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Bacterial community structure and diversity 
along the halocline of Tyro deep-sea hypersaline 
anoxic basin
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Abstract 

Purpose:  Tyro is a deep hypersaline anoxic basin (DHAB) located at the seafloor of the Eastern Mediterranean sea. 
Tyro hosts a stratified eukaryotic microbiome moving from seawater to the brine, but no reports are available on its 
prokaryotic community. We provide the first snapshot of the bacterial community structure in Tyro brine, seawater-
brine interface, and the overlaying deep seawater.

Methods:  In this study, we combined the use of molecular analyses, i.e., DNA fingerprinting and 16S rRNA pyrose-
quencing for the description of the bacterial community structure and taxonomy. PiCRUST2 was used to infer 
information on the prokaryotes functional diversity. A culture-dependent approach was applied to enrich bacteria of 
interest for marine biotechnology.

Results:  Bacterial communities sharply clustered moving from the seawater to the Tyro brine, in agreement with 
the abrupt increase of salinity values. Moreover, specific taxonomic groups inhabited the seawater-brine interface 
compared to the overlaying seawater and their identification revealed converging taxonomy with other DHABs in the 
Eastern Mediterranean sea. Functional traits inferred from the prokaryote taxonomy in the upper interface and the 
overlaying seawater indicated metabolic pathways for the synthesis of osmoprotectants, likely involved in bacterial 
adaptation to the steep increasing salinity. Metabolic traits related to methane and methylated compounds and to 
hydrocarbon degradation were also revealed in the upper interface of Tyro. The overall capability of the Tyro microbi-
ome for hydrocarbon metabolism was confirmed by the isolation of hydrocarbonoclastic bacteria in the sediments.

Conclusions:  Our results suggest that Tyro seawater-brine interface hosts a specific microbiome adapted to the 
polyextreme condition typical of DHABs with potential metabolic features that could be further explored for the 
characterization of the metabolic network connecting the brine with the deep seawater through the chemocline. 
Moreover, Tyro could be a reservoir of culturable microbes endowed with functionalities of interest for biotechnologi-
cal applications like hydrocarbon bioremediation.
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Introduction
Deep hypersaline anoxic basins (DHABs) are extreme 
habitats located on the ocean floor in several areas of 
the world (Mapelli et al. 2017a). DHABs likely originated 
from the dissolution of evaporites due to tectonic events, 
and all share some common features (Merlino et al. 2018). 
In particular, the different density of the brine and the 
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overlying seawater prevents these two layers from mix-
ing, implying the presence of a seawater-brine interface 
with a sharp pycnocline where steep gradients of salin-
ity, oxygen, and nutrients occur (Daffonchio et al. 2006). 
Given the polyextreme conditions (i.e., high hydrostatic 
pressure, anoxia, absence of light) to which microbial life 
is subjected, DHAB interfaces represent natural laborato-
ries to observe the adaptation of microbes across chang-
ing conditions, especially along salinity gradients, i.e., 
haloclines (Borin et al. 2013).

Nine DHABs have been discovered in the Eastern 
Mediterranean sea to date, and, in the last two decades, 
these extreme ecosystems have been studied for their 
unique microbiology (Borin et al. 2009; Daffonchio et al. 
2006; La Cono et  al. 2019, 2011; Van Der Wielen et  al. 
2005; Yakimov et  al. 2015, Yakimov et  al. 2013). Tyro 
basin was discovered during the eighties of the last cen-
tury, and geochemical studies, dissecting its concentra-
tion of ions and salts, demonstrated the occurrence of a 
thalassohaline brine (De Lange et  al. 1990). Differently 
from other Eastern Mediterranean DHABs, the microbial 
community occurring at the Tyro basin was investigated 
only focusing on eukaryotes (Filker et  al. 2013; Stock 
et  al. 2013). Protists, mainly represented by alveolates, 
stramenopiles, and kinetoplastids, inhabit the Eastern 
Mediterranean DHABs, including Tyro, where flourish-
ing prokaryote networks support their growth (Filker 
et  al. 2013). Molecular analyses based on fingerprinting 
or high-throughput sequencing methods were used to 
describe the structure of the overall protist community 
of the Urania, Thetis, Discovery, Medee, and Tyro basins 
(Filker et al. 2013; Stock et al. 2013) demonstrating that 
specific populations colonized the diverse environmental 
niches represented by brines and seawater-brine inter-
faces. Such studies revealed that Tyro interface, in terms 
of eukaryotic community composition, is more similar to 
the brine of the other DHABs (i.e., Thetis, Medee, Ura-
nia) rather than their interfaces.

Although a novel methanogenic archaeal species, 
highly adapted to the specific physicochemical con-
ditions, was recently isolated from Tyro (L’Haridon 
et  al. 2020), no reports are available on the diversity 
of prokaryotic communities inhabiting this basin. We 
hypothesized that bacteria populations are subjected 
to distribution patterns like those observed for protists; 
thus, in this study, we investigated the overall structure 
of the bacterial communities dwelling in the brine, sea-
water-brine interface, and the deepest layer of the water 
column overlaying the Tyro basin.

As we previously demonstrated, even mild hydrostatic 
pressure may deeply influence the transcriptomic pro-
files of marine bacteria and the composition of micro-
bial communities involved in specific ecological services, 

such as hydrocarbon degradation (Barbato et  al. 2016b; 
Barbato and Scoma 2020). Hydrocarbonoclastic bacteria 
isolated from DHABs have been recognized as valuable 
resources exploitable for bioremediation of hypersaline 
marine ecosystems (Varrella et al. 2020). Being subjected 
to high hydrostatic pressure, Tyro basin sediments were 
used to setup enrichment cultures because they could 
host hydrocarbonoclastic bacteria adapted to the specific 
conditions occurring in the deep sea, possibly represent-
ing a source of competitive microbial resources to com-
bat oil spills at high depth.

Materials and methods
Sampling and onboard measurements
Halocline fractions were collected with previously 
described procedures (Daffonchio et  al. 2006) during 
the Ulixes U11-1 oceanographic cruise, in September 
2011, from the Tyro DHAB (33° 52.698 N, 26° 02.336 
E). Niskin bottles, housed on a cable-connected rosette 
sampler under the control of Conductivity-Temperature-
Depth sensors, were closed in the seawater-brine inter-
face (identified by a large increase in conductivity), in 
the brine (3521 meter b.s.l.) and the overlying seawater 
column above the seawater-brine interface (3372 meter 
b.s.l.). The upper and lower portions of seawater-brine 
interface were sampled by two different Niskin bottles 
closed at 3379 and 3381 meter b.s.l., respectively (Supple-
mentary Fig. 1).

When onboard, the Niskin content was immediately 
fractionated from the bottom tap in 1-liter aliquots 
showing increasing percentage salinity values measured 
by a hand refractometer (Atago, Japan). Due to sample 
amount limitations, in this study we did not perform the 
chemical characterization of the collected samples apart 
from measuring salinity values. Immediately after the 
fractioning, sample filtration was performed on GSWP 
0.22 pore size filters (Millipore, Italy) and stored at − 
20 °C until extraction. Sediment was collected deploying 
a box-corer, sampled with a sterile spatula, and stored in 
sterile bags at 4 °C until enrichment cultures were setup.

Molecular analyses of bacterial communities
Total nucleic acids were extracted from each fraction as 
previously reported (Mapelli et al. 2013b).

Bacterial 16S rRNA gene fragments (∼550 bp) were 
PCR amplified using primers 907R (3′-CCG​TCA​ATT​
CCT​TTG​AGT​TT-5′) and GC-357F (3′-CCT​ACG​GGA​
GGC​AGCAG-5′ with a 5′-end GC-clamp) targeting a 
portion of the 16S rRNA gene that includes the hypervar-
iable V3-V5 regions (Muyzer et  al. 1993). PCR reaction 
was performed as previously described (Marasco et  al. 
2012). For 16S rRNA Denaturing Gradient Gel Electro-
phoresis (DGGE), PCR products (∼100 ng) were loaded 
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in a 0.7 mm polyacrylamide gel (7% w/v acrylamide-
bisacrylamide, 37.5:1) containing 40% to 60% urea-for-
mamide denaturing gradient (100% corresponds to 7 M 
urea and 40% v/v formamide). The gel run was performed 
for 17 h at 60 °C by applying a constant voltage of 90 V in 
1X Tris-acetate-EDTA (TAE) buffer. After electrophore-
sis, the gel was stained for 15 min in 1X TAE buffer con-
taining 1X SYBR Green (Molecular Probes, Leiden, the 
Netherlands) according to manufacturer’s instructions 
and rinsed three times for 10 min with distilled water. Gel 
images were captured using a Gel Doc 2000 apparatus 
(Bio-Rad, Milan, Italy). The band patterns of the PCR-
DGGE gel were analyzed using Image J software as previ-
ously described (Marasco et al. 2012).

The metabarcoding analysis targeting the 16S rRNA 
gene was carried out using bacterial universal primers 
(27 F mod 5′ – AGR​GTT​TGATCMTGG​CTC​AG – 3′; 
519 R mod bio 5′ – GTNTTACNGCGGCKGCTG – 3′) 
targeting the variable regions of 16S rRNA V1-V3 and 
amplifying a fragment of approximately 400 bp. PCR 
reactions and next-generation 454 pyrosequencing were 
performed outsourcing by MR DNA (Shallowater, TX, 
USA) as previously described (Bargiela et  al. 2015). A 
total of 54278 raw, barcoded amplicons were obtained. 
The reads were trimmed to remove pyrosequencing 
adaptors and low-quality sequences (< 30 Phred score) 
and size-selected (between 350 and 500 bp) using the 
QIIME (v 1.9.1) pipeline filtering scripts (Caporaso et al. 
2010). After screening with Chimeras slayer, high-quality 
reads that were not flagged as chimeras were clustered 
into operational taxonomic units (OTUs), based on a 
sequence identity threshold of 97%, using Uclust (Edgar 
2010) and drawing one sequence for each OTU as rep-
resentative. Sequences representative of each OTU were, 
then, taxonomically classified using the rdp classifier 
against the Silva database (v128) within QIIME.

To complement our taxonomy-based community anal-
ysis, we reconstructed predictive metagenomes from 
our 16S rRNA gene dataset using PICRUSt2 (https://​
github.​com/​picru​st/​picru​st2). For the analysis, OTUs 
were taxonomically identified, and a bacterial metagen-
ome was predicted for each sample based on the genes 
content of the genome of the closest sequenced relative. 
The accuracy of metagenome predictions was measured 
by the Nearest Sequenced Taxon Index (NSTI), with 
lower values indicating a closer mean relationship (Lang-
ille et  al. 2013). The metabolic predictions generated by 
PiCRUST2 were deemed reliable since the median NTSI 
were 0.132 for SW and 0.17 for T-1. The predicted genes 
were then assigned to metabolic pathways, and the dis-
tribution among samples of the reconstructed functional 
profiles was statistically compared using the chi-square 
test to identify the metabolisms significantly (p < 0.05) 

enriched or depleted in the analyzed samples, using 
STAMP (v 2.1.3; Parks et al. 2014; Parks and Beiko 2010).

Bacteria isolation and identification from Tyro sediment
An enrichment culture was established using the sedi-
ments collected from the Tyro basin as inoculum, ONR7a 
mineral medium and diesel oil as the sole carbon source, 
as previously described (Barbato et  al. 2016a). Bacterial 
isolates have been obtained in pure cultures by plating on 
ONR7a solid medium ten-fold dilutions of the diesel oil 
enrichment, supplementing the Petri dishes with (i) diesel 
oil, (ii) octane, or (iii) dodecane as the sole carbon source. 
After purification, the isolates were streaked with and 
without the hydrocarbon molecules (HCs) used for the 
isolation and those able to grow exclusively in the pres-
ence of HCs were selected for further characterization.

The bacteria collection was dereplicated through inter-
nal transcribed spacer (ITS) PCR fingerprinting. ITS 
fingerprinting was performed as previously described 
(Mapelli et  al. 2013a) using the primers ITS-F (3′-GTC​
GTA​ACA​AGG​TAG​CCG​TA-5′) and ITS-R (3′-CTA​CGG​
CTAC CTT​GTT​ACGA-5′). At least one isolate for each 
ITS group, established based on identical ITS finger-
printing, was identified by partial 16S rRNA sequencing. 
The PCR amplification of the bacterial 16S rRNA gene 
was performed using the universal primer 27F (3′-AGA​
GTT​TGATCMTGG​CTC​AG-5′) and 1492R (3′-CTA​
CGG​CTA​CCT​TGT​TAC​GA-5′) as previously described 
(Mapelli et al., 2013a).

Nucleotide sequence accession numbers
Nucleotide sequences were edited in Chromas Lite 2.01 
(http://​www.​techn​elysi​um.​com.​au) and subjected to a 
BLAST search (http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi). 
The partial 16S rRNA gene sequences obtained from the 
bacterial isolates are available at ENA under accession 
numbers LT935769, LT935770, LT935681 – LT935684.

All original non-chimeric 16S rRNA hypervariable 
tag 454 sequences are archived at the NCBI Short Read 
Archive (SRA) under the BioProject PRJNA742542, 
accession numbers SRR15047724 (T-1) and 
SRR15047723 (SW).

Results
Bacterial community structure change along Tyro 
seawater‑brine interface
The salinity of Tyro seawater-brine interface samples 
collected in this work ranged between 5.6 and 20%, 
while Tyro brine and deep seawater collected above 
the interface showed the salinity values of 28.8% and 
4%, respectively (Supplementary Table  1, Supplemen-
tary Fig.  1). PCR-DGGE fingerprinting described how 
the bacteria populations were stratified across the 
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halocline, showing bands characterized by increasing 
or decreasing intensity according to the salinity value of 
the investigated layers, while other bands were detect-
able exclusively in specific samples (Fig.  1a). Principal 
component analysis (PCA) showed the sharp clustering 
of samples collected across the halocline in two groups 
(Fig.  1b), defined as upper and lower portions of the 
seawater-brine interface. The samples clustered along 
the PC1, which explains 44.72% of the described diver-
sity. The upper interface group included halocline 
samples collected at salinity percentages comprised 
between 5.6 and 11.5%, while those characterized by 
salinity values 13–20% formed the lower interface. 
According to statistical analysis, the two groups of 
samples hosted significantly different bacterial com-
munities (PERMANOVA; p = 0.0209; t = 2.0072). Fur-
thermore, PCA showed that deep seawater and brine 
were located outside the two groups. This segregation 
could be explained by the peculiar environmental char-
acteristics, including the salinity values measured in 
this study.

Phylogenetic and functional diversity suggest specific 
bacterial communities adapted to the changing 
conditions occurring from the deep seawater to the upper 
seawater‑brine interface
Based on the PCR-DGGE results, we selected one sam-
ple for each of the two identified salinity groups (i.e., 
T-1: 5.6%; T-2: 13.2%), in addition to overlaying seawater 
(SW) and brine (TB), for 16S rRNA gene high-through-
put sequencing. 16S rRNA gene metabarcoding provided 
unsatisfactory results on samples T-2 (lower interface) 
and TB, possibly due to an incomplete removal of resid-
ual salts from the DNA extracts that could have played 
a negative effect on PCR results (Sankaranarayanan et al. 
2011). On the other side, 16S rRNA gene metabarcod-
ing analysis generated 10735 and 15839 non-chimeric 
denoised reads in SW and T-1 samples, respectively. A 
total of 705 OTU97 were identified, and the rarefaction 
curves showed that T-1 (upper interface) and SW sam-
ples reached saturation (Supplementary Fig. 2); thus, the 
phylogenetic and functional diversity of these two sam-
ples only are reported.

Fig. 1  Analysis of the bacterial community structure inhabiting Tyro brine, seawater-brine interface and deep seawater. A PCR-DGGE profiles based 
on the 16S rRNA gene of the bacterial communities inhabiting deep seawater, Tyro brine and along Tyro seawater-brine interface. B PCA depicts the 
variation of bacterial community composition in the deep seawater, Tyro brine and along Tyro seawater-brine interface, identifying different clusters 
that correspond to the upper (5.6–11.5% of salinity, T1) and lower (13–20% of salinity, T2) portions of the seawater/brine interface



Page 5 of 11Mapelli et al. Annals of Microbiology            (2022) 72:7 	

The bacterial communities inhabiting deep seawater 
and the upper interface of Tyro encompassed different 
populations. The most abundant phylogenetic groups 
in deep seawater were Marinimicrobia-SAR406 clade 
(38.8% of the total community), Proteobacteria (29.5%), 
Actinobacteria (14%), and Chloroflexi (8.3%) (Fig.  2, 
Supplementary Fig.  1). The Proteobacteria phylum 
was mostly represented in SW by Deltaproteobacteria 

(17.2%), Alphaproteobacteria (6.3%), and Gammapro-
teobacteria (5.3%). The relative abundance of Actino-
bacteria and Chloroflexi sharply decreased in the upper 
Tyro halocline, where they represented 4.1% and 0.68% 
of the total bacterial community of sample T-1, respec-
tively. Here, the predominant phyla were Proteobacteria 
(47.7%), Bacteroidetes (20.8%), Marinimicrobia-SAR406 
clade (9.2%), and Patescibacteria (4.9%). Moreover, we 

Fig. 2  Bacterial community composition in the Tyro upper seawater-brine interface (T-1) and overlaying seawater (SW). The bar plots indicate the 
taxonomic composition (at the phylum level) of T-1 and SW bacterial communities. The composition of the Proteobacteria phylum in the samples is 
detailed at the class level
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detected an increase of Deltaproteobacteria (35.9%) and 
Gammaproteobacteria (9%) compared to deep seawater, 
while Alphaproteobacteria decreased to 1.8% of the total 
bacterial community. The differential distribution of the 
above-mentioned phyla in the overlaying seawater and 
the upper interface of Tyro can be ascribed to the enrich-
ment or depletion of specific classes and orders in the 
analyzed samples (Supplementary Table  2). Zooming in 
on Proteobacteria distribution in the two niches can be 
illustrative. The SAR342 clade within Deltaproteobacte-
ria, for example, decreased from 11.6% of the total bacte-
rial community in seawater to 8.2% in the upper interface, 
where the most abundant Deltaproteobacteria were affili-
ated to the order Desulfobacterales (25.5%). Likewise, 
Thiomicrospirales, an order belonging to Gammaproteo-
bacteria, decreased moving from seawater to the upper 
interface where the unclassified Gammaproteobacteria 
are predominant. Another example is the class Epsilon-
proteobacteria that was not detected in seawater while 
it appeared, though at a low percentage (< 1%, Supple-
mentary Table 2), in the bacterial community of the T-1 

sample. On the contrary, other phyla were present at a 
similar percentage over the total bacterial community in 
SW and T1 samples, as in the case of Plantomycetes that 
represents 2.3% and 1.4%, respectively.

The 16S rRNA gene sequences dataset generated in 
this work was used to infer functional diversity through 
PiCRUSt2 software. Among three-hundred-eighty-nine 
identified metabolic pathways (Supplementary Table  3), 
fifty were differently distributed (p < 0.05) in the ana-
lyzed samples (Fig. 3). The 1929 predicted enzymes and 
their EC numbers are reported in Supplementary Table 4. 
Noteworthy, the list includes several enzymes related 
to the synthesis of osmoprotectants (e.g., EC:4.2.1.108, 
ectoine synthase, EC:1.2.1.8 Betaine-aldehyde dehydro-
genase, EC:1.1.99.1 choline dehydrogenase, EC:2.4.1.245 
alpha,alpha-trehalose synthase, Supplementary Fig.  1). 
EC numbers referring to the alpha- and beta-glucosi-
dases were present among the Tyro predicted bacterial 
enzymes (Supplementary Table  4). Several EC numbers 
referring to enzymes involved in the degradation of 
complex carbohydrates were also detected, primarily 

Fig. 3  Predicted metabolic pathways differentially distributed between the upper seawater-brine interface (T-1) and overlaying seawater (SW). 
Profile bar plot where blue and light blue bars indicate T-1 and SW samples, respectively. The significance of differential distribution (p < 0.05) was 
assessed by chi-square test. The complete list of the metabolic pathways inferred by PiCRUSt2, including those not significantly distributed among 
samples, is reported in Supplementary Table 3
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in T-1 sample, and included EC:3.2.1.136 glucurono-
arabinoxylan endo-1,4-beta-xylanase, EC:3.2.1.156 
oligosaccharide reducing-end xylanase, EC:3.2.1.8 
endo-1,4-beta-xylanase, EC:3.2.1.99 arabinan endo-
1,5-alpha-l-arabinosidase, EC:3.2.1.89 arabinogalactan 
endo-beta-1,4-galactanase, and EC:3.1.1.11 pectinester-
ase. In both T-1 and SW samples, we detected enzymes 
involved in the metabolism of methane and methylated 
compounds: EC:1.14.13.25 methane monooxygenase 
(soluble), EC:1.14.18.3 methane monooxygenase (partic-
ulate), EC:1.14.13.148 trimethylamine monooxygenase, 
EC:1.5.8.2 trimethylamine dehydrogenase, EC:1.5.8.1 
dimethylamine dehydrogenase, and EC:1.1.2.7 methanol 
dehydrogenase (cytochrome c). Furthermore, EC num-
bers related to hydrocarbon degradation pathways were 
recorded in both the upper interface and the overlaying 
seawater (Supplementary Table 3, Supplementary Fig. 1). 
Though they were not significantly enriched or depleted 
according to the occurring conditions, EC:3.8.1.5 haloal-
kane dehalogenase was more represented in T-1 than 
seawater, whereas EC:1.14.14.5 alkanesulfonate monoox-
ygenase and EC:1.14.15.3 alkane 1-monooxygenase 
showed the opposite trend (Supplementary Table 4).

Hydrocarbonoclastic bacteria inhabit the Tyro sediment
Thirty-eight bacteria were isolated from an enrichment 
culture established on mineral medium supplemented 
with diesel oil using Tyro sediment as inoculum. All the 
isolates kept in the collection were able to grow using 
hydrocarbons as the sole C source: twenty isolates were 
obtained plating the enrichment culture on solid medium 
and diesel oil, eleven in the presence of octane, while 
eight were isolated using dodecane. The three sub-col-
lections differed exclusively for the hydrocarbons used 

during the last step of the isolation procedure. Bacterial 
isolates were genotyped, and we identified six (diesel oil), 
two (octane), and four (dodecane) internal transcribed 
spacer (ITS) groups in the collections. The twelve rep-
resentatives of each ITS group, identified by 16S rRNA 
gene sequencing, were classified as Actinobacteria or 
Proteobacteria, the latter including isolates in the Alpha- 
and Gammaproteobacteria classes (Table  1). Both phyla 
were present in the diesel oil-enriched strain collection, 
while the use of dodecane and octane as sole C source 
allowed to bring into culture exclusively Actinobacteria 
and Gammaproteobacteria, respectively. The taxonomic 
identification of the strains showed that the established 
collection includes the bacterial genera Dietzia, Mar-
inobacter, Arthrobacter, Labrenzia, and Micrococcus 
(Table 1).

Discussion
Molecular fingerprintings remain informative options 
for the description of beta-diversity and correlation 
analyses between bacterial community structure and 
environmental parameters, generating outputs compa-
rable to those obtained applying pyrosequencing meth-
ods (Gobet et  al. 2014; van Dorst et  al. 2014), though 
they are not considered suitable tools for the phylo-
genetic description of bacterial communities. In this 
study, the results of the PCR-DGGE molecular finger-
printing showed that bacterial communities of Tyro 
are stratified across the halocline and clearly separated 
from the brine and the overlaying seawater, in agree-
ment with the data reported by several studies about 
the prokaryotic communities’ structure in DHAB inter-
faces located in the Eastern Mediterranean sea (Borin 
et al. 2009; Daffonchio et al. 2006; Yakimov et al. 2007) 

Table 1  List of bacteria isolated from Tyro sediment. For each isolate, the closest described bacterial species is indicated together 
with its accession number in the public database NCBI. The percentage of 16S rRNA gene sequence identity is indicated, as well as the 
environment from which the closest described spp. was isolated

Isolate Phylum/class Closest described sp. acc.n° id (%) Reference environ

T_2 Actinobacteria Arthrobacter crystallopoietes KC456536 99 Activated sludge

T_4 Actinobacteria Arthrobacter crystallopoietes KC456536 99 Activated sludge

T_7 Alphaproteobacteria Labrenzia alba MZ328875 99 Marine sponge

T_17 Alphaproteobacteria Labrenzia alba MZ328875 99 Marine sponge

T_19 Alphaproteobacteria Labrenzia alba KY787142 99 Posidonia oceanica

T_20 Alphaproteobacteria Labrenzia alba KY787142 99 Posidonia oceanica

T-C12-03 Actinobacteria Dietzia cinnamea NR_116686 97 Clinical swab

T-C12-04 Actinobacteria Micrococcus yunnanensis LT160814 98 Carp

T-C12-05 Actinobacteria Micrococcus yunnanensis KX108875 99 Soil

T-C12-07 Actinobacteria Dietzia cinnamea KP345927 98 –

T-C8-02 Gammaproteobacteria Marinobacter adhaerens MW675179 99 Mariana Trench

T-C8-10 Gammaproteobacteria Marinobacter adhaerens MW675179 99 Mariana Trench
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and the Red Sea (Michoud et  al. 2021; Ngugi et  al. 
2015). Likewise, terminal restriction fragment length 
polymorphism (T-RFLP, Filker et  al. 2013) applied to 
study protist diversity in different Eastern Mediterra-
nean DHABs showed that brine and interface samples 
hosted different communities, as later confirmed by 
pyrosequencing of the V4 rRNA subunit (Stock et  al. 
2013). Unraveling the relationship between the eukar-
yotic community structure and the occurring chemi-
cal parameters in the Tyro basin, the main drivers of 
eukaryotes’ distribution were identified as oxygen con-
centration, sulfide concentration, and salinity (Filker 
et al. 2013). A significant correlation between the bac-
terial community structure and salinity across the 
fractioned Tyro seawater-brine interface was detected 
in this study, in agreement with the role of salinity as 
driver of bacterial community structure in other thal-
assohaline DHABs, such as Urania and Bannock (Borin 
et al. 2009; Daffonchio et al. 2006). Halophilic bacteria 
face salinity stress through different strategies named 
“salt-in” and “salt-out” mechanisms (Fisher et al. 2021). 
In this study, prediction of functions from the pyrose-
quencing data suggests the importance of compatible 
solutes (i.e., ectoine, betaine, choline, and trehalose) 
synthesis and accumulation as osmoprotective metab-
olites, in agreement with previous findings based on 
genomic and physiological information on bacterial 
strains isolated from Eastern Mediterranean and Red 
Sea DHABs (Antunes et al. 2011; Zeaiter et al. 2019).

The upper seawater-brine interface of Tyro hosts bac-
terial phyla commonly found in others Eastern Medi-
terranean DHABs. Bacteroidetes, which are highly 
abundant in the Tyro interface, were described in 
DHABs using both cultivation-dependent (Daffon-
chio et al. 2006) and molecular techniques (Borin et al. 
2009; Yakimov et  al. 2007). Previous literature shows 
that the distribution of Proteobacteria classes, consist-
ently representing a large fraction of the prokaryotic 
microbiome along DHAB interfaces as reported for 
Tyro in this study, is different according to the consid-
ered basin. For instance, Delta- and Epsilonproteobac-
teria dominate Urania haloclines (Borin et  al. 2009). 
The latter Class dominates Thetis interface (Ferrer et al. 
2012) while it has not been reported in the Medee lake, 
being replaced by Gammaproteobacteria (Yakimov et al. 
2013). Likewise, the Tyro halocline hosts predominantly 
Deltaproteobacteria and Gammaproteobacteria, while 
Epsilonproteobacteria were detected only at a low per-
centage. The lack of detailed information on the pro-
file of geochemical species along the Tyro halocline 
and the information inferred from the 16S rRNA gene 
sequence dataset in this study do not allow to elucidate 
the ecological role played by the detected bacterial taxa, 

although the presence of certain phylogenetic groups 
(i.e., Desulfobacterales, Desulfarculales) suggests the 
possible importance of sulfur species respirations, also 
reported for other DHABs (Borin et  al. 2009; Van Der 
Wielen and Heijs 2007).

Among Planctomycetes, we report the presence of 16S 
rRNA sequences affiliated to the Brocadia order that 
includes anaerobic ammonium oxidizing (ANAMMOX) 
bacteria previously identified in the haloclines of Ban-
nock and L’Atalante basins (Borin et  al. 2013) and the 
Suakin Deep in the Red Sea (Michoud et al. 2021).

In this study, enzymes related to the utilization of a 
large repertoire of carbon sources were predicted to 
occur across the Tyro halocline by PiCRUSt2 analysis, 
in agreement with the genetic information available for 
different prokaryotic strains previously isolated from 
DHABs. The list includes several enzymes involved in 
C1-compounds metabolisms, presumably important in 
the Tyro upper seawater-brine interface, in agreement 
with the isolation of the novel piezophilic and halophilic 
methanogenic species Methanohalophilus profundi, 
recently proposed to be implicated in the biogenic for-
mation of methane in DHABs (L’Haridon et  al. 2020). 
In both SW and T-1 samples, we detected sequence sig-
natures of the Methylococcales order, which includes 
aerobic methanotrophic bacteria recently retrieved in 
the seawater-brine interface of the Kryos basin (Steinle 
et  al. 2018), and adapted to micro-oxic conditions in 
both thalassohaline and athalassohaline DHABs. Fur-
thermore, EC numbers of alpha- and beta-glucosidases 
detected in the genome sequence of Virgibacillus sp. 
21D, a highly adapted bacterial strain isolated from 
the seawater-brine interface of the Discovery DHAB 
in the Mediterranean Sea, were retrieved (Zeaiter et al. 
2019). Lignocellulose-degrading enzymes involved in 
the degradation of complex carbon compounds possi-
bly deriving from algae or seagrass cell walls were also 
included in the list of predicted enzymes found in T-1 
samples. Genetic information related to these enzymes 
were previously reported for an archaeal species (i.e., 
Halorhabdus tiamatea) isolated from DHABs and pro-
posed as a potential polysaccharide degrader (Werner 
et al. 2014). We speculate that a similar function could 
be enriched in the Tyro upper interface, where debris 
can accumulate after sinking. Finally, in agreement 
with the possible hydrocarbon inputs in DHABs from 
the bottom sediments (Merlino et al. 2018), metabolic 
pathways and genes related to hydrocarbon degrada-
tion were retrieved from the bacterial communities 
inhabiting the Tyro basin.

Hydrocarbons in DHABs sediment can be derived from 
the adjacent geological layers (Brusa et al. 2001) and can 
sink through the DHAB water column and accumulate in 
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the sediments. The deposition of aliphatic and aromatic 
compounds of both natural and anthropogenic origin has 
been documented in Eastern Mediterranean sea deep-
sea sediments (Parinos et  al. 2013). Hence, we opted to 
use a sediment sample collected from Tyro for searching 
of hydrocarbonoclastic bacteria by a culture-dependent 
approach. Some of the isolated bacterial genera were 
previously described for their ability to degrade hydro-
carbons in marine ecosystems, including deep-sea, like 
Dietzia (Wang et al. 2014) and Marinobacter (Sun et al. 
2020; Zhou et  al. 2020). Members of the Marinobacte-
raceae family were also retrieved in the seawater over-
laying the Tyro basin, according to the 16S rRNA gene 
metabarcoding analysis conducted in this study. Neither 
Alcanivorax spp. nor other major members of oil-degrad-
ing bacterial communities easily blooming in surface 
waters (e.g., Oleiphilus, Neptunomonas, Oleispira) were 
retrieved in the hydrocarbon-degrading culture col-
lection from Tyro sediments, in agreement with the 
so-called “Alcanivorax paradox” postulating the impair-
ing effects of hydrostatic pressure on this oil-degrading 
bacterial genus (Scoma et  al. 2016). The differentiation 
of certain HC degraders among “surface” and “deep” 
ecotypes was suggested, as already described for Alte-
romonas macleodii (Liu et al. 2019), one of the bacterial 
species previously isolated from the seawater-brine inter-
face of Urania DHAB (Sass et al. 2001). The hydrocarbon-
oclastic bacterial strains isolated in the current study join 
the portfolio of cultured marine microorganisms poten-
tially exploitable for biotechnology related to oil removal 
from polluted marine sites. In particular, after the experi-
mental validation of the ability to degrade hydrocarbons 
under high hydrostatic pressure, they could be potential 
resources for bioremediation at high depth (Mapelli et al. 
2017b).

Conclusions
This study provides an initial overview of the bacterial 
community structure of the Tyro basin, the only DHAB 
in the Eastern Mediterranean sea not yet character-
ized for its bacterial microbiome, suggesting that the 
seawater-brine interface hosts a prokaryotic microbi-
ome adapted to the changing environmental conditions 
of the halocline at the seawater/brine interface, as previ-
ously indicated for micro-eukaryotes. The study identi-
fied bacterial communities in Tyro potentially involved 
in key metabolisms supporting the element cycles in 
this polyextreme ecosystem that deserves further studies 
for a more detailed characterization and indicates Tyro 
sediment as an explorable source of culturable species 
of potential interest for biotechnological applications in 
marine bioremediation.
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