
Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre  de 2021. Universidad Tecnológica de Pereira.  ISSN 0122-1701 y ISSN: 2344-7214  

 
 

 

518 

  Abstract— In the following manuscript we will show as a 

starting point a theoretical analysis of the gradient method, 

known as one of the first descent methods, and from this we will 

identify the strength of the conjugate gradient methods. Taking 

an objective function, we will determine the values that optimize 

it by means of different methods, indicating the differences of 

geometric type that these have. Different systems will be used, in 

order to serve as a test, obtaining their solution in each case and 

finding the speed at which they converge in accordance with the 

conjugate gradient methods proposed by Hestenes-Stiefel and 

Fletcher-Reeves. 

 

 

Index Terms— Conjugate direction, descent, gradient, 

iteration, minimization, optimization, quadratic function, 

solution. 

 

 Resumen— En el siguiente manuscrito mostraremos como punto 

de inicio un análisis teórico del método de gradiente, conocido 

como unos de los primeros  métodos de descenso, y a partir de 

ello identificar la fortaleza de los métodos del gradiente 

conjugado. Tomando una función objetivo determinaremos los 

valores que la optimizan mediante diferentes métodos indicando 

las diferencias de tipo geométrico que estos tengan. Se usarán 

distintos  sistemas , con el fin de que sirvan de prueba obteniendo 

en cada caso su solución y encontrando la velocidad en que 

convergen de conformidad con los métodos de gradiente 

conjugado propuestos por Hestenes-Stiefel y Fletcher- Reeves. 

 

 

 Palabras claves— Descenso, dirección conjugada, función 

cuadrática, gradiente, iteración, minimización, optimización, 

solución. 

I. INTRODUCTION 

PTIMIZATION is one of the most important tools in 

applied mathematics that is used in solving real life 

problems in different disciplines such as engineering and 
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Biology. Getting the resources available to solve a problem or 

perform a specific task are used in the best way, is without a 

doubt the number one objective of optimization. For this, we 

have unrestricted optimization algorithms, within which we 

can count on the method of the steepest descent or also called 

the gradient method, which allows us to optimize a quadratic 

function, which will be the objective function, using different 

directions of search that are descending (geometrically). The 

gradient method is of great importance since its speed of 

convergence is quite high, together with the possibility of 

solving problems whose objective functions have associated a 

large number of dimensions [1]. 

II. CONTENT 

 

A. Quadratic forms  

 

A quadratic form F can be defined as a scalar map whose 

domain corresponds to a finite vector space of dimension n, 

represented by (1): 

 

 

𝐹(�̅�) =
1

2
(𝑎11𝑥1

2 + 𝑎12𝑥1𝑥2 + 𝑎21𝑥2𝑥1 + ⋯ + 𝑎𝑛𝑛𝑥𝑛
2)

− (𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛) + 𝑐 

 

𝐹(�̅�) = �̅�𝑇 [

𝑎11 𝑎12
… 𝑎1𝑛

𝑎21 𝑎22
… 𝑎2𝑛

⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱ ⋮
… 𝑎𝑛𝑛

] �̅� − [𝑏1 𝑏2 … 𝑏𝑛 ]𝑇�̅�  + 𝑐 

 

𝐹(�̅�) =
1

2
�̅�𝑇𝐴�̅� − �̅�𝑇�̅� + 𝑐             (1) 

 

Where c is a constant value and �̅� = [𝑥1 𝑥2
… 𝑥𝑛]𝑇 

 

To classify the quadratic form F, we use the eigenvalues 𝜆𝑖  

i=1,2…n of its Hessian matrix A, and we identify its optimum 

as follows: 

Positive definite quadratic form if 𝜆𝑖 > 0 𝑖 = 1, … ,  𝑛. It has a 

global minimum, represented in fig. 1a. 
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Quadratic form defined negative if  𝜆𝑖 < 0 𝑖 = 1, … ,  𝑛 It has a 

global maximum , represented in fig. 1b. 

 

Positive semi-definite quadratic form if 𝜆𝑖 ≥ 0 𝑖 = 1, … ,  𝑛. It 

has infinite mínimum points, represented in fig. 1c. 

 

Negative semi-definite quadratic form if 𝜆𝑖 ≤ 0 𝑖 = 1, … ,  𝑛. It 

has infinite máximum points, Its graphic representation would 

correspond to the inverted fig. 1d. 

 

Quadratic form indefinite if  ∃ 𝑖, 𝑗  such that 𝜆𝑖 > 0, 𝜆𝑗 < 0. It 

has a saddle point, represented in fig. 1e. 

 

 

 

 
(a) (b) 

 
 

 

(c) (d) 

 
(e) 

Fig. 1. Graphic definition of a quadratic form in ℝ3[2] 

 

A. Gradient Method 

 

This is a descent method which consists of choosing any point 

and from this through iterations we can build a sequence of 

points that is obtained by advancing on the line of maximum 

descent. This sequence will converge to a point very close to 

the solution 

The problems that we can solve using this method are of the 

type: 

𝑚𝑖𝑛
𝑥𝜖ℝ 𝑛

𝐹(�̅�) 

Here F is a quadratic form, 𝐹: ℛ𝑛 → ℛ continuously 

differentiable, with an associated positive definite Hessian 

matrix A. 

From the point �̅�0 (initial position) we generate a succession 

of points �̅�𝑘 given by (2) 

 �̅�𝑘+1 = �̅�𝑘 −  𝛼𝑘  �̅�𝑘                          (2) 

𝛼𝑘  indicates the length of the step, known as the descent 

parameter (3), and we can find it by minimizing: 

𝐹(�̅�𝑘 −  𝛼𝑘  �̅�𝑘 ) = min
𝛼 𝜖 ℝ

𝐹(�̅�𝑘 −  𝛼𝑘𝑐) 

𝑑

𝑑𝛼
𝐹(�̅�𝑘 −  𝛼𝑘  �̅�𝑘 ) = 0 

𝛼𝑘 =
(�̅�−𝐴�̅�𝑘)𝑇 �̅�𝑘

( �̅�𝑘)𝑇�̅�𝑘             (3) 

The direction of maximum descent in �̅�𝑘 of the quadratic 

form F is the gradient  �̅�𝑘  given by equation (4) [3]: 

 

 �̅�𝑘 = 𝛻𝐹(�̅�𝑘) = −(�̅� − 𝐴�̅�𝑘)    (4) 

 

We present the algorithm of this method in the following table 

I [4]: 
TABLE I 

GRADIENT METHOD ALGORITHM 

Step Description 

1 Enter the quadratic function 𝐹(�̅�) 

2 Consider a point �̅�0. Do  k=0 

3 Choose the direction of maximum descent (gradient): 
 �̅�𝑘 = 𝛻𝐹(�̅�𝑘) 

4 
Calculate the descent parameter: 

𝛼𝑘 =
(�̅� − 𝐴�̅�𝑘)𝑇𝑄𝑘

( �̅�𝑘)𝑇�̅�𝑘

 

5 Do:   �̅�𝑘+1 = �̅�𝑘 −  𝛼𝑘 �̅�𝑘 

6 Check convergence. if → ‖ �̅�𝑘‖ < 𝜀 the method stops and  �̅�𝑘 is the 

solution . Otherwise, do k = k + 1 and repeat from 2 

 

B. Conjugated Gradient Method 

 

We frequently find problems represented by systems that are 

sparse, since they arise when solving equations in partial 

derivatives in numerical form. It is there when we use this 

descent method, which helps us save memory by using only 

null elements, which they are to a large extent those observed 

in the matrix of coefficients that represents the system [3]. 

The conjugate gradient method initially requires the 

construction of an orthogonal base (Gramm-Schmidt method), 

determining with it the best solution or simply the one that is 

most efficient. The interesting thing about this method is the 

way in which the base is built guarantees the orthogonality of 

each element with respect to the previous one and 

automatically all the previous ones also satisfy this condition 

[5]. 

As a great advantage of this method is its speed of 

convergence, since it is faster than that of the descent method, 

as we can see in fig. 2 
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Fig. 2. Comparison of descent directions, steepest descent method (Orange), 

conjugate gradient (Blue) [6]  
This method has the same approaches as the previous gradient 

method, since it is used to solve problems of optimization 

without restrictions: 

min
𝑥𝜖ℝ 𝑛

𝐹(�̅�) 

and starts from an initial position  �̅�0 generating the sequence 

of points �̅�𝑘 given in (5): 

 �̅�𝑘+1 = �̅�𝑘 −  𝛼𝑘  �̅�𝑘      (5) 

The descent parameter that was previously in the (3) is 

modified by (6): 

 

𝛼𝑘 =
(�̅�−𝐴�̅�𝑘)𝑇 �̅�𝑘

( �̅�𝑘)𝑇𝑑𝑘          (6) 

 

Like the direction of descent that will be  �̅�𝑘 and is calculated 

by (7): 

 �̅�𝑘 = − �̅�𝑘 + 𝛽𝑘  �̅�𝑘 ,  �̅�0 = − �̅�0  (7) 

 

In this part 𝛽𝑘 is a scalar known as the parameter of the 

conjugate gradient, which corresponds to different values 

depending on the conjugate gradient algorithm that is chosen 

for the solution of the problem [7].Any conjugate gradient 

algorithm has a very simple general structure as illustrated 

below in the table II: 
TABLE II 

CONJUGATE GRADIENT METHOD ALGORITHM 

Step Description 

1 Enter the quadratic function 𝐹(�̅�) 

2 Consider a point �̅�0. Do  k=0 

 
3 

Choose the direction of maximum descent (gradient): 
 �̅�𝑘 = 𝛻𝐹(�̅�𝑘),  �̅�0 = − �̅�0 

 

 
 

4 

Calculate the descent parameter: 

𝛼𝑘 =
(�̅� − 𝐴�̅�𝑘)𝑇𝑄𝑘

( �̅�𝑘)𝑇�̅�𝑘

 

 
5 Do:   �̅�𝑘+1 = �̅�𝑘 −  𝛼𝑘 �̅�𝑘 

 
 

6 Calculate    �̅�𝑘+1 = 𝛻𝐹(�̅�𝑘+1) 

 
7 Calculate  �̅�𝑘 =  �̅�𝑘+1 −  �̅�𝑘 y  �̅�𝑘 =  �̅�𝑘+1 −  �̅�𝑘 

 
8 Calculate 𝛽𝑘 according to the conjugate gradient algorithm used             

 �̅�𝑘+1 = − �̅�𝑘+1 + 𝛽𝑘 �̅�𝑘 

9 Check convergence. If → ‖  �̅�𝑘‖  < 𝜀 the method stops and �̅�𝑘 is the 

solution. Otherwise, do k = k + 1 and repeat from 4. 

 

B. Conjugate Gradient of Fletcher – Reeves 

 

This method is an improvement of the descending gradient, 

which, using conjugated vectors, seeks to give a solution in 

fewer iterations, for the use of this method it is necessary to 

know the first displacement, since from this we can proceed to 

find the vectors directional that will be conjugated with each 

other [8]. 

 

For this method we proceed with an algorithm exactly like 

the previous method; however, we define the conjugate 

gradient parameter 𝛽𝐾 in (8), containing the gradient 

parameters of the quadratic, present and previous function, 

parameters previously proposed in the conjugate gradient 

algorithm[9]. 

𝛽𝐾 =
( �̅�𝑘+1)

𝑇
 �̅�𝑘+1

( �̅�𝑘)
𝑇

 �̅�𝑘
         (8) 

 

C. Conjugate gradient of Hestenes-Stiefel 

 

The conjugate gradient method has received a lot of attention 

and has been widely used in recent years. Although the 

pioneers of this method were Hestenes and Stiefel (1952) [8], 

the current interest starts from Reid (1971) posing it as an 

iterative method, which is the way it is most often used in the 

news [5]. 

 

As in the previous case, we reformulate Bk according to (9) 

to obtain its algorithm as follows: 

 

𝛽𝐾 =
( �̅̅̅�𝑘

)𝑇 �̅̅̅�
𝑘+1

( �̅̅̅�
𝑘

)
𝑇

 �̅�𝑘
        (9) 

 

 

III. ANALYSIS AND RESULTS   

 

Next, different test systems for the Fletcher-Reeves 

Conjugate Gradient and Hestenes-Stiefel Conjugate Gradient 

methods will be presented. 

 

To check the effectiveness of the method, 4 systems of 2 and 3 

variables are selected, each of them described by their 

associated matrices A and b according to the quadratic form 

proposed in (1).  

 

For the stop criterion is used ‖ �̅�𝑘‖ < 𝜀 =〖10〗
−3

                                        

and as starting point  �̅�0  which is a column vector with n rows 

and all its components equal to one. 
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Proposed system for n = 2 

 

 

𝐴 = [
3 −2

−2 4
] , 𝑏 = [

4
8

] 

 

System for n=3 

 

𝐴 = [
30 5 8
5 100 −3
8 −3 50

] , 𝑏 = [
7
5

10
] 

 

 

 

A. Fletcher-Reeves Conjugate Gradient Test Systems. 

 

The different test systems for the Fletcher-Reeves 

conjugate gradient method are presented below in Tables III, 

IV and V. 
TABLE III 

RESULTS OBTAINED GC FLETCHER-REEVES 
Interactions System dimensions 

2 9 
3 14 

 
TABLE IV 

RESULTS OBTAINED FOR n=2 

i x Q 

0 1 1 3 6 

1 23.636 37.272 43.636 -21.818 
2 36.404 35.416 0.162 11.143 

3 37.129 38.898 0.6408 -0.1335 
4 39.208 38.849 0.0071 0.3021 

5 39.361 3.974 0.1397 -0.0239 

6 3.981 39.726 0.0021 0.0714 
7 39.851 39.941 0.0327 -0.0063 

8 39.955 39.936 0.0007 0.0164 

9 39.965 39.986 0.0077 -0.0016 

 

i d alpha betha 

0 3 6   

1 50.849 -0.7392 0.4545 0.5289 
2 0.23 11.044 0.251 0.0532 

3 0.6653 -0.0157 0.3152 0.3379 

4 0.0515 0.301 0.3125 0.2131 
5 0.143 -0.0042 0.296 0.2199 

6 0.0135 0.071 0.3142 0.254 

7 0.0336 -0.0015 0.302 0.2182 
8 0.0032 0.0162 0.3073 0.2413 

9 0.0079 -0.0004 0.3063 0.2312 

 

TABLE V 

RESULTS OBTAINED FOR n=3 

i x 

0 1 1 1 
1 0.589237 -0.106777 0.486546 

2 0.366001 0.117465 0.178653 

3 0.290245 0.016762 0.159177 
4 0.230833 0.061875 0.154669 

5 0.210748 0.036907 0.162774 

6 0.195204 0.051019 0.168272 
7 0.188931 0.043359 0.170707 

8 0.184161 0.047714 0.172294 

9 0.182206 0.045356 0.173053 
10 0.180743 0.046708 0.17354 

11 0.18013 0.045978 0.173777 

12 0.17968 0.0464 0.173927 

13 0.179487 0.046173 0.174002 

 

i Q 

0 -36 0 -36 

1 -14.035.592 1 -14.035.592 

2 -5.996.602 2 -5.996.602 
3 -3.06 3 -3.06 

4 -1.471.729 4 -1.471.729 

5 -0.809206 5 -0.809206 
6 -0.457403 6 -0.457403 

7 -0.250393 7 -0.250393 

8 -0.141776 8 -0.141776 
9 -0.07739 9 -0.07739 

10 -0.044175 10 -0.044175 
11 -0.024047 11 -0.024047 

12 -0.013828 12 -0.013828 

13 -0.007507 13 -0.007507 
14 -0.004347 14 -0.004347 

 

i d 

0 -36 0 -36 

1 -14.060.543 1 -14.060.543 
2 -6.026.304 2 -6.026.304 

3 -3.08 3 -3.08 

4 -1.495.777 4 -1.495.777 
5 -0.813482 5 -0.813482 

6 -0.464264 6 -0.464264 

7 -0.251751 7 -0.251751 
8 -0.143862 8 -0.143862 

9 -0.077822 9 -0.077822 

10 -0.044809 10 -0.044809 
11 -0.024185 11 -0.024185 

12 -0.014022 12 -0.014022 

13 -0.007551 13 -0.007551 
14 -0.004406 14 -0.004406 

 

B. Hestenes-Stiefel Conjugate Gradient Test Systems 

 

The different test systems for the Hestenes-Stiefel 

conjugate gradient method are presented below in Tables VI, 

VII, VIII and IX. 
TABLE VI 

RESULTS OBTAINED GC HESTENES-STIEFEL 
Interactions System dimensions 

2 2 

3 3 
4 4 

5 5 

 

 
TABLE VII 

RESULTS OBTAINED FOR n=2 

i x Q 

0 1 1 3 6 
1 23.636 37.272 43.636 -21.818 

2 4 4 0 0 

 

i d alpha betha 

0 3 6 - - 
1 59.504 0.9917 0.4545 11.636 
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TABLE VIII 
RESULTS OBTAINED FOR n=3 

i x 

0 1 1 1 
1 0.589237 -0.106777 0.486546 

2 0.308488 0.036849 0.104164 

3 0.179194 0.046263 0.174104 

 

i Q 

0 -36 -97 -45 

1 -14.035.592 14.191.246 -19.361.546 

2 -3.272.216 0.085052 2.434.438 

 

i d 

0 -38 -57 8 46 

1 -358.961 132.257 1.511.123 5.896.596 

2 140.535 0.82727 2.848.809 463.497 
3 108.342 0.17977 -1.078.084 2.116.537 

4 5.24E-15 8.52E-14 2.74E-15 1.73E-15 

 

i alpha betha 

0 - - 

1 0,01141008 5,32362825 

2 0,01730629 1,24352268 

3 0,03570331 -1,4900-14 

 
TABLE IX 

RESULTS OBTAINED FOR n=4 

i x 

0 1 1 1 1 

1 0.38903 0.08354 112.862 173.959 
2 -174.743 0.87071 202.801 524.913 

3 -123.671 0.90078 306.332 693.356 

4 -0.93943 0.90571 276.751 751.431 

 

i Q 

0 -38 -57 8 46 
1 -168.573 417.838 111.031 35.919 

2 325.962 -600.468 206.821 158.898 

3 715.713 -0.03669 -182.346 903.819 

 

 
    

i d 

0 -38 -57 8 46 

1 -358.961 132.257 151.112 589.659 
2 140.535 0.8272 28.488 463.497 

3 108.342 0.1797 -107.808 211.653 

4 5.24E-15 8.52E-14 2.74E-15 1.73E-15 

 

i alpha betha 

0 - - 

1 0.0160781 311.616.601 

2 0.05951814 86.791.544 

3 0.03634179 719.957.007 
4 0.02743856 -9.26E-15 

 

             C.  Comparison of methods 

 

The different simulations corresponding to the descent 

methods will be shown below. 

Test system n = 2 

 
Fig. 3 . Direction vs. Iterations. Red Fletcher-Reeves, Blue Hestenes-Stiefel. 

 

Test system n=3  

 
 

Fig. 4. Direction vs. Iterations. Red Fletcher-Reeves, Blue Hestenes-Stiefel              

 

In the previous graphs (fig.3 and fig. 4) it is possible to 

observe the behavior of the Fletcher - Reeves and Hestenes-

Stiefel methods for spaces of dimensions n = 2 and n = 3. In 

them we observe that more directions and observation points 

can be calculated by Fletcher-Reeves, versus the Hestenes-

Stiefel results. 
 

 
 

Fig. 5. Standard Gradient vs. Iterations. Red Fletcher-Reeves, Blue 
Hestenes-Stiefel. 
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Fig. 6. Standard Gradient vs. Iterations. Red Fletcher-Reeves, Blue 

Hestenes-Stiefel. 

 

In the graphs represented in fig. 5 and fig. 6 the norm for R2 

and R3 can be seen, concluding that the convergence is faster 

with Hestenes-Stiefel than with the method proposed by 

Fletcher-Reeves. 

 

 
Fig. 7. Difference Standard Gradient vs. Iterations. 

 

 

 
 
Fig. 8. Difference Standard Gradient vs. Iterations. 

 

Finally, fig. 7 and fig. 8 gather the iteration-to-iteration 

difference between the standards of the grades in fig. 5 and fig. 

6 respectively. The difference is clearly seen in the iteration 

after the method improved by Hestenes-Stiefel has already 

found the optimum of the systems proposed for 2 and 3 

dimensions. 

 

IV. CONCLUSIONS 

 

When the quadratic form has distorted or too eccentric 

contours, more interactions will be required in order for the 

Fletcher-Reeves method to converge. This is because by 

rounding the errors they result in the need for more 

interactions. 

 

For a greater effectiveness of the Fletcher-Reeves method, we 

must periodically restart the method from an appreciable 

number of steps, in which the new search direction 

corresponds to that of the steep descent. 

 

The results show us that the Fletcher-Reeves method is a better 

optimization method compared to the different search methods 

using patterns in particular than the Hestenes-Stiefel method 

[10]. 
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