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ABSTRACT
It is quite common in cross-sectional convergence analyses that data exhibit spatial dependence. Within the
literature adopting the distribution dynamics approach, authors typically opt for spatial prefiltering. We
follow an alternative route and propose a procedure based on an estimate of the mean function of a
conditional density for which we develop a two-stage non-parametric estimator that allows for spatial
dependence estimated via a spline estimator of the spatial correlation function. The finite sample
performance of this estimator is assessed via Monte Carlo simulations. We apply the procedure that
incorporates the proposed spatial non-parametric estimator to data on per capita personal income in US
states and metropolitan statistical areas.
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1. INTRODUCTION

Economic analyses are increasingly focusing on issues related to the spatial dimension of the pro-
blem under investigation. The importance of taking spatial dependence into account has clearly
emerged since the seminal contributions of Paelinck and Klaassen (1979), Bartels and Ketellap-
per (1979) and Bennett (1979), which have stimulated a vast literature offering various tools to
detect and treat spatial effects in empirical analyses.

The spatial dimension is certainly a relevant characteristic when studying convergence
dynamics in per capita income across spatial units. In the traditional literature on convergence
based on the regression approach there is now full awareness that neglecting spatial dependence
may lead to biased and inefficient estimates. Drawing from the spatial econometrics literature, it
is therefore common practice to resort to a spatial weight matrix, typically denoted byW , as a way
to provide a parsimonious parametrization of interdependence relations between observations
(LeSage & Pace, 2009). However, as recently emphasized by Stakhovych and Bijmolt (2009)
and Corrado and Fingleton (2016), the choice of the spatial weights matrix is quite crucial as
a misspecified W can bias the findings.

The issue has, however, received far less attention within the literature adopting the distri-
bution dynamics approach. Within this approach, which analyses the evolution of the cross-sec-
tional distribution of income by means of a conditional density function, also called stochastic
kernel, the issue is tackled by adopting a spatial filtering technique involving an exogenously
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assumed W before proceeding with the estimates. For example, Basile (2010) fits a spatial auto-
regressive model and employs residuals for subsequent analysis, while Fischer and Stumpner
(2008) and Maza et al. (2010) employ a filtering approach based on the local spatial autocorrela-
tion statistic Gi developed by Getis and Ord (1992). Clearly, however, pre-filtering is subject to
the same critical remarks emphasized above. Particularly when knowledge of the spatial structure
of the phenomenon under study is lacking and the risk of a misspecifiedW is high, we think this
practice should be avoided: rather than filtering it away, information on spatial dependence could
be extracted non-parametrically from the data and then included in the estimation process.

In this paper, we therefore propose a non-parametric technique that explicitly allows for
spatial dependence in the distribution dynamics analysis, thus eliminating the need for pre-filter-
ing while retaining statistical efficiency properties. As will be clarified in the following sections,
the conditional density is commonly estimated using the kernel density estimator for which
Hyndman et al. (1996) develop an adjustment procedure to deal with the so-called mean-bias
issue. Here, we move from this idea by enriching the estimate of the conditional density with
an estimate of the mean function that, in addition to Hyndman et al.’s original suggestion, allows
for spatial dependence. To achieve this aim, we develop a two-step non-parametric regression
estimator where the spatial dependence structure of the error terms is not a priori assumed;
this piece of information is instead drawn from an estimate of the errors’ spatial covariance matrix
via a continuous non-parametric positive semi-definite consistent estimator of the spatial corre-
lation function. In practical terms, the adopted non-parametric estimate of the spatial covariance
frees the researcher from the need to assume that the structure of the interaction between spatial
units is known.

From a methodological point of view, by proposing the spatial non-parametric (SNP) esti-
mator we contribute to the existing literature in two aspects. First, we develop a general method
for carrying out non-parametric regression that allows for spatial dependence within a fully non-
parametric setting. Second, by incorporating SNP into Hyndman et al.’s mean bias adjustment
procedure, we propose a tool for the analysis of distribution dynamics when data exhibit spatial
dependence that is alternative to pre-filtering and eliminates the need for to be known to improve
the efficiency of the estimates.

Finally, through this novel version of distribution dynamics approach, we contribute to the
empirical literature by reconsidering the evidence on convergence dynamics across regional econ-
omies in the United States and shed some light on the consequences of neglecting spatial depen-
dence. In particular, we analyse convergence between 1975 and 2008 using data on per capita
personal income at two different spatial scales: a broader scale (48 conterminous states, excluding
the District of Columbia) and a finer scale (380 metropolitan statistical areas –MSAs). In all, we
find that both states and MSAs are characterized by a tendency towards convergence. However,
the estimated extent and speed characterizing the convergence process depends on whether the
presence of spatial dependence is allowed for.

The remainder of the paper is structured as follows. Section 2 recalls the distribution
dynamics approach. Section 3 introduces the SNP estimator. Section 4 presents the application
on per capita personal income data. Section 5 concludes.

2. DISTRIBUTION DYNAMICS

Distribution dynamics (Quah, 1993a, 1993b, 1996a, 1996b, 1997) is an approach to the analysis
of convergence whose distinctive feature is to examine directly the evolution of the cross-sec-
tional distribution of per capita income.1

In simple terms, consider a group of n economies and indicate with Y j,t , defined on R, per
capita personal income of economy j at time (relative to the group average). Next, denote
with Ft(y) its distribution at time t and, assuming it admits a density, indicate this density
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with ft(y). Finally, assume that the dynamics of Ft(y), or equivalently of, can be modelled as a first
order process. As a result, the density prevailing at some future time t + s is given by:

ft+s(y
′) =

∫1
−1

gs(y
′|y)ft(y)dy, (1)

where, gs(y
′|y) is the s-period ahead density of y′ conditional on y. Specifically, the conditional

density function (1) maps the density at time into the density at time t + s and therefore provides
information both on the evolution of the external shape of the distribution and on intra-distribu-
tional dynamics between time t and time t + s.

A non-parametric (kernel) estimator of the conditional density in equation (1) can be
obtained by dividing the estimator of the joint probability density function ft,t+s(y, y

′) by the esti-
mator of the marginal probability density function ft(y):

ĝs(y
′|y) = f̂ t,t+s(y, y

′)

f̂ t(y)
(2)

It is possible2 to rewrite (2) as:

ĝs(y
′|y) =

∑n
j=1

wj(y)Kb(y
′ − Y j,t+s) (3)

where:

wj(y) = Ka(y− Y j,t)∑n
j=1

Ka(y− Y j,t)
(4)

a and b are bandwidth parameters controlling the smoothness,Kb(u) = b−1K (u/b) is a scaled ker-
nel function, K (·) is assumed to be a real value, integrable and non-negative even function3.
Moreover, assuming that the conditional mean E(y′|y) = M(y) exists, this can be estimated
with the mean of the conditional density estimator in (3):

M̂(y) =
∫
y′ĝs(y′|y)dy′ =

∑n
j=1

wj(y)Y j,t+s (5)

As further highlighted by Hyndman et al. (1996), the estimator in (5) is equivalent to the
local constant regression estimator (LCE) of Nadaraya (1964) and Watson (1964) that is
known to be affected by a large bias that is carried onto the corresponding estimator of the con-
ditional density function. This bias, deriving from the estimated mean, is called mean-bias of a
conditional density estimator.

As an alternative to reduce the mean-bias, Hyndman et al. (1996) propose a new class of con-
ditional density estimators, defined as:

ĝ∗(y′|y) =
∑n
j=1

wj(y)Kb(y
′ − Y ∗

j,t+s(y)) (6)

where Y ∗
j,t+s(y) = M̂(y)+ ej −

∑n
i=1 wi(y)ei and, practically, ei = Yi,t+s − M̂(Yi,t), i = 1, . . . , n.

Expression (6) suggests that the mean-bias can be reduced by employing a non-parametric
regression estimator with better bias properties than LCE. One such estimator is, for instance,
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the local linear estimator (LLE) (Cleveland, 1979; Fan & Gijbels, 1996):

M̂(y) =

∑n
j=1

Ka(y− Y j,t)Y j,t+s

∑n
j=1

Ka(y− Y j,t)
+ (Y j,t − �Yw)

∑n
j=1

Ka(y− Y j,t)(Y j,t − �Yw)Y j,t+s

∑n
j=1

Ka(y− Y j,t)(Y j,t − �Xw)
2

(7)

where:

�Yw =

∑n
j=1

Ka(y− Y j,t)Y j,t

∑n
j=1

Ka(y− Y j,t)

This procedure is called mean-bias adjustment and, within a distribution dynamics setting, it
effectively consists of an LLE estimate of the regression of per capita income at time t + s on
per capita income at time t. Since in empirical analyses of cross-sectional convergence units
are unlikely to be independent, to improve the statistical properties of the estimator adopted
in the mean-bias adjustment procedure and, to further increase the quality of the overall distri-
bution analysis, spatial dependence should be handled. To tackle the issue without resorting to
pre-filtering, we develop a spatially aware two-step procedure for non-parametric regression. We
consider the very general case in which spatial dependence may arise from unmeasured variables
that are related through space, aggregation of spatially correlated variables and systematic
measurement error.4

3. NON-PARAMETRIC REGRESSION FOR SPATIALLY DEPENDENT DATA

3.1. Introduction
Non-parametric regression has now become quite a standard statistical tool when the functional
form is possibly of an unknown type. Similarly to the parametric regression environment, non-
parametric regression estimators generally assume i.i.d. error terms. In case of lack of indepen-
dence, Robinson (1987, 2008, 2011) derives consistency and asymptotic distribution theory for
the LCE in relation to various kinds of dependent data. Other authors (e.g., Lin &Carroll, 2000;
Ruckstuhl et al., 2000; Wang, 2003; Xiao et al., 2003) study possible extensions of the non-para-
metric regression to a non-i.i.d. errors setting, where errors can be correlated and heteroskedastic.
In all cases, however, a parametric structure for the dependence must be assumed beforehand and
this might represent a serious limitation since, as highlighted by Martins-Filho and Yao (2009),
most asymptotic results for the LCE and LLE in case of dependent errors are unfortunately con-
tingent on the assumptions made on the covariance structure and it is not possible to generalize
their application to different parametric structures. Stimulated by this lack of generality, Mar-
tins-Filho and Yao (2009) focus on estimators that, by incorporating the information contained
in the error covariance structure, outperform, both asymptotically and in finite samples, tra-
ditional non-parametric ones. In particular, they propose a two-step procedure for the LLE in
non-parametric regression under a general parametric error covariance and provide sufficient
conditions for the asymptotic normality and efficiency relative to the traditional LLE. Along
these lines, in what follows we describe a new two-step non-parametric regression estimator
for spatially dependent data that has the advantage of not requiring a priori specification of
the spatial covariance structure that, instead, is estimated non-parametrically.
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3.2. Two-stage non-parametric regression
As emphasized at the end of Section 2, the procedure that is needed to improve the efficacy of the
mean-bias adjustment by Hyndman et al. (1996) within a distribution dynamics analysis is a non-
parametric (auto)regression for spatially dependent data. Note that the procedure we propose
here is in fact more general than what strictly required for the mean-bias adjustment as it is
exploitable on all occasions in which spatial dependence may represent a problem for a non-para-
metric regression analysis. Because of this generality, in this section we will adopt the common
notation for univariate regressions where is the dependent variable and X is the independent one.

Let us consider the following non-parametric regression:

Y = M(X )+ u (8)

where the error term u is such that E(ui) = 0, ∀i = 1, . . . , n and E(uiuj) = s2rij is the generic
element of the autocovariance matrix V , so that rij is the ij-th element of the spatial autocorrela-
tion matrixV. A commonly adopted approach (e.g., Anselin, 1988) to express the elements of V
is through a direct, parsimonious representation of the dependence as some function of the
distance separating sites, si and sj . In such an instance, the spatial autocorrelation function is
defined by:

rij = r(dij , f) (9)

where dij is the distance between sites i and j, r( · ) is a decaying function such that ∂r/∂d , 0,
f [ F as a p× 1 vector of parameters in an open subsetF of Rp, |r(dij , f)| ≤ 1. The hypothesis
underpinning expression (9) is that data come from an isotropic second-order stationary process,5

that is, the spatial autocorrelation function does not change through space, and it only depends
on distance and not direction. This guarantees that the spatial autocorrelation matrix V is posi-
tive semi-definite and composed by elements (rij), obtained evaluating the function r( · ) at
observed distances across sites such that rii = 1.6 Note that this framework is analogous to
assumptions A3 and A6 in Martins-Filho and Yao (2009), who prove in theorems 2–4 the
asymptotic normality of LLE in case of spatial dependence and the gain in efficiency character-
izing a two-step LLE estimator that incorporates the information contained in the error covari-
ance structure.

Given this set-up, to estimate M(X ) we propose the following procedure consisting of a
sequence of steps:
(1) Pilot fit: a pilot estimate ofM(X ) is obtained with an LLE estimator where the bandwidth,

here denoted by h, is chosen following an optimal rule. The output of this step is the
residuals set û = Y − M̂(X ).

(2) Non-parametric covariance matrix estimation: by means of a non-parametric estimate of the
spatial autocorrelation function (presented in the next subsection) the spatial covariance
matrix of u is consistently estimated through the residuals û coming from the first step.
We denote this estimate by V̂ .

(3) Final fit: the procedure is fed with the information obtained from the estimate of the spatial
covariance matrix V̂ by running a modified regression where Y is replaced by a feasible
quantity Ẑ which is Ẑ = M̂(X )+ L̂−1û, where L is obtained by taking the Cholevsky
decomposition of V̂ and M̂(X ) and û derive from the pilot fit. At this stage, the error
terms e = L̂−1û are spherical by construction and the final estimator is the LLE of the
relationship of the new (feasible) regressand Ẑ on X .

In other words, in its final step the procedure exploits the information contained in the error
term correlation structure arising from the pilot fit, eventually yielding spherical errors. As for the
bandwidths, note that undersmoothing in the pilot stage is required with respect to the modified
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regression. This is customary in the literature on two-stage non-parametric regression to avoid
bias piling up (Martins-Filho & Yao, 2009).

3.3. Non-parametric estimation of the spatial covariance matrix
As said just above, in step 1 we need to get a consistent estimate of the residuals spatial covariance
matrix; we derive V̂ by means of a non-parametric estimate of the spatial correlation function by
Bjørnstad and Falck (2001).

More in detail, Bjørnstad and Falck (2001) propose a continuous non-parametric positive
semi-definite consistent estimator of the spatial correlation function. They build on the seminal
work of Hall and Patil (1994) who develop the following kernel estimator of the spatial autocor-
relation function for a stationary random field observed at points which are not assumed to be on
a grid or lattice:7

r̃(dij) =

∑n
i=1

∑n
j=1

Ka(dij)r̂ij

∑n
i=1

∑n
j=1

Ka(dij)
(10)

where Ka is a kernel function with bandwidth a and r̂ij is:

r̂ij =
(zi − �z)(zj − �z)

1/n
∑n
l=1

(zl − �z)2
(11)

where z is a generic variable, �z = 1/nSn
l=1 zl is its sample mean and dij are observed distances

between sites i and j. Hall and Patil also demonstrate that the estimator in (10) can be tuned
(by tuning a) so that r̃( · ) � r( · ) as n � 1 for any smooth functional form of r(·), that is
with continuous first and second derivatives.

Starting from the estimator in (10), Bjørnstad and Falck (2001) express the kernel function in
the form of a cubic B-spline.8 The advantage in using the B-spline is in that this smoother adapts
better to irregularly spaced data and produces a consistent estimate of the correlation function
(Hyndman & Wand, 1997). Moreover, it has been shown that fixing the degree of smoothing
using cross validation (see Green & Silverman, 1994; and Hastie et al., 2009, for more details)
guarantees results with asymptotic properties.

Finally, since the estimator of r( · ) must be not only pointwise consistent but also positive
semi-definite, which is not necessarily guaranteed by the estimator r̃( · ) in equation (10), Bjørnstad
and Falck (2001) resort to a Fourier filter method (Hall et al., 1994). Based on Bochner’s theorem,
this method works as follows: firstly the Fourier transform of r̃( · ) is calculated, then all negative
excursions of the transformed function are set to zero and, last, a non-parametric positive semi-
definite estimate of the spatial correlation function is obtained by back-transformation.

3.4. Monte Carlo study
We conduct an extensive Monte Carlo experiment9 to show the finite sample performance of our
procedure, denoted by SNP, in comparison with a traditional LLE regression that ignores the
presence of spatial dependence, denoted by NP. The purpose therefore is to investigate the effec-
tive improvement in regression estimation results when spatial dependence is taken into account.

The Monte Carlo experiment is carried out considering the following non-linear
specifications:

(A) M(X ) = sin(5pX )
(B) M(X ) = 2+ sin(7.1(X − 3.2))
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(C) M(X ) = 1− 48X + 218X 2 − 315X 3 + 145X 4

(D) M(X ) = 10exp(−10X )
(E) M(X ) = (−1+ 2X )+ 0.95exp(−40(−1+ 2X )2)
(F) M(X ) = 1/(1+ exp(−6+ 12X ))

(G) M(x) = 0.3
����
2p

√( )−1
exp(−2(X − 0.5)2)

for the model:

Y = M(X )+ u
u = lWu+ e

The shapes of the functional forms are depicted in Figure 1.
The simulated data set length is N = 50, 100, 200 and the number of Monte Carlo replica-

tions per experiment is 1000. The regressor is drawn from a uniform distribution, X � U (0, 1),
while 1 is generated as a vector of normally distributed random variables, e � N (0, s2), where s2

is set to obtain three levels for the pseudo-R2 (0.3, 0.5, 0.7). Starting from a Euclidean distance
matrix obtained from randomly generated coordinates, two W matrices have been considered:
10%nearest-neighbours (W 1) and contiguity from Voronoi tessellation (W2). Finally, l takes
on three values (0.0, 0.4, 0.8), giving us a total of 180 (3× 5× 3× 2× 2) experiments.

As said above, we employ two estimation methods: the traditional non-parametric estimator
(NP) and our procedure (SNP), both in the form of an LLE. For all simulations, we use the gaus-
sian kernel. As for the bandwidths, we adopt cross-validation and direct plug-in.10 In the esti-
mate of the spatial autocorrelation function, the smoothing parameter is selected by cross-
validation.11

As is common in this type of simulation experiments, estimators’ performance is measured by
calculating the median across replications of the mean integrated squared error (MISE) obtained
in each replication. Tables 1 and 2 show the median MISE of SNP for both W matrices.

A direct comparison of the relative performance of the two estimators is then carried out
through the ratio between the median MISE of SNP with respect to the median MISE of
NP. These results are reported in Tables 3 and 4.12

Overall, the performance of SNP is quite good as median ratios are below 1 in nearly all cases,
with no appreciable differences across the considered functional forms and spatial weights
matrices employed in the data-generating process. Median ratios are closer to 1 when spatial
dependence is absent (l = 0.0) and for the smallest sample size (N = 50), while they display sig-
nificant reductions as the strength of spatial dependence and the size of the sample increase. In
particular, the SNP procedure visibly outperforms the traditional LLE when reaches 0.8 and
N = 200, obtaining median values of the MISE that are approximately 25% smaller in several
cases. Finally, median ratios appear to be somewhat lower when the direct plug-in bandwidth
is employed.

Some attention should be given to the case when spatial dependence is absent (l = 0.0).
Interestingly, also in such case median ratios are smaller than 1, thus revealing also in this
case the capability of SNP of outperforming NP. To show this more clearly, and understand
the reasons behind this outcome, we present some more in-depth results through a further simu-
lation experiment that concentrates on the case l = 0 (over all non-linear functional forms).

We start by excluding that this behaviour depends on the double smoothing implicit in the
two-step nature of SNP. Simulations results (presented in Appendix A2 in the supplemental data
online) confirm what the theory suggests: the use of SNP without performing its intermediate
step (i.e., the spline estimate of the correlation function) which amounts to repeating just two
subsequent NP smooths (denoted by NP2s) produces a worse performance compared with the
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Figure 1. Monte Carlo experiment: functional forms.
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Table 1. Monte Carlo: median SNP MISE – cross-validation minimization – W1.

A B C

Pseudo-R2 n 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 481.05 478.75 479.43 249.70 243.20 235.02 740.19 717.86 693.85

0.7 100 461.74 459.69 458.06 262.76 252.35 236.30 726.38 703.29 689.49

0.7 200 445.67 441.02 444.65 267.33 251.98 222.84 691.62 646.89 639.28

0.5 50 486.93 485.34 484.75 257.99 250.39 247.86 757.00 737.61 736.73

0.5 100 466.87 460.75 463.86 262.22 244.80 243.85 737.17 714.29 718.03

0.5 200 444.82 443.47 449.32 265.93 239.61 234.41 681.74 649.21 645.81

0.3 50 493.85 494.58 493.27 271.30 271.61 267.38 803.12 789.75 794.72

0.3 100 475.25 470.00 471.01 259.14 252.10 257.58 745.25 735.34 735.24

0.3 200 452.10 451.00 455.58 270.33 238.22 240.88 693.96 661.51 663.36

D E F

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 1029.96 991.36 1069.05 68.23 66.72 66.45 11.18 11.16 11.07

0.7 100 1109.95 1057.24 1145.50 63.30 62.57 63.78 10.90 10.52 10.32

0.7 200 1156.58 1039.20 1132.69 60.07 58.83 59.92 10.66 10.03 9.57

0.5 50 1119.25 1066.50 1146.67 73.69 72.86 72.29 12.69 12.58 12.66

0.5 100 1153.28 1071.10 1185.15 65.75 65.23 66.04 11.53 11.47 11.39

0.5 200 1173.81 1083.03 1196.45 60.89 60.29 61.99 11.07 10.86 10.62

0.3 50 1290.36 1296.14 1372.36 82.07 82.38 81.48 16.71 16.71 16.43

0.3 100 1250.65 1198.36 1275.75 71.75 71.24 70.90 13.10 12.94 12.73

0.3 200 1262.09 1138.12 1227.80 65.58 64.18 65.37 11.75 11.77 11.79
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G

0 0.4 0.8

0.7 50 13.36 12.42 13.09

0.7 100 12.53 11.80 12.57

0.7 200 12.01 9.46 10.88

0.5 50 13.27 12.02 13.58

0.5 100 11.85 11.47 13.01

0.5 200 12.83 9.55 11.60

0.3 50 14.59 13.98 14.94

0.3 100 12.61 11.57 12.97

0.3 200 12.94 10.23 12.24
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Table 2. Monte Carlo: median SNP MISE – cross-validation minimization – W2.

A B C

Pseudo-R2 n 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 481.05 477.32 478.18 249.70 246.03 237.17 740.19 722.60 696.62

0.7 100 461.74 458.54 455.92 262.76 250.48 230.27 726.38 701.02 702.30

0.7 200 445.67 441.47 445.50 267.33 220.39 219.44 691.62 633.16 641.16

0.5 50 486.93 484.85 484.40 257.99 249.31 246.12 757.00 739.24 725.66

0.5 100 466.87 463.37 460.59 262.22 240.75 237.67 737.17 721.07 725.55

0.5 200 444.82 443.55 448.17 265.93 218.05 225.89 681.74 634.36 646.97

0.3 50 493.85 491.32 494.43 271.30 268.71 260.02 803.12 792.51 783.50

0.3 100 475.25 468.84 469.16 259.14 246.64 255.08 745.25 724.71 740.52

0.3 200 452.10 448.21 454.07 270.33 219.84 235.81 693.96 651.13 664.03

D E F

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 1029.96 987.07 1029.05 68.23 66.84 67.63 11.18 11.11 10.93

0.7 100 1109.95 1030.67 1125.36 63.30 61.98 63.11 10.90 10.39 10.23

0.7 200 1156.58 1007.75 1126.83 60.07 58.21 59.89 10.66 9.38 9.43

0.5 50 1119.25 1063.28 1100.08 73.69 72.76 72.02 12.69 12.65 12.18

0.5 100 1153.28 1056.76 1168.37 65.75 63.91 65.77 11.53 11.47 11.30

0.5 200 1173.81 1041.34 1183.68 60.89 59.49 61.34 11.07 10.75 10.56

0.3 50 1290.36 1264.54 1296.48 82.07 82.03 80.58 16.71 16.25 15.58

0.3 100 1250.65 1205.57 1259.14 71.75 71.34 70.51 13.10 13.04 12.44

0.3 200 1262.09 1097.91 1213.41 65.58 64.15 64.96 11.75 11.83 11.73
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G

0 0.4 0.8

0.7 50 13.36 12.43 12.74

0.7 100 12.53 11.49 12.36

0.7 200 12.01 8.71 10.74

0.5 50 13.27 12.29 13.00

0.5 100 11.85 11.23 13.13

0.5 200 12.83 8.82 11.39

0.3 50 14.59 14.04 14.15

0.3 100 12.61 11.71 13.36

0.3 200 12.94 9.20 11.91
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simple NP.We thus infer that the superior performance offered by SNP even when l = 0 should
be attributed to the intermediate step in which the covariance matrix is estimated.

To confirm this, on the grounds that, in theory, when residuals are spherical the correlation
matrix corresponds to the identity matrix, we calculate a measure of distance between the identity
matrix and each of the following 4 correlation matrices:

Table 3. Monte Carlo: median MISE ratios – cross-validation bandwidth – W1.

A B C

Pseudo-R2 n 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 0.98 0.98 0.98 0.93 0.91 0.88 0.93 0.90 0.88

0.7 100 0.97 0.96 0.96 0.94 0.90 0.84 0.90 0.88 0.87

0.7 200 0.96 0.95 0.95 0.94 0.88 0.78 0.88 0.83 0.82

0.5 50 0.98 0.98 0.98 0.94 0.91 0.90 0.94 0.91 0.91

0.5 100 0.97 0.96 0.97 0.93 0.87 0.86 0.92 0.89 0.89

0.5 200 0.95 0.95 0.96 0.92 0.84 0.82 0.87 0.82 0.82

0.3 50 0.99 0.98 0.98 0.96 0.95 0.93 0.97 0.95 0.94

0.3 100 0.98 0.97 0.97 0.91 0.88 0.89 0.91 0.90 0.90

0.3 200 0.96 0.96 0.96 0.92 0.82 0.83 0.87 0.83 0.83

D E F

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 0.89 0.85 0.90 0.96 0.94 0.94 0.98 0.98 0.96

0.7 100 0.81 0.78 0.86 0.94 0.93 0.95 0.97 0.94 0.92

0.7 200 0.80 0.72 0.78 0.92 0.89 0.92 0.94 0.89 0.85

0.5 50 0.92 0.88 0.95 0.99 0.99 0.97 1.00 0.98 0.96

0.5 100 0.84 0.79 0.88 0.95 0.94 0.95 0.98 0.98 0.98

0.5 200 0.79 0.72 0.81 0.91 0.90 0.93 0.97 0.95 0.93

0.3 50 0.95 0.96 0.97 1.00 1.01 0.96 1.01 1.00 0.91

0.3 100 0.88 0.84 0.91 0.99 0.98 0.98 0.99 1.00 1.00

0.3 200 0.83 0.75 0.83 0.95 0.93 0.95 0.99 0.99 0.99

G

0 0.4 0.8

0.7 50 0.82 0.77 0.81

0.7 100 0.76 0.72 0.77

0.7 200 0.76 0.60 0.69

0.5 50 0.82 0.76 0.82

0.5 100 0.72 0.70 0.79

0.5 200 0.80 0.59 0.73

0.3 50 0.86 0.82 0.87

0.3 100 0.76 0.70 0.82

0.3 200 0.79 0.62 0.75
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. The correlation matrix of the simulated e for the Monte Carlo experiment when l = 0.

. The correlation matrix of the residuals of the traditional NP regression.

. The correlation matrix of the residuals of the pilot fit of the SNP procedure (i.e., a traditional
NP regression with an undersmoothed bandwidth).

. The correlation matrix of the residuals resulting from the SNP procedure.

Table 4. Monte Carlo: median SNP MISE – cross-validation minimization – W2.

A B C

Pseudo-R2 n 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 0.98 0.97 0.97 0.93 0.92 0.88 0.93 0.91 0.88

0.7 100 0.97 0.96 0.96 0.94 0.89 0.82 0.90 0.87 0.87

0.7 200 0.96 0.95 0.95 0.94 0.78 0.77 0.88 0.81 0.81

0.5 50 0.98 0.98 0.98 0.94 0.91 0.90 0.94 0.91 0.90

0.5 100 0.97 0.96 0.96 0.93 0.85 0.84 0.92 0.89 0.90

0.5 200 0.95 0.95 0.95 0.92 0.76 0.79 0.87 0.81 0.82

0.3 50 0.99 0.98 0.98 0.96 0.95 0.92 0.97 0.95 0.94

0.3 100 0.98 0.97 0.97 0.91 0.86 0.89 0.91 0.88 0.90

0.3 200 0.96 0.95 0.96 0.92 0.76 0.81 0.87 0.81 0.83

D E F

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

0.7 50 0.89 0.85 0.87 0.96 0.94 0.95 0.98 0.98 0.96

0.7 100 0.81 0.77 0.83 0.94 0.92 0.94 0.97 0.92 0.91

0.7 200 0.80 0.70 0.78 0.92 0.89 0.92 0.94 0.83 0.83

0.5 50 0.92 0.88 0.91 0.99 0.98 0.97 1.00 0.99 0.97

0.5 100 0.84 0.77 0.85 0.95 0.93 0.95 0.98 0.99 0.97

0.5 200 0.79 0.70 0.80 0.91 0.89 0.93 0.97 0.93 0.92

0.3 50 0.95 0.93 0.97 1.00 1.01 0.99 1.01 1.01 0.95

0.3 100 0.88 0.85 0.89 0.99 0.98 0.97 0.99 1.01 0.97

0.3 200 0.83 0.73 0.83 0.95 0.93 0.94 0.99 0.98 0.95

G

0 0.4 0.8

0.7 50 0.82 0.78 0.79

0.7 100 0.76 0.69 0.75

0.7 200 0.76 0.55 0.68

0.5 50 0.82 0.76 0.80

0.5 100 0.72 0.68 0.79

0.5 200 0.80 0.55 0.72

0.3 50 0.86 0.82 0.83

0.3 100 0.76 0.70 0.80

0.3 200 0.79 0.56 0.73
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The first distance, denoted by d1, is adopted as a benchmark to evaluate the others (dNP , dSNPp
and dSNP , respectively). The adopted measure of distance is the Frobenius norm13 and for each of
the four distances, the median across 1000 replications is proposed. Results, reported in Appen-
dix A3 in the supplemental data online, show that, in spite of all distances being rather small,
hence implying that all correlation matrices are close to the identity, yet the SNP residuals cor-
relation matrix is definitely the closest one. Despite not being statistically significant (as con-
firmed by Moran’I test results available upon request), the structure generated in the
computation negatively affects the performance (in terms of MISE) of the NP estimator; on
the other hand, the intermediate spline estimate of the correlation function has the effect of
cleaning the residuals from spurious patterns and determines the gain in performance. This
gain is particularly more evident the more complex is the functional form of the data generating
process.

Summing up, SNP provides a general improvement in terms of performance with respect to
its a-spatial counterpart. When there is lack of information about the spatial structure of the
phenomenon under study, SNP can be a valid option also in comparison to a parametric
regression whose results are known to be sensitive to the choice of the spatial weights matrix.
One of the instances in which this lack of information is a commonplace, is in the study of con-
vergence across a cross-section of economies through the distribution dynamics approach, and
this is what motivates this paper.

5. EMPIRICAL ANALYSIS

We study economic convergence across the US economy employing data on (the logarithm of)
per capita personal income at two different spatial scales: a broader scale (48 conterminous states,
excluding the District of Columbia) and a finer scale (380 MSAs).14

As shown in Magrini et al. (2015) and Gerolimetto and Magrini (2017), since regional
disparities in the United States follow a distinct cyclical pattern in the short run, results
from convergence analysis could be affected by sizeable distortions when the period under
scrutiny includes incomplete cycles. In order to avoid them, we adopt a composite strategy.
First, we follow the approach described by Gerolimetto and Magrini (2017) and begin the
analysis by extracting the trend from each of the per capita personal income series using
the Hodrick–Prescott filter (Hodrick & Prescott, 1997). As suggested by Ravn and Uhlig
(2002), the value for the parameter that controls the degree of smoothness of the estimated
trend is set to 6.25. Once estimated the trends, in line with Magrini et al. (2015), we select
two points in time that correspond to similar phases of the business cycle: the trough that
occurred during the First Oil Crisis and the trough that occurred during the Great Reces-
sion15. As a result, the years select are 1975 and 2008 and we then study convergence by
applying the distribution dynamics approach to corresponding data on the extracted trends,
that is, in terms of the notation adopted in Section 2, t is 1975 and t + s is 2008. Operatively,
we estimate the stochastic kernel and then calculate the corresponding ergodic distribution,
that is, the limiting distribution whose external shape does not change over time while allow-
ing for intra-distribution movements according to the stochastic kernel. In particular, follow-
ing Johnson (2005), we calculate the ergodic distribution, denoted by f1(y′), corresponding to
a given stochastic kernel by solving:

f1(y′) =
∫1
−1

gs(y
′|y) f1(y)dy (12)

To emphasize the way in which spatial dependence can affect the estimates, we visually com-
pare stochastic kernels obtained using both NP and SNP estimators in the mean’s function
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adjustment procedure.16 In these plots, a clockwise (counter-clockwise) rotation of the esti-
mated probability mass from the diagonal17 indicates that a process of convergence (diver-
gence) has occurred during the analysed period. To get an idea of the speed with which
distributions evolve and reach a stationary shape, we resort to the concept of asymptotic
half-life of the chain (Shorrocks, 1978), that is the amount of time taken to cover half the
distance to the ergodic distribution. In addition, we report Moran’s I index of spatial depen-
dence (and corresponding p-value based on the randomization assumption and using a K-
nearest neighbour row-standardized matrix, with K corresponding to the 10% of the total
number of observations) on filtered data as well as on NP or SNP residuals of the mean func-
tion estimates; when the test suggests the presence of spatial dependence in the residuals, a
Moran significance maps is also displayed to show locations with a significant local Moran
statistic (at the 10% significance level). Finally, we report two dispersion measures, the coef-
ficient of variation and interquartile range, for 1975, 2008 and ergodic distributions.

We begin the analysis from the states. The upper panels in Figure 2 show the three-dimen-
sional plots of the estimated stochastic kernels – via the traditional NP on the left and SNP on
the right – while the lower panels show the corresponding high-density region (HDR) plots in
which the vertical strips represent conditional densities for a specific value in the initial year
dimension and, for each strip, darker to lighter areas display the 25%, 70% and 95%HDRs.
Using either estimator, the estimated probability mass displays an evident clockwise rotation
from the diagonal thus indicating that a robust process of convergence in per capita personal
income levels across US states occurred during the analysed period. There are, however, a
couple of minor differences in the estimates that should be underlined. First, in the estimate
obtained through the traditional NP estimator, the evident probability mass located in the top-
right corner of the HDR plot indicates that the economies characterized by a high initial level
of per capita personal income (relative to the sample average) show a higher probability to
maintain a sizeable positive gap over the other economies. Second, in the case of SNP the
darkest section of the probability mass (identifying the top 25% of each conditional prob-
ability) as well as the sequence of modes (the asterisks) appear to lay on a flatter line than
in the case of NP. These features suggest that extent and speed of the convergence process
is lower according to the NP estimator.

Table 5 confirms the visual impressions. The variation coefficient and interquartile range
values corresponding to the ergodic distributions are substantially lower than those correspond-
ing to the 1975 distribution, and in line with the values corresponding to the 2008 distribution,
suggesting that the convergence process has come to its end towards the final part of the analysed
period. This is confirmed by the estimate of the speed with which the distribution approaches its
stationary shape: the amount of time needed in order to cover half of the distance to the ergodic
distribution is between 64% (NP) and 54% (SNP) of the period length. This 15% difference in
the estimated half-life values and, to a lesser extent, the differences in dispersion statistics affirms
that, when the traditional NP estimator is employed, estimated speed and extent of convergence
is lower.

As discussed in the previous sections, the differences in the results could arise because spatial
dependence is not properly allowed for by NP. To shed some light on this aspect, we first quan-
tify the extent to which spatial dependence affects the data and the residuals of the regression for
the mean function estimation. Table 6 reports the Moran’s I index values. Contingent on this
choice of W , we find strong evidence of spatial dependence in states’ per capita personal income
at the end of the period (2008) as well as in the residuals of the NP regression; in contrast, we find
no evidence of spatial dependence in per capita personal income in 1975 nor in the residuals of
the SNP regression.

Concentrating on the NP regression residuals, the significance map in Figure 3 shows the
locations with significant local Moran statistics: a group of states on the north-east corner of
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the country share significantly higher residual values; on the western side, Arizona is character-
ized by low values and is surrounded by states with high values; finally, Wyoming has high values
but is surrounded by states with low values.

Figure 2. Distribution dynamics (states). Note: Estimates use a nearest-neighbour bandwidth in the
initial year (1975) dimension (span= 0.7), a normal scale (Silverman, 1986) bandwidth in the final
year (2008) dimension and a Gaussian kernel. The (fixed) bandwidth for both NP and SNP estimates
is chosen using cross-validation (Hurvich et al., 1998). In the HDR plot, the dashed line represents the
main diagonal, the asterisk the modes.

Table 5. Distribution dynamics statistics (states).

Series Variation coefficient Interquartile range

1975 0.0245 0.0361

2008 0.0135 0.0173

Ergodic – NP 0.0136 0.0182

Ergodic – SNP 0.0134 0.0180

Half-life iterations

Ergodic – NP 0.6374

Ergodic – SNP 0.5406

D (%) 15.19%
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In addition, Figure 4 reports the spatial correlogram estimated within the SNP procedure in
the left panel and, in the right one, compares the shapes of the mean functions estimated by SNP
(continuous line) and NP (dashed line). The spatial correlogram exhibits the typical decaying
shape indicated by the theoretical literature in the presence of a correlation pattern. This feature
then translates into different mean function estimates: specifically, compared with the mean
function estimated through NP, the one obtained through SNP is characterized by a clockwise
rotation.

To sum up, the distribution dynamics analysis suggests that the 1975–2008 period is charac-
terized by a general reduction in cross-sectional per capita personal income disparities across US
states. At the same time, the analysis also shows that, if not allowed for, spatial dependence may
affect the estimate of the mean function; this, in the analysed case, leads to an underestimation of
the speed and extent of the convergence process.

We now turn to the finer set of spatial units: MSAs. On the whole, also at this spatial scale
the estimated conditional probabilities, depicted in Figure 5, display an evident clockwise
rotation with respect to the 45° line, indicative of a process of economic convergence. There
are however some more subtle features that must be emphasized. First, using both estimators,
the rotation of the probability mass is less accentuated than in the states’ case (Figure 2),
suggesting that the speed of convergence is slower for MSAs. Second, the shape of the prob-
ability mass estimated using SNP appears remarkably non-linear and follows more closely the
45° along both tails; this, in turn, suggests that convergence speed is lower when the mean func-
tion is estimated through the SNP procedure.

These results are confirmed by the statistics reported in Table 7. The dispersion measures cal-
culated for the ergodic distributions are essentially in line and, on the other hand, their values are
substantially lower to those calculated in 1975. As for the speed with the distributions approach
their steady-state shapes, this is approximately 20% lower when estimated through SNP as the
amount of time needed to reach half-way to the ergodic distribution is 100% of the length of the
analysed period (i.e., 33 years) compared with 80% estimated using the traditional NP.

Spatial dependence statistics reported in Table 8 show strong evidence of spatial dependence
in the data as well as in the residuals of the NP regression; in contrast, there is no evidence of
spatial dependence in the residuals of the SNP regression.

Given the presence of spatial dependence in NP regression residuals, Figure 6 shows the
locations with significant local Moran statistics. In the case of MSAs, the maps indicate a
more complex phenomenon from a spatial point of view, with several hotspots scattered all
over the US territory.

The extent and structure of spatial dependence can be studied further through the spatial cor-
relogram estimated within the SNP procedure and drawn in the left panel of Figure 7. Compared
with the states’ case, and coherently with the phenomena depicted in the Moran significance
maps, the correlogram from the MSAs decays at a sensibly faster rate. The consequence of
this feature on the estimated mean functions is portrayed in the right panel of Figure 7. The
shape of the mean function estimated through SNP is clearly non-linear and follows more closely
the 45° along both tails. As suggested above in the discussion of the conditional probability

Table 6. Spatial dependence statistics (states).
Series Moran’s I p-value

1975 0.1029 0.1258

2008 0.3881 0.0000

Residuals – NP 0.3905 0.0000

Residuals – SNP −0.0942 0.3695
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Figure 3. Moran significance map (states). Note: The map shows statistically significant (p , 0.10)
local Moran’s I-statistics using a 10% nearest-neighbours, row-standardized W matrix.

Figure 4. Spatial correlogram and mean function estimates (states). Note: In the left panel, the num-
ber of knots in the estimate of the spline correlogram is chosen using cross-validation. In the right
panel, the continuous line represents the SNP estimate, the dashed line represents the NP estimate,
and the dash–dotted line represents the 45° line. The (fixed) bandwidth for both estimates is chosen
using cross-validation (Hurvich et al., 1998).
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Figure 5. Distribution dynamics (MSAs). Note: Estimates use a nearest-neighbour bandwidth in the
initial year (1975) dimension (span= 0.7), a normal scale (Silverman, 1986) bandwidth in the final
year (2008) dimension and a Gaussian kernel. The (fixed) bandwidth for both NP and SNP estimates
is chosen using cross-validation (Hurvich et al., 1998). In the HDR plot, the dashed line represents the
main diagonal, the asterisk the modes.

Table 7. Distribution dynamics statistics (MSAs).

Series Variation coefficient Interquartile range

1975 0.0238 0.0299

2008 0.0165 0.0193

Ergodic – NP 0.0158 0.0196

Ergodic – SNP 0.0159 0.0197

Half-life iterations

Ergodic – NP 0.8451

Ergodic – SNP 1.0220

Δ (%) −20.93%
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estimates, the different shape of the estimated mean functions confirms that, in the case of
MSAs, convergence speed is lower when the estimated structure of spatial dependence is allowed
for through the use of the SNP procedure.

6. CONCLUSIONS

In this paper, we have proposed a spatially aware distribution dynamics approach to the analysis
of economic convergence. The special feature of the approach is that the non-parametric estimate
of the mean function underlying the stochastic kernel is enriched by an additional step to exploit
the information about the spatial structure among units that might affect estimates. This struc-
ture is not a priori assumed in the form of a given spatial weight matrix, as it is common in the
spatial econometric literature, but it is instead drawn by a non-parametric estimate of the spatial
correlation function. The outcome is the development of a two-step non-parametric estimator
that allows for spatial dependence aimed at avoiding the bias, recently emphasized in the litera-
ture, determined by a misspecified W matrix.

The two-step SNP estimator is by all means a valuable tool in itself. We conducted an exten-
sive Monte Carlo experiment showing that SNP outperforms the traditional, a-spatial non-para-
metric estimator in terms of mean integrated squared error.

Table 8. Spatial dependence statistics (MSAs).
Series Moran’s I p-value

1975 0.1811 0.0000

2008 0.0913 0.0000

Residuals – NP 0.1282 0.0000

Residuals – SNP 0.0074 0.3400

Figure 6. Moran significance map (MSAs). Note: The map shows statistically significant (p , 0.10)
local Moran’s I-statistics using a 10% nearest-neighbours, row-standardized W matrix.
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We apply this novel version of distribution dynamics approach to reconsider the evidence on
convergence dynamics across regional economies in the United States. In particular, we analyse
convergence between 1975 and 2008 using data on per capita personal income at two different
spatial scales: a broader scale (48 conterminous states, excluding the District of Columbia) and a
finer scale (380 MSAs). Results show that both states and MSAs are characterized by a tendency
towards convergence. However, important features of this depends on whether the presence of
spatial dependence is allowed for: while spatial dependence has the effect of increasing the esti-
mated extent and speed of the convergence process, the opposite is true in the case of MSAs
when speed of convergence is slower. This outcome also highlights the unpredictability of the
features of the distortion due to neglecting the spatial structure brought into the residuals of
the mean function estimate; in our view, this reinforces the usefulness of the SNP procedure.

Possible development of this work, currently among our future research lines, is the extension
to a panel set-up that should include a dynamic evolution of the spatial dependence.
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Figure 7. Spatial correlogram and mean function estimates (MSAs). Note: In the left panel, the num-
ber of knots in the estimate of the spline correlogram is chosen using cross-validation. In the right
panel, the continuous line represents the SNP estimate, the dashed line represents the NP estimate,
the dash–dotted line represents the 45° line. The (fixed) bandwidth for both estimates is chosen
using cross-validation (Hurvich et al., 1998).
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NOTES

1 For discussions about the merits of the approach relative to alternative ones and, in particular,
to b-convergence, see, among others Durlauf et al. (2005), Durlauf and Quah (1999), Islam
(2003) and Magrini (2004, 2009).
2 Hyndman et al. (1996) show this by adopting a product kernel for the joint density function
f̂t,t+s(y, y

′).
3 For further details about the properties of the kernel function, see, for example, Azzalini and
Bowman (1997).
4 Within the literature on parametric spatial regression, this set-up is commonly referred to as
the spatial error model (Anselin, 1988).
5 As pointed out by Anselin (2003), an important advantage of the direct representation is that
it allows one to overcome forms of non-stationarity in variance, possibly affecting spatial auto-
regressive models.
6 This is ensured by selecting a functional form r( · ), such that r(dij , f) = 1 for dij = 0.
7 In what follows, r̃(.) depends only on distance; being a non-parametric estimator, it does not
assume any specific functional form for the relation.
8 Silverman (1984) points out that the smoothing spline is essentially a local kernel average with
a variable bandwidth.
9 The code was written in Matlab (Release R2019b).
10 To guarantee the required degree of undersmoothing, the bandwidth in the pilot estimate of
the SNP estimator is h = N (−1/10)g, where g is an optimal bandwidth obtained via either criteria.
11 Operatively, the estimate of the spatial autocorrelation function is obtained through two sub-
sequent smoothings, and the corresponding smoothing parameters are chosen by generalized
cross-validation minimization.
12 Appendix A1 in the supplemental data online presents an analogous set of tables using a
direct plug-in bandwidth.
13 It is a matrix norm defined as the square root of the sum of the absolute squares of the matrix
elements.
14 For both sets, data have been downloaded from the Bureau of Economic Analysis’s website.
Data and Matlab codes to replicate the analysis are available at https://sites.google.com/a/unive.
it/smagrini/home.
15 Based on US business cycle dating provided by the National Bureau of Economic Research
(NBER).
16 When using SNP, the spatial correlogram is estimated using a matrix of orthodromic dis-
tances between state capitals or MSAs.
17 In this type of plots, the 45° line highlights persistence properties.
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