energy. The positivity of K requires 
that K11 and K22 be positive (semi)definite, as is easily seen by 
considering variations ξ with ξ2 = 0 and ξ1 = 0, respectively. In 
addition, the positivity of K imposes certain constraints on K12 
which are analyzed in the Supporting Information.[45]

The oscillations of the magnetization about the (meta)stable 
state obey the LLG equation

nn BB nn nn nnt eff tγ α∂ = × + × ∂ 	 (6)

where E(1/ ) /sBB nnMeff δ δ= −  is the effective field, γ the electron 
gyromagnetic constant, and α the Gilbert damping parameter, 

which we ignore in this work, setting α  = 0. Let us pick up 
some characteristic parameter of the system with units of 
inverse length, q0, and introduce the constant 2 /0 0

2
sAq Mω γ= , 

with dimensions of inverse time. Considering the small oscilla-
tions about 0nn  given by Equation (1), we expand the LLG equa-
tion in powers of ξ. The zeroth order term vanishes since 0nn  is 
a stationary point. To linear order we obtain

t ξ ξ∂ = Ω 	 (7)

where ( / )0 0
2q JKωΩ = , with

0
0

J I
I

= −





	 (8)

and I is the identity operator.
One standard way of solving Equation (7) is to find a com-

plete set of eigenstates of Ω, which are solutions of the spectral 
equation

ξ νξΩ = 	 (9)

where ν is the corresponding eigenvalue. Then exp (νt)ξ is a 
solution of Equation (7). The general solution of Equation (7) 
is a linear superposition of these solutions if they form a com-
plete set. However, since Ω is not an anti-Hermitian (not even 
a normal) operator, it is not guaranteed that a complete set 
of eigenstates exists, and therefore the general solution of 
the spin wave equation may not be a linear superposition 
of eigenmodes.

We give here a formal solution to this problem in the case 
that K has a strictly positive spectrum (that is, its spectrum 
lies in the positive real axis and is separated from zero by a 
finite gap). In this case K1/2 is a Hermitian invertible operator. 
Multiplying both sides of the spectral equation (9) by K1/2Ω, and 
bearing in mind that ( / )0 0

2q JKωΩ = , we obtain

( / )0
2

0
4 1/2 2 1/2q Q K Kω ξ ν ξ= 	 (10)

where Q  = K1/2JKJK1/2 is a Hermitian operator. It is easily 
checked that Q is negative definite,[47] so that ν2 < 0, and ν = iω, 
with ω real. Since Ω is a real operator, −iω is also an eigenvalue. 
This implies that each non zero eigenvalue of Q has an even 
degeneracy. To make the discussion simple, avoiding irrelevant 
complications with notation, let us assume that the degeneracy 
of the nonzero eigenvalues of Q is two.

We have seen in the previous paragraph that each eigenstate 
ξ of Ω gives an eigenstate, K1/2ξ, of Q. The reciprocal is not 
true, due to the degeneracy of the spectrum of Q. Let η be any 
eigenstate of Q belonging to the 2D subspace associated to the 
eigenvalue −ω2. The state K−1/2η is not necessarily an eigenstate 
of Ω, but the 2D space spanned by the two states K−1/2η and 
ΩK−1/2η is invariant under the action of Ω, since

1/2 1/2 2 1/2K K Q Kη η ω η( )Ω Ω = = −− − − 	 (11)

Then, Ω can be diagonalized within this 2D invariant sub-
space, and therefore the state K−1/2η gives two eigenstates of Ω, 
characterized by an index σ = ±1, and given by
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i( ) 1/2 1/2K Kξ σ ω η η= + Ωσ − − 	 (12)

The corresponding eigenvalues are iσω, where ω > 0 is the 
positive square root of ω2.

Now we notice that η(σ)  = K1/2ξ(σ) are two eigenstates of Q 
that span the subspace of eigenstates associated to the eigen-
value −ω2. In this way we get a one to one correspondence 
between the eigenstates of Ω and Q. Since the eigenstates of Q 
are complete, so are the eigenstates of Ω. More details are given 
in Supporting Information.[45]

We have proved that the eigenstates of Ω have the form 
ξ(iσ)  = K−1/2η(iσ), where η(iσ), with σ  =  ±1, are two degenerate 
eigenstates of Q which span the 2D subspace associated to the 
eigenvalue 2

iω− . The index i labels the eigenvalues of Q, and σ 
gives the degeneracy. The ξ(iσ) satisfy the orthogonality property

,( ) ( )K Ni j
i ijξ ξ δ=σ σ σσ′ ′ 	 (13)

where the constant Ni
σσ ′  depends on how the eigenstates of Q 

are normalized.[45]

We conclude that for a (meta)stable state for which the spec-
trum of K is strictly positive, the spectrum of Ω lies on the 
imaginary axis and its eigenstates form a complete set. This 
implies that the general solution of the spin wave equation can 
be obtained as a linear superposition of these eigenmodes.

It is not clear that the operator Q is useful in practice to com-
pute the spectrum of Ω, but it certainly serves to show that, at 
least in the case that the spectrum of K is strictly positive, Ω 
has a complete set of eigenstates in terms of which the general 
solution of the spin wave equation can be expressed.

If K has zero modes, as it happens in solitonic states like 
domain walls, 1D chiral solitons, and skyrmions, K−1/2 is not 
defined, and the argument presented above is problematic. In 
the Section 3 we will show how to overcome the difficulty in the 
case K12 = 0.

The spectral problem for Ω is easy if the four operators Kαβ 
commute, as in the ferromagnetic and helical states of mono-
axial helimagnets,[48] and in the domain wall of anisotropic 
ferromagnets.[4] The reason is that in this case the problem is 
reduced to finding the spectrum of one Hermitian operator 
(e.g., K11) and the diagonalization of a 2 × 2 matrix.[45]

The following relatively simple exactly solvable example 
may be illustrative of the general formalism described in 
this section.

An example: uniformly magnetized state in an anisotropic 
ferromagnet 

Let us consider a ferromagnet with uniaxial anisotropy, of 
easy-axis type, along the zz  axis and under the action of an 
external magnetic field applied also along the zz  axis. Its energy 
is given by

E d · ( · ) ·
2

·3
u 0 s

0
s
2nn nn zz nn zz nn hh nnr A K M H M

i

i i m∑ µ µ= ∫ ∂ ∂ − − −






	 (14)

where A is the exchange stiffness constant, Ku ⩾ 0 is the ani-
sotropy constant, Ms is the constant magnetization modulus, H 
the intensity of the applied field, μ0 the vacuum permeability, 
and mhh  the magnetostatic field, in units of Ms, which is the 
solution of the equations

0, · ·m mhh hh nn∇ × = ∇ = − ∇ 	 (15)

The effective field is given by

2
( · )

s

2 2
e
2

m
2

mBB nn zz nn zz zz hh
A

M
q q qeff a( )= ∇ + + + 	 (16)

where we have introduced the quantities /a
2q K Au= , 

/(2 )e
2

0 sq M H Aµ= , and /(2 )2
0 s

2q M Am µ= , which have the dimen-
sions of inverse square length. Notice that qm is the inverse of 
the exchange length.

Let us consider a spherical system with a very large radius, 
which eventually will be sent to infinity. The uniformly magnet-
ized state, with magnetization pointing along the zz  direction, 

0nn zz= , is an equilibrium state, since it is well known that in this 
case the magnetostatic field is constant, (1/3)mhh zz= − . Let us 
study the variations (1) about this equilibrium state. Evidently 
we can choose 1ee xx=  and 2ee yy= . By expanding the energy in 
powers of ξα up to second order we obtain the K operator. It will 
determine the stability of the equilibrium state and the dynamics 
of the spin waves about 0nn . Details on the computations, which 
involve the solution of equations (15) in powers of ξα up to 
second order, are given in Supporting Information.[45] We obtain

E
1
3

d ( ) ( ) ( )a
2

e
2

m
2 3

, 1

2
3rr rrVA q q q A r K O∑ ξ ξ ξ( )= − − +



 + ∫ +

α β
α αβ β

=
	 (17)

where V is the volume of the system, the linear term in ξ van-
ishes since 0nn  is an equilibrium state, and

( ) ( )
4

d
| |

( )2 2
2

3
3rr rr

rr rr
rrK q

q
r

x xm
xξ δ ξ

π
ξ( )( ) = −∇ + + ∫ ′

−
−

∂αβ β αβ β
α α

β

′

′
′

β
′ 	 (18)

where 2 /32
a
2

e
2

m
2q q q q= + −  and we use the obvious notation  

x1 = x and x2 = y.
The four operators Kαβ commute and are diagonal in the 

Fourier basis. Denoting the Fourier transform of ( )rrξα  by 
( )kk�ξα , where kk is the wave vector, the action of the K operator is 

reduced to the multiplication of the two component field ( )kk�ξ  
by the 2 × 2 matrix K�  whose matrix elements are

( )2 2 2
2K k q q

k k

k
� δ= + +αβ αβ

α β 	 (19)

where k1 = kx, k2 = ky, and | |2 2kkk = . The eigenvalues of K�  are

, ( )/1
2 2

2
2 2

m
2 2 2 2k q k q q k k kx yε ε= + = + + + 	 (20)

The eigenvectors can be easily obtained, and from them 1/2K�  
is readily computed.

The minimum eigenvalue of K�  is q2, attained at k2 = 0. Then 
K is positive definite, and thus the uniformly magnetized state 
is stable, if q2  > 0, that is if 2 /3a

2
e
2

m
2q q q+ > . Thus, stability is 

obtained if the combined effect of anisotropy and applied field 
overcomes the tendency of the magnetostatic interaction to 
avoid the magnetic poles that appear on the surface of the uni-
formly magnetized material.

The linearization of the LLG equation around the uniform 
magnetization 0nn zz=  gives two coupled linear equations for 
ξα that can be written in terms of the two component field 
ξ as Equation (7). After Fourier transform, the action of Ω is 
reduced to multiplication by the 2 × 2 matrix
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2 / / )

/ /s

m
2 2 2 2 2 2

2 2 2 2
m
2 2

A

M

q k k k k q k k

k q k k q k k k
x y y

y x y

� γΩ =
− − − −
+ +









 	 (21)

Its two eigenvalues are i 1 2ν ω ω= ±± , with ω1 = (2γA/Ms)ε1 and 
ω2 = (2γA/Ms)ε2. Since ε1 and ε2 are positive if the uniform state 
is stable, the eigenvalues of Ω are purely imaginary, what means 
that the small perturbations of the magnetization associated to 
the eigenmodes oscillate around the equilibrium magnetization 
with constant amplitude. The frequencies 1 2ω ω ω=  give the 
well known dispersion relation of spin waves in a ferromagnet.[49]

The eigenvectors of �Ω  can be readily obtained without using 
the Q operator, which in the Fourier basis is given by the 2 × 2 
matrix 1/2 1/2Q K JKJK� � � �= . This matrix is indeed proportional to 
the 2 × 2 identity matrix, with a proportionality coefficient given 
by −ε1ε2, as it has to be. Obviously, the general formalism can 
also be applied to get the eigenvectors of �Ω, as follows: any 
constant two component vector �η is an eigenvector of Q� , so 
pick up any of them and construct the two eigenvectors of �Ω as 
in Equation (12)

K K� � � � � �i( )
1 2

1/2 1/2ξ σ ω ω η η= + Ωσ − − 	 (22)

This shows in a concrete case the close relationship between 
the spectrum of the Hermitian operator Q and the non-Hermi-
tian operator Ω.

3. The Case K12 = 0

The main goal of this paper is to address problems in which 
the Kαβ do not commute, focusing on the cases were K12 = 0, 
for which we develop a solution. Examples include 1D solitonic 
states as the isolated soliton and the CSL of monoaxial heli-
magnets, and the domain walls of some systems with DMI. In 
this last instance the problem has been addressed recently via 
perturbation theory, splitting Ω2 as the sum of an operator that 
commutes with Ω1 plus a perturbation.[10] This may be a rea-
sonable approach, especially if the unperturbed operator can be 
treated analytically, provided it can be guaranteed that the per-
turbation does not originate new bound states. Here we develop 
the non perturbative approach.

Let us define q K( / )1 0 0
2

11ωΩ =  and ( / )2 0 0
2

22q KωΩ = . As  
shown in the previous section, the eigenvalues of Ω for a (meta)
stable state are complex conjugate pairs of purely imaginary 
numbers, iω, with ω real. Only the zero modes, if there are 
any, can be unpaired. In components, the spectral equation for  
Ω gives

i , i2 2 1 1 1 2ξ ω ξ ξ ω ξΩ = − Ω = 	 (23)

Substituting the values of ξ1 and ξ2 given explicitly by one of 
these equations into the other, we obtain

,2 1 1
2

1 1 2 2
2

2ξ ω ξ ξ ω ξΩ Ω = Ω Ω = 	 (24)

These two equations are compatible since Ω2Ω1 and Ω1Ω2 
have the same spectrum: if ξ1 is an eigenfunction of Ω2Ω1 then 
Ω1ξ1 is an eigenfunction of Ω1Ω2 with the same eigenvalue; the 

same is true interchanging 1 and 2. The case ω = 0 is special: if 
ξ1 is an eigenfunction of Ω2Ω1 with zero eigenvalue, we have an 
eigenstate of Ω just taking ξ2 = 0. Again, the statement is valid 
interchanging 1 and 2.

The K operator of a (meta)stable state may be gapless or even 
have zero modes. When K12 = 0 the zero modes or the gapless 
modes are generically associated to one operator, say K11, and 
K22 has a gap. For instance, the magnetization of 1D solitons 
lies on a plane, and the soliton is described by the dependence 
of an angle, say θ, on a coordinate, say x. Then, the equilibrium 
magnetization is a function of x through θ(x), ( ) ( ( ))0 0nn nnx xθ= . 
Let us define 1 0ee nn= ∂θ , with a normalization factor if necessary, 
and 2 0 1ee nn ee= × . A spatial translation of the soliton is described 
by the function θ(x  + a). If a is infinitesimal, the translation 
corresponds to a distortion of the magnetization given by 1eeaθ′ , 
where the prime means derivative with respect to x, since, per-
forming the Taylor expansion in a, we have

( ) ( ) ( ) ( )0 0 1
2nn nn eex a x a x O aθ θ θ( ) ( )+ = + ′ + 	 (25)

where we used 0 1nn eeθ=′ ′ . Therefore, the infinitesimal transla-
tion is equivalent to a distortion of the non translated soliton 
given by ξ1 = aθ′ and ξ2 = 0. The variation of energy due to this 
distortion is given by Aa2(θ′, K11θ′). This has to vanish since 
the energy does not change by a translation. And since K11 is a 
Hermitian positive semidefinite operator, this implies K11θ′ = 0. 
Thus, the translational symmetry of the soliton implies that θ′ 
is a zero mode of K11. But it gives no condition on K22, since 
the distortion associated to the translation does not involve ξ2. 
Hence, K22 is generically strictly positive in the phase diagram 
region where the soliton is stable. The appearance of a zero 
mode in the spectrum of K22 signals the boundary of the soliton 
stability region.[32]

Hence Ω2 is a Hermitian positive definite invertible operator, 
and so it is its square root. It is clear that the non-Hermitian 
operator Ω2Ω1 is related by a similarity transformation to the 
Hermitian positive semidefinite operator 2

1/2
1 2

1/2Λ = Ω Ω Ω , since 
Λ  = S−1Ω2Ω1S, with 2

1/2S = Ω− . Hence Ω2Ω1 and Λ have the 
same spectrum, and if {fi} is a complete set of orthonormal 
eigenfunctions of Λ, then { }0 2

1/2N fi i iψ ω= Ω , where Ni is a 
normalization constant, is a complete set of (nonorthonormal) 
eigenfunctions of Ω2 Ω1 satisfying[50]

( , )0 2
1 Ni j i ijψ ω ψ δΩ =− 	 (26)

Each eigenfunction, ψi, of Ω2Ω1 gives rise to two eigenstates 
of Ω. To see this, let 2

iω  be the eigenvalue corresponding to ψi, 
and let us notice that the 2D space spanned by the states

0
,

0
02

1
2

1
i i

i

ψ ψ
ψ

Ω






Ω Ω






= −



− − 	 (27)

is invariant under the action of Ω, since

0
02

2
1

i
i

i

ψ ω ψΩ −





= Ω






− 	 (28)

where we used the relation i i i1 2
1

2 1
2

2
1ψ ψ ω ψΩ = Ω Ω Ω = Ω− − . There-

fore, Ω can be diagonalized within this 2D subspace. The 

Adv. Electron. Mater. 2022, 8, 2100782



www.advancedsciencenews.com
www.advelectronicmat.de

2100782  (5 of 11) © 2021 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

restriction of Ω to the subspace, in the basis (27), is given by 
the matrix

0 1
02

iω






	 (29)

and therefore the eigenvalues are ±iσωi, where ωi is the positive 
square root of 2

iω  and σ = ±1. The corresponding eigenstates 
are easily obtained and have the form

i
( )

2
1

i i

i i

ξ
ψ

σω ψ
=

Ω






σ

− 	 (30)

They satisfy the following normalization condition, obtained 
from Equation (26)

, 1( ) ( )
2

0
2G Ni j i

i ijξ ξ σ σ ω
ω

δ= + ′






σ σ ′ 	 (31)

where

0
0

0 2
1

0
1

2

G
ω

ω
= Ω

Ω






−

− 	 (32)

The completeness of the set {ψi} implies the completeness 
of the set {ξ(iσ)}: for any given ξ we have ξ = ∑iσciσξ(iσ), where

1
2

, i ,0 2
1

1
0

2c
N

i
i

i
i

iψ ω ξ σ ω
ω

ψ ξ( ) ( )= Ω −





σ
−

	 (33)

Notice that, although the eigenstates (30) involve 2
1

iψΩ− , actu-
ally it is not necessary to invert Ω2, since for ωi ≠ 0 the spectral 
equation 2 1

2
i i iψ ω ψΩ Ω =  implies (1/ )2

1 2
1i i iψ ω ψΩ = Ω− , while for 

ωi = 0 the lower component of the eigenstate obviously vanishes.
In summary, we have obtained the eigenstates ξiσ of Ω in 

terms of the eigenfunctions ψi of the diagonalizable operator 
Ω2Ω1, for the cases in which K12 = 0, which allows us to solve a 
number of important problems.

Incidentally, let us notice that Equations (30)–(33) can be 
taken as a starting point to quantization, by imposing canonical 
commutation relations on ξ1 and ξ2, which are derived from the 
algebra of angular momentum satisfied by the quantized com-
ponents of nn.

4. Spin Wave Spectrum of Solitons in a Monoaxial 
Helimagnet
In the remaining part of the paper we apply the method of Sec-
tion 3 to the analysis of the spin waves in presence of an isolated 
soliton in a monoaxial helimagnet. We use a Cartesian coordi-
nate system given by the orthonormal triad { , , }xx yy zz . The system 
is characterized by an energy functional E[ ] 2 d3nn A rW= ∫ , with

1
2

· ·( )
1
2

( · ) ·
, ,

0 0
2 2

0
2nn nn zz nn nn zz nn yy nnW q q q h

i x y z

i i z∑ κ= ∂ ∂ − × ∂ − −
=

	 (34)

The successive terms of the right-hand side represent a FM 
exchange interaction, a uniaxial DMI along the zz  axis, an easy-
plane (κ  < 0) uniaxial magnetic anisotropy (UMA) along the 

DMI axis, and a Zeeman interaction with an applied magnetic 
field perpendicular to the DMI axis, given by yyh . For simplicity, 
we ignore the magnetostatic energy. However, we argue below 
that the main qualitative result of the present work, namely, the 
presence of a spatial shift in the spin wave packets scattered 
by the soliton, holds also in the presence of the magnetostatic 
interaction. The constant q0 is proportional to the ratio between 
the DMI and FM exchange interaction strengths, and plays the 
role of the q0 parameter introduced in Section 2, and κ and h 
are dimensionless. The numerical results discussed in this 
work correspond to κ = −5.0 and h = 1.0, unless other values are 
explicitly quoted.

The Sine–Gordon soliton is a stationary point of the energy, 
given by sin cos0nn xx yyϕ ϕ= − + ,  with ( ) 4 arctan[exp( / )]z zϕ = ∆ , 
where 1/( )0q h∆ =  is the soliton width. Notice that 0nn  lies on 
the plane perpendicular to the DMI axis. The solitons are meta-
stable below a certain value of h that depends on the DMI and 
UMA strengths,[32] and they condense into a CSL for h below 
the critical field hc = π2/16.[31] Notice that the soliton obeys the 
Sine–Gordon equation since the uniaxial anisotropy acts along 
the DMI axis. If there were an additional anisotropy along an 
axis perpendicular to the DMI axis, as it happens if the material 
is under some mechanical stress, the soliton would obey the 
double Sine–Gordon equation.[15]

Let us consider the propagation of spin waves in the pres-
ence of one soliton on an otherwise ferromagnetic state. Taking 

1 0ee zz nn= ×  and 2ee zz= , so that ξ1 and ξ2 describe the in-plane 
and out-of-plane oscillations, respectively, K12 vanishes and Ω1 
and Ω2 are given by

1
0

0
2

2
1 0

2

q
U q h

ωΩ = −∇ + +  	 (35)

q
U q h( )2

0

0
2

2
2 0

2ω κΩ = −∇ + + −  	 (36)

where U1 = −(1/2)ϕ′ 2 and U2 = −(3/2)ϕ′ 2 + 2q0ϕ′ are even func-
tions of z which decay exponentially to zero when |z|  →  ∞, 
since ϕ′(z) = 2/[Δcosh (z/Δ)]. These functions are independent 
of κ, but depend on h through Δ. They are displayed in Figure 1 
(left) for the case κ = −5 and h = 1.5.

The soliton stability requires that Ω1 and Ω2 be positive sem-
idefinite. The region in the (κ, h) plane where this condition 
holds has been obtained by Laliena et al.[32] It turns out that, as 
discussed generically in the Section 3, Ω1 has a zero mode asso-
ciated to the translational invariance of the soliton, and, in the 
stability region, Ω2 has a positive spectrum separated from zero 
by a gap, so that it is invertible.

Since U1 and U2 are independent of x and y, the operators 
Ω1 and Ω2 are partially diagonalized by a Fourier transform in 
x and y. Given that x and y enter the problem in a symmetric 
way, to simplify the notation we consider only the x depend-
ence, writing the eigenfunctions of Ω2Ω1 as

( , ) exp(i ) ( )x z k x zk x kx x
ψ φ= 	 (37)

The general case is obtained from the expressions reported 
in this paper by replacing 2kx  by 2 2k kx y+  and kxx by kxx + kyy in 
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the expressions below. After the partial Fourier transform, the 
spectral problem becomes

2 1
2

k k k kx x x x
φ ω φΩ Ω = 	 (38)

where ω2 is a function of 2kx  and

1
0

0
2

2
1 0

2 2

q
U q h kk z xx

ωΩ = − ∂ + + +  	 (39)

( )2
0

0
2

2
2 0

2 2

q
U q h kk z xx

ω κΩ = − ∂ + + − +  	 (40)

The eigenfunctions, k ix
φ , labeled by i, satisfy a normalization 

condition analogous to Equation (26). Since 2 1k kx x
Ω Ω  is a real 

operator symmetric under the parity transformation, z  →  −z, 
the eigenfunctions can be chosen to be real and of definite 
parity (either even or odd functions).

The spectral problems were solved numerically as a function 
of kx, on a box −L ⩽ z ⩽ L with Dirichlet boundary conditions 
at z  =  ±L. Some details about the numerical methods can be 
found in Supporting Information.[45] The spectrum for κ = −5 
and h  = 1.0 is displayed in Figure  1 (right). Insight about the 
spectrum is obtained by studying the asymptotic properties of 
the eigenfunctions as z → ±∞, as follows.

For z → ±∞ the “potentials” U1 and U2 vanish exponentially 
and the spectral equation (38) becomes asymptotically

( )2 2
0
2 2 2

0
2 0

4 2

0
2k q h k q h

q
z x z x k kx x

κ φ ω
ω

φ∂ − − −  ∂ − −  = 	 (41)

The solutions are exponential functions that can in general be 
written as exp (ikzz), for some kz. Equation (41) imposes a relation 
between 2kz  and ω2, which can be written as ω2 = ω2ω1, where

1 0

2 2

0
2

k k

q
hz xω ω= + +







	 (42)

2 0

2 2

0
2

k k

q
hz xω ω κ= + + −







	 (43)

The relation can be inverted to obtain

2 4

2

0
2

2

0
2

2

0
2

2 1/2
k

q
h

k

q
z x κ ω

ω
κ= − + −







± +



 	 (44)

Remember that κ < 0, so that each term within brackets in 
the above expression is positive.

Bound states in the z direction require 02kz <  (imaginary kz). 
There are two possibilities: either the minus sign is taken in 
Equation (44), in which case there is no restriction in ω, or the 
plus sign is taken and ω < ωG(kx), where

( ) ( / )( / )G 0
2

0
2 2

0
2 1/2

k k q h k q hx x xω ω κ= + + −  	 (45)

In the latter case the bound states are below the gap, while 
in the former bound states above the gap are possible. The 
numerical results show that, for fixed kx, there is a single bound 
state, of even parity, with frequency below the gap. At kx  = 0 
it is the zero mode associated to the translation invariance of 
the soliton, and has ω  = 0 and kz  = i/Δ. Thus, the branch of 
states bound to the soliton is gapless. The dispersion relation of 
this branch of the spectrum, ωB(kx), is the red line of Figure 1 
(right).

Continuum states, unbounded in all directions, have kz real, 
which requires the plus sign in Equation (44) and ω > ωG(kx). 
Thus, continuum states have a gap given by Equation (45). 
Taking into account these two conditions, Equation (44) pro-
vides the dispersion relation for the continuum states

4 2
0

2

0
2

2 1/2 2

0
2

1/2

k q
k

q
hz

xω
ω

κ κ= +





− + −


















	 (46)

The dispersion relation is reciprocal, despite the fact that the 
system has chiral interactions. Nonreciprocal spin wave propa-
gation, usually associated to chirality, is absent in the isolated 
soliton and in the CSL, because it requires that Ω contains first 
order derivatives, which is not the case. One can see, by deriving 
the generic form of the K operator associated to Equation (34), 
that nonreciprocal propagation takes place in monoaxial heli-
magnets only in states whose magnetic moments have a non-
vanishing projection onto the DMI axis.

The continuum states can be conveniently labeled by the 
wave number ±kz, with kz ⩾ 0. The two degenerate values of 
the wave number, ±kz, are combined to make the eigenfunc-
tions real and with definite parity. Thus, the continuum states 
are actually labeled by kz and the parity, denoted by the sym-
bols e (even) and o (odd). Hence, we write ( )( ) zk k

e
x z

φ  and ( )( ) zk k
o
x z

φ  

Adv. Electron. Mater. 2022, 8, 2100782

Figure 1.  Left: soliton profile, ϕ′, and the potentials U1 and U2 for κ = −5.0 and h = 1.5. Right: spin wave spectrum. The red line is the dispersion rela-
tion of the gapless branch, and the blue line signals the gap
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for the continuum eigenfunctions of 2 1k kx x
Ω Ω . Their asymptotic 

behavior for z → ±∞ is given by

( ) cos( )( )
0z k zk k

e
zx z

φ δ≈ ± 	 (47)

( ) sin( )( )
1z k zk k

o
zx z

φ δ≈ ± 	 (48)

where the phase shifts δ0 and δ1 depend, in general, on kz and 
kx. Continuum states start at kz = 0, where ω = ωG(kx), and fill 
the whole frequency region above the gap.

Notice that the phase shifts of the Ω eigenstates 
[Equation (30)] are those of ( )

k k
p
x z

φ , p = e, o, since in the asymptotic 
region |z| → ∞ we have

( / ) ( )2 0 0
2 2

0
2 2q q h kk z xx

ω κ( )Ω ≈ − ∂ + − + 	 (49)

and then

1
( )

2
1 ( )

2
0
2

( )

k q h
k k k

p
k k

p
x x z x z
φ

κ
φΩ ≈

+ −
− 	 (50)

Hence, apart of some normalization constant, the eigen-
states of Ω are given by

( , )
1

i
( )

e ( ).( , )

2
0
2

i ( )x z
k q h

zk k
p k x

k k
p

x z

x

x z
ξ σω

κ
φ≈

+ −















σ 	 (51)

The scattering properties are therefore determined solely by 
the eigenfunctions of Ω2Ω1.

Summarizing, the spectrum, displayed in Figure  1 (right), 
contains a continuum of states unbounded in all directions, 

with frequencies above a gap given by ωG(kx). Below the gap 
there is a gapless branch of states, with frequency ωB(kx), 
consisting of waves bounded to the soliton position, that 
is, decaying exponentially as z  →  ±∞, but unbounded in the 
other directions. For each fixed kx, this is the only bound state  
of 2 1k kx x

Ω Ω .

5. Spin Wave Scattering and the Goos–Hänchen 
Effect
Let us analyze in more detail the continuum states. They are 
used to describe the scattering of a spin wave packet by the 
soliton, which results in the emergence of one reflected and 
one transmitted wave packet (the scattered waves). Figure  2 
illustrates schematically the scattering process. Although 

2 1k kx x
Ω Ω  is not Hermitian, nor second order in derivatives, 
the concepts of scattering theory are valid since they rely only 
on the asymptotic properties of the wave equation. Details on 
this are provided in Supporting Information, where some well 
known relations of the usual 1D scattering theory are derived 
for the present case.[45]

The phase shifts are computed numerically from the 
asymptotic behavior given by Equations (47) and (48) and the 
boundary condition at z = L. Since the eigenfunctions ( )( ) zk k

e
x z

φ  
and ( )( ) zk k

o
x z

φ  vanish at z  = L (Dirichlet boundary conditions), 
the asymptotic behavior implies kzL  + δ0  = (n0  + 1/2)π and 
kzL  + δ1  = n1π, where n0 and n1 are the integers that make  
0 ⩽ δ0, δ1 ⩽ π. For each eigenfunction, the value of kz is 
obtained from the corresponding eigenvalue, ω2, through the 
dispersion relation (46). In this way, δ0 and δ1 are determined 
as a function of kx and kz. The phase shifts for kx  = 0 are 
shown as a function of kz in Figure 3 (left). In contrast with 
the domain wall of the uniaxial ferromagnet,[4] which is reflec-
tionless, the reflection coefficient, R = sin 2(δ0 − δ1),[45] does not 
vanish since δ0 ≠ δ1.

It is curious that, although it has been demonstrated only for 
some classes of Schrödinger operators, and 2 1k kx x

Ω Ω  is not a 
Schrödinger operator, the phase shifts agree, for each fixed kx, 
with the thesis of Levinson's theorem,[51] which states that [δ0(0) 
− δ0(∞)]/π + 1/2 and [δ1(0) − δ1(∞)]/π are equal to the number of 
bound states of the respective parities. The agreement follows 
from δ0 = π/2 and δ1 = 0 for kz = 0, from δ0 = δ1 = 0 for kz → ∞, 
and from the existence, for each fixed kx, of just one bound 
state, with even eigenfunction. This is the state corresponding 

Adv. Electron. Mater. 2022, 8, 2100782

Figure 2.  Schematic view of the scattering.

Figure 3.  Left: phase shifts δ0 (continuous lines) and δ1 (broken lines) versus kz for kx = 0 for the displayed values of h. Right: time delay in units of 
the wave period (2π/ω) versus frequency (ω − ωG(0)).The broken line is the Wigner causal bound. Inset: time delay versus h/hc for ω − ωG(0) = 0.1 ω0.



www.advancedsciencenews.com
www.advelectronicmat.de

2100782  (8 of 11) © 2021 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

to the gapless branch (red line of Figure  1, right), which is 
bound in the z direction. This means that, for given kx, it is a 
bound state of 2 1k kx x

Ω Ω .
The dependence of the phase shifts on the frequency intro-

duces a time delay in the scattered (reflected and transmitted) 
waves given by δtD = d(δ0 + δ1)/dω.[52] It is indeed an advance 
time, since we obtain δtD  < 0. This is usually the case when 
the scattering potential is repulsive, so that we may conclude 
that the soliton repels the spin waves. It was shown by Wigner 
that causality implies the bound δtD ⩾ −(2ak  + 1)/kv, where a 
is the range of the potential, 2 2 2k k kx z= + , and v = dω/dk is the 
group velocity.[52] In our case we may reasonably estimate the 
bound taking a = Δ. The product ωδtD versus ω − ωG is shown 
in Figure 3 (right) for kx = 0. The Wigner bound (broken line) 
is well satisfied. The delay time is appreciable for frequencies 
close to ωG and, as the inset shows, decreases with the mag-
netic field strength.

The non trivial dependence of 2 1k kx x
Ω Ω  on kx induces a kx 

dependence of the phase shifts, which causes a displacement 
of the scattered waves (reflected and transmitted) perpendicular 
to the DMI axis, zz. That is, if the center of a wave packet of 
narrow cross section impinges the soliton at a point x, the scat-
tered wave packets (both reflected and transmitted) leave the 
soliton centered at a point x + δxs, where

s 0 1x
kx

δ δ δ( )= − ∂
∂

+ 	 (52)

This relation is derived from a stationary phase analysis of 
the scattered wave.[53] See Supporting Information for a deriva-
tion in the present case.[45]

This very interesting effect is analogous to the well known 
Goos–Hänchen effect of optics,[54] in which a light beam 
reflected at the interface of two different media suffers a lat-
eral displacement given by an expression similar to that of 
Equation (52). Recently, the Goos–Hänchen effect for spin 
waves has been theoretically studied at interfaces that separate 
different magnetic media.[55–61] Experimental evidence of the 
effect at the edge of a Permalloy film has been reported by Sti-
gloher et  al.[62] To our knowledge, the kind of Goos–Hänchen 
effect predicted here, induced by a magnetic modulation 
instead of an interface, has not been considered before.

Before continuing the analysis, it is worthwhile to mention 
that in the quantum mechanical scattering of a particle by a 
1D potential the phase shifts are independent of the transverse 
wave vector, kx, since kx enters the Hamiltonian as a multiple 
of the identity operator. Therefore, the scattered matter waves 
suffer no lateral shift.

The Goos–Hänchen shift predicted here is caused by mag-
netic modulations, not by interfaces, and is due to the noncom-
mutativity of 1kx

Ω  and 2kx
Ω . If they commute, then there is a 

complete set of eigenfunctions common to 2 1k kx x
Ω Ω , 1kx

Ω , and 
2kx

Ω . But the eigenfunctions of Ω1kx
 (or Ω2kx

) are independent 
of kx, because kx enters these operators through a multiple of 
the identity, as seen in Equations (39) and (40). Then the phase 
shifts are independent of kx, and the lateral shift given by 
Equation (52) vanishes. Therefore, there is no Goos–Hänchen 
effect if Ω1kx

 and Ω2kx
 commute.

We do not find it easy to give a physical meaning to the 
commutativity or noncommutativity of Ω1 and Ω2. The 

generic situation is that they do not commute, hence let us 
try to understand what commutativity means. By analogy with 
Equations (39) and (40), we write in general Ωi = −d2/dz2 + Ui + 
ai, where i = 1, 2, the functions Ui vanish as |z| → ∞, and the 
ai are real constants. First, let us point out that commutativity 
means that the potentials U1 and U2 differ by a constant. Since 
both U1 and U2 vanish as |z| → ∞, the constant has to be zero. 
Hence, commutativity is equivalent to U1 = U2. Let us consider 
a localized fluctuation of the equilibrium magnetization along 
the 1ee  direction only, so that ξ1 = g, where g is a function local-
ized on a region of the material, and ξ2 = 0. Let us call δE1  the 
energy of this fluctuation. Consider another fluctuation along 

2ee , with the same amplitude, so that ξ1 = 0 and ξ2 = g, and let 
its energy be δE2. If Ω1 and Ω2 commute we have U1 = U2 and 
therefore

δ δ− = − ∫E E ( ) d2 1 2 1
2a a g z 	 (53)

Thus, the difference of the energies associated to fluctua-
tions in the 1ee  and 2ee  directions with the same amplitude does 
not depend on the place where the fluctuations take place (for 
instance, whether the fluctuations take place in the middle of 
the soliton or far from it). This is so because the integral of 
g2 is invariant under translations g(z) → g(z + c). Reciprocally, 
suppose that a system has this property: the difference in the 
energy of fluctuations of the same amplitude along 1ee  and 2ee  
is independent of the place where the fluctuation takes place. 
This difference is

δ δ ( )− = ∫ − + −E E d2 1 2 1 2 1
2U U a a g z 	 (54)

If the above expression is invariant under translations of 
the function g, then the term in brackets within the integral 
has to be a constant. But this means that U1 and U2 differ by 
a constant, so that they are equal and Ω1 and Ω2 do commute. 
Hence, we have shown that Ω1 and Ω2 commute if and only 
if the difference of the energy associated to fluctuations of the 
magnetization along 1ee  and 2ee , of the same amplitude, does 
not depend on the place where the fluctuations are located. 
This is obviously the case in the uniform state, but for modu-
lated states this property is nontrivial. It holds in the case of 
a domain wall in a uniaxial ferromagnet, but not in the chiral 
soliton of monoaxial helimagnets.

Since Ω1 and Ω2 do commute in the case of the domain wall 
of uniaxial ferromagnets with no DMI,[4] this soliton does not 
induce the Goos–Hänchen effect. The addition of an interfacial 
DMI, as in the model studied by Borys et  al.,[10] removes the 
commutativity of Ω1kx

 and Ω2kx
. Therefore, a Goos–Hänchen 

effect has to appear in this kind of domain wall, which has to be 
attributed to the DMI. Borys et al. did not address this question 
since they consider only the spin waves in 1D. To our knowl-
edge, the Goos–Hänchen effect has not been analyzed yet in 
domain walls with DMI. It can be done following the ideas of 
this work.

The shift δxs that we obtain in the case of the isolated soliton 
of a monoaxial helimagnet is a fraction of the wavelength in 
the xx direction, λx = 2π/kx. However, δxs is additive as the wave 
is transmitted across an array of well separated solitons, and 
therefore the shift can be enhanced by a large factor, provided 
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the transmission coefficient is high enough. Figure 4 (left) dis-
plays δxs/λx as a function of frequency for several values of the 
incidence angle, for the critical field h  = hc, at which solitons 
can be easily created. The inset shows the transmission coef-
ficient for the same angles. We see that there is a range of fre-
quencies and incidence angles for which δxs/λx  ≈ 0.1 and the 
transmission coefficient is very close to one. This means that 
δxs can be enhanced to several tens of wavelengths.

The magnitude of the shift decreases with the applied field, 
which acts as a control parameter. The maximum shift for an 
incidence angle of 70° versus the applied field is displayed in 
Figure  4 (right). The shifts are higher below the critical field, 
where the ferromagnetic state that hosts the soliton is meta-
stable. The vertical dashed lines signal the position of the 
critical field (h/hc  = 1 and of the field strength at which the 
soliton becomes unstable. The displacement vanishes at this 
destabilizing field.

The prediction of the Goos–Hänchen shift presented here 
has not taken into account the dipolar interaction. For a 1D 
texture modulated in the z direction in an infinite system, the 
dipolar interaction introduces a non trivial kx dependence of 
the Kαβ operators (including K12, which in this case does not 
vanish). This means that the eigenfunctions of Ω, and thus the 
phase shifts, will depend on kx, and therefore a Goos–Hänchen 
shift will be induced. There is no reason to suspect that the con-
tribution of the dipolar interaction cancels the shift obtained by 
ignoring it (this seems extremely unlikely), but there remains 
the interesting question of whether it enhances or diminishes 
the magnitude of the shift. Furthermore, it is also clear that 
a Goos–Hänchen shift will be induced by the domain wall of 
anisotropic ferromagnets if the dipolar interaction is included. 
Again, it has to be determined if the addition of DMI enhances 
or reduces the magnitude of the shift.

It is worthwhile to stress again that the Goos–Hänchen 
displacement predicted here is not particular to monoaxial 
helimagnets, but it is expected to be induced by dipolar interac-
tions in any 1D soliton, and, if dipolar interactions are ignored, 
in any soliton for which Ω1kx

 and Ω2kx
 do not commute, for 

instance in domain walls with DMI.[10] It is important also to 
remark that this kind of Goos–Hänchen effect does not take 
place at the interface between two different magnetic media, 
but at the soliton position. For potential applications, this has 
the advantage that solitons can be created at different locations 

and moved across the material by the application of magnetic 
fields or polarized currents.[32]

6. Conclusion

The scattering of spin waves by a 1D magnetic soliton has been 
analyzed in some important cases, which include the domain 
walls of ferromagnets with uniaxial anisotropy, which in addi-
tion may have some kind of DMI, and the solitons of mono-
axial helimagnets. In general, as a result of the scattering by the 
soliton, the incoming wave packet gives rise to two scattered 
waves, one reflected and one transmitted. The exception is the 
scattering by the domain wall of uniaxial ferromagnets, which 
is reflectionless.

The phase shifts picked up by the scattered waves depend on 
the component of the wave vector perpendicular to the direc-
tion of the magnetic modulation (the transverse component). 
This dependence induces a lateral shift of the scattered waves 
(both reflected and transmitted) given by Equation (52). The 
shift is analogous to the lateral shift of the light waves reflected 
on the interface that separates two different media, known in 
optics as the Goos–Hänchen effect.

The dependence of the phase shift on the wave vector trans-
verse component, which does not happen in usual quantum 
systems with 1D potentials, can be traced mathematically to 
the noncommutativity of the components of the wave oper-
ator, Ω1 and Ω2. These two operators do commute in the case 
of the domain wall of ferromagnets with uniaxial anisotropy, 
which means that the Goos–Hänchen effect does not take 
place in these systems. However, this commutativity can be 
seen as a coincidence typical of this system, and it is removed 
by the presence of other interactions, like the DMI. Therefore, 
the Goos–Hänchen effect predicted here can be considered a 
generic feature of spin wave scattering by 1D solitons.

In the analysis presented in this work the dipolar interac-
tion is not taken into account. However, the contribution of the 
dipolar interaction gives to the spin wave operator Ω a nontrivial 
dependence on the wave vector transverse component, and this 
dependence will be transferred to the phase shift, thus inducing 
a Goos–Hänchen shift. It is difficult to believe that the shift 
induced by the dipolar interaction cancels the Goos–Hänchen 
shift obtained here. It would nevertheless be very interesting to 

Adv. Electron. Mater. 2022, 8, 2100782

Figure 4.  Left: Goos–Hänchen shift for several incidence angles, in degrees, for h = hc. The vertical dashed line marks ωG(0). Inset: transmission coef-
ficient for the same angles. Right: maximum Goos–Hänchen displacement for incidence angle αi = 70o versus h/hc, for κ = −5.0. The vertical dashed 
lines mark the critical field (h = hc) and the destabilizing field.



www.advancedsciencenews.com
www.advelectronicmat.de

2100782  (10 of 11) © 2021 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

determine whether the dipolar interaction enhances or reduces 
it. This discussion on the role of the dipolar interaction rein-
forces the idea that the Goos–Hänchen effect is induced by any 
1D soliton, including those of uniaxial ferromagnets, if dipolar 
interactions are taken into account.

Finally, let us stress that the displacement is induced by a 
magnetic soliton, and not by the reflection at an interface, as 
happens in optics and also in magnonics. This has the advan-
tage that the soliton can be created and moved across the 
material by suitable means. The fact that the displacement 
takes place also in the transmitted waves, and that it is addi-
tive, allows it to be enhanced by a large factor by using an array 
of well separated solitons. All this is very interesting from the 
point of view of applications.
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