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Abstract 
Introduction: Dengue is the most important arboviral disease. Its incidence has increased 30-fold over the last 50 years, causing global concerns. Studies have 

showed children to be the most vulnerable.  

Methods: Observational study using dengue cases from Zulia state, Venezuela, modelling through a Negative Binomial Generalized Linear Mixed Model 

(GLMM) accounting for heterogeneity in the variance via a hierarchical Bayesian framework, was done. We assessed risk factors such as age and sex. The 

Bayesian framework enabled the estimation of Relative Risk (RR) and a Binomial regression was run using the WinBUGS software.  

Results: During 2002-2008, there were 49,330 cases of dengue in Zulia state, Venezuela. Most of them (18.71%) in 2007. The model revealed that children aged 
from 5 to 14 y-old had 1.59-higher risk (95%CI 1.41-1.79) compared with those aged from 0-4 y-old. Those aged 25-44 years old and ≥45, have significantly 

less RR than the baseline category, RR 0.5228 (95%CI 0.46-0.59) and 0.3069 (95%CI 0.27-0.34). 

Conclusions: The findings confirmed that groups most at risk were children aged 5 to 14 years. Modelling and predicting dengue epidemiology are still a need 
in multiple countries, especially those at risk of newer epidemics, as is the case of Zulia and Venezuela. 
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Introduction 

Dengue fever is a vector borne disease, in which the 

virus is transmitted by the bite of a female mosquito 

belonging to the Aedes aegypti species. The first 

important epidemic of severe dengue in the Americas 

was reported in Cuba in 1981 and the second affected 

Venezuela during 1989 and 1990 [1,2]. According to 

some authors, Venezuela reported the highest number of 

cases of severe dengue [3]. This fact demonstrates that 

Venezuela is a country at serious risk regarding the 

spread of dengue fever. Zulia state is located on the 

northwestern part of Venezuela, which has been 

considered by some experts as an endemic region for the 

past 15 years [4,1] (Figure 1). The aim of this study is to 

develop a Negative Binomial GLMM via a Hierarchical 

Bayesian framework for epidemiological data of dengue 

cases in Zulia state, Venezuela to estimate the Relative 

Risks (RR) of the disease in the entire Zulia state by 

comparing exposure groups of gender and age from 2002 

to 2008. 

The epidemiological data was comprised by hospital 

admissions of dengue cases provided by the Ministry of 

Health in Zulia state, Venezuela. Daily reported cases 

were monthly compiled in the entire state of Zulia and 

this data was stratified by groups of age and gender. 

Annual population size was also provided by the 

Ministry of Health covering from 2002 to 2008. The 

annual estimation based on the first month for each year 

was interpolated to fill the monthly gaps for the missing 

information. 
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Figure 1. Zulia state and its municipalities, Venezuela. 

 
 

The main purpose of this study was the comparison 

between groups. However, when new extra variation 

occurs at different levels of the analysis, an extension of 

the Generalized Linear Model (GLM) into a Generalized 

Linear Mixed Model (GLMM) [5] is suggested. As a 

result, the new structure of GLMM comprises a fixed 

term and an extra random effect to account for the 

variance [6].  

In this context the development of a Negative 

Binomial GLMM for count data on dengue cases in the 

whole of Zulia was conducted driven by a 

comprehensive exploratory analysis previously 

conducted [7-9]. 

 

Methods 

Zulia state is located on the north west part of 

Venezuela, between 8.20º to 11.79º North latitude and 

70.73º to 73.37º West longitude. It is divided into 21 

municipalities, over an area of 50,230 square kilometers 

surrounding the Lake of Maracaibo, the largest lake in 

Latin America covering 12,870 square kilometers. 

According to the National Institute of Statistics, the 

estimated population in Zulia during 2008 was 3,752,898 

habitants. A visual representation of the political map of 

Zulia with municipalities boundaries is displayed in 

Figure 1. 

Some investigations state that dengue fever expands 

rapidly in urban areas due to disproportionate increase of 

human population [8,9]. In this respect, Table 1, shows 

the population size and cases at municipality level 

annually aggregated in Zulia state, during 2002-2008.   

Significantly, the data was arranged in many 

different ways throughout the exploratory analysis. At 

the first instance a study was based on epidemiological 

records of hospital admissions weekly aggregated from 

January 2002 to December 2008. The reason of such 

approach was because the data was initially provided at 

this scale by the local agency of the Ministry of Health 

in Venezuela. In addition, annual population size was 

lineally interpolated to fill weekly and monthly gaps for 

the missing data. 

 
Table 1. Estimated population and observed cases of dengue fever in 

Zulia state, Venezuela. Annually aggregated per municipality, 2002-

2008. 

 
  

As a result, epidemiological data from Zulia was 

initially aggregated per week covering the period from 

January 2002 to December 2008. Therefore, the 

incidence rates were also weekly estimates through the 

ratio between dengue cases and the corresponding 

population size. 

Figure 2 shows the dengue incidence, cases and 

rates, in Zulia state from 2002 to 2008. A sharp severity 

of the disease was observed at the beginning and the end 

of 2007. 

 
Figure 2. Evolution of cases and incidence rates of dengue in Zulia 

state, Venezuela, 2002-2008. 

 
 

Both male and female categories were monthly 

aggregated during 84 months from 2002 to 2008, and 

broken down into five groups of age: 0 to 4 years old, 5 
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to 14 years old, 15 to 24 years old, 25 to 44 years old and 

45 or more years old. 

Researchers who have focused on risk factors of 

dengue fever in different parts of the world have found 

differences regarding the occurrence of the disease 

within groups of age, gender and ethnicity [10-13]. 

In the present study, dengue cases were grouped 

according to age groups and gender within the Zulia 

state, from 2002 to 2008. Unfortunately, a similar 

analysis could not be carried out at the municipality level 

owing to poor collection of dengue records aggregated at 

age group and sex by health authorities responsible for 

surveillance.  

In this regard the dataset under analysis comprises 

dengue cases in Zulia state over the 364 weeks covering 

2002 until 2008, broken down into five age groups, 

namely: 0 to 4 years, 5 to 14 years, 15 to 24 years, 25 to 

44 years and over 45 years old. 

The age group at risk of the disease are children 

between 5 and 14 years and the second and third most 

affected group were those in the 15 to 24 years and 0 to 

4 years groups respectively. The statement that those in 

middle childhood are most at risk in Zulia state, confirms 

similar patterns observed in Thailand and Florida, in 

which the highest reported cases are within the 

population under 15 years old [12,13]. 

On the other hand, the incidence rates per 10,000 

inhabitants grouped by gender in Zulia state was 

displayed in Figure 4. A similar pattern of the incidence 

rate was seen in both male and female groups. These 

findings are consistent with studies undertaken in some 

South American countries14 in which dengue cases 

amongst male and female groups did not show a 

significant variation.   

The implementation of a Negative Binomial GLMM 

for count data accounting for heterogeneity on the 

variance [6,15] was conducted via a Hierarchical 

Bayesian approach by including a random term into the 

hierarchy [15]. The computational software for the 

Bayesian approach was implemented via the free 

package WinBUGS, specialized on Bayesian inference 

[16,17]. The application of a Hierarchical Bayesian 

approach provided the benefit of a full probability 

distribution for the parameters of interest by including 

the observed data as a likelihood function and prior 

distributions for unknown quantities. 

By using a hierarchical structure, this approach 

easily handled the overdispersion [15, 18-22]. However, 

the Bayesian framework implemented in this study was 

based on non-informative or vague prior information in 

which the posterior distribution was expected to be 

dominated by the likelihood or observed data [23]. 

Hence, it was assumed two-stages levels within the 

hierarchy in the Bayesian Hierarchical Negative 

Binomial structure. In this study, the year 2002, age 

group between 0 to 5 and female category were treated 

as baseline references. 

The extra Poisson variation in this analysis might be 

caused by spatial dependence amongst municipality units 

[24,25] or because of a temporal dependence [26] of the 

records. However, this statement cannot be justified due 

to the lack of available data at municipality level. As a 

result, the Bayesian framework was conducted by 

adapting a Negative Binomial formulation via a Poisson-

Gamma distribution structure [27,28]. The specification 

was assumed to be a product of two parameters. Hence 

the parameterization turns out (Y_i) the reported cases of 

dengue fever during month i, with the mean μ_i and the 

dispersion parameter τ_i.  The WinBUGS code derived 

from this study can be found in the Supplementary 

Material, and the specification of the model is defined as 

follows: 

 

Likelihood 

 
 

where: 

 
 

Prior and hyper priors  

The vague normal priors for the β’s parameters were 

defined as: 

 
 

and the dispersion parameter defined as: 

 
 
Results 

During 2002-2008, there were 49,330 cases of 

dengue in Zulia state, Venezuela. Most of cases (18.71%) 

occurred in 2007 (18,463) (Table 1) (Figure 2) with a 

median of 6,549 cases per year (IQR 2,542-8,573). After 

running a Negative Binomial Hierarchical Bayesian 
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regression using WinBUGS with 100,000 iterations as a 

burn-in period, the point estimations are summarized on 

Table 2. The estimates based on the posterior means are 

listed on variables from b[1] to b[10]. The parameters 

coded between b[1] to b[6] represent the years: 2003, 

2004, 2005, 2006, 2007 and 2008. In which year 2002 

was considered as the baseline group. The variables from 

b[7] to b[10] represent the groups of age covering: 5 to 

14, 15 to 24, 25 to 44 and age group of 45 or more, 

respectively (Figure 3).  

 
Table 2. Posterior summary of the Bayesian NB approach using 

WinBUGS for RR of Dengue in Zulia, Venezuela, 2003-2008. 

 
 

The findings revealed that children aged from 5 to 14 

years old had 1.59-fold increased Relative Risk (RR) 

(95% CI 1.41-1.79) (Table 2) when compared to the 

baseline category aged from 0 to 4 years old (Figure 3). 

However, those aged 25 to 44 years old and 45 or more, 

have significantly less RR than the baseline category, RR 

0.52 (95% CI 0.46-0.59) and 0.31 (95% CI 0.27-0.34) 

(Table 2). In addition, the year 2007 showed that Relative 

Risk increased by 2.20 times when compared to the 

baseline year 2002 (Figure 3).  

 
Figure 3. Observed incidence rate of dengue weekly aggregated by 

age group in Zulia from 2002 to 2008. 

 

However, to validate those outcomes we graphically 

visualized the dynamics on the posterior distributions of 

the parameters under analysis. For instance, the posterior 

densities for the parameters: year 2003 defined as 

beta[1], year 2004 defined as beta[2] and group of age 

from 5 to 14 years old denoted as beta[7] showed clearly 

smooth and unimodal shapes (Figure 4).  

 
Figure 4. WinBUGS output showing the posterior kernel densities of 

b[1]=year 2003; b[2]=year 2004 and b[7]=group of age from 5 to 14 

years old. 

 
 

It was also revealed that the remaining parameters 

had a similar pattern, including gender, where no 

significant differences were observed in the model across 

the years (Figure 5).  

 
Figure 5. Observed incidence rates of dengue weekly aggregated by 

gender in the whole of Zulia from 2002 to 2008. 

 
 

Furthermore, the trace patterns of all the estimates 

parameters were plotted against the number of iterations. 

It was seen quite dense chains, meaning a good mixing 

of the parameters. Moreover, the autocorrelation 

functions of every parameter indicated that the posterior 

distributions mixed slowly, which is a good pattern in 

terms of correlated values. Finally, the visual diagnostic 

revealed that the bivariate posterior scatter plots around 
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the mean was randomly distributed for all possible 

combination of parameters meaning that convergences 

were reached. 

 

Discussion 

Beyond emerging arboviral diseases, such as 

chikungunya and Zika [29], dengue still continues to be 

most important viral vector-borne disease globally, in 

terms of morbidity, mortality and disability. Then efforts 

to characterize, modelling and predict dengue are of 

utmost importance [24]. 

This study provided a better understanding of risk 

factors of age groups and gender associated with dengue 

transmission in Zulia state, Venezuela using 

epidemiological data from 2002 to 2008. The 

implementation of a Bayesian framework was conducted 

by adapting a Negative Binomial formulation via a 

Poisson-Gamma distribution structure [27,28]. However 

a limitation owing to the lack on epidemiological data 

stratified by age groups and gender at municipality level, 

restricted the construction of a spatio-temporal approach 

using those exposure factors. The findings revealed that 

children aged from 5 to 14 years old had a 1.59-fold 

increased Relative Risk (RR) when compared to the 

baseline category aged from 0 to 4 years. The severity of 

the disease was also observed within the stratum of the 

population from 15 to 24 years old. Those outcomes 

confirmed that groups at risk in Zulia state, Venezuela 

were children and young population. This statement was 

validated by similar studies conducted in different parts 

of the world in which the highest reported cases were 

observed amongst the youngest [30,13,8]. Given the 

opportunity of implementing strategies for the control 

and prevention of dengue fever in Zulia state, an 

effective initiative is needed involving scientists, health 

agencies and the local community aimed to coordinating 

an integrated vector programme against dengue 

transmission. In this context, the WHO has proposed 

disseminating scientific information about dengue 

transmission in order to educate people about the 

techniques that could help to protect or prevent dengue 

infection [31]. The WHO also recommends effective 

interventions to reorganize the public health centers and 

provide timely access of resources to affected population 

during outbreaks of dengue fever [31]. 

The findings of this study also showed that the year 

2007 had the largest RR increased by 2.20 times when 

compared to the baseline year 2002. Detailed 

examination of the outcomes also showed that the 

previous year (2006) had a high Relative Risk factor, but 

it was low in the preceding years, 2003, 2004 and 2005. 

This pattern leads us to investigate the reasons for the 

evolution of dengue fever transmission over time. It has 

been argued that epidemics of dengue fever are followed 

by endemic cycles periodically observed every 3 to 5 

years [32]. Although the evolution of dengue fever in 

Zulia state from 2002 to 2008 supported this assertion, 

more studies are needed to properly understand spatial 

and temporal variations of dengue fever in the state. 

In addition, although those findings were based on a 

NB Hierarchical Bayesian model using non-informative 

or vague prior information in which the posterior 

distribution was dominated by the likelihood of observed 

date [23]. More studies are needed to explore potential 

alternatives of prior distributions in future studies [33]. 

On the other hand, the major advantage of using a 

Bayesian framework is the relatively straightforward 

specification of the models provided that care is taken in 

the calculation of priors and posteriors [34]. In addition 

it is because of the growing development of 

computational software via the Markov Chain Monte 

Carlo (MCMC) algorithms, which facilitates modelling 

implementation [9, 18, 21, 23, 35-37]. Finally 

uncertainties over epidemiological data on the type of 

serotypes circulating during the period of time under 

analysis, was a limitation within the surveillance 

information provided in this study. Experts postulate a 

temporal cycle of serotypes circulating in geographical 

contexts [32] which could have a direct effect across the 

various strata of the population categorized by age. 

Consequently, a deeper analysis is needed to explore 

some other factors [38-42] associated with the spread of 

the disease in Zulia state, looking for spatial and 

temporal effects on dengue transmission. In this respect, 

a generalized additive mixed model was previously 

implemented using dengue cases of Zulia state, which 

would provide additional highlighting points [43]. In 

addition, future evaluations need to be done towards the 

construction of an Early Warning System [39] in Zulia 

state, Venezuela. These tools for detailed analyses are 

highly relevant in public health. 

Given the social and ecoepidemiological conditions 

of Zulia, as well most of the states of Venezuela are prone 

across the whole territory for arboviral diseases. Then, 

the applicability of this study would be directly oriented 

also to other emerging arboviral diseases that occurred in 

Venezuela in after 2014, such as chikungunya and Zika 

[40], where there is a lack of studies assessing its 

incidence, spatial epidemiology and modelling among 

others [41]. Operative research for that, including 

evidence-based policies are urgently required in the 

country. Venezuela requires immediate intersectoral 
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action and investment to halt this unnecessary and 

increasing burden for dengue, but also on chikungunya 

and Zika [42]. Other emerging and reemerging diseases, 

such as Mayaro, Oropouche and West Nile Virus are 

circulating in the Americas and be responsible for new 

epidemics in Venezuela [43]. 

Current migration scenario of Venezuela implies that 

these arboviral diseases occurring in Venezuela have 

consequences for the region. In the country conditions of 

forced migration, people are moving forward to 

Colombia, Brazil, Peru, United States of America, and 

other countries in the region and abroad [42]. 

Finally, Venezuela, once considered the richest and 

most developed of the region, today represents an 

epicenter of the resurgence of multiple vector-borne and 

other infectious diseases with numerous ongoing, co-

occurring epidemics [39]. Most of these epidemics 

directly and/or indirectly intersect on their social, 

biological and epidemiological determinants sharing as 

common ground a country whipped by an unprecedented 

humanitarian and political crisis that has led to a massive 

collapse of its healthcare system along with a large-scale 

impoverishment of its population among other social 

forces which have contributed to their origin and 

persistence [42]. These findings have also implications 

in other arboviral diseases that have affected Zulia and 

Venezuela, but have not yet studied in detail, such is the 

case of chikungunya and Zika [45,46]. 
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Supplemental Material 

The following is the code of Bayesian Hierarchical Negative Binomial Model 

in WinBUGS: 

 
############################################### 

##        Incidence rate per year in each agegroup             ## 

############################################### 
model 

{ 

for (I in 1:84) {                  # amount of data 
count [i]~dpois(mustar[i]) # response variable 

mustar[i]<-rho[i]*mu[i]    # product log link 

log (mu[i]<-log(popsize[i])+intercept+ 
yeargrp2[i]*beta[1]+ 

yeargrp3[i]*beta[2]+ 

yeargrp4[i]*beta[3]+ 
yeargrp5[i]*beta[4]+ 

yeargrp6[i]*beta[5]+ 

yeargrp7[i]*beta[6]+ 
yeargrp2[i]*beta[7]+ 

yeargrp3[i]*beta[8]+ 

yeargrp4[i]*beta[9]+ 
yeargrp5[i]*beta[10]+ 

 

rho[i]~dgamma(alpha,alpha)  #overdispersion 
} 

# Prior distributions 
intercept~dnorm(0,1.0E-6)      #Flat priors 

beta[1]~dnorm(0,1.0E-6)        #Vague normal priors 

beta[2]~dnorm(0,1.0E-6)        #Vague normal priors 
beta[3]~dnorm(0,1.0E-6)        #Vague normal priors 

beta[4]~dnorm(0,1.0E-6)        #Vague normal priors 

beta[5]~dnorm(0,1.0E-6)        #Vague normal priors 
beta[6]~dnorm(0,1.0E-6)        #Vague normal priors 

beta[7]~dnorm(0,1.0E-6)        #Vague normal priors 

beta[8]~dnorm(0,1.0E-6)        #Vague normal priors 
beta[9]~dnorm(0,1.0E-6)        #Vague normal priors 

beta[10]~dnorm(0,1.0E-6)      #Vague normal priors 

alpha<-exp(logalpha) 
logalpha~dnorm(0,1.0E-6) 

}  


