Desarrollo de un algoritmo basado en Python-Pyomo para el proceso de adjudicación de subastas de renovables en Colombia

Development of a Python-Pyomo based algorithm of the adjudication process of renewable auctions in Colombia

S. M. Chica-Medrano; C. A. Araque-Giraldo; F. A. Mendoza-Villalba; C. E. Salazar-Vanegas; O. M. Carreño-Rincón; J. M. López-Lezama

DOI: https://doi.org/10.22517/23447214.24780

Artículo de investigación científica y tecnológica

Abstract—This document presents in detail the mathematical formulation of the second renewable energy auction in Colombia, used for the allocation of long-term energy contracts, which was carried out through a double-sided auction, defined in Resolutions 4-0590 and 4-0591 of 2019 from the UPME. The mixed integer linear programming model developed in this paper solves an optimization problem that seeks the combination of offers that maximizes the benefit of the consumer, subject to operational and economic constraints proposed by regulatory mechanisms. The effectiveness of the algorithm developed in Python was tested by validating it with real data, obtaining the same results published by UPME.

Index Terms— Energy transition, long-term contracts, mixed integer linear programming, renewable energy, optimization, Python-Pyomo.

Resumen— Este documento presenta de manera detallada la formulación matemática de la segunda subasta de energías renovables en Colombia, utilizada para la asignación de contratos a largo plazo de energía, la cual se realizó por medio de una subasta de dos puntas, definidas en las resoluciones 4-0590 y 4-0591 de 2019 de la UPME. El modelo de programación lineal entera mixta desarrollado en este artículo resuelve un problema de optimización que busca la combinación de las ofertas que maximiza el beneficio del consumidor, sujeto a unas restricciones operativas y económicas propuestas por los mecanismos de regulación. La efectividad del algoritmo desarrollado en Python se comprobó validando con datos reales, obteniendo los mismos resultados publicados por la UPME.

This manuscript was sent on June 5, 2021 and accepted on May 24, 2022. This paper was supported by the Sustainability Program of the University of Antioquia and the Colombian Scientific Program within the framework of the so call Ecosistema Científico (Contract No. FP44842-218-2018).

- S. M. Chica-Medrano is with the Department of Electrical Engineering, University of Antioquia, Medellín, Colombia (e-mail: moises.chica@udea.edu.co).
- C.A Araque-Giraldo is with the Department of Electrical Engineering, University of Antioquia, Medellín, Colombia (e-mail: cesar.araque@udea.edu.co).
- F.A Mendoza-Villalba is with the Department of Electrical Engineering, University of Antioquia, Medellín, Colombia (e-mail: ceduardo.salazar@udea.edu.co).

Palabras claves— Contratos de largo plazo, optimización, programación lineal entera mixta, Python-Pyomo, subastas de renovables, transición energética.

I. INTRODUCCIÓN

Nolombia es un país que se caracteriza por tener una matriz energética en su mayoría conformada por generación a partir de recursos hídricos, alcanzando hasta un 68,3% para el año 2018 de la canasta de generación; el resto de la matriz energética está conformada por 30,7% de generación termoeléctrica, 0,8% de solar y eólica y un 0,2% de generación a partir de bagazo de caña [1], [2]. Lo anterior indica que existe poca diversificación de la matriz energética del país. Esto conlleva a dificultades energéticas en periodos del año donde hay escasez de agua dada por la disminución de precipitaciones, afectando considerablemente los caudales de los ríos y las reservas de los embalses. Lo anterior ha motivado a los entes gubernamentales a crear una serie de políticas enfocadas en la transición energética, que permitan una diversificación de la matriz energética y una mayor resiliencia del sistema eléctrico colombiano. Por medio de la Ley 1715 de 2014 y el Plan Nacional de Desarrollo (PND), se establecieron incentivos para proyectos de generación de energías renovables no convencionales, que incluyen la exención de gravámenes arancelarios, sobre deducción del 50% en las inversiones contra el impuesto de renta durante 15 años (este último fue una mejoría hecha en el PND respecto a la Ley 1715). Con esta Ley

- C. E. Salazar-Vanegas is with the Department of Electrical Engineering, University of Antioquia, Medellín, Colombia (e-mail: falberto.mendoza@udea.edu.co)
- O. M. Carreño-Rincón with the Department of Electrical Engineering, University of Antioquia, Medellín, Colombia (e-mail: mauricio.carreno@udea.edu.co).
- J. M. López-Lezama is with the Department of Electrical Engineering, University of Antioquia, Medellín, Colombia (e-mail: jmaria.lopez@udea.edu.co).

también se incentiva la autogeneración y la generación distribuida buscando mitigar la huella de carbono y aliviar la congestión de las redes eléctricas. Además, fue establecido que entre el 8 % y el 10% de las compras realizadas por los comercializadores del Mercado de Energía Mayorista (MEM), deben ser realizadas por medio de contratos de largo plazo de energía (CLPE), con plantas de generación de fuentes no convencionales de energías renovables (FNCER). El propósito de estas iniciativas es lograr una mayor participación de las FNCER, produciendo un incremento de menos del 1% a más del 12% para el año 2022 [3], [4]. Para ello se han realizado dos subastas de energías renovables no convencionales en Colombia, las cuales han sido subastas de dos puntas, donde tanto comercializadores como generadores ofertan, indicando las cantidades de energía y sus respectivos precios. La primera se realizó en febrero de 2019, en la cual no se realizaron asignaciones de ofertas entre compradores y vendedores, ni se adjudicaron contratos. La segunda subasta se realizó en octubre del mismo año. En esta se adjudicaron contratos de energía a largo plazo por más de 10 GWh-día; se incluyeron, además, franjas horarias de licitación y se redujeron los límites de los tamaños de los proyectos de 10 MW a 5 MW [5].

En este trabajo se desarrolla de forma completa la formulación matemática creada para la segunda subasta de energías renovables no convencionales en Colombia cuya organización se delegó a la UPME (Unidad de Planeación Minero Energética) como se explica en el anexo de la Resolución 4-0590 del 2019 de la UPME y la implementación de un código computacional en Python (usando la librería Pyomo) que resuelve el problema de optimización planteado por la subasta, el cual busca el máximo beneficio del consumidor según las ofertas realizadas entre los compradores y vendedores [6]. Dada la naturaleza de las variables involucradas el modelo desarrollado corresponde a un problema de programación lineal entera mixta. Es decir, algunas variables pueden tomar valores continuos, mientras otras deben ser de naturaleza entera. Cabe anotar que, si bien la UPME publicó el código del modelo, este no es funcional ya que hace parte de un sistema de información de propietario. Esta fue una de las razones que motivó el presente trabajo ya que se quiere contar con la herramienta completa que permita realizar simulaciones.

El resto del documento tiene la estructura que se indica a continuación. En la Sección II se hace énfasis sobre la importancia y el impacto de las energías renovables en los sistemas de potencia y se presenta una revisión del estado del arte relacionada con subastas de las mismas. En la Sección III se presenta la formulación matemática del problema en el cual se emplea un modelo de programación lineal entera mixta. En la Sección IV se presenta el detalle de la implementación del modelo computacional, haciendo énfasis en el uso de Python y su librería Pyomo. La Sección V presenta ejemplos de escenarios de simulación, resultados y sus respectivos análisis. Finalmente, la Sección VI presenta las conclusiones de este trabajo.

II. REVISIÓN DEL ESTADO DEL ARTE

El mundo moderno se está inclinando por iniciativas que vayan en pro del cuidado del medio ambiente, tal que minimicen la emisión de gases contaminantes y la producción de materiales que afecten los ecosistemas del planeta. Entre estas iniciativas están los proyectos de generación a partir de fuentes de energías renovables, que se consideran virtualmente inagotables y cuyo aprovechamiento presenta bajo impacto en el medio ambiente [2]. La generación de energía eléctrica a través del uso de fuentes de energía renovables permite que se disminuya la huella ambiental; además, estimula la creación de empleo y el crecimiento económico [2]. Sin embargo, es necesario que las políticas de gobierno que se inclinen por esta alternativa, tengan en cuenta el impacto social que produce su integración en las comunidades. Por lo tanto, se requiere crear conciencia pública sobre su implementación y el beneficio que trae para la ciudadanía el uso de este tipo de energía. En [7] se estudia este caso aplicando encuestas que permitan vislumbrar la aceptación social de esta nueva tecnología de generación, y a partir de los resultados obtenidos, crear planes de acción que permitan adaptar las energías renovables a entornos urbanos.

A medida que se produce una alta penetración de la generación a partir de fuentes de energías renovables en la matriz de un sistema eléctrico, aparecen inconvenientes asociados con la estabilidad de dicho sistema. Las FNCER tienden a consumir energía reactiva dependiendo de su tipo de operación. Esto hace que en ciertos puntos del sistema exista un aumento de la demanda de energía reactiva que pueda afectar la estabilidad. También ocurre que, debido a la variabilidad e intermitencia que presenta este tipo de recurso, se presenten inconvenientes con la estabilidad de ángulo de rotor, lo que hace que se afecte el balance entre generación y demanda, alterando la estabilidad de la frecuencia [8]. En [9] se estudian métodos de configuración de energía reactiva dinámica de una red cuya penetración de FNCER sea alta, basándose en estudios de probabilidad de estabilidad transitoria. Este método permite asignar energía reactiva en puntos débiles de la red, a través del análisis de probabilidad de estabilidad transitoria. Luego, se estudian varios escenarios posibles de asignación trabajando a partir de un modelo de red base. Los resultados demostraron que el método permite mejorar significativamente la seguridad y estabilidad del sistema eléctrico, guiando la operación segura y estable del sistema con alta penetración de FNCER.

En la actualidad, las subastas se han convertido en un instrumento para impulsar el desarrollo de las energías renovables en el mundo; con base en la experiencia en distintos países, los interesados ajustan su entorno para realizar subastas que sean viables, minimizando el riesgo de que los proyectos no puedan llevarse a cabo debido a la incertidumbre respecto a los costos de los mismos, atrayendo así a inversionistas locales y extranjeros [10].

En [11], [12], [13] se estudian los casos de subastas de energías renovables en importantes economías emergentes del mundo como: Brasil, China e India; sumadas a estas grandes economías están Perú, Marruecos y Sudáfrica. Se destaca además en estos estudios, ventajas importantes como las reducciones de los precios de la energía provenientes de FNCER, estrategias adecuadas para la asignación de riesgos, planificación de la transmisión de la energía con las redes

existentes y construcción de políticas sólidas y confiables procurando la extensión de proyectos de energías renovables. Por otra parte, en [14] se investiga el problema de la subasta de energía de dos puntas en una micro red, que involucra tanto a compradores como a vendedores; se analizan las condiciones de equilibrio que se derivan de la anticipación de los posibles precios propuestos por los agentes que participan en la subasta y se sugiere un modelo de subasta modificada donde el beneficio del consumidor (bienestar social) se acerque arbitrariamente al que se puede lograr con los agentes tomadores de precios.

En [15] se analiza un mecanismo cuyo objetivo principal es darle prioridad a la contribución al bienestar social. Cada integrante es parte vital en las reglas de compensación que existen en el mercado, liquidación de pagos y comparación de transacciones. De acuerdo con esto, los pagos de transferencia a cada participante dependen directamente de su aportación al bienestar social en el mercado eléctrico; de esta manera, el mecanismo puede controlar el movimiento en el mercado de algunos participantes. Este mecanismo se analiza con información teórica y empírica del mercado eléctrico español. Los resultados permiten concluir que el mecanismo permite reducir el poder de mercado de los integrantes, mejorando así el beneficio social.

En [16] se realiza un estudio para un proceso conocido como licitación en la contratación de servicios de transporte de terceros, utilizando el principio de subasta combinatoria inversa. En ellas existen un solo comprador y múltiples vendedores; el comprador debe tomar decidir con que vendedor debe emparejarse y trazar las rutas de distribución y el volumen del producto subastado. Se presenta una implementación computacional del modelo matemático utilizando Python-Pyomo.

En Colombia se utiliza un modelo de subasta de sobre cerrado de dos puntas, en el que compradores y vendedores realizan ofertas; es decir, se adjudican contratos tanto a compradores (comercializadores del MEM) como a vendedores de energía (agentes generadores del MEM o propietarios o representantes comerciales de proyectos de generación). La oferta realizada por los compradores se entiende para un periodo de 24 horas, la cual debe indicar la cantidad máxima de energía a comprar en MWh-día y el precio al que está dispuesto a comprar en COP\$/kWh. La oferta realizada por los vendedores se presenta por bloques intradiarios como lo establece la Resolución 4-0590 del 2019 y cuyo precio se da en COP\$/kWh [5],[6].

Por último, en [17] se presenta la función objetivo y se enuncian las restricciones que se deben implementar en el modelo de optimización utilizado en la segunda subasta de energías renovables en Colombia; sin embargo, las restricciones no se encuentran formalizadas en un lenguaje matemático, ni se incluye un modelo computacional. Este trabajo complementa la referencia [17] en el sentido en que incluye las restricciones y se implementa computacionalmente el problema de optimización. Además, se validan los resultados con datos reales.

III. FORMULACIÓN MATEMÁTICA

La formulación matemática fue desarrollada con base en los documentos publicados por la UPME en su página oficial sobre la segunda subasta de contratos de largo plazo de energía en Colombia. En estos documentos se definen conceptualmente la función objetivo y las restricciones que gobiernan el modelo. También fue necesario el estudio detallado reglamentación para completar de manera adecuada la formulación matemática. El objetivo de la subasta es generar contratos de largo plazo entre los comercializadores (compradores) y generadores (vendedores), a través de la solución de un modelo de optimización en el que se busca maximizar los beneficios al consumidor que están dados por la ecuación (1). En este caso, PC_i es precio de la oferta de compra i (\$COP/kWh), ac_i es la asignación de energía de la oferta de compra i (kWh-día), PVj es el precio de la oferta de venta j (\$COP/kWh) y av_i es la asignación de energía de la oferta de venta j (kWh-bloque).

$$Max \left[\sum_{i} PC_{i} \cdot ac_{i} - \sum_{j} PV_{j} \cdot av_{j} \right]$$
 (1)

Esta función objetivo está sujeta a una serie de restricciones. La restricción dada por la ecuación (2) garantiza que la asignación de energía para la oferta de un comprador sea menor a una cantidad máxima. Donde CMA_i es la cantidad máxima de la oferta de compra i (kWh-día) y bc_i es la variable binaria que indica si la oferta de compra i es asignada (1) o no (0).

$$ac_i \le CMA_i \cdot bc_i; \ \forall i \in I$$
 (2)

Las ecuaciones (3) y (4) son restricciones que garantizan que la asignación de energía para la oferta de un vendedor esté acotada entre una cantidad máxima y mínima. En este caso, av_j es la asignación de energía de la oferta de venta j (kWh-bloque), VMA_j es la cantidad máxima de la oferta de venta j (kWh-bloque), VMI_j es la cantidad mínima de la oferta de venta j (kWh-bloque) y bv_j es una variable binaria que indica si la oferta de venta j es asignada (1) o no (0).

$$av_i \le VMA_i \cdot bv_i; \ \forall j \in J$$
 (3)

$$av_i \ge VMI_i \cdot bv_i; \ \forall j \in J$$
 (4)

La ecuación (5) garantiza que la suma de las asignaciones de compra y de venta de energía sean iguales, donde av_j es la asignación de energía de la oferta de venta j (kWh-bloque).

$$\sum_{i} ac_{i} = \sum_{j} av_{j} \tag{5}$$

La ecuación (6) establece que dos ofertas de venta de un mismo vendedor que tiene la condición de que estas se asignen simultáneamente, se mantenga. La simultaneidad solo permite dos posibles resultados. El primero es que ambas ofertas salgan asignadas y el segundo es que ninguna de las dos salga asignada. En este caso donde bv_k es una variable binaria que indica si la oferta de venta k es asignada (1) o no (0) y bv_{os} es una variable binaria simultánea con bv_k , teniendo a OS como el conjunto de ofertas de venta simultáneas.

$$bv_k = bv_{os}; \forall k \in OS$$
 (6)

La ecuación (7) establece que dos ofertas de venta de un mismo vendedor el cual tiene la condición de que estas sean excluyentes, se mantenga. La exclusión fija la condición de que una oferta solo puede ser asignada si la otra oferta no sale asignada, otro posible resultado es que ninguna salga asignada. En este caso, bv_k es la variable binaria que indica si la oferta de venta k es asignada (1) o no (0) y bv_{oe} es la variable binaria excluyente con bv_k , teniendo a OE como el conjunto de ofertas de venta excluyentes.

$$bv_k + bv_{oe} \le 1; \ \forall k \in OE$$
 (7)

La ecuación (8) garantiza que dos ofertas de venta de un mismo vendedor el cual tiene la condición de que la primera oferta sea dependiente de la segunda, se mantenga. La dependencia de ofertas permite tres posibles resultados: el primero es que para que la oferta 1 salga asignada la oferta 2 también debe serlo, el segundo es que la oferta 2 puede salir asignada sin la oferta 1 y el tercero es que ninguna de las dos ofertas se asigne. En este caso, bv_k es la variable binaria que indica si la oferta de venta k es asignada (1) o no (0) y bv_{od} es la variable binaria dependiente con bv_k , teniendo a OD como el conjunto de ofertas de venta dependientes.

$$bv_k - bv_{od} \le 0; \forall k \in OD$$
 (8)

La ecuación (9) condiciona que el promedio ponderado de venta sea menor al precio tope promedio definido por la CREG, con PV_j como el precio de la oferta de venta j (\$COP/kWh), av_j como la asignación de energía de la oferta de venta j (kWhbloque), PTP como el precio tope promedio (\$COP/kWh).

$$\sum_{j} PV_{j} \cdot av_{j} \le PTP \cdot \sum_{j} av_{j} \tag{9}$$

Finalmente, la ecuación (10), que es la última restricción del modelo de optimización, indica que el precio promedio ponderado de venta debe ser menor al precio de los compradores asignados, donde PV_j es el precio de la oferta de venta j, (\$COP/kWh), PC_i es precio de la oferta de compra i (\$COP/kWh), M es un número real positivo lo suficientemente grande como para relajar la restricción (BigM) y bc_i es la variable binaria que indica si la oferta de compra i es asignada (1) o no (0).

$$\sum_{i} PV_{j} \cdot av_{j} - \sum_{i} av_{j} \cdot PC_{i} \leq M \cdot (1 - bc_{i}); \tag{10}$$

Los índices I y J que aparecen en cada una de las 10 ecuaciones, hacen referencia a el conjunto de ofertas de compra y al conjunto de ofertas de vendedores, respectivamente.

IV. DETALLES DE LA IMPLEMENTACIÓN

Se programó la formulación matemática en Python usando la librería de Pyomo que es una serie de paquetes de códigos que permiten la formulación de problemas de optimización. Esto, combinado con la facilidad de programación en Python, impulsó en gran medida la implementación del modelo matemático en este entorno. Pyomo soporta una amplia variedad de tipos de problemas que incluyen programación lineal, no lineal, cuadrática, cuadrática de enteros mixtos, no lineal de enteros mixtos, etc. El modelo presentado en este artículo corresponde a un problema de programación lineal de enteros mixtos. Además de Pyomo, también es necesario la utilización de un *solver* u optimizador que es un programa capaz de resolver un problema de optimización, previamente formulado y acotado por medio de restricciones [18], [19]. Para la implementación del modelo matemático de la segunda subasta de contratos de largo plazo de energía en Colombia, se creó un algoritmo en Python en el que se formula el problema de optimización; se importan los datos del problema desde un archivo de Excel que contiene la información de las ofertas de los compradores y las ofertas de los vendedores participantes de la subasta, luego, se resuelve el problema a través de un solver y se exporta la solución al mismo archivo de Excel que contiene los datos del problema. Cabe agregar que las hojas de cálculo en el archivo de Excel necesarias para que el programa de Python funcione sin errores son: compradores, vendedores, asignación compradores, asignación vendedores y asignación prorrata, en total, cinco hojas. En la Tabla I y II se muestra la forma en la que los datos del problema se distribuyen en el archivo de Excel.

TABLA I DATOS DE ENTRADA DE LAS OFERTAS DE LOS COMPRADORES

Nombre	ID_oferta	Compra_max (kWh - día)	Precio (COP\$/kWh)	Orden Llegada
Comprador1	C001	500	200	1
Comprador2	C002	500	195	2
Comprador3	C003	500	190	3
Comprador4	C004	500	185	4
Comprador5	C005	500	180	5
Comprador6	C006	500	175	6
Comprador7	C007	500	170	7
Comprador8	C008	500	165	8
Comprador9	C009	500	160	9

En la Tabla I, para las ofertas de los compradores, se muestra el nombre del comprador, su *ID_oferta*, la compra máxima de energía, el precio al que están dispuestos a comprar y el orden de llegada de la oferta. Toda esta información debe ser consignada en la hoja de cálculo llamada *compradores*, del archivo de Excel.

Tabla II
DATOS DE ENTRADA DE LAS OFERTAS DE LOS VENDEDORES

Nombre	ID_oferta	Bloque	Venta_Max (kWh-bloque)	Precio (COP\$/kWh)
Vendedor1	V001	B1	1000	180
Vendedor1	V002	B2	1000	185
Vendedor1	V003	В3	1000	190
Vendedor2	V004	B1	1000	195
Vendedor3	V005	B1	1000	200
Vendedor3	V006	B2	1000	205
Vendedor3	V007	В3	1000	210

En la Tabla II se muestra el nombre del vendedor, su *ID_oferta*, el bloque intradiario, la venta máxima para ese bloque y el precio al cual se quiere vender la energía. Otros factores que se deben considerar son: la venta mínima de energía, si la oferta es simultánea, excluyente o dependiente, y el orden en que las ofertas llegan. Toda esta información debe ser escrita en la hoja de cálculo llamada *vendedores*, del archivo de Excel. Cabe aclarar que los bloques intradiarios dividen el día en tres partes: el bloque 1 considera las siete primeras horas del día, el bloque 2 las diez horas siguientes y el bloque 3 las últimas siete horas. Para mayor claridad, a continuación, se ilustra el diagrama de flujo de la implementación.

Fig 1. Diagrama de flujo del algoritmo desarrollado en Python

La función objetivo expresada en la ecuación (1) está implementada en el algoritmo desarrollado en Python y permite maximizar los beneficios del consumidor. Esto se logra a través de la variación de las asignaciones de energía, tanto para las ofertas de los compradores, como para las ofertas de los vendedores que son las únicas variables de dicha ecuación. Los precios de las ofertas de compra y de venta son fijos por lo que no se pueden modificar para maximizar aún más la función objetivo; por lo tanto, el resultado esperado de la solución del problema de optimización no es el valor de la función objetivo,

sino las asignaciones de energía hechas para los compradores y vendedores participantes de la subasta. Estas asignaciones son de dos tipos: la primera es una asignación en donde se conoce el total de energía asignada para las ofertas de los compradores y de los vendedores; y la segunda, es una asignación a prorrata en donde el total de energía asignada para la oferta de un comprador se distribuye entre las ofertas de los vendedores, de tal manera que todos los compradores con ofertas asignadas deben tener un contrato de energía con cada uno de los vendedores que tuvieron ofertas igualmente asignadas.

V. RESULTADOS

Para probar y validar la implementación en Python de la formulación matemática de la segunda subasta CLPE, se realizaron distintos ejemplos básicos que dan una idea general de la forma en que la subasta funciona. Además, se realiza una verificación final a través de un set de datos reales. En este caso se inicia con ejemplo sencillos para validar las restricciones del modelo y se termina con un ejemplo que reproduce los resultados reales de la asignación de la subasta.

A. Ejemplo 1

Las Tablas III y IV indican los datos de compradores y vendedores, respectivamente. Los datos se han dado de forma tal que se puede evidenciar el principio de funcionamiento de la subasta de forma trivial. En este caso, la solución puede ser comprendida fácilmente sin necesidad de programas o cálculos complejos.

TABLA III DATOS DE ENTRADA COMPRADORES

Nombre	ID_oferta	Compra máxima (kWh - día)	Precio (COP\$/kWh)	Orden de llegada
Comprador1	C001	1000	200	1
Comprador2	C002	1000	191	2
Comprador3	C003	1000	180	3

TABLA IV
DATOS DE ENTRADA VENDEDORES

Nombre	ID_oferta	Bloque	Venta máxima (kWh- bloque)	Venta mínima (kWh- bloque)	Precio (COP\$/kWh)
Vendedor1	V001	B1	5000	10	190

En la figura 1 se puede ver cómo las ofertas de los compradores y los vendedores se cruzan en 2000 kWh a un precio de venta de 190 COP\$/kWh. Este punto de cruce es donde se encuentra el mayor beneficio para el consumidor. Los compradores 1 y 2 pueden aplicar a esta oferta de venta; a ambos se les despachó el máximo valor de compra que ofertaron que corresponde a 1000 kWh-día. Por último, el comprador 3 no fue despachado dado que el precio de compra que este ofertó, fue inferior al precio de la única oferta de venta.

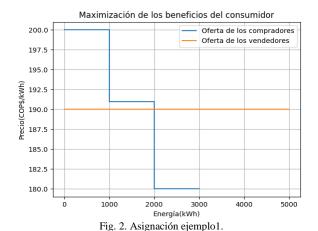


TABLA V RESULTADOS DE LA ASIGNACIÓN PARA VENDEDORES Y

 COMPRADORES

 Vendedor
 Asignación de venta (kWh-bloque)
 Comprador
 Asignación de compra (kWh-día)

 Vendedor1
 2000
 Comprador1
 1000

 Comprador2
 1000

 Comprador3
 0

B. Ejemplo 2

En este segundo ejemplo, se realizó una simulación para comprobar la restricción de simultaneidad expresada en la ecuación (6) del modelo, que fija la condición de que, cuando varias ofertas de un vendedor sean simultáneas, si una de las ofertas es asignada, las demás también deben serlo. Para este ejemplo se utilizaron los datos del vendedor indicados en la Tabla VI y se reutilizan los datos de la Tabla III para los compradores. Se debe tener en cuenta que en la Tabla VI se muestran las ofertas de venta de un solo vendedor y la venta mínima para todas las ofertas es de 10 kW-bloque. El orden de llegada es sucesivo en la posición de la tabla y no se tienen restricciones excluyentes ni dependientes.

TABLA VI DATOS DE ENTRADA VENDEDORES

Nombre	ID_oferta	Bloque	Venta máxima (kWh- bloque)	Precio (COP\$/kWh)	Simultánea
OfertaVenta1	V001	B1	500	189	V003
OfertaVenta2	V002	B2	2000	190	
OfertaVenta3	V003	В3	3000	195	

TABLA VII RESULTADOS DE LA ASIGNACIÓN PARA VENDEDORES Y COMPRADORES

Vendedor	Asignación de venta (kWh-bloque)	Comprador	Asignación de compra (kWh-día)
OfertaVenta1	500	Comprador1	1000
OfertaVenta2	1490	Comprador2	1000
OfertaVenta3	10	Comprador3	0

De la Tabla VII se puede observar que la oferta de venta 3 fue despachada con la asignación de venta mínima. Esto debido a la restricción de simultaneidad que tenía con la oferta de venta 1, ya que para que esta fuera despachada, también debe de serlo la oferta de venta 3, de manera que la oferta de venta 1 que tenía el precio de venta más bajo, fue despachada en su máximo de 500 kWh, seguida por la oferta de venta 2 con 1490 kWh, dejando a la oferta de venta 3 el restante de 10 kWh para completar la demanda de 2000 kWh. De esta forma, se cumplió con la restricción de simultaneidad, optimizando los beneficios del consumidor. Cabe agregar que el comprador 3 no fue despachado debido a que los precios de las ofertas de venta fueron mayores al precio que el comprador había ofertado.

C. Ejemplo 3

En este tercer ejemplo se realizó la simulación para validar la restricción de exclusión expresada en la ecuación (7) del modelo, que establece la condición de que cuando varias ofertas de un mismo vendedor sean excluyentes, si una de ellas es asignada, la otra no deberá serlo. En este ejemplo se utilizan los datos de las ofertas del vendedor de la Tabla VIII y se reutilizan los valores de la Tabla III para los datos de los compradores. Otra información a considerar es que las ofertas de venta en la Tabla VIII son de un mismo comprador y la venta mínima para cada oferta es de 10 kWh-bloque. El orden de llegada es sucesivo en la posición de la tabla y no se tienen restricciones simultáneas ni dependientes.

TABLA VIII DATOS DE ENTRADA VENDEDORES

Nombre	ID_oferta	Bloque	Venta máxima (kWh- bloque)	Precio (COP\$/kWh)	Excluyente
OfertaVenta1	V001	B1	1000	189	
OfertaVenta2	V002	B2	1000	190	V001
OfertaVenta3	V003	В3	3000	191	

TABLA IX
RESULTADOS DE LA ASIGNACIÓN PARA VENDEDORES Y
COMPRADORES

Vendedor	Asignación de venta (kWh-bloque)	Comprador	Asignación de compra (kWh-día)
OfertaVenta1	1000	Comprador1	1000
OfertaVenta2	0	Comprador2	1000
OfertaVenta3	1000	Comprador3	0

Como se puede observar en la Tabla IX, al ser asignada la oferta de venta 1, se restringe la asignación a la oferta de venta 2, por lo que el resto de la asignación recae en la oferta de venta 3, aun cuando este es el que tiene el precio de venta más alto; de esta forma se confirma que la restricción de exclusión se ha cumplido correctamente. También se puede notar que el comprador 3 no fue despachado debido a que los precios de las ofertas de venta superan el precio de oferta de este comprador.

D. Ejemplo 4

En este cuarto ejemplo se realizó la simulación para comprobar la restricción de dependencia expresada en la ecuación (8) del modelo, la cual garantiza que cuando varias ofertas de un mismo vendedor son dependientes, la oferta dependiente solo podrá ser asignada si la oferta relacionada también es asignada. Para este ejemplo, se usan los datos de los vendedores indicados en la Tabla X y se reutilizan los datos de compradores de la Tabla III. Se debe tener presente que en la Tabla X se muestran las ofertas de venta para dos vendedores, siendo las ofertas de venta 1, 2 y 4 del primer vendedor y la oferta de venta 3 del segundo vendedor; la venta mínima para todas las ofertas venta es de 10 kW-bloque; el orden de llegada es sucesivo en la posición de la tabla y no se tienen restricciones excluyentes ni simultáneas.

TABLA X
DATOS DE ENTRADA VENDEDORES

Nombre	ID_oferta	Bloque	Venta máxima (kWh- bloque)	Precio (COP\$/kWh)	Simultánea
OfertaVenta1	V001	B1	1000	189	V004
OfertaVenta2	V002	B2	1000	190	
OfertaVenta3	V003	B1	3000	191	
OfertaVenta4	V004	В3	1000	195	

TABLA XI RESULTADOS DE LA ASIGNACIÓN PARA VENDEDORES Y COMPRADORES

Vendedor	Asignación de venta (kWh-bloque)	Comprador	Asignación de compra (kWh-día)
Vendedor1	1000	Comprador1	1000
Vendedor2	990	Comprador2	1000
Vendedor3	0	Comprador3	0
Vendedor4	10	-	-

En la Tabla XI se puede observar que la oferta de venta 4 fue despachada con el mínimo. Esto debido a la restricción de dependencia que tiene con la oferta de venta 1, ya que al ser esta la oferta más baja y teniendo en cuenta que todos tenían un máximo de despacho igual, esta oferta es la primera en ser despachada, buscando maximizar los beneficios del consumidor. La oferta 4 es la más alta, pero cuenta con la dependencia de la oferta 1. Esto permitió que haya sido asignada con su mínimo; de esta forma se cumplió el despacho óptimo de los 2000 kWh. La oferta de venta 3 no fue despachada por que la demanda se suplió con las dos primeras ofertas y el mínimo de la oferta 4. El comprador 3 no fue

asignado ya que los precios de venta superaron su precio de oferta de compra.

E. Ejemplo 5

En este ejemplo se hizo la validación final del programa de optimización en Python. Se tiene un set de datos en formato de Excel que contiene información real de los compradores y de los vendedores de la segunda subasta de contratos de largo plazo de energía en Colombia. El set datos fue realizado a partir de un documento de Excel publicado por la UPME que contiene la información sobre los contratos de energía generados entre compradores y vendedores participantes de la subasta. El objetivo consiste en llegar a los mismas asignaciones y contratos de energía hechos por esta entidad que en total fueron 176 contratos.

El set de datos se construyó sumando la cantidad de energía asignada entre los distintos bloques intradiarios tanto para compradores como para vendedores. También se tuvo en cuenta los precios de la energía para cada oferta de venta y en cuanto a los precios de las ofertas compra, dado que el documento de Excel de la UPME no provee de ningún tipo de información relacionada a estos precios, fueron asumidos. Se debe asegurar es que los precios de las ofertas de compra tienen que ser mayores a los precios de las ofertas de venta. Tal razonamiento se sustenta en el hecho de que todas las ofertas de compra salieron asignadas, por lo que no es lógico pensar en un precio inferior al de las ofertas de venta. El set de datos y el documento de Excel publicado por la UPME se pueden encontrar en el siguiente GitHub [20].

En la figura 2 se muestra la maximización de los beneficios del consumidor, que busca tener la mayor área entre la curva de oferta de los compradores y la curva de oferta de los vendedores. Además, se puede observar que todas las ofertas de compra y de venta salieron asignadas, dado que no hubo ningún cruce entre estas dos curvas.

En la Tabla XII se muestran las asignaciones totales de energía para las ofertas de los compradores. Al analizar dichos resultados, se puede verificar que son exactamente iguales a los datos de entrada de la hoja de *compradores* del set de datos. Este resultado comprueba que el código implementado es exactamente igual al usado por la UPME.

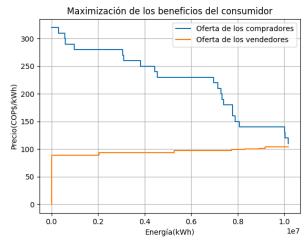


Fig. 3. Maximización de los beneficios del consumidor para el ejemplo con datos reales.

TABLA XII ASIGNACIÓN TOTAL DE ENERGIA A LAS OFERTAS DE LOS COMPRADORES

COMI RADORES	Asignación
Comprador	(kWh - día)
CELSIA TOLIMA S.A. E.S.P. CENTRAL HIDROELÉCTRICA DE CALDAS S.A.	306999,39
E.S.P.	262999,2
CENTRALES ELECTRICAS DE NARINO S.A. E.S.P.	30999,23
CENTRALES ELECTRICAS DEL NORTE DE SANTANDER S.A. E.S.P.	377999,26
CODENSA S.A. E.S.P. COMPANIA DE ELECTRICIDAD DE TULUA S.A.	2073999,2
E.S.P.	46999,33
ECOPETROL ENERGÍA S.A.S. E.S.P.	719999,47
ELECTRIFICADORA DE SANTANDER S.A. E.S.P.	627999,23
ELECTRIFICADORA DEL CAQUETA S.A. E.S.P.	95999,31
ELECTRIFICADORA DEL CARIBE S.A. E.S. P	2434999,2
ELECTRIFICADORA DEL HUILA S.A. E.S.P.	173998,66
ELECTRIFICADORA DEL META S.A. E.S.P.	134997,63
EMPRESA DE ENERGÍA DE BOYACA S.A. E.S.P.	48999,33
EMPRESA DE ENERGIA DE PEREIRA S.A. E.S.P.	63997,8
EMPRESA DE ENERGÍA DEL PACÍFICO S.A. E.S.P.	368999,48
EMPRESA DE ENERGÍA DEL PUTUMAYO S.A. E.S.P.	8999,37
EMPRESA DE ENERGÍA DEL QUINDIO S.A. E.S.P.	115999,24
EMPRESAS MUNICIPALES DE CALI E.I.C.E. E.S.P.	189998,62
EMPRESAS PUBLICAS DE MEDELLIN E.S.P.	1936999,3
PROFESIONALES EN ENERGÍA S.A E.S.P.	27998
RUITOQUE S.A. E.S.P.	119997,7
VATIA S.A. E.S.P.	15999,22

Las Tablas XIII, XIV y XV muestran las asignaciones totales de energía para las ofertas de los vendedores, siendo la Tabla XIII la que considera el bloque intradiario número 1, la Tabla XIV el bloque intradiario número 2 y la Tabla XV el bloque intradiario número 3. Al igual que con las ofertas de los compradores, si se analizan estos resultados, es fácil darse cuenta que son exactamente iguales a los datos de entrada que aparecen en la hoja de *vendedores* del set de datos. La razón principal de que tanto las asignaciones de los compradores como las de los vendedores sean idénticas a los datos de entrada que están en el set de datos, es que si se optimizan datos que ya han sido previamente optimizados, el resultado será el mismo. Este resultado se constituye como la principal verificación del código.

TABLA XIII ASIGNACIÓN TOTAL DE ENERGÍA A LAS OFERTAS DEL BLOQUE 1 PARA LOS VENDEDORES

Vendedor	Asignación (kWh - bloque)
EMPRESA DE ENERGÍA DEL PACIFICO S.A. E.S.P. (Eólico Acacia 2)	80499,02
EMPRESA DE ENERGÍA DEL PACIFICO S.A. E.S.P. (Eólico Camelia)	24498,81
EOLOS ENERGÍA S.A.S. E.S.P.(BETA)	881998,67
JEMEIWAA KATS.A.S. E.S.P (Parque Eólico Casa Eléctrica de 180 MW)	1081498,7
TRINA SOLAR GENERADOR COLOMBIA - CAMPANO S.A.S E.S.P. (PROYECTO PARQUE SOLAR EL CAMPANO)	0
TRINA SOLAR GENERADOR COLOMBIA - CARTAGO S.A.S. E.S.P. (CSF CONTINUA CARTAGO 99 MW)	0
TRINA SOLAR GENERADOR COLOMBIA - SAN FELIPE S.A.S E.S.P. (CSF CONTINUA SAN FELIPE 90 MW)	0
VIENTOS DEL NORTE S.A.S E.S.P(ALPHA)	685998,95

TABLA XIV ASIGNACION TOTAL DE ENERGIA A LAS OFERTAS DEL BLOQUE 2 PARA LOS VENDEDORES

Vendedor	Asignación (kWh - bloque)
EMPRESA DE ENERGÍA DEL PACIFICO S.A. E.S.P. (Eólico Acacia 2)	114998,6
EMPRESA DE ENERGÍA DEL PACIFICO S.A. E.S.P. (Eólico Camelia)	959998,3
EOLOS ENERGÍA S.A.S. E.S.P.(BETA)	1514998,5
JEMEIWAA KATS.A.S. E.S.P (Parque Eólico Casa Eléctrica de 180 MW)	1379998,2
TRINA SOLAR GENERADOR COLOMBIA - CAMPANO S.A.S E.S.P. (PROYECTO PARQUE SOLAR EL CAMPANO)	596498,2
TRINA SOLAR GENERADOR COLOMBIA - CARTAGO S.A.S. E.S.P. (CSF CONTINUA CARTAGO 99 MW)	614998,6
TRINA SOLAR GENERADOR COLOMBIA - SAN FELIPE S.A.S E.S.P. (CSF CONTINUA SAN FELIPE 90 MW)	559998,4
VIENTOS DEL NORTE S.A.S E.S.P(ALPHA)	1164998,6

TABLA XV ASIGNACIÓN TOTAL DE ENERGIA A LAS OFERTAS DEL BLOQUE 3 PARA LOS VENDEDORES

FARA LOS VENDEDORES	
Vendedor	Asignación (kWh – bloque)
EMPRESA DE ENERGÍA DEL PACIFICO S.A. E.S.P. (Eólico Acacia 2)	80499,02
EMPRESA DE ENERGÍA DEL PACIFICO S.A. E.S.P. (Eólico Camelia)	24498,81
EOLOS ENERGÍA S.A.S. E.S.P.(BETA)	230998,81
JEMEIWAA KATS.A.S. E.S.P (Parque Eólico Casa Eléctrica de 180 MW)	0
TRINA SOLAR GENERADOR COLOMBIA - CAMPANO S.A.S E.S.P. (PROYECTO PARQUE SOLAR EL CAMPANO)	0
TRINA SOLAR GENERADOR COLOMBIA - CARTAGO S.A.S. E.S.P. (CSF CONTINUA CARTAGO 99 MW)	0
TRINA SOLAR GENERADOR COLOMBIA - SAN FELIPE S.A.S E.S.P. (CSF CONTINUA SAN FELIPE 90 MW)	0
VIENTOS DEL NORTE S.A.S E.S.P(ALPHA)	188998,95

Hasta el momento, con las asignaciones totales, se sabe la cantidad de energía asignada tanto a las ofertas de los compradores como a las ofertas de los vendedores. Sin embargo, esta primera asignación no da ninguna información respecto a la forma de cómo se harán las transacciones de energía entre los compradores y vendedores; por tal motivo es necesario hacer el segundo tipo de asignación que es una asignación a prorrata, en donde se busca crear contratos de largo plazo de energía y que para esta subasta se hicieron 176 contratos, un número bastante alto dado que cada comprador debe tener un contrato de energía con cada uno de los vendedores. Una vez hecha la asignación a prorrata, se obtienen los siguientes resultados para los comercializadores CELSIA TOLIMA S.A. E.S.P y CODENSA S.A. E.S.P que se ilustran en las figuras 3 y 4. Cabe aclarar que solo se escogieron a estos dos compradores para evitar saturar el artículo, ya que con dos ejemplos se comunica perfectamente la idea principal tras los resultados obtenidos.

Las figuras 3 y 4 ilustran los contratos hechos por las comercializadoras CELSIA TOLIMA S.A. E.S.P. y CODENSA S.A. E.S.P. con cada uno de los generadores (vendedores). En estas se muestran las asignaciones a prorrata hechas por el programa en Python. Estos resultados son exactamente iguales a los datos reales de la subasta por lo que se valida nuevamente el correcto funcionamiento del programa. Para validar y garantizar la reproducibilidad de los resultados, el programa desarrollado en Python que resuelve el modelo matemático y un archivo de Excel que contiene la comparación completa de todos los contratos (reales vs generados por Python) están disponibles en el siguiente GitHub [21].

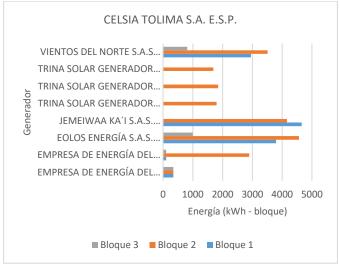


Fig. 4. Asignación a prorrata mediante el código de CELSIA TOLIMA S.A. E.S.P.

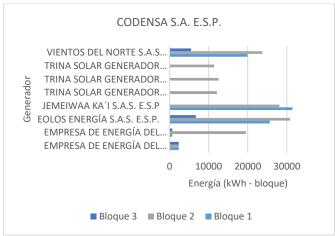


Fig. 5. Asignación a prorrata mediante el código de CODENSA S.A. E.S.P.

VI. CONCLUSIONES

En este artículo se detalla el desarrollo e implementación de un algoritmo en Python, que permite calcular la asignación de la segunda subasta de contratos de largo plazo de energía en Colombia. El algoritmo utiliza la librería de optimización Pyomo y contiene la formulación matemática completa utilizada en la subasta de acuerdo con las condiciones descritas por la UPME en sus documentos públicos.

Se llevaron a cabo 5 ejemplos para validar la efectividad del algoritmo. En particular el último ejemplo utilizó un set de datos real de la subasta y reprodujo fielmente el resultado de esta, evidenciando la validez del algoritmo propuesto.

Este trabajo de investigación puede ser utilizado para futuros estudios del mercado de la energía en Colombia, ya que hace pública la formulación del proceso de adjudicación de subastas de renovables. Para futuros trabajos se utilizará el código desarrollado para realizar un análisis del beneficio del consumidor obtenido de este modelo y proponer mejoras al algoritmo usado actualmente.

AGRADECIMIENTOS

Los autores agradecen el Programa de Sostenibilidad de la Universidad de Antioquia por el apoyo en el desarrollo de este trabajo.

REFERENCIAS

- [1] J. Gutierrez, L. J. Zuluaga, J. C. Giraldo, and K. Grosso, "Renewable Energy Auctions in Colombia: Lessons Learned in Energy Policy Design," in 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), Dec. 2019, pp. 1–5, doi: 10.1109/FISECIGRE48012.2019.8985013.
- [2] I. D. Marquez, D. M. Puyo, M. L. Robledo, and S. S. Valderrama, "Transición energética: un legado para el presente y el futuro de Colombia". Bogotá: Ministerio de Minas y Energía, 2021.
- [3] J. A. Hernandez, C. A. Arredondo, and D. J. Rodriguez, "Analysis of the law for the integration of non-conventional renewable energy sources (law 1715 of 2014) and its complementary decrees in Colombia," in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Jun. 2019, pp. 1695–1700, doi: 10.1109/PVSC40753.2019.8981233.
- [4] A. Carrasquilla Borrero, "Proyecto de Ley. Por la cual se expide el Plan Nacional de Desarrollo 2018 – 2022 "Pacto por Colombia, Pacto por la Equidad"," p. 300, 2018.
- [5] I. Renewable Energy Agency and U. States Agency for International Development, Renewable energy auctions in Colombia: Context, design and results. 2021.
- [6] Ministerio de Minas y Energía, Resolución Número 4-0590. Colombia: 2019.
- [7] A. Harrouz, D. Belatrache, K. Boulal, I. Colak, and K. Kayisli, "Social Acceptance of Renewable Energy dedicated to Electric Production," in 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Sep. 2020, pp. 283– 288, doi: 10.1109/ICRERA49962.2020.9242904.
- [8] R. Toma and M. Gavrilas, "The impact on voltage stability of the integration of renewable energy sources into the electricity grids," in 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), Oct. 2014, pp. 1051–1054, doi: 10.1109/ICEPE.2014.6970069.
- [9] Y. Zhang, Q. Zhou, L. Zhao, Y. Ma, Q. Lv, and P. Gao, "Dynamic Reactive Power Configuration of High Penetration Renewable Energy Grid Based on Transient Stability Probability Assessment," in 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Oct. 2020, pp. 3801–3805, doi: 10.1109/EI250167.2020.9346594.
- [10] J. Kreiss, K. M. Ehrhart, and M. C. Haufe, "Appropriate design of auctions for renewable energy support – Prequalifications and penalties," *Energy Policy*, vol. 101, pp. 512–520, Feb. 2017, doi: 10.1016/j.enpol.2016.11.007.
- [11] L. Barroso, Y. Haffejee, T. Laabi, N. Saimi, and R. Mitma Ramirez, "Renewable Energy Auctions in Developing Countries," *Irena*, pp. 1–52, 2013, [Online]. Available: www.irena.org/Publications.
- [12] G. E. Azuela, L. Barroso, A. Khanna, X. Wang, Y. Wu, and G. Cunha, "Performance of Renewable Energy Auctions," *Policy Res. Work. Pap.*, no. October, 2014.
- [13] D. Toke, "Renewable energy auctions and tenders: How good are they?," Int. J. Sustain. Energy Plan. Manag., vol. 8, pp. 43–56, 2015, doi: 10.5278/ijsepm.2015.8.5.
- [14] M. N. Faqiry and S. Das, "Double-Sided Energy Auction in Microgrid: Equilibrium under Price Anticipation," *IEEE Access*, vol. 4, pp. 3794–3805, 2016, doi: 10.1109/ACCESS.2016.2591912.
- [15] X. Zou, "Double-sided auction mechanism design in electricity based on maximizing social welfare," *Energy Policy*, vol. 37, no. 11, pp. 4231–4239, Nov. 2009, doi: 10.1016/j.enpol.2009.05.019.
- [16] J. Kiser, "Developing Optimization Techniques for Logistical Tendering Using Reverse Combinatorial Auctions", East Tenessee State University, USA, 2018.
- [17] "Formulación Matemática Del Modelo De Subasta De Renovables En Colombia - Versión 4.2." Ministerio de Minas y Energía, UPME, Rightside S.A.S, Bogotá, pp. 1–4, 2019.
- [18] W. E. Hart et al., Pyomo Optimization Modeling in Python, vol.

- 67. Cham: Springer International Publishing, 2017.
- [19] W. E. Hart, J.-P. Watson, and D. L. Woodruff, "Pyomo: modeling and solving mathematical programs in Python," *Math. Program. Comput.*, vol. 3, no. 3, p. 219, 2011, doi: 10.1007/s12532-011-0026-8
- [20] Set de Datos: Python-Pyomo based algorithm of the adjudication process of renewable auctions in Colombia. Available online: https://github.com/fabian9928/set-de-datos.git (accessed on 07 June 2021).
- [21] Programa: Set de Datos: Python-Pyomo based algorithm of the adjudication process of renewable auctions in Colombia. Available online: https://github.com/fabian9928/Modelo-matematico-subasta-2-CLPE.git (accessed on 07 June 2021).

Sebastian Moisés Chica Medrano. Received his Electrical Engineering degree from Universidad de Antioquia (2022). He is currently working at GSV INGENIERIA as a service engineer, also working on projects with renewable energies biomass and solar photovoltaic. His interests include electrical machines and high voltage.

ORCID: https://orcid.org/0000-0001-6696-2403.

César Augusto Araque Giraldo. He received his Electrical Engineering degree from Universidad de Antioquia in 2022. Currently, he is working in Ingema S.A, Medellín, Colombia, on development of electrical infrastructure projects and design of electrical substations in medium and high voltage. His major research interests are electrical power systems, renewable energies and primary substation design.

ORCID: https://orcid.org/0000-0002-6238-0163.

Fabian Alberto Mendoza Villalba. He received his Electrical Engineering degree from Universidad de Antioquia in 2022. Currently, he is working in Ingelectrica, Sopetran, Colombia, on design and construction of electricity distribution networks. His major research interests are renewable energies, energy market, substations and power systems.

ORCID: https://orcid.org/0000-0001-5259-2368.

Carlos Eduardo Salazar Vanegas. He received his undergraduate degree from the Universidad de Antioquia in 2022. Currently, he is working in GSV Ingeniería, Itagui, Colombia, on renewable energies and electrical studies. His major research interests are electrical power systems, protections, and renewable energies.

ORCID: https://orcid.org/0000-0002-1578-3250.

Oscar Mauricio Carreño Rincón. He received his Electrical Engineering degree from Universidad de Antioquia (1997), Master's degree in industrial engineering from Universidad de los Andes (2007) sub-area Optimization and statistic. He has worked as an Economic Dispatch engineering and Energy Planning engineering in XM S.A. E.S.P (Colombian ISO) since 1999 to 2013. During this time, he has led the most important Optimization Developments such as, DRP (Day ahead) and DHT project (Hydrothermal Dispatch). In 2013 he founded RightSide S.A.S company. (www.rightside.app) of which is currently his CEO.

ORCID: https://orcid.org/0000-0003-1581-9476

Jesús María López-Lezama. He received his B.Sc. and M.Sc. degrees from the Universidad Nacional de Colombia in 2001 and 2006, respectively. He also received his Ph.D. degree at the Universidade Estadual Paulista (UNESP), SP, Brazil in 2011. Currently he is an associate Professor at Universidad de Antioquia, Medellín, Colombia. His major research interests are planning and operation of electrical power systems and distributed generation.

ORCID: https://orcid.org/0000-0002-2369-6173