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Abstract

High- and multi-dimensional array data are becoming increasingly available. They
admit a natural representation as tensors and call for appropriate statistical tools.
We propose a new linear autoregressive tensor process (ART) for tensor-valued data,
that encompasses some well-known time series models as special cases. We study
its properties and derive the associated impulse response function. We exploit the
PARAFAC low-rank decomposition for providing a parsimonious parametrization and
develop a Bayesian inference allowing for shrinking effects. We apply the ART model
to time series of multilayer networks and study the propagation of shocks across nodes,
layers and time.
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1 Introduction

Many modern datasets in applied science have a complex and multidimensional structure

which is naturally represented by multidimensional arrays, or tensors (e.g., Hackbusch,

2012). In statistics and machine learning, tensor algebra provides a fundamental

background for effective modeling and efficient algorithm design in big data handling

(e.g. Cichocki, 2014). The increasing availability of long temporal sequences of tensor-

valued data, such as multidimensional tables (Balazsi et al., 2015), multidimensional

panel data (Kapetanios et al., 2021), multilayer networks (Aldasoro and Alves, 2018),

electroencephalogram (a.k.a. EEG, Li and Zhang, 2017), neuroimaging (Zhou et al., 2013)

has put forward some limitations of the existing multivariate time series models. A naïve

approach to model tensors ignores the intrinsic structure of the data and fits a multivariate

regression on the vectorized tensor data. However, this might result in inefficient estimation

and misleading results (Yuan and Zhang, 2016), thus making such representations unsuited

for tensor-valued data.

Tensor modeling in statistics is in its infancy and most of the research in this field has

focused on the analysis of cross-sectional data, as applied in neuroimaging (e.g., functional

magnetic resonance image, a.k.a. fMRI, EEG) and signal processing, whereas the literature

on tensors in time series analysis is scarce. Most often, a tensor-valued covariate is used

to predict a scalar outcome (e.g., see Guhaniyogi et al., 2017; Xu et al., 2013; Zhou et al.,

2013), and only a few papers analyze tensor-on-tensor regression models (e.g., see Lock,

2018). Estimation of tensor regressions requires parameter regularization or dimension

reduction since the number of entries of the coefficient tensor is larger than the sample

size.

In contrast to the existing literature, this article introduces dynamics in tensor regression

models by defining a new framework for linear time series regression with tensor-valued

response and covariates. We study the properties of the stochastic process, such as

stationarity, and derive impulse response functions. Standard multivariate regression

models are obtained as special cases. To address the dimensionality challenges of dynamic

tensor models, we propose a low-rank representation of the coefficient tensor and impose

parameter regularization based on the shrinkage prior distribution of Guhaniyogi et al.
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(2017).

Guhaniyogi et al. (2017) design a predictive model in a cross-sectional setting to

investigate the relationship between a scalar medical index and matrix-valued brain images.

Instead, we propose a new framework for dynamic tensor-on-tensor regression, and use it

to investigate multilayer international economic networks.

Recent papers on tensor regression exploit tensor-valued covariates to predict a scalar

outcome in a generalized linear model (Xu et al., 2013; Zhou et al., 2013), whereas Li et al.

(2018) use the Tucker decomposition to propose low-rank approximations to the coefficient

tensor. On the other hand, the tensor-on-vector regression is an alternative approach used

to assess the impact of a vector of factors on a tensor-valued observable. Rabusseau and

Kadri (2016) consider a higher-order low-rank regression, which is a tensor-on-vector linear

model with a low-rank constraint on the coefficient tensor. They propose an algorithm

to obtain an approximate solution to the restricted least squares problem. In a related

contribution, Guha and Rodriguez (2020) develop a Bayesian linear model for assessing

the impact of vector covariates on matrix-valued MRIs for several patients. They adopt a

symmetric parallel factor (PARAFAC) decomposition to identify the tensor nodes and cells

related to each predictor. To study the impact of one or more external stimuli or predictors

on the human brain, Guhaniyogi and Spencer (2021) have developed a regression framework

with a tensor response and scalar covariates, coupled with a novel multiway stick-breaking

shrinkage prior distribution on the coefficient tensor. The method has been extended by

Spencer et al. (2020) to an additive mixed regression model with a tensor response, with

region-specific random effects to capture the connectivity between the measurements on a

set of pre-specified groups of brain voxels. In the presence of structured tensor-response

variables, such as maps of neural connections in the brain, Guha and Guhaniyogi (2021)

have proposed a Bayesian generalized linear model with a symmetric tensor response and

scalar predictors. A brief review of the most recent contributions on tensor regression

models is presented in Guhaniyogi (2020).

Another stream of the literature considers regression models with tensor-valued

responses and covariates. Hoff (2015) employs the Tucker product to define a tensor-on-

tensor regression, generalizing the standard bilinear to a multilinear model. Tensors have
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also been used in the analysis of large multivariate categorical response vectors (Zhou et al.,

2015) and in high-dimensional classification problems (Yang and Dunson, 2016). Extending

all these approaches, we consider a novel linear autoregressive model for real-valued tensor

response and covariates, and we apply it in a time series framework to investigate dynamic

multilayer networks.

We exploit the contracted product, an operator that generalizes the Cayley matrix

multiplication to tensors (Behera et al., 2020; Ji and Wei, 2018; Wang et al., 2020),

to introduce a new autoregressive tensor model (ART) which generalizes the existing

tensor regression frameworks along two lines. First, the ART model introduces dynamics

in linear tensor regression and provides the tools for analyzing shock propagation in

multidimensional dynamical systems. Second, we allow for both tensor-valued outcomes

and covariates, a more general framework encompassing existing tensor as well as

multivariate linear models (e.g., vector autoregressions, or VARs). Taking advantage of the

properties of the contracted product, we derive new results on tensor algebra and study

the main properties of the ART process. Besides, we derive the impulse response function

and the forecast error variance decomposition for making predictions and analyzing shock

propagation in the system.

Besides handling multidimensional data, tensor regression models are usually

characterized by a high dimensional parameter space, which calls for the use of dimension

reduction or shrinkage estimation techniques. Li and Zhang (2017) define a tensor-

response linear regression on a vector covariate for studying the relationship between

brain activity and individual control variables, using cross-sectional data. They use the

envelope method for estimation, which assumes that part of the response variables (a set of

linear combinations of them) is irrelevant to the regression. Moreover, their optimization

framework depends on tuning parameters (e.g., the envelope dimensions), the choice of

which depends on the tensor dimensions and the signal-to-noise ratio (i.e., the degree of

sparsity). Here, we propose to use a PARAFAC representation (Hackbusch, 2012) of the

coefficient tensor to obtain a parsimonious parametrization of the ART.

Parameter regularization and sparse estimation in high-dimensional models can be

achieved through alternative approaches, such as the Lasso (Zhou et al., 2013), the spike-
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and-slab (Guha and Rodriguez, 2020), and the envelope method (Li and Zhang, 2017).

Alternative approaches induce element-wise sparsity or assume reduced-rank coefficient

tensors. In neuroimaging, Sun and Li (2017) propose a regression framework for a tensor

response and a vector predictor, where the coefficient tensor embeds both types of sparse

structures. Raskutti et al. (2019) derive general risk bounds of the estimated coefficient in

high-dimensional tensor regression problems with several regularizers, such as Lasso penalty

and reduced-rank. Goldsmith et al. (2014) develop scalar-on-3D-image regression that

includes a latent binary indicator to discriminate between image locations with predictive

and non-predictive power. Here, we adopt the more flexible regularization approach based

on the global-local shrinkage prior developed in Guhaniyogi et al. (2017). In particular, we

impose this prior on the marginal vectors of the PARAFAC representation of the coefficient

tensor and we show that, for rank-1 coefficient tensor, the conditional prior on the entries

is a Meijer-G prior with heavier tails than the Normal distribution (e.g, see Zhang et al.,

2020).

The literature on network data modeling has rapidly increased after the recent financial

crisis, both in theoretical and empirical analyses. Dynamic tensor models are a natural

framework for the analysis of multilayer network data in finance, biology, and sociology.

An example of a time series of network data consists of a collection of yearly snapshots

of interbank or international trade networks. However, despite dynamic models may be

more adequate for studying network data collected over time, most statistical models for

network data remained static so far (De Paula, 2017). Few attempts have been made to

model time-varying networks (e.g., Anacleto and Queen, 2017; Hoff, 2015), and most of the

existing approaches focus on providing a representation and a description of temporally

evolving graphs (e.g., Holme and Saramäki, 2012; Kostakos, 2009). We contribute to this

literature by providing an original study of time-varying economic and financial networks

and show that our dynamic tensor model can be used successfully to carry out impulse

response analysis in a multidimensional setting.

The remainder of the paper is organized as follows. Section 2 provides an introduction

to tensor algebra and presents the new modeling framework. Section 3 discusses

parametrization strategies and a Bayesian inference procedure. Section 4 provides an
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empirical application and Section 5 gives some concluding remarks. Further details and

results are provided in the supplementary material.

2 A Dynamic Tensor Model

In this section, we present a dynamic tensor regression model and discuss some of its

properties and special cases. We review some notions of multilinear algebra which will

be used in this paper, and refer the reader to the supplement for novel results on tensor

algebra and further details.

2.1 Tensor Calculus and Decompositions

The use of tensors is well established in physics and mechanics (e.g., Abraham et al.,

2012; Aris, 2012), but few contributions have been made beyond these disciplines. For a

general introduction to the algebraic properties of tensor spaces, see Hackbusch (2012).

Noteworthy introductions to operations on tensors and tensor decompositions are Lee and

Cichocki (2018) and Kolda and Bader (2009), respectively.

A N -order real-valued tensor is a N -dimensional array X = (Xi1,...,iN ) ∈ RI1×...×IN

with entries Xi1,...,iN with in = 1, . . . , In and n = 1, . . . , N . The order is the number

of dimensions (also called modes). Vectors and matrices are examples of 1- and 2-order

tensors, respectively. In the rest of the paper we will use lower-case letters for scalars, lower-

case bold letters for vectors, capital letters for matrices and calligraphic capital letters for

tensors. We use the symbol “ :” to indicate selection of all elements of a given mode of a

tensor. The mode-k fiber is the vector obtained by fixing all but the k-th index of the tensor,

i.e. the equivalent of rows and columns in a matrix. Tensor slices and their generalizations,

are obtained by keeping fixed all but two or more dimensions of the tensor.

It can be shown that the set of N -order tensors RI1×...×IN endowed with the standard

addition A + B = (Ai1,...,iN + Bi1,...,iN ) and scalar multiplication αA = (αAi1,...,iN ), with

α ∈ R, is a vector space. We now introduce some operators on the set of real tensors,

starting with the contracted product, which generalizes the matrix product to tensors. The

contracted product between X ∈ RI1×...×IM and Y ∈ RJ1×...×JN with IM = J1, is denoted
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by X ×M Y and yields a (M+N−2)-order tensor Z ∈ RI1×...×IM−1×J1×...×JN−1 , with entries

Zi1,...,iM−1,j2,...,jN = (X ×M Y)i1,...,iM−1,j2,...,jN =

IM∑
iM=1

Xi1,...,iM−1,iMYiM ,j2,...,jN .

When Y = y is a vector, the contracted product is also called mode-M product. We

define with X×̄NY a sequence of contracted products between the (K + N)-order tensor

X ∈ RJ1×...×JK×I1×...×IN and the (N + M)-order tensor Y ∈ RI1×...×IN×H1×...×HM . Entry-

wise, it is defined as

(
X×̄NY

)
j1,...,jK ,h1,...,hM

=

I1∑
i1=1

. . .

IN∑
iN=1

Xj1,...,jK ,i1,...,iNYi1,...,iN ,h1,...,hM .

Note that the contracted product is not commutative. The outer product ◦ between a

M -order tensor X ∈ RI1×...×IM and a N -order tensor Y ∈ RJ1×...×JN is a (M + N)-

order tensor Z ∈ RI1×...×IM×J1×...×JN with entries Zi1,...,iM ,j1,...,jN = (X ◦ Y)i1,...,iM ,j1,...,jN =

Xi1,...,iMYj1,...,jN .
Tensor decompositions allow to represent a tensor as a function of lower dimensional

variables, such as matrices of vectors, linked by suitable multidimensional operations. In

this paper, we use the low-rank parallel factor (PARAFAC) decomposition, which allows

to represent a N -order tensor in terms of a collection of vectors (called marginals). A

N -order tensor is of rank 1 when it is the outer product of N vectors. Let R be the rank of

the tensor X , that is minimum number of rank-1 tensors whose linear combination yields

X . The PARAFAC(R) decomposition is rank-R decomposition which represents a N -order

tensor B as a finite sum of R rank-1 tensors Br defined by the outer products of N vectors

(called marginals) β(r)
j ∈ RIj

B =
R∑
r=1

Br =
R∑
r=1

β
(r)
1 ◦ . . . ◦ β(r)

N , Br = β
(r)
1 ◦ . . . ◦ β(r)

N . (1)

The mode-n matricization (or unfolding), denoted by X(n) = matn(X ), is the operation

of transforming a N -dimensional array X into a matrix. It consists in re-arranging the

mode-n fibers of the tensor to be the columns of the matrix X(n), which has size In× I∗(−n)
with I∗(−n) =

∏
i 6=n Ii. The mode-n matricization of X maps the (i1, . . . , iN) element of X

to the (in, j) element of X(n), where j = 1 +
∑

m 6=n(im − 1)
∏m−1

p 6=n Ip. For some numerical
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examples, see Kolda and Bader (2009) and Section S.1 in the supplement. The mode-

1 unfolding is of interest for providing a visual representation of a tensor: for example,

when X be a 3-order tensor, its mode-1 matricization X(1) is a I1 × I2I3 matrix obtained

by horizontally stacking the mode-(1, 2) slices of the tensor. The vectorization operator

stacks all the elements in direct lexicographic order, forming a vector of length I∗ =
∏

i Ii.

Other orderings are possible, as long as it is consistent across the calculations. The mode-

n matricization can also be used to vectorize a tensor X , by exploiting the relationship

vec
(
X
)

= vec
(
X(1)

)
, where vec

(
X(1)

)
stacks vertically into a vector the columns of the

matrix X(1). Many product operations have been defined for tensors (e.g. Lee and Cichocki,

2018), but here we constrain ourselves to the operators used in this work. For the ease

of notation, we will use the multiple-index summation for indicating the sum over all the

corresponding indices.

Remark 2.1. Consider a N-order tensor B ∈ RI1×...×IN with a PARAFAC(R)

decomposition (with marginals β(r)
j ), a (N − 1)-order tensor Y ∈ RI1×...×IN−1 and a vector

x ∈ RIN . Then

Y = B ×N x ⇐⇒ vec
(
Y
)

= B′(N)x ⇐⇒ vec
(
Y
)′

= x′B(N)

where B(N) =
∑R

r=1 β
(r)
N vec

(
β

(r)
1 ◦ . . . ◦ β(r)

N−1
)′.

2.2 A General Dynamic Tensor Model

Let Yt be a (I1 × . . . × IN)-dimensional tensor of endogenous variables, Xt a (J1 ×
. . . × JM)-dimensional tensor of covariates, and Sy =×N

j=1
{1, . . . , Ij} ⊂ NN and Sx =

×M

j=1
{1, . . . , Jj} ⊂ NM sets of n-tuples of integers. We define the autoregressive tensor

model of order p, ART(p), as the system of equations

Yi,t = Ai,0 +

p∑
j=1

∑
k∈Sy

Ai,k,jYk,t−j +
∑
m∈Sx

Bi,mXm,t + Ei,t, Ei,t iid∼ N (0, σ2
i ), (2)

t ∈ Z, with given initial conditions Y−p+1, . . . ,Y0 ∈ RI1×...×IN , where i = (i1, . . . , iN) ∈ Sy
and Yi,t is the i-th entry of Yt. The general model in Eq. (2) allows for measuring the effect

of all the cells of Xt and of the lagged values of Yt on each endogenous variable.
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We give two equivalent compact representations of the multilinear system (2). The first

one is used for studying the stability property of the process and is obtained through the

contracted product that provides a natural setting for multilinear forms, decompositions

and inversions. From (2) one gets

Yt = A0 +

p∑
j=1

Ãj×̄NYt−j + B̃×̄MXt + Et, Et iid∼ NI1,...,IN (O,Σ1, . . . ,ΣN), (3)

t ∈ Z, where ×̄a,b is a shorthand notation for the contracted product ×1...a
a+1...a+b and ×̄a is

equivalent to ×̄a,0, Ã0 is a N -order tensor of the same size as Yt, Ãj, j = 1, . . . , p, are

2N -order tensors of size (I1 × . . . × IN × I1 × . . . × IN) and B is a (N + M)-order tensor

of size (I1 × . . .× IN × J1 × . . .× JM). The error term Et follows a N -order tensor normal

distribution (Ohlson et al., 2013) with probability density function

fE(E) =
exp

(
− 1

2
(E −M)×̄N

(
◦Nj=1 Σ−1j

)
×̄N(E −M)

)
(2π)I∗/2

∏N
j=1

∣∣Σj

∣∣I∗−j/2
, (4)

where I∗ =
∏

i Ii and I
∗
−i =

∏
j 6=i Ij, E and M are N -order tensors of size I1 × . . . × IN .

Each covariance matrix Σj ∈ RIj×Ij , j = 1, . . . , N , accounts for the dependence along the

corresponding mode of E .
The second representation of the ART(p) in Eq. (2) is used for developing inference. Let

Km be the (I1× . . .×IN×m)-dimensional commutation tensor such that Kσm×̄N,0Km = Im,

where Kσm is the tensor obtained by flipping the modes of Km. Define the (I1×. . .×IN×I∗)-
dimensional tensor Aj = Ãj×̄NKI∗ and the (I1 × . . . × IN × J∗)-dimensional tensor

B = B̃×̄NKJ∗ , with J∗ =
∏

j Jj. We obtain Aj ×N+1 vec
(
Yt−j

)
= Ãj×̄NYt−j and the

compact representation

Yt = A0 +

p∑
j=1

Aj ×N+1 vec
(
Yt−j

)
+ B ×N+1 vec

(
Xt
)

+ Et,

Et iid∼ NI1,...,IN (O,Σ1, . . . ,ΣN), t ∈ Z.

(5)

Let T = (RI1×...×IN×I1×...×IN , ×̄N) be the space of (I1×. . .×IN×I1×. . .×IN)-dimensional

tensors endowed with the contracted product ×̄N . We define the identity tensor I ∈ T to

be the neutral element of ×̄N , that is the tensor whose entries are Ii1,...,iN ,iN+1,...,i2N = 1 if

ik = ik+N for all k = 1, . . . , N and 0 otherwise. The inverse of a tensor A ∈ T is the tensor
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A−1 ∈ T satisfying A−1×̄NA = A×̄NA−1 = I. A complex number λ ∈ C and a nonzero

tensor X ∈ RI1×...×IN are called eigenvalue and eigentensor of the tensor A ∈ T if they

satisfy the multilinear equation A×̄NX = λX . We define the spectral radius ρ(A) of A to

be the largest modulus of the eigenvalues of A. We define a stochastic process to be weakly

stationary if the first and second moment of its finite dimensional distributions are finite

and constant in t. Finally, note that it is always possible to rewrite an ART(p) process as

a ART(1) process on an augmented state space, by stacking the endogenous tensors along

the first mode. Thus, without loss of generality, we focus on the case p = 1. We use the

definition of inverse tensor, spectral radius, and the convergence of power series of tensors

to prove the following results (see Section S.4 in the supplement for the proofs).

Lemma 2.1. Every (I1 × I2 × . . .× IN × I1 × I2 × . . .× IN)-dimensional ART(p) process

Yt =
∑p

k=1Ak×̄NYt−j+Et, t ∈ Z, can be rewritten as a (pI1×I2×. . .×IN×pI1×I2×. . .×IN)-

dimensional ART(1) process Y
t

= A×̄NY t−1 + E t, t ∈ Z.

Proposition 2.1 (Stationarity). If ρ(Ã1) < 1 and the process Xt, t ∈ Z, is weakly

stationary, then the ART process in Eq. (3), with p = 1, is weakly stationary and admits

the representation

Yt = (I − Ã1)
−1×̄NÃ0 +

∞∑
k=0

Ãk1×̄N B̃×̄MXt−k +
∞∑
k=0

Ãk1×̄NEt−k, t ∈ Z.

Proposition 2.2. The VAR(p) in Eq. (16) is weakly stationary if and only if the ART(p)

in Eq. (3) is weakly stationary.

2.3 Parametrization

The unrestricted model in Eq. (5) cannot be estimated, as the number of parameters

greatly outmatches the available data. We address this issue by assuming a PARAFAC(R)

decomposition for the tensor coefficients, which makes the estimation feasible by reducing

the dimension of the parameter space. The models in Eqq. (5)-(3) are equivalent but the

assuming a PARAFAC decomposition for the coefficient tensors leads to different degrees

of parsimony, as shown in the following remark.
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Remark 2.2 (Parametrization via contracted product). The two models (5) and (3)

combined with the PARAFAC decomposition for the tensor coefficients allow for different

degree of parsimony. To show this, without loss of generality, focus on the coefficient tensor

Ã1 (similar argument holds for Ãj, j = 2, . . . , p and B̃). By assuming a PARAFAC(R)

decomposition for Ã1 in (3) and for A1 in (5), we get, respectively

Ã1 =
R∑
r=1

α̃
(r)
1 ◦ . . . ◦ α̃(r)

N ◦ α̃
(r)
N+1 ◦ . . . ◦ α̃

(r)
2N , A1 =

R∑
r=1

α
(r)
1 ◦ . . . ◦α(r)

N ◦α
(r)
N+1,

The length of the vectors α(r)
j and α̃(r)

j coincide for each j = 1, . . . , N . However, α(r)
N+1 has

length I∗ while α̃(r)
N+1, . . . , α̃

(r)
2N have length I1, . . . , IN , respectively. Therefore, the number

of free parameters in the coefficient tensor A1 is R(I1 + . . . + IN +
∏N

j=1 Ij), while it is

2R(I1 + . . . + IN) for Ã1. This highlights the greater parsimony granted by the use of the

PARAFAC(R) decomposition in model (3) as compared to model (5).

Remark 2.3 (Vectorization). There is a relation between the (I1 × . . .× IN)-dimensional

ART(p) and a (I1 · . . . · IN)-dimensional VAR(p) model. The vector form of (5) is

vec
(
Yt
)

= vec
(
A0

)
+

p∑
j=1

matN+1(Aj) vec
(
Yt−j

)
+ matN+1(B) vec

(
Xt
)

+ vec
(
Et
)

yt = α0 +

p∑
j=1

A′(N+1),jyt−j + B′(N+1)xt + εt, εt ∼ NI∗(0,ΣN ⊗ . . .⊗ Σ1), (6)

t ∈ Z, where the constraint on the covariance matrix stems from the one-to-one relation

between the tensor normal distribution for X and the distribution of its vectorization

(Ohlson et al., 2013) given by X ∼ NI1,...,IN (M,Σ1, . . . ,ΣN) if and only if vec
(
X
)
∼

NI∗(vec
(
M
)
,ΣN ⊗ . . .⊗Σ1). The restriction on the covariance structure for the vectorized

tensor provides a parsimonious parametrization of the multivariate normal distribution,

while allowing both within and between mode dependence. Alternative parametrizations

for the covariance lead to generalizations of standard models. For example, assuming an

additive covariance structure results in the tensor ANOVA. This is an active field for further

research.

Example 2.1. For the sake of exposition, consider the model in Eq. (5), where p = 1,

the response is a 3-order tensor Yt ∈ Rd×d×d and the covariates include only a constant
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(a) vectorized (b) contracted product ×̄N as (5) (c) contracted product ×̄N as (3)

Figure 1: Number of parameters in A0, in log-scale (vertical axis) as function of the size d of the

(d × d × d)-dimensional tensor Yt (horizontal axis) in a ART(1) model. In all plots: unconstrained

model (solid line), PARAFAC(R) parametrization with R = 10 (dashed line) and R = 5 (dotted line).

Parametrizations: vectorized model (panel a), mode-n product of (5) (panel b) and contracted product

of (3) (panel c).

coefficient tensor A0. Define by kE the number of parameters of the noise distribution. The

total number of parameters to estimate in the unrestricted case is (d2N) + kE = O(d2N),

with N = 3 in this example. Instead, in a ART model defined via the mode-n product in

Eq. (5), assuming a PARAFAC(R) decomposition on A0 the total number of parameters

is
∑R

r=1(d
N + dN) + kE = O(dN). Finally, in the ART model defined by the contracted

product in Eq. (3) with a PARAFAC(R) decomposition on Ã0 the number of parameters is∑R
r=1Nd+ kE = O(d). A comparison of the different parsimony granted by the PARAFAC

decomposition in all models is illustrated in Fig. 1.

The structure of the PARAFAC decomposition poses an identification problem for the

marginals β(r)
j , which may arise from three sources:

(i) scale identification, since λjrβ
(r)
j ◦λkrβ(r)

k = β
(r)
j ◦β(r)

k for any collection {λjr}j,r such
that

∏J
j=1 λjr = 1;

(ii) permutation identification, since β(π(r))
j ◦ β(π(r))

k = β
(r)
j ◦ β(r)

k for any permutation π

of the indices {1, . . . , R};

(iii) orthogonal transformation identification, since β(r)
j Q ◦ β(r)

k Q = β
(r)
j Q(β

(r)
k Q)′ =

β
(r)
j ◦ β(r)

k for any orthonormal matrix Q.

Note that in our framework these issues do not hamper the inference, since our object of

interest is the coefficient tensor B, which is exactly identified. The marginals β(r)
j have no
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interpretation, as the PARAFAC decomposition is assumed on the coefficient tensor for the

sake of providing a parsimonious parametrization.

2.4 Important Special Cases

The model in Eq. (5) is a generalization of several well-known linear econometric models,

such as univariate regression, VARX, SUR, panel VAR, VECM and matrix autoregressive

models (MAR). See Sections S.3-S.4 of the supplement for further details. Dropping the

covariates Xt from Eq. (5), we obtain an autoregressive tensor model of order p (or ART(p))

Yt = A0 +

p∑
j=1

Aj ×N+1 vec
(
Yt−j

)
+ Et, Et iid∼ NI1,...,IN (0,Σ1, . . . ,ΣN), t ∈ Z. (7)

2.5 Impulse Response Analysis

In this section we derive two impulse response functions (IRF) for ART models, the block

Cholesky IRF and the block generalised IRF, exploiting the relationship between ART

and VAR models. Without loss of generality, we focus on the ART(p) model in Eq. (7),

with p = 1 and A0 = 0, and introduce the following notation. Let yt = vec
(
Yt
)
and

εt = vec
(
Et
)
∼ NI∗(0,Σ) be the (I∗ × 1) tensor response and noise term in vector form,

respectively, where Σ = ΣN ⊗ . . . ⊗ Σ1 is the (I∗ × I∗) covariance of the model in vector

form and I∗ =
∏N

k=1 Ik. Partition Σ in blocks as

Σ =

(
A B

B′ C

)
, (8)

where A is n× n, B is n× (I∗ − n), and C is (I∗ − n)× (I∗ − n), with 1 ≤ n ≤ I∗. Then,

denoting by S = C −B′A−1B the Schur complement of A, the LDU decomposition of Σ is

Σ =

(
In On,I∗−n

B′A−1 II∗−n

)(
A On,I∗−n

O′
n,I∗−n S

)(
In A−1B

O′
n,I∗−n II∗−n

)
= LDL′.

where Ij is the identity matrix of size j. Hence Σ can be block-diagonalised

D = L−1Σ(L′)−1 =

(
A On,I∗−n

O′
n,I∗−n S

)
. (9)

From the Cholesky decomposition of D one obtains a block Cholesky decomposition

Σ =

(
LA On,I∗−n

B′(L−1A )′ LS

)(
L′A L−1A B

O′
n,I∗−n L′S

)
= PP ′,
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where LA, LS are the Cholesky factors of A and S, respectively. Assume the vectorised ART

process admits an infinite MA representation, with Ψ0 = II∗ and Ψi = mat(4)(B)′Ψi−1, then

using the previous results we get:

yt =
∞∑
i=0

Ψiεt−i =
∞∑
i=0

(ΨiL)(L−1εt−i) =
∞∑
i=0

(ΨiL)ηt−i ηt ∼ NI∗(0, D), (10)

where ηt = L−1εt are the block-orthogonalised shocks and D is the block-diagonal matrix

in Eq. (9). Denote with En the I∗×n matrix that selects n columns from a pre-multiplied

matrix, i.e. DEn is a matrix containing n columns of D. Denote with δ∗ a n-dimensional

vector of shocks. Using the property of the multivariate Normal distribution, and recalling

that the top-left block of size n of D is A, we extend the generalised IRF of Koop et al.

(1996) and Pesaran and Shin (1998) by defining the block generalised IRF

ψG(h;n) = E
(

vec
(
Yt+h

)
| vec

(
Et
)′

= (δ∗′,0′I∗−n),Ft−1
)
− E

(
vec
(
Yt+h

)
|Ft−1

)
= (ΨhL)DEnA

−1δ∗, h = 1, 2, . . . (11)

where Fu, u ≤ t is the natural filtration associated to the stochastic process Yt, t ∈ Z.

Starting from Eq. (10) we derive the block Cholesky IRF (OIRF) as

ψO(h;n) = E
(

vec
(
Yt+h

)
| vec

(
Et
)′

= (δ∗′,0′I∗−n),Ft−1
)

− E
(

vec
(
Yt+h

)
| vec

(
Et
)′

= 0′I∗ ,Ft−1
)

= (ΨhL)PEnδ
∗, h = 1, 2, . . . . (12)

Define with ej the j-th column of the I∗-dimensional identity matrix. The impact of a

shock δ∗ to the j-th variable on all I∗ variables is given below in Eq. (13), whereas the

impact of a shock to the j-th variable on the i-th variable is given in Eq. (14).

ψG
j (h;n) = ΨhLDejD

−1
jj δ

∗, ψO
j (h;n) = ΨhLPejδ

∗ (13)

ψGij(h;n) = e′iΨhLDejD
−1
jj δ

∗, ψOij(h;n) = e′iΨhLPejδ
∗. (14)

Finally, denoting δj = ejδ
∗, we have the compact notation

ψG
j (h;n) = ΨhLDD

−1
jj δj, ψO

j (h;n) = ΨhLPδj

ψGij(h;n) = e′iΨhLDD
−1
jj δj, ψOij(h;n) = e′iΨhLPδj.
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3 Bayesian Inference

In this section, without loss of generality, we present the inference procedure for a special

case of the model in Eq. (5), given by

Yt = B ×4 vec
(
Yt−1

)
+ Et, Et iid∼ NI1,I2,I3(0,Σ1,Σ2,Σ3). (15)

Here Yt is a 3-order tensor response of size I1 × I2 × I3, Xt = Yt−1 and B is thus a

4-order coefficient tensor of size I1 × I2 × I3 × I4, with I4 = I1I2I3. This is a 3-order

tensor autoregressive model of lag-order 1, or ART(1), coinciding with Eq. (7) for p = 1

and A0 = 0. The noise term Et has as tensor normal distribution, with zero mean and

covariance matrices Σ1,Σ2,Σ3 of sizes I1 × I1, I2 × I2 and I3 × I3, respectively, accounting
for the covariance along each of the three dimensions of Yt. The specification of a tensor

model with a tensor normal noise instead of a vector model (like a Gaussian VAR) has the

advantage of being more parsimonious. By vectorising (15), we get the equivalent VAR

vec
(
Yt
)

= B′(4) vec
(
Yt−1

)
+ vec

(
Et
)
, vec

(
Et
) iid∼ NI∗(0,Σ3 ⊗ Σ2 ⊗ Σ1), (16)

whose covariance has a Kronecker structure, which contains (I1(I1 + 1) + I2(I2 + 1) +

I3(I3 + 1))/2 parameters (as opposed to (I∗(I∗+ 1))/2 of an unrestricted VAR) and allows

for heteroskedasticity.

The choice the Bayesian approach for inference is motivated by the fact that the large

number of parameters may lead to an overfitting problem, especially when the samples

size is rather small. This issue can be addressed by the indirect inclusion of parameter

restrictions through a suitable specification of the corresponding prior distributions. In the

unrestricted model (15) it would be necessary to define a prior distribution on the 4-order

tensor B. The literature on tensor-valued distributions is limited to the elliptical family

(e.g. Ohlson et al., 2013), which includes the tensor normal and tensor t. Both distributions

do not easily allow for the specification of restrictions on a subset of the entries of the tensor,

hampering the use of standard regularization prior distributions (such as shrinkage priors).

The PARAFAC(R) decomposition of the coefficient tensor provides a way to circumvent

this issue. This decomposition allows to represent a tensor through a collection of

vectors (the marginals), for which many flexible shrinkage prior distributions are available.

Indirectly, this introduces a priori shrinkage to zero of the coefficient tensor.
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3.1 Prior Specification

The choice of the prior distribution on the PARAFAC marginals is crucial for shrinking

towards zero some elements of the coefficient tensor and for increasing the efficiency of

the inference. Global-local prior distributions are based on scale mixtures of normal

distributions, where the different components of the covariance matrix govern the amount

of prior shrinkage. Compared to spike-and-slab distributions (e.g. George and McCulloch,

1997; Ishwaran and Rao, 2005; Mitchell and Beauchamp, 1988) which become infeasible

as the parameter space grows, global-local priors have better scalability properties in

high-dimensional settings. They do not provide automatic variable selection, which can

nonetheless be obtained by post-estimation thresholding (Park and Casella, 2008).

Motivated by these arguments, we define a global-local shrinkage prior for the marginals

β
(r)
j of the coefficient tensor B following the hierarchical prior specification of Guhaniyogi

et al. (2017). For each β(r)
j , we define a prior distributions as a scale mixture of normals

centred in zero, with three components for the covariance. The global parameter τ

governs the overall variance, the middle parameter φr defines the common shrinkage for the

marginals in r-th component of the PARAFAC, and the local parameter Wj,r = diag(wj,r)

drives the shrinkage of each entry of each marginal. Summarizing, for p = 1, . . . , Ij,

j = 1, . . . , J (J = 4 in Eq. (15)) and r = 1, . . . , R, the hierarchical prior structure (we use

the shape-rate formulation for the gamma distribution) for each vector of the PARAFAC(R)

decomposition in Eq. (1) is

π(φ) ∼ Dir(α1R) π(τ) ∼ Ga(aτ , bτ ) π(λj,r) ∼ Ga(aλ, bλ)

π(wj,r,p|λj,r) ∼ Exp(λ2j,r/2)

π
(
β

(r)
j

∣∣Wj,r,φ, τ
)
∼ NIj(0, τφrWj,r),

(17)

where 1R is the vector of ones of length R and we assume aτ = αR and bτ = αR1/J .

The conditional prior distribution of a generic entry bi1,...,iJ of B is the law of a sum of

product Normals (a product Normal is the distribution of the product of n independent

centred Normal random variables): it is symmetric around zero, with fatter tails than both

a standard Gaussian or a standard Laplace distribution (see Section S.5 of the supplement

for further details). The peak at zero of the product Normal prior promotes shrinking

effects. The following result characterises the conditional prior distribution of an entry of
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the coefficient tensor B induced by the hierarchical prior in Eq. (17). See Section S.5 for

the proof.

Lemma 3.1. Let bijkp =
∑R

r=1 βr, where βr = β
(r)
1,i β

(r)
2,jβ

(r)
3,kβ

(r)
4,p, and let m1 = i, m2 = j,

m3 = k and m4 = p. Under the prior specification in (17), the generic entry bijkp of the

coefficient tensor B has the conditional prior distribution

π(bijkp|τ,φ,W) = p

( R∑
r=1

βr
∣∣− ) = p(β1|−) ∗ . . . ∗ p(βR|−),

where ∗ denotes the convolution and

p(βr|−) = Kr ·G4,0
4,0

(
β2
r

4∏
h=1

(2τφrwh,r,mh
)−1
∣∣∣0),

with Gm,n
p,q (x|aab) a Meijer G-function and

G4,0
4,0

(
β2
r

4∏
h=1

(2τφrwh,r,mh
)−1
∣∣∣0) =

1

2πi

∫ c+i∞

c−i∞

(
β2
r

4∏
h=1

(2τφrwh,r,mh
)−1
)−s

ds

Kr = (2π)−4/2
4∏

h=1

(2τφrwh,r,mh
)−1 .

The use of Meijer G-functions and Fox H-functions is not new in econometrics. They

arise as limiting distributions for the cointegrating vector in VECM models (e.g., Abadir

and Paruolo, 1997) and have been used for defining prior distributions in Bayesian analysis

of non-conjugate Gaussian models (Andrade and Rathie, 2015, 2017).

From Eq. (4), we have that the covariance matrices Σj, j = 1, . . . , J , enter the likelihood

in a multiplicative way, therefore separate identification of their scales requires further

restrictions. Wang and West (2009) and Dobra (2015) adopt independent hyper-inverse

Wishart prior distributions (Dawid and Lauritzen, 1993) for each Σj, then impose the

identification restriction Σj,11 = 1 for j = 2, . . . , J − 1. The hard constraint Σj = IIj , for

all but one n, implicitly imposes that the dependence structure within different modes is

the same, but there is no dependence between modes. We follow Hoff (2011), who suggests

to introduce dependence between the Inverse Wishart prior distribution of each Σj via a

hyper-parameter γ affecting their prior scale. To account for marginal dependence, we add

a level of hierarchy, thus obtaining

π(γ) ∼ Ga(aγ, bγ) π(Σj|γ) ∼ IWIj(νj, γΨj). (18)
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bτaτ
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j
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γ

aγ bγ
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Ψj Σj Yt
t = 1, . . . , T

Figure 2: Directed acyclic graph of the model in Eq. (15) and prior structure in Eqq. (17)-(18).

Gray circles denote observable variables, white solid circles indicate parameters, white dashed circles

indicate fixed hyperparameters. Directed edges represent the conditional independence relationships.

Define Λ = {λj,r : j = 1, . . . , J, r = 1, . . . , R} and W = {Wj,r : j = 1, . . . , J, r = 1, . . . , R},
and let θ denote the collection of all parameters. The directed acyclic graph (DAG) of the

prior structure is given in Fig. 2.

Note that our prior specification is flexible enough to include Minnesota-type restrictions

or hierarchical structures as in Canova and Ciccarelli (2004).

3.2 Posterior Computation

Define Y = {Yt}Tt=1, I0 =
∑J

j=1 Ij, β
(r)
−j = {β(r)

i : i 6= j} and B−r = {Bi : i 6= r}, with
Br = β

(r)
1 ◦ . . . ◦ β(r)

4 . The likelihood function of model (15) is

L(Y|θ) =
T∏
t=1

(2π)−
I4
2

3∏
j=1

∣∣Σj

∣∣− I−j
2 (19)

· exp
(
− 1

2
Σ−12 (Yt − B ×4 yt−1)×1...3

1...3

(
◦3j=1 Σ−1j

)
×1...3

1...3 (Yt − B ×4 yt−1)
)
,

where yt−1 = vec
(
Yt−1

)
and θ denotes the collection of all parameters. Since the posterior

distribution is not tractable, we adopt an MCMC procedure based on Gibbs sampling. The

details of the derivation of the full conditional posterior distributions are given in Section

S.6 of the supplement. We articulate the sampler in three main blocks:

(I) Sample the global and middle variance hyper-parameters of the marginals, from

p(ψr|B,W, α) ∝ GiG
(
α− I0/2, 2bτ , 2Cr

)
(20)

p(τ |B,W,φ) ∝ GiG
(
aτ −RI0/2, 2bτ , 2

R∑
r=1

Cr/φr
)
, (21)
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where Cr =
∑J

j=1 β
(r)′

j W−1
j,r β

(r)
j , then set φr = ψr/

∑R
l=1 ψl. To improve the mixing,

we sample τ with a Hamiltonian Monte Carlo (HMC) step (Neal, 2011).

(II) Sample the local variance hyper-parameters of the marginals and the marginals

themselves, from

p
(
λj,r|β(r)

j , φr, τ
)
∝ Ga

(
aλ + Ij, bλ +

∥∥β(r)
j

∥∥
1
(τφr)

−1/2) (22)

p
(
wj,r,p|λj,r, φr, τ,β(r)

j

)
∝ GiG

(
1/2, λ2j,r, (β

(r)
j,p )2/(τφr)

)
(23)

p
(
β

(r)
j |β(r)

−j ,B−r,Wj,r, φr, τ,Y,Σ1, . . . ,Σ3

)
∝ NIj(µ̄βj

, Σ̄βj
). (24)

(III) Sample the covariance matrices and the latent scale, from

p(Σj|B,Y,Σ−j, γ) ∝ IWIj(νj + Ij, γΨj + Sj) (25)

p(γ|Σ1, . . . ,Σ3) ∝ Ga
(
aγ +

3∑
j=1

νjIj, bγ +
3∑
j=1

tr(ΨjΣ
−1
j )
)
. (26)

4 Application to Multilayer Dynamic Networks

We apply the proposed methodology to study jointly the dynamics of international trade

and credit networks. The international trade network has been previously investigated

by several authors (e.g., Eaton and Kortum, 2002; Fieler, 2011), but to the best of

our knowledge, this is the first attempt to model the dynamics of two networks jointly.

Moreover, the impulse response analysis in this setting can be used for predicting possible

trade creation and diversion effects (e.g., Bikker, 2010).

The bilateral trade data come from the COMTRADE database, whereas the data on

bilateral outstanding credit come from the Bank of International Settlements database.

Our sample of yearly observations for 10 countries runs from 2003 to 2016. At each time t,

the 3-order tensor Yt has size (10, 10, 2) and represents a 2-layer node-aligned network (or

multiplex) with 10 vertices (countries), where each edge is given by a bilateral trade flow

or financial exposure. See Section S.9 in the supplement for data description.

We estimate the tensor autoregressive model in Eq. (15), using the prior structure

described in Section 3, and run the Gibbs sampler for N = 100, 000 iterations after 30, 000

burn-in iterations. We retain every second draw for posterior inference.
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Figure 3: Left: mode-4 matricization of estimated coefficient tensor B̂(4). Right: log-spectrum of

B̂(4), decreasing order.

The mode-4 matricization of the estimated coefficient tensor, B̂(4), is shown in the left

panel of Fig. 3. The (i, j)-th entry of the matrix B̂(4) reports the impact of the edge j on edge

i in vectorised form (e.g., j = 21 and i = 4 corresponds to the coefficient of entry Y1,3,1,t−1

on Y4,1,1,t). The first 100 rows/columns correspond to the edges in the first layer. Hence,

two rows of the matricized coefficient tensor are similar when two edges are affected by all

the edges of the (lagged) network in a similar way, whereas two similar columns identify the

situation where two edges impact the (next period) network in a similar way. The overall

distribution of the estimated entries of B̂(4) is symmetric around zero and leptokurtic, as

a consequence of the shrinkage to zero of the estimated coefficients. The right panel of

Fig. 3 shows the log-spectrum of B̂(4). As all eigenvalues of B̂(4) have modulus smaller than

one, we conclude that the estimated ART(1) model is weakly stationary. In fact, it can be

shown that the stationarity of the mode-4 matricised coefficient tensor implies stationarity

of the ART(1) process. Additional estimation results are provided in Section S.10 of the

supplement.

After estimating the ART(1) model (15), we may investigate shock propagation

across the network computing generalised and orthogonalised impulse response functions

presented in equations (11) and (12), respectively. Impulse responses allow us to analyze the

propagation of shocks both across the network, within and across layers, and over time. For

illustration, we study the responses to a shock in all edges of a country, by applying block

Cholesky factorisation to Σ, in such a way that the shocked country contemporaneously

affects all others and not vice-versa (we do not report generalised IRFs, which are very
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similar). Thus, the matrices A and C in Eq. (8) reflect contemporaneous correlations across

transactions of the shock-originating country and with transactions of all other countries,

respectively. For expositional convenience, we report only statistically significant responses.

In this analysis we consider a negative 1% shock to US trade imports (i.e., we allocate

the shock across import originating countries to match import shares as in the last period

of the sample). The results of the block Cholesky IRF at horizon 1 are given in Fig. 4.

We report the impact on the whole network (panel (a)) and, for illustrative purposes, the

impact on Germany’s transactions (panel (b)).

Global effect on the network. The negative shock to US imports has an effect on both

layers (trade and financial) of the network. There is evidence of heterogeneous responses

across countries and country-specific transactions. On average, trade flows exhibit a slight

expansion in response to the shock. Switzerland is the most positively affected, both in

terms of exports and imports, and trade imports of the US show (on average) a reverted

positive response one period after the shock. This reflects an oscillating impulse response.

The overall average effect on the financial layer is negative, similar in magnitude to the

effect on the trade layer. More specifically, we observe that Denmark’s and Sweden’s

exports to Switzerland, Germany and France show a contraction, whereas the effect on

US’s, Japan’s, and Ireland’s exports to these countries is positive. We may interpret these

effects as substitution effects: The decreasing share of Denmark’s and Sweden’s exports to

Switzerland, Germany and France is offset by an increase in exports to the US, Japan and

Ireland. In conclusion, model (15) permits to forecast trade creation and diversion effects

(Bikker, 2010).

Local effect on Germany. In panel (b) of Fig. 4 we report the response of Germany’s

transactions to the negative shock in US imports. The effects on imports are mixed:

while Germany’s imports from most other EU countries increase, imports from Sweden and

Denmark decrease. Likewise, Germany’s exports show heterogeneous responses, whereby

exports to Switzerland react strongest (positively). The shock in US imports does not

have a significant impact on Germany’s outstanding credit against most countries (except

Switzerland and Japan). On the other hand, the reactions of Germany’s outstanding debt

reflect those on trade imports.
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Local effect on other countries. We observe that the most affected trade transactions are

those of Denmark, Japan, Ireland, Sweden and US (as exporters) vis-à-vis Switzerland and

France (as importers). The financial layer mirrors these effects with opposite sign, while

the magnitudes are comparable. Outstanding credit of Ireland and Japan to Switzerland,

Germany and France decrease at horizon 1. By contrast, Denmark’s outstanding credit to

these countries increases. Note that outstanding debt of US vis-à-vis almost all countries

decreases after the shock. Overall, responses to a shock on US imports at horizon 1

are heterogeneous in sign but rather low in magnitude, whereas at horizon 2 (plot not

reported) the propagation of the shock has vanished. We interpret this as a sign of fast

(and monotone) decay of the IRF.
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(b) IRF for Germany’s edges at h = 1
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Figure 4: Shock to US trade imports by -1%. IRF at horizon h = 1 for all (panel a) and Germany

(panel b) financial and trade transactions. In each plot negative coefficients are in blue and positive

in red.

In addition, Section S.10 in the supplement shows additional impulse responses to a (i)

negative 1% shock to Great Britain’s (GB) outstanding debt and (ii) 1% negative shock to

GB’s outstanding debt coupled with a 1% positive shock to GB’s outstanding credit.
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5 Conclusions

We defined a new and general statistical framework for dynamic tensor regression. It

encompasses the autoregressive tensor model, called ART, and many models frequently

used in time series analysis as special cases, such as VAR, panel VAR, SUR, and MAR

models. We exploited a low-rank decomposition of the coefficient tensor to reduce the

parameter space dimension and specified a global-local shrinkage prior to address the

overfitting. Taking advantage of the properties of the contracted product, we studied

the main properties of the ART process and derived the impulse response function and the

forecast error variance decomposition, which are essential tools for making predictions.

The proposed methodology has been applied to a time series of international trade and

financial multilayer network. We are able to provide evidence of stationarity of the network

process, heterogeneity in the shock propagation across countries and over time.
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S.1 Background Material on Tensor Calculus15

This appendix provides the main tools used in the paper. See the supplement for further16

results and details. A N -order tensor is an element of the tensor product of N vector17

spaces. Since there exists a isomorphism between two vector spaces of dimensions N and18

M < N , it is possible to define a one-to-one map between their elements, that is, between19

a N -order tensor and a M -order tensor.20

Definition S.1.1 (Tensor reshaping). Let V1, . . . , VN and U1, . . . , UM be vector subspaces

Vn, Um ⊆ R and X ∈ RI1×...×IN = V1 ⊗ . . . ⊗ VN be a N-order real tensor of dimensions

I1, . . . , IN . Let (v1, . . . ,vN) be a canonical basis of RI1×...×IN and let ΠS be the projection

defined as

ΠS :V1 ⊗ . . .⊗ VN → Vs1 ⊗ . . .⊗ Vsk

v1 ⊗ . . .⊗ vN 7→ vs1 ⊗ . . .⊗ vsk

with S = {s1, . . . , sk} ⊂ {1, . . . , N}. Let (S1, . . . , SM) be a partition of {1, . . . , N}. The21

(S1, . . . , SM) tensor reshaping of X is defined as X(S1,...,SM ) = (ΠS1X ) ⊗ . . . ⊗ (ΠSMX ) =22

U1⊗ . . .⊗UM . The mapping is an isomorphism between V1⊗ . . .⊗ VN and U1⊗ . . .⊗UM .23

The matricization is a particular case of reshaping a N -order tensor into a 2-order24

tensor, by choosing a mapping between the tensor modes and the rows and columns of the25

resulting matrix, then permuting the tensor and reshaping it, accordingly.26

Definition S.1.2 (Matricization). Let X be a N-order tensor with dimensions I1, . . . , IN .

Let the ordered sets R = {r1, . . . , rL} and C = {c1, . . . , cM} be a partition of N =

{1, . . . , N}. The matricized tensor is defined by

matR,C (X ) = X(R,C ) ∈ RJ×K , J =
∏
n∈R

In, K =
∏
n∈C

In .

Indices of R,C are mapped to the rows and the columns, respectively, and

(
X(R×C )

)
j,k

= Xi1,i2,...,iN , j = 1+
L∑
l=1

(
(irl−1)

l−1∏
l′=1

Ir′l

)
, k = 1+

M∑
m=1

(
(icm−1)

m−1∏
m′=1

Ic′m

)
.
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The inner product between two (I1 × . . .× IN)-dimensional tensors X ,Y is defined as

〈X ,Y〉 =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,...,iNYi1,...,iN

The PARAFAC(R) decomposition (e.g., see Kolda and Bader, 2009), is rank-R

decomposition which represents a tensor B ∈ RI1×...×IN as a finite sum of R rank-1 tensors

obtained as the outer products of N vectors (called marginals) β(r)
j ∈ RIj

B =
R∑
r=1

Br =
R∑
r=1

β
(r)
1 ◦ . . . ◦ β

(r)
J .

Lemma S.1.1 (Contracted product – some properties). Let X ∈ RI1×...×IN and Y ∈27

RJ1×...×JN×JN+1×...×JN+P . Let (S1,S2) be a partition of {1, . . . , N + P}, where S1 =28

{1, . . . , N}, S2 = {N + 1, . . . , N + P}. It holds:29

(i) if P = 0 and In = Jn, n = 1, . . . , N , then X×̄NY = 〈X ,Y〉 = vec
(
X
)′ · vec

(
Y
)
.30

(ii) if P > 0 and In = Jn for n = 1, . . . , N , then

X×̄NY = vec
(
X
)
×1 Y(S1,S2) ∈ Rj1×...×jP

Y×̄NX = Y(S1,S2) ×1 vec
(
X
)
∈ Rj1×...×jP .

(iii) let R = {1, . . . , N} and C = {N + 1, . . . , 2N}. If P = N and In = Jn = JN+n,

n = 1, . . . , N , then

X×̄NY×̄NX = vec
(
X
)′

Y(R,C ) vec
(
X
)
.

(iv) let M = N + P , then X ◦ Y = X×̄1YT , where X ,Y are (I1 × . . . × IN × 1)- and31

(J1×. . .×JM×1)-dimensional tensors, respectively, given by X :,...,:,1 = X , Y
:,...,:,1

= Y32

and YT
j1,...,jM ,jM+1

= Y
jM+1,jM ,...,j1

.33

Proof. Case (i). By definition of contracted product and tensor scalar product

X×̄NY =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,...,iNYi1,...,iN = 〈X ,Y〉 = vec
(
X
)′ · vec

(
Y
)
.
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Case (ii). Define I∗ =
∏N

n=1 In and k = 1 +
∑N

j=1(ij − 1)
∏j−1

m=1 Im. By definition of

contracted product and tensor scalar product

X×̄NY =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,...,iNYi1,...,iN ,jN+1,...,jN+P
=

I∗∑
k=1

XkYk,jN+1,...,jN+P
.

Note that the one-to-one correspondence established by the mapping between k and

(i1, . . . , iN) corresponds to that of the vectorization of a (I1× . . .× IN)-dimensional tensor.

It also corresponds to the mapping established by the tensor reshaping of a (N + P )-

order tensor with dimensions I1, . . . , IN , JN+1, . . . , JN+P into a (P + 1)-order tensor with

dimensions I∗, JN+1, . . . , JN+P . Let S1 = {1, . . . , N}, then

X×̄NY =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,...,iNYi1,...,iN ,:,...,: =

|S1|∑
s1=1

xs1Ȳs1,:,...,:

where Ȳ = reshape(S1,N+1,...,N+P )(Y). Following the same approach, and defining S2 =

{N + 1, . . . , N + P}, we obtain the second part of the result.

Case (iii). We follow the same strategy adopted in case b). Let x = vec
(
X
)
,

S1 = {1, . . . , N} and S2 = {N + 1, . . . , N + P}, such that (S − 1, S2) is a partition of

{1, . . . , N + P}. Let k, k′ be defined as in case b). Then

X×̄NY×̄NX =

I1∑
i1=1

. . .

IN∑
iN=1

I1∑
i′1=1

. . .

IN∑
i′N=1

Xi1,...,iNYi1,...,iN ,i′1,...,i′NXi′1,...,i′N

=
I∗∑
k=1

I1∑
i′1=1

. . .

IN∑
i′N=1

xkYk,i′1,...,i′NXi′1,...,i′N =
I∗∑
k=1

I∗∑
k′=1

xkYk,k′xk′ = vec
(
X
)′Y(S1,S2) vec

(
X
)
.

Case (iv). Let i = (i1, . . . , iN) and j = (j1, . . . , jM) be two multi-indexes. By the definition34

of outer and contracted product we get (X ◦Y)i,j = X i,1Y1,j
= (X×̄1YT )i,j. Therefore, with35

a slight abuse of notation, we use Y = Y and write Y ◦ Y = Y×̄1YT , when the meaning of36

the products is clear form the context.37

Lemma S.1.2 (Kronecker - matricization). Let Xn be a In × In matrix, for n = 1, . . . , N ,38

and let X = X1 ◦ . . . ◦ XN be the (I1 × . . . × IN × I1 × . . . × IN)-dimensional tensor39

obtained as the outer product of the matrices X1, . . . , XN . Let (S1,S2) be a partition40

of IN = {1, . . . , 2N}, where S1 = {1, . . . , N} and S2 = {N + 1, . . . , N}. Then41

X(S1,S2) = X(R,C ) = (XN ⊗ . . .⊗X1).42
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Proof. Use the pair of indices (in, i
′
n) for the entries of the matrix Xn, n = 1, . . . , N . By43

definition of outer product (X1 ◦ . . . ◦ XN)i1,...,iN ,i′1,...,i′N = (X1)i1,i′1 · . . . · (XN)iN ,i′N . By44

definition of matricization, X(S1,S2) = X(R,C ). Moreover (X(S1,S2))h,k = Xi1,...,i2N with h =45 ∑N
p=1(iS1,p−1)

∏p−1
q=1 JS1,p and k =

∑N
p=1(iS2,p−1)

∏p−1
q=1 JS2,p . By definition of the Kronecker46

product, the entry (h′, k′) of (XN⊗. . .⊗X1) is (XN⊗. . .⊗X1)h′,k′ = (XN)i′N ,i′N ·. . .·(X1)i1,i′1 ,47

where h′ =
∑N

p=1(iS1,p − 1)
∏p−1

q=1 JS1,p and k′ =
∑N

p=1(iS2,p − 1)
∏p−1

q=1 JS2,p . Since h = h′48

and k = k′ and the associated elements of X(S1,S2) and (XN ⊗ . . .⊗X1) are the same, the49

result follows.50

Lemma S.1.3 (Outer product and vectorization). Let α1, . . . ,αn be vectors such that αi

has length di, for i = 1, . . . , n. Then, for each j = 1, . . . , n, it holds

vec
( n◦
i=1
αi
)

=
n
⊗
i=1
αn−i+1 =

(
αn ⊗ . . .⊗αj+1 ⊗ Idj ⊗αj−1 ⊗ . . .⊗α1

)
αj.

Proof. The result follows from the definitions of vectorisation operator and outer product.

For n = 2, the result follows directly from

vec
(
α1 ◦α2

)
= vec

(
α1α

′
2

)
= α2 ⊗α1 = (α2 ⊗ Id1)α1 = (Id2 ⊗α1)α2.

For n > 2 consider, without loss of generality, n = 3 (an analogous proof holds for n > 3).

Then, from the definitions of outer product and Kronecker product we have

vec
(
α1 ◦α2 ◦α3

)
=

= (α′1 · α2,1α3,1, . . . ,α
′
1 · α2,d2α3,1,α

′
1 · α2,1α3,2, . . . ,α

′
1 · α2,d2α3,2, . . . ,α

′
1 · α2,d2α3,d3)

′

= α3 ⊗α2 ⊗α1 = (α3 ⊗α2 ⊗ Id1)α1 = (α3 ⊗ Id2 ⊗α1)α2 = (Id3 ⊗α2 ⊗α1)α3.

51

Let X ,Y be two (I1 × . . . × IN)-dimensional tensors. The Hadamard product between

them, Z = X �Y , is the (I1× . . .× IN)-dimensional tensor Z defined by the element-wise

multiplication

Zi1,...,iN = (X � Y)i1,...,iN = Xi1,...,iNYi1,...,iN .

We introduce two multilinear operators acting on tensors (see Kolda, 2006, for further52

details).53
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Definition S.1.3 (Tucker operator). Let Y ∈ RJ1×...×JN and N = {1, . . . , N}. Let (An)n

be a collection of N matrices such that An ∈ RIn×Jn. The Tucker operator is defined as

JY ;A1, . . . , ANK = Y×̄1A1×̄1A2 . . . ×̄1AN ,

and the resulting tensor has size I1 × . . .× IN .54

We now define some useful tensor decompositions. The Tucker decomposition is a

higher-order generalization of the Principal Component Analysis (PCA): a tensor B ∈

RI1×...×IN is decomposed into the product (along the corresponding modes) of a “core”

tensor G ∈ Rg1×...×gN and factor matrices A(m) ∈ RIm×Jm , m = 1, . . . , N

B = G×̄1A
(1)×̄1 . . . ×̄1A

(N) =

g1∑
i1=1

. . .

gN∑
iN=1

Gi1,...,iNa
(1)
i1
◦ . . . ◦ a

(N)
iN

(S1)

where a
(m)
il
∈ Rgm is the m-th column of the matrix A(m). As a result, each entry of the

tensor is obtained as

Bj1,...,jN =

g1∑
i1=1

. . .

gN∑
iN=1

Gi1,...,iN · A
(1)
i1,j1
· · ·A(N)

iN ,jN
(S2)

The PARAFAC(R) decomposition1, is rank-R decomposition which represents a tensor

B ∈ RI1×...×IN as a finite sum of R rank-1 tensors obtained as the outer products of N

vectors (called marginals) β(r)
j ∈ RIj , j = 1, . . . , J

B =
R∑
r=1

Br =
R∑
r=1

β
(r)
1 ◦ . . . ◦ β

(r)
J . (S3)

Fig. 1 provides a graphical representation of this decomposition for a 3-order tensor.55

Definition S.1.4 (Kruskal operator). Let N = {1, . . . , N} and (An)n be a collection of N

matrices such that An ∈ RIn×R for n ∈ N. Let I be the identity tensor of size R× . . .×R,

i.e. a tensor having ones along the superdiagonal and zeros elsewhere. The Kruskal operator

is defined as

X = JA1, . . . , ANK = JI;A1, . . . , ANK,
1See Harshman (1970). Some authors (e.g. Carroll and Chang, 1970; Kiers, 2000) use the term

CODECOMP or CP instead of PARAFAC.
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Figure 1: PARAFAC decomposition of X ∈ RI1×I2×I3 , with ar ∈ RI1 , br ∈ RI2 and cr ∈ RI3 ,

r = 1, . . . , R. Figure from Kolda and Bader (2009).

with X a tensor of size I1× . . .× IN . An alternative representation is obtained by defining

a
(r)
n the r-th column of the matrix An and using the outer product

X = JA1, . . . , ANK =
R∑
r=1

a
(r)
1 ◦ . . . ◦ a

(r)
N .

By exploiting the Khatri-Rao product �K (i.e. the column-wise Kronecker product for

A ∈ RI×K, B ∈ RJ×K defined as A�KB = (a:,1⊗b:,1, . . . , a:,K⊗b:,K)) in combination with

the mode-n matricization and the vectorization operators, we get the following additional

representations of X = JA1, . . . , ANK

X(n) = An(AN �K . . .�K An+1 �K An−1 �K . . .�K A1)′

vec
(
X
)

= (AN �K . . .�K A1)1R

where 1R is a vector of ones of length R.56

Remark S.1.1. Let X be a N-order tensor of dimensions I1×. . .×IN and let I∗ =
∏N

i=1 Ii.

Then there exists a I∗ × I∗ vec-permutation (or commutation) matrix K1→n such that

K1→n vec
(
X
)

= K1→n vec
(
X(1)

)
= vec

(
X(n)

)
= vec

(
XTσ

(1)

)
= vec

(
X Tσ

)
,

where XTσ
(1) =

(
X Tσ

)
(1)

= X(n) is the mode-1 matricization of the transposed tensor

X Tσ according to the permutation σ which exchanges modes 1 and n, leaving the others

unchanged. That is, for ij ∈ {1, . . . , Ij} and j = 1, . . . , N

σ(ij) =


1 j = n

n j = 1

ij j 6= 1, n

7



Lemma S.1.4 (Tensor – matrix Normal). Let X be a N-order random tensor with

dimensions I1, . . . , IN and let N = {1, . . . , N} be partitioned by the index sets R =

{r1, . . . , rm} ⊂ D and C = {c1, . . . , cp} ⊂ N, i.e. N = R ∪C , R ∩C = ∅ and N = m+ p.

Then

X ∼ NI1,...,IN (M,Σ1, . . . ,ΣN) ⇐⇒ X(R×C ) ∼ Nm,p(M(R×C ),Σ1,Σ2),

with Σ1 = Σrm ⊗ . . .⊗ Σr1 and Σ2 = Σcp ⊗ . . .⊗ Σc1.57

Proof. We demonstrate the statement for R = {n}, n ∈ N, however the results follows

from the same steps also in the general case #R > 1. The strategy is to demonstrate that

the probability density functions of the two distributions coincide. To this aim consider

separately the exponent and the normalizing constant. Define I−j =
∏N

i=1, n 6=j Ii and

IN = {I1, . . . , IN}, then for the normalizing constant we have

(2π)−
∏
i Ii
2

∣∣Σ1

∣∣− I−1
2 · · ·

∣∣Σn

∣∣− I−n2 · · · ∣∣ΣN

∣∣− I−N2 = (S4)

= (2π)−
∏
i Ii
2

∣∣Σ1

∣∣− I−1
2 · · ·

∣∣Σn−1

∣∣− I−(n−1)
2
∣∣Σn+1

∣∣− I−(n+1)
2 · · ·

∣∣ΣN

∣∣− I−N2 ∣∣Σn

∣∣− I−n2
= (2π)−

∏
i Ii
2

∣∣ΣN ⊗ . . .⊗ Σn−1 ⊗ Σn+1 ⊗ . . .⊗ ΣN

∣∣−n2 ∣∣Σn

∣∣− I−n2 . (S5)

Concerning the exponent, let i = (i1, . . . , iN) and, for ease of notation, define Y = X −M

and U = (Σ−1
N ◦ . . . ◦ Σ−1

1 ). By the definition of contracted and outer products, it holds

Y×̄NU×̄NY =
∑

i1,...,in,...,iN

∑
i′1,...,i

′
n,...,i

′
N

yi1,...,iN (u−1
i1,i′1
· . . . · uin,i′n · . . . · u

−1
iN ,i

′
N

)yi′1,...,i′n,...,i′N . (S6)

Define j = σ(i), where σ is the permutation defined in Remark S.1.1 exchanging i1 with in,

n ∈ {2, . . . , N}. Then the previous equation can be rewritten as

Y×̄NU×̄NY =
∑

j1,...,jN

∑
j′1,...,j

′
N

yjn,...,j1,...,iN (u−1
jn,j′n
· · ·u−1

j1,j′1
· · ·u−1

iN ,i
′
N

)yj′n,...,j′1,...,i′N

= Yσ×̄N
(
Σ−1

1 ◦ . . . ◦ Σ−1
N

)σ×̄NYσ
where Yσ is the transpose tensor of Y (see Pan, 2014) obtained by permuting the first and

the n-th modes and similarly for the N -order tensor (Σ−1
1 ◦ . . . ◦Σ−1

N )σ. Let (S1,S2), with

S1 = {1, . . . , N} and S2 = {N + 1, . . . , 2N}, be a partition of {1, . . . , 2N}. By vectorizing

eq. (S6) and exploiting the results in Theorem S.1.1 and Theorem S.1.2, we have

Y×̄NU×̄NY = vec
(
Y
)′ · U(S1,S2) · vec

(
Y
)

(S7)
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= vec
(
Y
)′ · (Σ−1

N ⊗ . . .⊗ Σ−1
n ⊗ . . .⊗ Σ−1

1

)
· vec

(
Y
)

= vec
(
Yσ
)′ · (Σ−1

N ⊗ . . .⊗ Σ−1
1 ⊗ Σ−1

n

)
· vec

(
Yσ
)

= vec
(
Y(n)

)′ · (Σ−1
N ⊗ . . .⊗ Σ−1

1 ⊗ Σ−1
n

)
· vec

(
Y(n)

)
= vec

(
Y(n)

)′ · vec
(
Σ−1
n ·Y(n) ·

(
Σ−1
N ⊗ . . .⊗ Σ−1

1

))
= tr

(
Y′(n) · Σ−1

n ·Y(n) ·
(
Σ−1
N ⊗ . . .⊗ Σ−1

1

))
= tr

((
Σ−1
N ⊗ . . .⊗ Σ−1

1

)(
X(n) −M(n)

)′
Σ−1
n

(
X(n) −M(n)

))
. (S8)

Since the term in (S4) and (S7) are the normalizing constant and the exponent of the58

tensor normal distribution, whereas (S5) and (S8) are the corresponding expressions for59

the desired matrix normal distribution, the result is proved for the case #R = 1. In the60

general case #R = r > 1 the proof follows from the same reasoning, by substituting the61

permutation σ with another permutation σ′ which exchanges the modes of the tensor such62

that the first r modes of the transpose tensor Yσ′ correspond to the elements of R.63

S.2 Forecast error variance decomposition64

From the results in eqs. (11)-(12) of the main paper, we obtain the forecast error variance

decomposition (tFEVD) for the tensor autoregressive model in each of the two cases.

The tFEVD θi,j(h) measures the proportion of the h-step ahead forecast error variance

of variable i that is accounted for by the innovations in variable j, in the VAR formulation

of the model. Recently, Lanne and Nyberg (2016) have introduced a modification to the

FEVD obtained from the GIRF of Koop et al. (1996), θ∗i,j(h), which has unit sum. Denoting

by IRF (h) an impulse response function at horizon h, the corresponding tFEVD and its

modification are, respectively,

θij(h) =

∑h
k=0 IRF

2
ij(k)∑h

k=0

∑I∗

j=0 IRF
2
ij(k)

, θ∗i,j(h) =

∑h
k=0(ψGij(k;n))2∑h

k=0

∑I∗

j=0(ψGij(k;n))2
.

The orthogonalised tensor forecast error variance decomposition (OtFEVD) by construction

sums (over j) to 1. In this case δ∗j = 1, and all the other I∗− 1 entries are zero (equivalent

to δ∗ = ej). The OtFEVD is given by

θOi,j(h) =

∑h
k=0(ψOij(k;n))2∑h

k=0

∑I∗

j=0(ψOij(k;n))2
=

∑h
k=0(e′iΨkLPej)

2∑h
k=0 e′i(ΨkL)D(ΨkL)′ei

.
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Consider the case δ∗j =
√
Djj, with all the other I∗ − 1 entries being zero (equivalent to

δ∗ =
√
Djjej). The generalised tensor forecast error variance decomposition (GtFEVD)

does not sum to 1, and is

θGi,j(h) =

∑h
k=0(ψGij(k;n))2∑h

k=0

∑I∗

j=0(ψGij(k;n))2
=

∑h
k=0(e′iΨkLDD

−1/2
jj ej)

2∑h
k=0 e′i(ΨkL)D(ΨkL)′ei

(S9)

Finally, the modified tFEVD applied to the tensor GIRF (S9) yields

θG∗i,j (h) =

∑h
k=0(e′iΨkLDD

−1/2
jj ej)

2∑h
k=0

∑I∗

j=1 e′iΨkLDD
−1/2
jj ej

=

∑h
k=0(e′iΨkLDD

−1/2
jj ej)

2∑h
k=0 e′i(ΨkL)DΛD′(ΨkL)′ei

,

where Λ = diag(D−1
11 , . . . , D

−1
I∗I∗).65

S.3 Example: MAR(1)66

To facilitate the understanding of the model in eq. (5), this section shows a special case

of the general model in eq. (5), that we call the matrix autoregressive model, or MAR(p).

We illustrate in a toy example the case with only the lagged dependent variable (i.e., Yt−1)

as regressor. Assuming N = 2, p = 1 and I1 = I2 = 2, we obtain a matrix autoregressive

model (i.e. with Yt = Yt, Et = Et) with one lag. Denoting vec
(
Yt
)

= yt and vec
(
Et
)

= εt,

as follows

Yt =

(
y11,t y12,t

y21,t y22,t

)
=⇒ vec

(
Yt
)

= (y11,t, y12,t, y21,t, y22,t)
′ = (y1,t, y2,t, y3,t, y4,t)

′

B = (B::1,B::2,B::3,B::4), with B::k = Bk =

b11k b12k

b21k b22k


Et =

(
ε11,t ε12,t

ε21,t ε22,t

)
=⇒ vec

(
Et
)

= (ε11,t, ε12,t, ε21,t, ε22,t)
′ = (ε1,t, ε2,t, ε3,t, ε4,t)

′.

Therefore, model (5) becomes

Yt = B×̄1Yt−1 + Et =⇒ Yt = B×̄1Yt−1 + Et(
y11,t y12,t

y21,t y22,t

)
= B::1y1,t−1 + . . .+ B::4y4,t−1 +

(
ε11,t ε12,t

ε21,t ε22,t

)
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=

(
b11,1 b12,1

b21,1 b22,1

)
y1,t−1 + . . .+

(
b11,4 b12,4

b21,4 b22,4

)
y4,t−1 +

(
ε11,t ε12,t

ε21,t ε22,t

)
.

Assuming a PARAFAC(R) decomposition on the tensor coefficient B yields

B =
R∑
r=1

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3 =

R∑
r=1

β(r)
1,1

β
(r)
1,2

 ◦(β(r)
2,1

β
(r)
2,2

)
◦


β

(r)
3,1

β
(r)
3,2

β
(r)
3,3

β
(r)
3,4



=
R∑
r=1

β(r)
1,1β

(r)
2,1 β

(r)
1,1β

(r)
2,2

β
(r)
1,2β

(r)
2,1 β

(r)
1,2β

(r)
2,2

 ◦

β

(r)
3,1

β
(r)
3,2

β
(r)
3,3

β
(r)
3,4


=

( R∑
r=1

β
(r)
3,1

(
β

(r)
1,1β

(r)
2,1 β

(r)
1,1β

(r)
2,2

β
(r)
1,2β

(r)
2,1 β

(r)
1,2β

(r)
2,2

)
, . . . ,

R∑
r=1

β
(r)
3,4

(
β

(r)
1,1β

(r)
2,1 β

(r)
1,1β

(r)
2,2

β
(r)
1,2β

(r)
2,1 β

(r)
1,2β

(r)
2,2

))
= (B::1,B::2,B::3,B::4),

where, for each i = 1, . . . , 4, we have

B::k =
R∑
r=1

β
(r)
3,k

(
β

(r)
1,1β

(r)
2,1 β

(r)
1,1β

(r)
2,2

β
(r)
1,2β

(r)
2,1 β

(r)
1,2β

(r)
2,2

)
=

(
b11k b12k

b21k b22k

)
,

hence, by choosing a PARAFAC(R) decomposition, we are assuming

bijk =
R∑
r=1

β
(r)
1,i β

(r)
2,jβ

(r)
3,k, i = 1, 2, j = 1, 2, k = 1, . . . , 4.

S.4 Proofs of the results in the main paper67

In this section we provide the derivation of the results in the main paper. We start by68

recalling a relationship between between the outer product, the Kronecker product and the69

ordinary matrix product. For two vectors u ∈ Rn and v ∈ Rm it holds u⊗v′ = u◦v = uv′.70

Proof of Proposition 2.1. Denote with L the lag operator, s.t. LYt = Yt−1, by properties

of the contracted product in Theorem S.1.1, case (iv), we get (I − Ã1L)×̄NYt = Ã0 +

11



B̃×̄MXt +Et. We apply to both sides the operator (I+ Ã1L+ Ã2
1L

2 + . . .+ Ãt−1
1 Lt−1), take

t→∞, and get

lim
t→∞

(I − Ãt1Lt)×̄NYt =
( ∞∑
k=0

Ãk1Lk
)
×̄N(Ã0 + B̃×̄MXt + Et).

From Behera et al. (2020), if ρ(Ã1) < 1 and Y0 is finite a.s., then limt→∞ Ãt1×̄NY0 = O

and the operator
∑∞

k=0 Ãk1Lk applied to a sequence Yt s.t. |Yi,t| < c a.s. ∀ i converges to

the inverse operator (I − Ã1L)−1. By the properties of the contracted product we get

Yt =
∞∑
k=0

Ãk1×̄N(LkÃ0) +
∞∑
k=0

(Ãk1×̄N B̃)×̄M(LkXt) +
∞∑
k=0

Ãk1×̄N(LkEt)

= (I − Ã1L)−1×̄NÃ0 +
∞∑
k=0

Ãk1×̄N B̃×̄MXt−k +
∞∑
k=0

Ãk1×̄NEt−k .

From the assumption Et
iid∼ NI1,...,IN (O,Σ1, . . . ,ΣN), we know that E(Yt) = Y0, which

is finite. Consider the auto-covariance at lag h ≥ 1. From Theorem S.1.1, we have

E
((
Yt − E(Yt)

)
◦
(
Yt−h − E(Yt−h)

))
= E

(
Yt ◦ Yt−h

)
= E

(
Yt×̄1YTt−h

)
. Using the infinite

moving average representation for Yt, we get

E
(
Yt×̄1YTt−h

)
= E

(( h−1∑
k=0

Ak×̄NEt−k +
∞∑
k=0

Ak+h×̄NEt−k−h
)
×̄1

( ∞∑
k=0

Ak×̄NEt−k−h
)T)

= E
(( ∞∑

k=0

Ak+h×̄NEt−k−h
)
×̄1

( ∞∑
k=0

ETt−k−h×̄N(AT )k
))
,

where we used the assumption of independence of Et, Et−h, for any h ≥ 0, and the fact

that (X×̄NY)T = (YT ×̄NX T ). Using E(Et) = O and linearity of expectation and of the

contracted product we get

E
(
Yt×̄1YTt−h

)
=
∞∑
k=0

Ak+h×̄NE
(
Et−k−h×̄1ETt−k−h

)
×̄N(AT )k

=
∞∑
k=0

Ak+h×̄NΣ×̄N(AT )k = Ah×̄N(I − A×̄NΣ×̄NAT )−1,

where E(Et−k−h×̄1ETt−k−h) = E(Et−k−h ◦ Et−k−h) = Σ = Σ1 ◦ . . . ◦ΣN . From the assumption71

ρ(A) < 1 it follows that the above series converges to a finite limit, which is independent72

from t, thus proving that the process is weakly stationary.73

12



Proof of Proposition 2.2. From Brazell et al. (2013, Theorem 3.2, Corollary 3.3), we know74

that T is a group (called tensor group) and that the matricization operator mat1:N,1:N is an75

isomorphism between T and the linear group of square matrices of size I∗ =
∏N

n=1 In.76

Therefore, there exists a one-to-one relationship between the two eigenvalue problems77

A×̄NX = λX and Ax = λ̃x, where A = mat1:N,1:N(A). In particular, λ = λ̃ and78

x = vec
(
X
)
. Consequently, ρ(A) = ρ(A) and the result follows for p = 1 from the79

fact that ρ(A) < 1 is a sufficient condition for the VAR(1) stationarity Lütkepohl (2005,80

Proposition 2.1). Since any VAR(p) and ART(p) processes can be rewritten as VAR(1) and81

ART(1), respectively, on an augmented state space, the result follows for any p ≥ 1.82

Proof of Lemma 2.1. Consider a ART(p) process with Yt ∈ RI1×...×IN and p ≥ 1. We83

define the (pI1 × I2 × . . .× IN)-dimensional tensors Y
t
and E t as Y(k−1)I1+1:kI1,:,...,:,t

= Yt−k84

and E (k−1)I1+1:kI1,:,...,:,t
= Et−k, for k = 0, . . . , p, respectively. Define the (pI1 × I2 × . . . ×85

IN × pI1 × I2 × . . . × IN)-dimensional tensor A as A(1:I1,:,...,:,(k−1)I1+1:kI1,:,...,:
= Ak, for86

k = 1, . . . , p, A(kI1+1:(k+1)I1,:,...,:,(k−1)I1+1:kI1,:,...,:
= I, for k = 1, . . . , p − 1 and 0 elsewhere.87

Using this notation, we can rewrite the (I1 × I2 × . . . × IN)-dimensional ART(p) process88

Yt =
∑p

k=1Ak×̄NYt−j + Et as the (pI1 × I2 × . . . × IN)-dimensional ART(1) process89

Y
t

= A×̄NY t−1
+ E t.90

S.4.1 Special cases and corresponding proofs91

The model in eq. (5) is a generalization of several well-known econometric models, as92

shown in the following remarks.93

Remark S.4.1 (Univariate). If Ii = 1 for i = 1, . . . , N , then model (5) reduces to a

univariate regression

yt = α0 +

p∑
j=1

αjyt−j + β′ vec
(
Xt
)

+ εt εt ∼ N (0, σ2), (S10)

where the coefficients of (5) become Aj = αj ∈ R, j = 0, . . . , p and B = β ∈ RJ∗.94

Proof. Consider model (5) when Ij = 1, for j = 1, . . . , N . Note that a N -order tensor95

whose modes have all unit length is equivalent to a 1-order tensor, i.e. a scalar. As a96

consequence, the dependent variable becomes yt ∈ R and the autoregressive coefficient97
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tensors reduce to αj ∈ R, j = 0, . . . , p. The coefficient tensor related to the covariates98

Xt becomes a vector β ∈ RJ∗ . Finally, the error term distribution reduces to a univariate99

normal with 0 mean and variance σ2. In this framework, the mode-N + 1 product reduces100

to the standard inner product between vectors.101

The PARAFAC(R) decomposition can still be applied in this case. We get

αj =
R∑
r=1

α
(r)
j,1 ◦ . . . ◦ α

(r)
j,N =

R∑
r=1

α
(r)
j,1 · · ·α

(r)
j,N ,

for each j = 0, . . . , p, where the outer product reduces to the ordinary scalar multiplication

and all α(r)
j,k , k = 1, . . . , N , r = 1, . . . , R are scalars. Similarly, we have

β =
R∑
r=1

β
(r)
1 ◦ . . . ◦ β

(r)
N ◦ β

(r)
N+1 =

R∑
r=1

β
(r)
1 · . . . · β

(r)
N · β

(r)
N+1

since again the outer product reduces to the ordinary scalar multiplication and all β(r)
j,k ,102

k = 1, . . . , N , r = 1, . . . , R are scalars, while the marginal corresponding to the last mode103

N + 1 is a vector of length J∗.104

Remark S.4.2 (SUR). If Ii = 1 for i = 2, . . . , N and define by 1n the unit vector of length

n, then model (5) reduces to a Seemingly Unrelated Regression (SUR) model (Zellner, 1962)

yt = α0 +B ×2 vec
(
Xt
)

+ εt εt ∼ Nm(0,Σ), (S11)

where I1 = m and the coefficients of (5) become Aj = 0, j = 1, . . . , p, A0 = α0 ∈ Rm and105

B = B ∈ Rm×J∗. Note that, by definition, B ×2 vec
(
Xt
)

= B vec
(
Xt
)
.106

Remark S.4.3 (VARX and Panel VAR). Consider the setup of Remark S.4.2. If zt = yt−1,107

then we obtain a VARX(1) model, with restricted covariance matrix. Another vector of108

regressors wt = vec
(
Wt

)
∈ Rq may enter the regression (S11) pre-multiplied (along mode-109

3) by a tensor D ∈ Rm×n×q. Therefore, model (5) encompasses as a particular case also the110

panel VAR models of Canova and Ciccarelli (2004, 2009); Canova et al. (2007), provided111

that we make the same restriction on Σ.112

Proof. Consider model (5)s with I1 = m and Ij = 1, for j = 2, . . . , N . Denote by113

xt = vec
(
Xt
)
the external covariates. Note that the mode-N + 1 product become mode-2114
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product and the distribution of the error term reduces to the multivariate (m-dimensional)115

normal. The dependent variable reduces to the vector yt ∈ Rm while the coefficient tensors116

become α0 ∈ Rm, Aj ∈ Rm×m, for j = 1, . . . , p and B ∈ Rm×J∗ .117

Assuming a PARAFAC(R) decomposition, we get the same result for α0 as in the

previous proof, having in this case N − 1 scalar marginals and one vector marginal. For

the remaining tensors, it holds

Aj =
R∑
r=1

α
(r)
j,1 ◦

(
α

(r)
j,2 · . . . · α

(r)
j,N−1

)
◦α(r)

N =
R∑
r=1

A
(r)
j ·

(
α

(r)
j,2 · . . . · α

(r)
j,N−1

)
.

Similarly, for the matrix B one gets

B =
R∑
r=1

β
(r)
1 ◦

(
β

(r)
2 · . . . · β

(r)
N

)
◦ β(r)

N+1 =
R∑
r=1

B(r) ·
(
β

(r)
2 · . . . · β

(r)
N

)
.

It remains to prove that the structure imposed by standard VARX and Panel VAR118

models holds also in the model of eq. (5). Notice that the latter does not impose any119

restriction on the coefficients, other than the PARAFAC(R) decomposition. It must be120

stressed that it is not possible to achieve the desired structure of the coefficients, in terms121

of the location of the zeros, by means of an accurate choice of the marginals. In fact,122

the decomposition we are assuming does not allow to create a particular structure on the123

resulting tensor.124

Nonetheless, it is still possible to achieve the desired result by a slight modification125

of the model in eq. (5). For example, consider the coefficient tensor B, then to create a126

tensor whose entries are non-zero only in some pre-specified (hence a-priori known) cells, it127

suffices to multiply B by a binary tensor (i.e. one where all entries are either 0 or 1) via the128

Hadamard product. In formulas, let H ∈ {0, 1}I1×...×IN×J , such that it has 0 only in those129

cells which are known to be null. Then B̄ = H � B has the desired structure. The same130

way of reasoning holds for any coefficient tensor as well as for the covariance matrices.131

To conclude, in Panel VAR models one generally has as regressors in each equation132

a function of the endogenous variables (for example their average). Since this does not133

affect the coefficients of the model, it is possible to re-create it in our framework by simply134

rearranging the regressors in eq. (5) accordingly. In terms of the model, none of the issues135

described invalidates the formulation of eq. (5), which is able to encompass all of them by136
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suitable rearrangements of the covariates and/or the coefficients, which are consistent with137

the general model.138

Remark S.4.4 (VECM). The model in eq. (5) generalises the Vector Error Correction

Model (VECM) widely used in multivariate time series analysis (Engle and Granger, 1987;

Schotman and Van Dijk, 1991). Consider a K-dimensional VAR(1) model

yt = Byt−1 + εt εt ∼ Nm(0,Σ).

Defining ∆yt = yt − yt−1 and Π = (B − I) = αβ′, where α and β are K ×R matrices of

rank R < K, we obtain the associated VECM

∆yt = αβ′yt−1 + εt. (S12)

This is used for studying the cointegration relations among the components of yt. Since139

Π = αβ′ =
∑R

r=1α:,rβ
′
:,r =

∑R
r=1 β̃

(r)

1 ◦ β̃
(r)

2 , we can interpret the VECM model in eq. (S12)140

as a particular case of the model in eq. (5) where the coefficient B is the matrix Π = αβ′.141

Furthermore by writing Π =
∑R

r=1 β̃
(r)

1 ◦ β̃
(r)

2 we can interpret this relation as a rank-R142

PARAFAC decomposition of B. Following this analogy, the PARAFAC rank corresponds to143

the cointegration rank, β̃
(r)

1 are the mean-reverting coefficients and β̃
(r)

2 = (β̃
(r)
2,1 , . . . , β̃

(r)
2,K)144

are the cointegrating vectors. See Section S.4 for details. This interpretation opens the way145

to reparametrization of B based on tensor SVD representations, and to the application of146

regularization methods in the spirit of Baştürk et al. (2017). This is beyond the scope of147

the paper, thus we leave it for further research.148

Remark S.4.5 (follows from Remark S.4.4). From the VECM in eq. (S12) and denoting

yt−1 = vec
(
Yt−1

)
we can obtain an explicit form for the long run equilibrium (or

cointegrating) relations, as follows

αβ′yt−1 =
( R∑
r=1

γ
(r)
1 ◦ γ

(r)
2

)
×̄1yt−1 =

( R∑
r=1

γ
(r)
1 γ

(r)′
2

)
yt−1 =

R∑
r=1

γ
(r)
1 (γ

(r)′
2 yt−1),

where γ(r)
1 and γ(r)

2 are vectors of length K. The marginals (γ
(r)
2 )r can thus be interpreted149

as thelong run cointegrating relationships, and the marginals (γ
(r)
2 )r are the corresponding150

loadings.151
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Remark S.4.6 (MAI of Carriero et al. (2016)). The multivariate autoregressive index

model (MAI) of Carriero et al. (2016) is another special case of model (5). A MAI is a

VAR model with a low rank decomposition imposed on the coefficient matrix, as follows

yt = AB0yt−1 + εt,

where yt is a (n×1) vector, whereas A,B0 are (n×R) and (R×n) matrices, respectively. In152

Carriero et al. (2016), the authors assumed R = 1. This corresponds to our parametrization153

using R = 1 and defining Aβ
(1)
1 and B′0 = β

(1)
2 , which leads us to AB0 = β

(1)
1 ◦ β

(1)
2 .154

S.5 Prior distribution on tensor entries155

Proof of Lemma 3.1. The distribution of each of these products has been characterised156

by Springer and Thompson (1970), who proved the following theorem.157

Theorem S.5.1 (4 in Springer and Thompson (1970)). The probability density function

of the product z =
∏H

h=1 xh of H independent Normal random variables xh ∼ N (0, σ2
h),

h = 1, . . . , H, is proportional to a Meijer G-function

p(z|(σ2
h)
H
h=1) = K ·GH,0

H,0

(
z2

H∏
h=1

1

2σh

∣∣∣0),
where the normalising constant is

K =

(
(2π)H/2

H∏
h=1

σh

)−1

and Gm,n
p,q (·|·) is a Meijer G-function (with c ∈ R and s ∈ C)

Gm,n
p,q

(
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

)
=

1

2πi

∫ c+i∞

c−i∞
z−s

∏m
j=1 Γ(s+ bj) ·

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(s+ aj) ·
∏q

j=m+1 Γ(1− bj − s)
ds.

The integral is taken over a vertical line in the complex plane. Note that in the special158

case H = 2 we have z ∼ c1P1 − c2P2, with P1, P2 ∼ χ2
1 and c1 = V ar(x1 + x2)/4,159

c2 = V ar(x1 − x2)/4. In this case, the resulting distribution is called product Normal160

distribution.161
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Therefore, the result follows from Theorem S.5.1, with z = βr, H = 4, σh = τφrwh,r,mh162

and where the parameters of the G-function are m = p = 4 =, n = q = 0, (a1, . . . , ap) =163

(0, . . . , 0) and (b1, . . . , bq) = (0, . . . , 0).164

We assessed the shape of this marginal distribution in a simulated setting, and found

that it has fatter tails than the Gaussian distribution. In particular, Fig. 4 show

the empirical distribution of two randomly chosen entries of a 3-order tensor B whose

PARAFAC decomposition is assumed with R = 5. The probability density function of

a Laplace (or double exponential) distribution with mean µ ∈ R and variance 2b2, with

b > 0, is

f(x|µ, b) =
1

2b
exp

(
−
∣∣x− µ∣∣

2b

)
x ∈ R.

Compared to the standard normal and standard Laplace distribution, the prior distribution165

induced on the single entries of the tensor has fatter tails.166

R = 1 R = 5 R = 10

Figure 2: Monte Carlo simulation from the prior distribution of entry bi1,...,iN of a generic N -order

tensor, for varying rank R. In column: simulation with R = 1 (left), R = 5 (middle) and R = 10

(right). In all plots: standard Normal (continuous line) and prior for bi1,...,iN , for N = 2 (dashed

line), N = 4 (dash-dotted line) and N = 6 (dotted line).
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N = 2 N = 3 N = 4

Figure 3: Monte Carlo simulation from the prior distribution of entry bi1,...,iN of a N -order tensor,

with rank R, for varying N . In column: simulation with N = 2 (left), N = 3 (middle) and N = 4

(right). In all plots: standard Normal (continuous line) and prior for bi1,...,iN , for R = 1 (dashed line),

R = 5 (dash-dotted line) and R = 10 (dotted line).
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pdf right tail cdf

R
=

1
R

=
5

R
=

10

Figure 4: Monte Carlo simulation from the prior distribution of a generic 4-order tensor entry bijkp

(continuous line), standard Normal distribution (dashed line) and standard Laplace distribution

(dash-dotted line). In column: probability density function (left), right tail the probability density

function (middle), cumulative distribution function (right). In row: simulations with R = 1, R = 5

and R = 10 (first, second and third, respectively).

S.6 Computational details - ART(1) model167

In this section we will follow the convention of denoting the prior distributions with π(·).168

In addition, let W = (Wj,r)j,r be the collection of all (local variance) matrices Wj,r, for169

j = 1, . . . , J and r = 1, . . . , R, let I0 =
∑J

j=1 Ij be the sum of the length of each mode170

of the tensor B and let Y = (Yt)t the collection of observed variables. Recall that in the171

ART(1) model in eq. (15), the variable Yt is a 3-order tensor, thus we have J = 4.172
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S.6.1 Full conditional distribution of φr173

In order to derive this posterior distribution, we use Guhaniyogi et al. (2017, Lemma 7.9).

Recall that: aτ = αR and bτ = α(R)1/J . The posterior full conditional distribution of φ is

p(φ|B,W) ∝ π(φ)

∫ +∞

0

p(B|W,φ, τ)π(τ)dτ

∝
R∏
r=1

φα−1
r

∫ +∞

0

( R∏
r=1

J∏
j=1

(τφr)
−Ij/2

∣∣Wj,r

∣∣−1/2

· exp
(
− 1

2τφr
β

(r)′

j W−1
j,r β

(r)
j

))
· τaτ−1e−bτ τdτ

∝
R∏
r=1

φα−1
r

∫ +∞

0

( R∏
r=1

(τφr)
−I0/2 exp

(
− 1

2τφr

J∑
j=1

β
(r)′

j W−1
j,r β

(r)
j

))
· τaτ−1e−bτ τdτ.

Define Cr =
∑J

j=1 β
(r)′

j W−1
j,r β

(r)
j , then group together the powers of τ and φr as follows

p(φ|B,W) ∝
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0

τaτ−1−RI0
2 e−bτ τ

( R∏
r=1

exp
(
− 1

2τφr
Cr

))
dτ

=
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0

τaτ−1−Rd0
2 exp

(
− bττ −

R∑
r=1

Cr
2τφr

)
dτ. (S13)

The probability density function of a Generalized Inverse Gaussian in the parametrization

with three parameters (a > 0, b > 0, c ∈ R), with x ∈ (0,+∞), is given by

x ∼ GiG(a, b, c) ⇐⇒ p(x|a, b, c) =
(a/b)

c
2

2Kc(
√
ab)

xc−1 exp
(
− 1

2
(ax+ b/x)

)
,

with Kc(·) a modified Bessel function of the second type. Our goal is to reconcile

eq. (S13) to the kernel of this distribution. Since by definition
∑R

r=1 φr = 1, it holds

that
∑R

r=1(bττφr) = (bττ)
∑R

r=1 φr = bττ . This allows to rewrite the exponential as

p(φ|B,W) ∝
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0

τ

(
aτ−RI02

)
−1 exp

(
−

R∑
r=1

( Cr
2τφr

+ bττφr

))
dτ

=

∫ +∞

0

( R∏
r=1

φ
α− I0

2
−1

r

)
τ

(
αR−RI0

2

)
−1 exp

(
−

R∑
r=1

( Cr
2τφr

+ bττφr

))
dτ

where we expressed aτ = αR. According to the results in Appendix A and Guhaniyogi

et al. (2017), the function in the previous equation is the kernel of a generalized inverse
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Gaussian for ψr = τφr, which yields the distribution of φr after normalization. Hence, for

r = 1, . . . , R, we sample

p(ψr|B,W, τ, α) ∼ GiG
(
α− I0

2
, 2bτ , 2Cr

)
then, we obtain φr by renormalizing (see Kruijer et al., 2010): φr = ψr/

∑R
l=1 ψl.174

S.6.2 Full conditional distribution of τ175

The posterior distribution of the global variance parameter, τ , is derived by simple

application of Bayes’ Theorem

p(τ |B,W,φ) ∝ π(τ)p(B|W,φ, τ)

∝ τaτ−1e−bτ τ
( R∏
r=1

(τφr)
− I0

2 exp
(
− 1

2τφr

4∑
j=1

β
(r)′

j (Wj,r)
−1β

(r)
j

))
∝ τaτ−

RI0
2
−1 exp

(
− bττ −

( R∑
r=1

Cr
φr

1

τ

))
.

This is the kernel of a generalized inverse Gaussian

p(τ |B,W,φ) ∼ GiG
(
aτ −

RI0

2
, 2bτ , 2

R∑
r=1

Cr
φr

)
.

S.6.3 Full conditional distribution of λj,r176

Start by observing that, for j = 1, . . . , 4 and r = 1, . . . , R, the prior distribution on the

vector β(r)
j defined in eq. (17) implies that each component follows a double exponential

distribution

β
(r)
j,p ∼ DE

(
0,

λj,r√
τφr

)
with probability density function given by

π(β
(r)
j,p |λj,r, φr, τ) =

λj,r

2
√
τφr

exp

(
−

∣∣β(r)
j,p

∣∣
(λj,r/

√
τφr)−1

)
. (S14)

Then, exploiting the Gamma prior and eq. (S14)

p(λj,r|β(r)
j , φr, τ) ∝ π(λj,r)p(β

(r)
j |λj,r, φr, τ)
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∝ λaλ−1
j,r e−bλλj,r

Ij∏
p=1

λj,r

2
√
τφr

exp
(
−

∣∣β(r)
j,p

∣∣
(λj,r/

√
τφr)−1

)
= λaλ−1

j,r

( λj,r

2
√
τφr

)Ij
e−bλλj,r exp

(
−
∑Ij

p=1

∣∣β(r)
j,p

∣∣
√
τφr/λj,r

)
∝ λ

(aλ+Ij)−1
j,r exp

(
−

(
bλ +

∥∥β(r)
j

∥∥
1√

τφr

)
λj,r

)
.

Thus, the full conditional distribution of λj,r is given by

p(λj,r|B, φr, τ) ∼ Ga

(
aλ + Ij, bλ +

∥∥β(r)
j

∥∥
1√

τφr

)
.

S.6.4 Full conditional distribution of wj,r,p177

We sample independently each component wj,r,p of the matrix Wj,r = diag(wj,r), for

p = 1, . . . , Ij, j = 1, . . . , 4 and r = 1, . . . , R, from the full conditional distribution

p(wj,r,p|β(r)
j ,λj,r, φr, τ) ∝ p(β

(r)
j,p |wj,r,p, φr, τ)π(wj,r,p|λj,r)

= (τφr)
− 1

2w
− 1

2
j,r,p exp

(
− 1

2τφr
β

(r)2

j,p w
−1
j,r,p

)λ2
j,r

2
exp

(
−
λ2
j,r

2
wj,r,p

)
∝ w

− 1
2

j,r,p exp
(
−
λ2
j,r

2
wj,r,p −

β
(r)2

j,p

2τφr
w−1
j,r,p

)
,

where the second row comes from the fact that wj,r,p influences only the p-th component

of the vector β(r)
j . Hence, we get

p(wj,r,p|β(r)
j , λj,r, φr, τ) ∼ GiG

(1

2
, λ2

j,r,
β

(r)2

j,p

τφr

)
.

S.6.5 Full conditional distributions of PARAFAC marginals178

Define α1 ∈ RI , α2 ∈ RJ and α3 ∈ RK and let A = vec
(
α1 ◦ α2 ◦ α3

)
. Then, from

Theorem S.1.3 it holds

vec
(
A
)

= vec
(
α1 ◦α2 ◦α3

)
= α3 ⊗ vec

(
α1α

′
2

)
= α3 ⊗

(
α2 ⊗ II

)
vec
(
α1

)
=
(
α3 ⊗α2 ⊗ II

)
α1 (S15)

= α3 ⊗
((

IJ ⊗α1

)
vec
(
α′2
))

=
(
α3 ⊗ IJ ⊗α1

)
α2 (S16)
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= vec
(

vec
(
α1α

′
2

)
α′3
)

=
(
IK ⊗ vec

(
α1α

′
2

))
vec
(
α′3
)

=
(
IK ⊗ vec

(
α1α

′
2

))
α3 =

(
IK ⊗α2 ⊗α1

)
α3. (S17)

Consider the model in eq. (15), it holds

Yt = B×̄1 xt + Et

vec
(
Yt
)

= vec
(
B×̄1 xt + Et

)
= vec

(
B−r×̄1 xt

)
+ vec

(
Br×̄1 xt

)
+ vec

(
Et
)
,

where the term in the middle can be re-written as

vec
(
Br×̄1 xt

)
= vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· x′tβ

(r)
4 .

It is then possible to make explicit the dependence on each PARAFAC marginal by

exploiting the results in eq. (S15)-(S17), as follows

vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· x′tβ

(r)
4 = vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· x′tβ

(r)
4 = b4β

(r)
4 (S18)

= 〈β(r)
4 ,xt〉

(
β

(r)
3 ⊗ β

(r)
2 ⊗ II

)
β

(r)
1 = b1β

(r)
1 (S19)

= 〈β(r)
4 ,xt〉

(
β

(r)
3 ⊗ IJ ⊗ β(r)

1

)
β

(r)
2 = b2β

(r)
2 (S20)

= 〈β(r)
4 ,xt〉

(
IK ⊗ β(r)

2 ⊗ β
(r)
1

)
β

(r)
3 = b3β

(r)
3 . (S21)

Given a sample of length T and assuming that the distribution at time t = 0 is known

(as standard practice in time series analysis), the likelihood function is

L(Y|B,Σ1,Σ2,Σ3) =
T∏
t=1

(2π)−
I1I2I3

2

∣∣Σ3

∣∣− I1I22
∣∣Σ2

∣∣− I1I32
∣∣Σ1

∣∣− I2I32

· exp
(
− 1

2
(Yt − B×̄1xt)×̄3

(
◦3
j=1 Σ−1

j

)
×̄3(Yt − B×̄1xt)

)
∝ exp

(
− 1

2

T∑
t=1

Ẽt×̄3(Σ−1
1 ◦ Σ−1

2 ◦ Σ−1
3 )×̄3Ẽt

)
,

with

vec
(
Ẽt
)

= vec
(
Yt − B−r×̄1xt −

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)

= vec
(
Yt
)
− vec

(
B−r×̄1xt

)
− vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉.
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Alternatively, by exploiting the relation between the tensor normal distribution and the

multivariate normal distribution, we have

L(Y|B,Σ1,Σ2,Σ3) =
T∏
t=1

(2π)−
I1I2I3

2

∣∣Σ3 ⊗ Σ2 ⊗ Σ1

∣∣− 1
2

· exp
(
− 1

2
vec
(
Yt − B×̄1xt

)′(
Σ−1

3 ⊗ Σ−1
2 ⊗ Σ−1

1

)
vec
(
Yt − B×̄1xt

))
∝ exp

(
− 1

2

T∑
t=1

vec
(
Ẽt
)′(

Σ−1
3 ⊗ Σ−1

2 ⊗ Σ−1
1

)
vec
(
Ẽt
))
.

Thus, defining with yt = vec
(
Yt
)
and Σ−1 = Σ−1

3 ⊗ Σ−1
2 ⊗ Σ−1

1 , we obtain

L(Y|B,Σ1,Σ2,Σ3) ∝

∝ exp
(
− 1

2

T∑
t=1

vec
(
Ẽt
)′(

Σ−1
3 ⊗ Σ−1

2 ⊗ Σ−1
1

)
vec
(
Ẽt
))

∝ exp

(
− 1

2

T∑
t=1

(
vec
(
Yt
)
− vec

(
B−r×̄1xt

)
− vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· 〈β(r)

4 ,xt〉
)′

Σ−1
(

vec
(
Yt
)
− vec

(
B−r×̄1xt

)
− vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
))

= exp

(
− 1

2

T∑
t=1

y′tΣ
−1yt − 2y′tΣ

−1 vec
(
B−r×̄1xt

)
+ vec

(
B−r×̄1xt

)′
Σ−1 vec

(
B−r×̄1xt

)
− 2y′tΣ

−1 vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

+ 2 vec
(
B−r×̄1xt

)′
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′〈β(r)
4 ,xt〉

+ vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′〈β(r)
4 ,xt〉Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

)

∝ exp

(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

+ vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′〈β(r)
4 ,xt〉Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

)
. (S22)

Now, we focus on a specific j = 1, 2, 3, 4 and derive proportionality results that will be

necessary to obtain the posterior full conditional distributions of the PARAFAC marginals

of the tensor B. Consider the case j = 1. By exploiting eq. (S19) we get

L(Y|B,Σ1,Σ2,Σ3) ∝
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∝ exp

(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+ vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′〈β(r)
4 ,xt〉Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

)

= exp

(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β

(r)
1

+
(
〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β

(r)
1

)′
Σ−1

(
〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β

(r)
1

))

= exp

(
− 1

2

T∑
t=1

β
(r)′

1 〈β
(r)
4 ,xt〉2

(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)′
Σ−1

(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β

(r)
1

− 2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β

(r)
1

)
= exp

(
− 1

2
β

(r)′

1 SL1β
(r)
1 − 2mL

1β
(r)
1

)
, (S23)

with

SL1 =
T∑
t=1

(
β

(r)′

3 ⊗ β(r)′

2 ⊗ II1
)
Σ−1

(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)
〈β(r)

4 ,xt〉2

mL
1 =

T∑
t=1

(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1

(
β

(r)
3 ⊗ β

(r)
2 ⊗ II1

)
〈β(r)

4 ,xt〉.

Consider the case j = 2. From eq. (S20) we get

L(Y|B,Σ1,Σ2,Σ3) ∝

∝ exp
(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1 vec

(
β

(r)
1 ⊗ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+ vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′〈β(r)
4 ,xt〉Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

)

= exp

(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ II2 ◦ β

(r)
1

)
β

(r)
2

+
(
〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β

(r)
2

)′
Σ−1

(
〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β

(r)
2

))

= exp

(
− 1

2

T∑
t=1

β
(r)′

2 〈β
(r)
4 ,xt〉2

(
β

(r)
3 ⊗ II2 ⊗ β

(r)
1

)
Σ−1

(
β

(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β

(r)
2
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− 2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1〈β(r)

4 ,xt〉
(
β

(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β

(r)
2

)
= exp

(
− 1

2
β

(r)′

2 SL2β
(r)
2 − 2mL

2β
(r)
2

)
, (S24)

with

SL2 =
T∑
t=1

(
β

(r)′

3 ⊗ II2 ⊗ β
(r)′

1

)
Σ−1

(
β

(r)
3 ⊗ II2 ⊗ β

(r)
1

)
〈β(r)

4 ,xt〉2

mL
2 =

T∑
t=1

(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1

(
β

(r)
3 ⊗ II2 ⊗ β

(r)
1

)
〈β(r)

4 ,xt〉.

Consider the case j = 3, by exploiting eq. (S21) we get

L(Y|B,Σ1,Σ2,Σ3) ∝

∝ exp

(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+
(

vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)′

Σ−1
(

vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
))

= exp

(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β

(r)
3

+
(
〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β

(r)
3

)′
Σ−1

(
〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β

(r)
3

))

= exp

(
− 1

2

T∑
t=1

β
(r)′

3 〈β
(r)
4 ,xt〉2

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
Σ−1

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β

(r)
3

− 2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β

(r)
3

)
= exp

(
− 1

2
β

(r)′

3 SL3β
(r)
3 − 2mL

3β
(r)
3

)
, (S25)

with

SL3 =
T∑
t=1

(
II3 ⊗ β

(r)′

2 ⊗ β(r)′

1

)
Σ−1

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
〈β(r)

4 ,xt〉2

mL
3 =

T∑
t=1

(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
〈β(r)

4 ,xt〉.

Finally, in the case j = 4. From eq. (S22) we get

L(Y|B,Σ1,Σ2,Σ3) ∝
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∝ exp

(
− 1

2

T∑
t=1

−2
(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+ β
(r)′

4 xt vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

)
= exp

(
− 1

2
β

(r)′

4 SL4β
(r)
4 − 2mL

4β
(r)
4

)
, (S26)

with

SL4 =
T∑
t=1

xt vec
(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′t

mL
4 =

T∑
t=1

(
y′t − vec

(
B−r×̄1xt

)′)
Σ−1 vec

(
β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′t.

It is now possible to derive the full conditional distributions for the PARAFAC marginals179

β
(r)
1 ,β

(r)
2 ,β

(r)
3 ,β

(r)
4 , as shown in the following.180

S.6.5.1 Full conditional distribution of β(r)
1181

The posterior full conditional distribution of β(r)
1 is obtained by combining the prior

distribution in eq. (17) and the likelihood in eq. (S23) as follows

p(β
(r)
1 |β

(r)
−1,B−r,W1,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
1 |W1,r, φr, τ)

∝ exp
(
− 1

2
β

(r)′

1 SL1β
(r)
1 − 2mL

1β
(r)
1

)
· exp

(
− 1

2
β

(r)′

1 (W1,rφrτ)−1β
(r)
1

)
= exp

(
− 1

2

(
β

(r)′

1 SL1β
(r)
1 − 2mL

1β
(r)
1 + β

(r)′

1 (W1,rφrτ)−1β
(r)
1

))
= exp

(
− 1

2

(
β

(r)′

1

(
SL1 + (W1,rφrτ)−1

)
β

(r)
1 − 2mL

1β
(r)
1

))
= exp

(
− 1

2

(
β

(r)′

1 Σ̄−1
βr1
β

(r)
1 − 2µ̄βr1

β
(r)
1

))
,

where

Σ̄βr1
=
(
(W1,rφrτ)−1 + SL1

)−1
, µ̄βr1

= Σ̄βr1
(mL

1 )′.

Thus the posterior full conditional distribution of β(r)
1 is given by

p(β
(r)
1 |β

(r)
−1,B−r,W1,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI1(µ̄βr1

, Σ̄βr1
).
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S.6.5.2 Full conditional distribution of β(r)
2182

The posterior full conditional distribution of β(r)
2 is obtained by combining the prior

distribution in eq. (17) and the likelihood in eq. (S24) as follows

p(β
(r)
2 |β

(r)
−2,B−r,W2,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
2 |W2,r, φr, τ)

∝ exp
(
− 1

2
β

(r)′

2 SL2β
(r)
2 − 2mL

2β
(r)
2

)
· exp

(
− 1

2
β

(r)′

2 (W2,rφrτ)−1β
(r)
2

)
= exp

(
− 1

2

(
β

(r)′

2 SL2β
(r)
2 − 2mL

2β
(r)
2 + β

(r)′

2 (W2,rφrτ)−1β
(r)
2

))
= exp

(
− 1

2

(
β

(r)′

2

(
SL2 + (W2,rφrτ)−1

)
β

(r)
2 − 2mL

2β
(r)
2

))
= exp

(
− 1

2

(
β

(r)′

2 Σ̄−1
βr2
β

(r)
2 − 2µ̄βr2

β
(r)
2

))
,

where

Σ̄βr2
=
(
(W2,rφrτ)−1 + SL2

)−1
, µ̄βr2

= Σ̄βr2
(mL

2 )′.

Thus the posterior full conditional distribution of β(r)
2 is given by

p(β
(r)
2 |β

(r)
−2,B−r,W2,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI2(µ̄βr2

, Σ̄βr2
).

S.6.5.3 Full conditional distribution of β(r)
3183

The posterior full conditional distribution of β(r)
3 is obtained by combining the prior

distribution in eq. (17) and the likelihood in eq. (S25) as follows

p(β
(r)
3 |β

(r)
−3,B−r,W3,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
3 |W3,r, φr, τ)

∝ exp
(
− 1

2
β

(r)′

3 SL3β
(r)
3 − 2mL

3β
(r)
3

)
· exp

(
− 1

2
β

(r)′

3 (W3,rφrτ)−1β
(r)
3

)
= exp

(
− 1

2

(
β

(r)′

3 SL3β
(r)
3 − 2mL

3β
(r)
3 + β

(r)′

3 (W3,rφrτ)−1β
(r)
3

))
= exp

(
− 1

2

(
β

(r)′

3

(
SL3 + (W3,rφrτ)−1

)
β

(r)
3 − 2mL

3β
(r)
3

))
= exp

(
− 1

2

(
β

(r)′

3 Σ̄−1
βr3
β

(r)
3 − 2µ̄βr3

β
(r)
3

))
,

where

Σ̄βr3
=
(
(W3,rφrτ)−1 + SL3

)−1
, µ̄βr3

= Σ̄βr3
(mL

3 )′.

Thus the posterior full conditional distribution of β(r)
3 is given by

p(β
(r)
3 |β

(r)
−3,B−r,W3,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI3(µ̄βr3

, Σ̄βr3
).
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S.6.5.4 Full conditional distribution of β(r)
4184

The posterior full conditional distribution of β(r)
4 is obtained by combining the prior

distribution in eq. (17) and the likelihood in eq. (S26) as follows

p(β
(r)
4 |β

(r)
−4,B−r,W4,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
4 |W4,r, φr, τ)

∝ exp
(
− 1

2
β

(r)′

4 SL4β
(r)
4 − 2mL

4β
(r)
4

)
· exp

(
− 1

2
β

(r)′

4 (W4,rφrτ)−1β
(r)
4

)
= exp

(
− 1

2

(
β

(r)′

4 SL4β
(r)
4 − 2mL

4β
(r)
4 + β

(r)′

4 (W4,rφrτ)−1β
(r)
4

))
= exp

(
− 1

2

(
β

(r)′

4

(
SL4 + (W4,rφrτ)−1

)
β

(r)
4 − 2mL

4β
(r)
4

))
= exp

(
− 1

2

(
β

(r)′

4 Σ̄−1
βr4
β

(r)
4 − 2µ̄βr4

β
(r)
4

))
,

where

Σ̄βr4
=
(
(W4,rφrτ)−1 + SL4

)−1
, µ̄βr4

= Σ̄βr4
(mL

4 )′.

Thus the posterior full conditional distribution of β(r)
4 is given by

p(β
(r)
4 |β

(r)
−4,B−r,W4,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI1I2I3(µ̄βr4

, Σ̄βr4
).

S.6.6 Full conditional distribution of Σ1185

Given a inverse Wishart prior, the posterior full conditional distribution for Σ1 is conjugate.

For ease of notation, define Ẽt = Yt − B×̄1xt, Ẽ(1),t the mode-1 matricization of Ẽt and

Z1 = Σ−1
3 ⊗Σ−1

2 . By exploiting the relation between the tensor normal distribution and the

multivariate normal distribution and the properties of the vectorization and trace operators,

we obtain

p(Σ1|B,Y,Σ2,Σ3, γ) ∝ L(Y|B,Σ1,Σ2,Σ3)π(Σ1|γ)

∝
∣∣Σ1

∣∣−TI2I32 exp
(
− 1

2

T∑
t=1

vec
(
Yt − B×̄1xt

)′
(Σ−1

3 ⊗ Σ−1
2 ⊗ Σ−1

1 )

· vec
(
Yt − B×̄1xt

))
·
∣∣Σ1

∣∣− ν1+I1+1
2 exp

(
− 1

2
tr
(
γΨ1Σ−1

1

))
∝
∣∣Σ1

∣∣− ν1+I1+TI2I3+1
2 exp

(
− 1

2

(
tr
(
γΨ1Σ−1

1

)
+

T∑
t=1

vec
(
Ẽt
)′

(Z1 ⊗ Σ−1
1 ) vec

(
Ẽt
)))
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∝
∣∣Σ1

∣∣− ν1+I1+TI2I3+1
2 exp

(
− 1

2

(
tr
(
γΨ1Σ−1

1

)
+

T∑
t=1

vec
(
Ẽ(1),t

)′
(Z1 ⊗ Σ−1

1 ) vec
(
Ẽ(1),t

)))
∝
∣∣Σ1

∣∣− ν1+I1+TI2I3+1
2 exp

(
− 1

2

(
tr
(
γΨ1Σ−1

1

)
+

T∑
t=1

tr
(

vec
(
Ẽ(1),t

)′
vec
(
Σ−1

1 Ẽ(1),tZ1

))))
∝
∣∣Σ1

∣∣− ν1+I1+TI2I3+1
2 exp

(
− 1

2

(
tr
(
γΨ1Σ−1

1

)
+

T∑
t=1

tr
(
Ẽ′(1),tΣ

−1
1 Ẽ(1),tZ1

)))
∝
∣∣Σ1

∣∣− ν1+I1+TI2I3+1
2 exp

(
− 1

2

(
tr
(
γΨ1Σ−1

1

)
+

T∑
t=1

tr
(
Ẽ(1),tZ1Ẽ

′
(1),tΣ

−1
1

)))
.

For ease of notation, define S1 =
∑T

t=1 Ẽ(1),tZ1Ẽ
′
(1),t. Then

p(Σ1|B,Y,Σ2,Σ3) ∝
∣∣Σ1

∣∣− ν1+I1+TI2I3+1
2 exp

(
− 1

2

(
tr
(
γΨ1Σ−1

1

)
+ tr

(
S1Σ−1

1

)))
∝
∣∣Σ1

∣∣− (ν1+TI2I3)+I1+1
2 exp

(
− 1

2
tr
(
(γΨ1 + S1)Σ−1

1

))
,

Therefore, the posterior full conditional distribution of Σ1 is given by

p(Σ1|B,Y,Σ2,Σ3, γ) ∼ IWI1

(
ν1 + TI2I3, γΨ1 + S1

)
.

S.6.7 Full conditional distribution of Σ2186

Given a inverse Wishart prior, the posterior full conditional distribution for Σ2 is conjugate.

For ease of notation, define Ẽt = Yt − B×̄1xt and Ẽ(2),t the mode-2 matricization of Ẽt.

By exploiting the relation between the tensor normal distribution and the matrix normal

distribution and the properties of the Kronecker product and of the vectorization and trace

operators we obtain

p(Σ2|B,Y,Σ1,Σ3, γ) ∝ L(Y|B,Σ1,Σ2,Σ3)π(Σ2|γ)

∝
∣∣Σ2

∣∣−TI1I32 exp
(
− 1

2

T∑
t=1

(Yt − B×̄1xt)×̄3(Σ−1
1 ◦ Σ−1

2 ◦ Σ−1
3 )

×̄3(Yt − B×̄1xt)
)
·
∣∣Σ2

∣∣− ν2+I2+1
2 exp

(
− 1

2
tr
(
Ψ2Σ−1

2

))
∝
∣∣Σ2

∣∣− ν2+I2+TI1I3+1
2 exp

(
− 1

2

(
tr
(
γΨ2Σ−1

2

)
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+
T∑
t=1

Ẽt×̄3(Σ−1
1 ◦ Σ−1

2 ◦ Σ−1
3 )×̄3Ẽt

))
∝
∣∣Σ2

∣∣− ν2+I2+TI1I3+1
2 exp

(
− 1

2

(
tr
(
γΨ2Σ−1

2

)
+

T∑
t=1

tr
(
Ẽ′(2),t(Σ

−1
3 ⊗ Σ−1

1 ⊗ Σ−1
2 )Ẽ(2),t

)))
∝
∣∣Σ2

∣∣− ν2+I2+TI1I3+1
2 exp

(
− 1

2

(
tr
(
γΨ2Σ−1

2

)
+

T∑
t=1

tr
(
(Σ−1

3 ⊗ Σ−1
1 )Ẽ′(2),tΣ

−1
2 Ẽ(2),t

)))
∝
∣∣Σ2

∣∣− ν2+I2+TI1I3+1
2 exp

(
− 1

2

(
tr
(
γΨ2Σ−1

2

)
+ tr

( T∑
t=1

Ẽ(2),t(Σ
−1
3 ⊗ Σ−1

1 )Ẽ′(2),tΣ
−1
2

)))
∝
∣∣Σ2

∣∣− ν2+I2+TI1I3+1
2 exp

(
− 1

2
tr
(
γΨ2Σ−1

2 + S2Σ−1
2

))
,

where for ease of notation we defined S2 =
∑T

t=1 Ẽ(2),t(Σ
−1
3 ⊗ Σ−1

1 )Ẽ′(2),t. Therefore, the

posterior full conditional distribution of Σ2 is given by

p(Σ2|B,Y,Σ1,Σ3) ∼ IWI2(ν2 + TI1I3, γΨ2 + S2).

S.6.8 Full conditional distribution of Σ3187

Given a inverse Wishart prior, the posterior full conditional distribution for Σ3 is conjugate.

For ease of notation, define Ẽt = Yt − B×̄1xt, Ẽ(3),t the mode-3 matricization of Ẽt and

Z3 = Σ−1
2 ⊗Σ−1

1 . By exploiting the relation between the tensor normal distribution and the

multivariate normal distribution and the properties of the vectorization and trace operators,

we obtain

p(Σ3|B,Y,Σ1,Σ2, γ) ∝ L(Y|B,Σ1,Σ2,Σ3)π(Σ3|γ)

∝
∣∣Σ3

∣∣−TI1I22 exp
(
− 1

2

T∑
t=1

vec
(
Yt − B×̄1xt

)′
(Σ−1

3 ⊗ Σ−1
2 ⊗ Σ−1

1 )

· vec
(
Yt − B×̄1xt

))
·
∣∣Σ3

∣∣− ν3+I3+1
2 exp

(
− 1

2
tr
(
γΨ3Σ−1

3

))
∝
∣∣Σ3

∣∣− ν3+I3+TI1I2+1
2 exp

(
− 1

2

(
tr
(
γΨ3Σ−1

3

)
+

T∑
t=1

vec
(
Ẽt
)′

(Σ−1
3 ⊗ Z3) vec

(
Ẽt
)))

∝
∣∣Σ3

∣∣− ν3+I3+TI1I2+1
2 exp

(
− 1

2

(
tr
(
γΨ3Σ−1

3

)
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+
T∑
t=1

vec
(
Ẽ(3),t

)′
(Σ−1

3 ⊗ Z3) vec
(
Ẽ(3),t

)))
∝
∣∣Σ3

∣∣− ν3+I3+TI1I2+1
2 exp

(
− 1

2

(
tr
(
γΨ3Σ−1

3

)
+

T∑
t=1

tr
(

vec
(
Ẽ(3),t

)′
vec
(
Z3Ẽ(3),tΣ

−1
3

))))
∝
∣∣Σ3

∣∣− ν3+I3+TI1I2+1
2 exp

(
− 1

2

(
tr
(
γΨ3Σ−1

3

)
+

T∑
t=1

tr
(
Ẽ′(3),tZ3Ẽ(3),tΣ

−1
3

)))
.

For ease of notation, define S3 =
∑T

t=1 Ẽ(3),tZ3Ẽ
′
(3),t. Then

p(Σ3|B,Y,Σ1,Σ2) ∝
∣∣Σ3

∣∣− ν3+I3+TI1I2+1
2 exp

(
− 1

2

(
tr
(
γΨ3Σ−1

3

)
+ tr

(
S3Σ−1

3

)))
∝
∣∣Σ3

∣∣− (ν3+TI1I2)+I3+1
2 exp

(
− 1

2
tr
(
(γΨ3 + S3)Σ−1

3

))
,

Therefore, the posterior full conditional distribution of Σ3 is given by

p(Σ3|B,Y,Σ1,Σ2) ∼ IWI3(ν3 + TI1I2, γΨ3 + S3).

S.6.9 Full conditional distribution of γ188

Using a gamma prior distribution we have

p(γ|Σ1,Σ2,Σ3) ∝ p(Σ1,Σ2,Σ3|γ)π(γ)

∝
3∏
i=1

∣∣γΨi

∣∣− νi2 exp
(
− 1

2
tr
(
γΨiΣ

−1
i

))
γaγ−1e−bγγ

∝ γaγ−
∑3
i=1 νiIi

2
−1 exp

(
− 1

2
tr
( 3∑
i=1

ΨiΣ
−1
i

)
− bγγ

)
,

thus

p(γ|Σ1,Σ2,Σ3) ∼ Ga
(
aγ +

1

2

3∑
i=1

νiIi, bγ +
1

2
tr
( 3∑
i=1

ΨiΣ
−1
i

))
.

S.7 Initialisation details189

It is well known that the Gibbs sampler algorithm is highly sensitive to the choice of

the initial value. From this point of view, the most difficult parameters initialise in the
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proposed model are the margins of the tensor of coefficients, that is the set of vectors:

(β
(r)
1 , . . . ,β

(r)
J )Rr=1. Due to the high complexity of the parameter space, we have chosen

to perform an initialisation scheme which is based on the Simulated Annealing (SA)

algorithm (see Press et al., 2007; Robert and Casella, 2004). This algorithm is similar to the

Metropolis-Hastings one, and the idea behind it is to perform a stochastic optimisation by

proposing random moves from the current state which are always accepted when improving

the optimum and have positive probability of acceptance even when they are not improving.

This is used in order to allow the algorithm to escape from local optima. Denoting the

objective function to be minimised by f(θ), the Simulated Annealing method accepts a

move from the current state θ(i) to the proposed one θ∗ with probability given by the

Bolzmann-like distribution

p(∆f, T ) = exp
(
− ∆f

T

)
.

Here ∆f = f(θ∗) − f(θ(i)) and T is a parameter called temperature. The key of the SA190

method is in the cooling scheme, which describes the deterministic, decreasing evolution191

of the temperature over the iterations of the algorithm: it has been proved that under192

sufficiently slow decreasing schemes, the SA yields a global optimum.193

We use the SA algorithm for minimising the objective function

f((β
(r)
j )j,r) = κNψN + κJψJ ,

where κN is an overall penalty given by the Frobenius norm of the tensor constructed from

simulated margins, while κJ is the penalty of the sum (over r) of the norms of the marginals

β
(r)
J . In formulas:

ψN =
∥∥BSA∥∥

2
ψJ =

R∑
r=1

∥∥β(r)
J

∥∥
2
.

The proposal distribution for each margin is a normal NIj(0, σIIj), independent from the

current state of the algorithm. Finally, we have chosen a logarithmic cooling scheme which

updates the temperature at each iteration of the SA

Ti =
k

1 + log(i)
i = 1, . . . , ISA,

where k > 0 is a tuning parameter, which can be interpreted as the initial value of the194

temperature. In order to perform the initialisation of the margins, we run the SA algorithm195
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for ISA = 1, 200 iterations, then we took the vectors which gave the best fit in terms of196

minimum value of the objective function.197

S.8 Simulation Results198

We report the results of a simulation study where we have tested the performance of the199

proposed sampler on synthetic datasets of matrix-valued sequences (Yt, Xt)
T
t=1, where Yt, Xt200

have different size across simulations. The methods described in this paper can be rather201

computationally intensive, nevertheless thanks to the tensor decomposition we used allows202

the estimation to be carried out on a laptop. All the simulations were run on an Apple203

MacBookPro with a 3.1GHz Intel Core i7 processor, RAM 16GB, using MATLAB r2017b204

with the aid of the Tensor Toolbox v.2.62.205

We have fixed I1 = I2 = I and performed experiments for different sizes I of the

response and covariate matrices. We have generated a matrix-valued time series (Yt, Xt)
T
t=1

by simulating each entry of Xt from

xij,t − µ = αij(xij,t−1 − µ) + ηij,t, ηij,t ∼ N (0, 1),

for i = 1, . . . , I1, j = 1, . . . , I2 and t = 1, . . . , T . Then, we have generated the matrix-valued

response Yt according to

Yt = B×̄1 vec
(
Xt

)
+ Et, Et ∼ NI1,I2(0,Σ1, II2).

where E(ηij,tηkl,v) = 0, E(ηij,tEv) = 0, ∀ (i, j) 6= (k, l), ∀ t 6= v, and αij ∼ U(−1, 1).206

We randomly draw B using the PARAFAC decomposition in eq. (1), with rank R = 5207

and marginals sampled from the prior distribution in eq. (17). The matrices Xt, Yt in208

each simulated dataset have size I ∈ {10, 20, 30, 40}, and T = 60 in each simulation.209

We initialized the Gibbs sampler by setting the PARAFAC marginals β(r)
1 ,β

(r)
2 ,β

(r)
3 ,210

r = 1, . . . , R (with R = 5), via simulated annealing (see section S.7). We chose a burn-in211

period of 10, 000 iterations and, due to autocorrelation in the sample, we applied thinning212

and selected every 2nd iteration, thus obtaining 5, 000 draws from the posterior distribution213

after convergence.214

2http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
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Fig. 5 shows the accuracy of the sampler in estimating the coefficient tensor, in the four215

experiments corresponding to I ∈ {10, 20, 30, 40}. The efficiency decreases with I (recall216

that the number of cells of the coefficient tensor is I4). The estimation error is mainly due217

to the over-shrinking to zero, which is a known drawback of global-local hierarchical prior218

distributions (e.g, see Carvalho et al., 2010). Note that we expected a decrease of efficiency219

with I, since the sample size was held fixed (T = 60) across all simulation experiments,220

while increasing the size of the parameter space. In Figg. 6, 8, 10, 12 we report the221

estimation results for some randomly chosen cells of the coefficient tensor. We find that,222

after removing burn-in iterations and performing thinnig, the autocorrelation wipes out.223
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Figure 5: Logarithm of the absolute value of the coefficient tensors (in matricized form): true B

(left) and posterior mean estimate B̂ (right), for four experiments with different size I (in row).
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S.8.1 Experiment: I=10224

true B posterior mean B̂

Figure 6: Experiment I = 10. Logarithm of the absolute value of the coefficient tensors (in

matricized form): true B (left) and posterior mean estimate B̂ (right).
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Figure 7: Experiment I = 10. Posterior distribution (first row, the black dot is the true value),

MCMC plot (second row, dashed line represents the progressive mean) and autocorrelation

function (third row) for some randomly chosen cells of the estimated coefficient tensor B̂ (in

each column).
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S.8.2 Experiment: I=20225

true B posterior mean B̂

Figure 8: Experiment I = 20. Logarithm of the absolute value of the coefficient tensors (in

matricized form): true B (left) and posterior mean estimate B̂ (right).
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Figure 9: Experiment I = 20. Posterior distribution (first row, the black dot is the true value),

MCMC plot (second row, dashed line represents the progressive mean) and autocorrelation

function (third row) for some randomly chosen cells of the estimated coefficient tensor B̂ (in

each column).
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S.8.3 Experiment: I=30226

true B posterior mean B̂

Figure 10: Experiment I = 30. Logarithm of the absolute value of the coefficient tensors (in

matricized form): true B (left) and posterior mean estimate B̂ (right).
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Figure 11: Experiment I = 30. Posterior distribution (first row, the black dot is the true value),

MCMC plot (second row, dashed line represents the progressive mean) and autocorrelation

function (third row) for some randomly chosen cells of the estimated coefficient tensor B̂ (in

each column).

40



S.8.4 Experiment: I=40227

true B posterior mean B̂

Figure 12: Experiment I = 40. Logarithm of the absolute value of the coefficient tensors (in

matricized form): true B (left) and posterior mean estimate B̂ (right).
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Figure 13: Experiment I = 40. Posterior distribution (first row, the black dot is the true value),

MCMC plot (second row, dashed line represents the progressive mean) and autocorrelation

function (third row) for some randomly chosen cells of the estimated coefficient tensor B̂ (in

each column).
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S.8.5 Comparison with competing models228

In this section we compare the performance of the ART model (ART) proposed in Section229

1.2 of the main paper against several alternatives models differing in terms of the shrinkage230

prior. Among the VAR models, we consider (i) a VAR with Dirichlet-Laplace prior (VAR-231

DL); (ii) a VAR with Horseshoe prior (VAR-HS); and (iii) a VAR with Normal-Gamma232

prior (VAR-NG). Among the univariate models, we consider: (i) an ARX with Elastic Net233

prior (ARX-EN); (ii) an ARX with Fused Lasso prior (ARX-FL); and (iii) an ARX with234

Normal-Gamma prior (ARX-NG).235

We considered several synthetic datasets in this simulation setting. All of them have236

been generated as follows. We have simulated a Y1 from an order-3 tensor Normal237

distribution and we have specified the covariance matrices Σ1, Σ2, and Σ3 in order to238

have high cross-correlations. Then, we have specified the entries of the coefficient tensor B239

without referring to the PARAFAC(R) decomposition, by fixing each entry B to a given240

value. Finally, we have generated the tensor Yt by drawing from the ART(1) model.241

For each synthetic dataset, we have used different sizes of the simulated data. In242

particular, we have fixed I = J , K = 2, and T = 100, then varied the size I across243

datasets.244

The coefficient tensor B has been specified according to various instances of partial245

heterogeneity. With use this term to denote the case in which the entries of the coefficient246

tensor can be divided into groups such that coefficients have similar values within groups,247

but differ across groups, for example when the coefficient values have heterogeneity across248

covariates, with partial pooling within blocks of nodes for each covariate. In particular, we249

considered the following scenarios:250

• scenario “col”, where the first I/2 rows are set to 0.1, while the remaining I/2 rows

are set to −0.1. In formulas

B(1 : I/2, :, :) = 0.1, B(I/2 + 1 : I, :, :) = −0.1

• scenario “row”, where the first J/2 columns are set to 0.1, while the remaining J/2

columns are set to −0.1. In formulas

B(:, 1 : J/2, :, :) = 0.1, B(:, J/2 + 1 : J, :, :) = −0.1
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• scenario “block”, where the first I/2 rows and columns are set to 0.1, while the last

I/2 rows and columns are set to −0.1. All remaining entries are set to 0 in both

regimes. In formulas

B(1 : I/2, 1 : I/2, :) = 0.1, B(I/2 + 1 : I, I/2 + 1 : I, :) = −0.1

We estimate the following models: (i) the ART model (ART) proposed in Section

1.2, with R = 2; (ii) a VAR with Dirichlet-Laplace prior (VAR-DL); (iii) a VAR with

Horseshoe prior (VAR-HS); (iv) a VAR with Normal-Gamma prior (VAR-NG); (v) an

ARX with Elastic Net prior (ARX-EN); (vi) an ARX with Fused Lasso prior (ARX-FL);

and (vii) an ARX with Normal-Gamma prior (ARX-NG). The performance of each model

is assessed and compared using the Deviance Information Criterion (DIC) of Spiegelhalter

et al. (2002):

DIC = −4Eθ|Y
[

log(p(Y|θ))
]

+ 2 log(p(Y|θ̃)),

where θ̃ is an estimate of the parameters θ based on Y . Since our framework involves

hierarchical priors, we adopt the modifications of the DIC introduced by Celeux et al.

(2006) and apply their observed DIC3, which is the most reliable criterion:

DIC3 = −4Eθ|Y
[

log(p(Y|θ))
]

+ 2 log(p̂(Y)),

where p̂(Y) ≈ Eθ|Y [p(Y|θ)] is an estimate of the density p(Y|θ). Also, we consider the

observed DIC1 and DIC2, defined as

DIC1 = −4Eθ|Y
[

log(p(Y|θ))
]

+ 2 log(p(Y|Eθ|Y [θ]))

DIC2 = −4Eθ|Y
[

log(p(Y|θ))
]

+ 2 log(p(Y|θ̂(Y))),

where θ̂(Y) = arg maxθ p(θ|Y). The lowest value of the DIC is associated to the best251

performing model. Tables 1 to 4 report the average DICs across N = 4 independent252

runs of the MCMC algorithms. They show that in all synthetic datasets the ART model253

outperforms the alternatives according to almost all DIC criteria, and it is always better254

when considering the average of the three DICs.255
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Scenario “col” Scenario “row” Scenario “block”
DIC1 DIC2 DIC3 DIC1 DIC2 DIC3 DIC1 DIC2 DIC3

ART 576.706 562.462 563.991 447.997 428.820 429.878 45.375 26.706 28.354

VAR-DL 13732.777 13732.777 13191.025 13047.782 13047.782 12393.167 14644.784 14644.784 13775.223

VAR-HS 9320.585 9320.585 8728.634 9624.684 9624.684 8995.342 9742.699 9742.699 9033.025

VAR-NG 25912.969 25912.969 25551.393 26019.359 26019.359 25668.336 30067.059 30067.059 29536.112

ARX-FL 14702.737 16882.066 16731.699 14734.880 16897.955 16764.594 15089.136 17252.961 17121.347

ARX-EN 8518.901 8448.587 8507.715 8829.868 8773.106 8813.463 8875.289 8840.409 8860.338

ARX-NG 1088.602 8650.369 8775.561 2240.442 8988.962 9045.484 2691.705 9000.719 9043.601

Table 1: DIC for all datasets with I = J = 3, K = 2, all models. For each

criterion, the best performing model is shaded in gray.

Scenario “col” Scenario “row” Scenario “block”
DIC1 DIC2 DIC3 DIC1 DIC2 DIC3 DIC1 DIC2 DIC3

ART -4130.588 -4195.275 -4175.689 -1440.704 -1493.073 -1463.639 -2236.844 -2311.603 -2293.562

VAR-DL 193153.847 193153.847 114374.380 103119.915 103119.915 69868.471 155665.852 155665.852 99708.231

VAR-HS 40851.416 40851.416 25001.917 39413.324 39413.324 24289.906 40680.997 40680.997 24950.047

VAR-NG 46447.674 46447.674 30469.139 86828.164 86828.164 71544.706 61973.283 61973.283 45086.537

ARX-FL 59331.359 59309.024 62652.875 56991.926 57209.369 60176.461 57245.086 57224.722 60506.492

ARX-EN 24492.253 24313.630 24518.891 23763.461 23597.865 23770.431 23978.278 23791.146 24015.639

ARX-NG 3101.543 24847.157 25619.932 4775.989 24269.654 24715.470 3791.682 24029.922 25093.752

Table 2: DIC for all datasets with I = J = 5, K = 2, all models. For each

criterion, the best performing model is shaded in gray.

Scenario “col” Scenario “row” Scenario “block”
DIC1 DIC2 DIC3 DIC1 DIC2 DIC3 DIC1 DIC2 DIC3

ART -10774.609 -10916.236 -10879.313 -14013.939 -14138.553 -14102.565 -11675.367 -11791.712 -11741.614

VAR-DL 264156.976 264156.976 137049.407 264436.246 264436.246 136922.979 264445.144 264445.144 137026.286

VAR-HS 116535.928 116535.928 62925.810 118131.221 118131.221 63704.893 115765.060 115765.060 62515.267

VAR-NG 118977.014 118977.014 64556.261 119301.103 119301.103 64507.923 117566.926 117566.926 63767.642

ARX-FL 179641.897 179480.821 185338.733 183019.728 182870.040 188851.264 181368.732 181130.233 187101.038

ARX-EN 60075.777 59157.424 60829.314 62188.741 61228.386 62905.239 61657.391 60894.869 62560.377

ARX-NG 22907.275 49949.312 62568.541 24346.027 54898.976 68940.280 18628.992 54167.939 65159.375

Table 3: DIC for all datasets with I = J = 8, K = 2, all models. For each

criterion, the best performing model is shaded in gray.
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Scenario “col” Scenario “row” Scenario “block”
DIC1 DIC2 DIC3 DIC1 DIC2 DIC3 DIC1 DIC2 DIC3

ART -18717.110 -18906.844 -18851.326 -23230.938 -23388.626 -23323.538 -25188.265 -25359.805 -25325.457

VAR-DL 264428.872 264428.872 136773.555 264428.872 264428.872 136773.555 264428.872 264428.872 136773.555

VAR-HS 180685.575 180685.575 95059.618 186572.219 186572.219 97945.097 184316.464 184316.464 96843.670

VAR-NG 183966.476 183966.476 97127.248 188222.521 188222.521 98995.114 187376.441 187376.441 98876.450

ARX-FL 302008.728 301636.906 310983.438 304527.696 304119.870 313481.373 298638.207 298584.145 307400.599

ARX-EN 93203.598 91812.811 95564.926 101038.793 99992.610 103427.286 98411.973 97457.887 101038.399

ARX-NG 10534.692 63325.926 96507.632 17667.199 58921.913 89898.942 11233.856 58966.954 92380.492

Table 4: DIC for all datasets with I = J = 10, K = 2, all models. For each

criterion, the best performing model is shaded in gray.

Scenario “col” Scenario “row” Scenario “block”
DIC1 DIC2 DIC3 DIC1 DIC2 DIC3 DIC1 DIC2 DIC3

ART -42124.402 -42502.912 -42239.065 -46822.431 -47121.484 -46999.071 -39833.172 -40066.877 -40010.286

VAR-DL 264428.872 264428.872 136773.555 264428.872 264428.872 136773.555 264428.872 264428.872 136773.555

VAR-HS 127069.799 127069.799 66062.957 255063.736 255063.736 132443.465 251330.055 251330.055 130620.693

VAR-NG 258589.814 258589.814 134557.032 258630.605 258630.605 134353.769 190124.950 190124.950 98831.861

ARX-FL 455541.820 454865.670 469672.054 462143.716 461487.288 476560.986 456205.086 455589.243 470448.549

ARX-EN 139515.266 136489.369 144225.795 149218.505 148158.164 155012.392 140842.674 139422.444 145896.572

ARX-NG 30576.543 74265.572 113990.145 21490.735 75676.871 122422.809 36616.317 76137.700 118662.140

Table 5: DIC for all datasets with I = J = 12, K = 2, all models. For each

criterion, the best performing model is shaded in gray.

S.9 Data Description256

As put forward by Schweitzer et al. (2009), the analysis of economic networks is one of the257

most recent and complex challenges that the econometric community is facing nowadays.258

We contribute to the econometric literature about complex networks by applying the259

proposed methodology to the study jointly the dynamics of international trade and credit260

networks. The international trade and financial networks have been previously studied by261

several authors (e.g., see Anundsen et al., 2016; Eaton and Kortum, 2002; Fagiolo et al.,262

2009; Fieler, 2011; Hidalgo and Hausmann, 2009; Kharrazi et al., 2017; Meyfroidt et al.,263

2010; Squartini et al., 2011; Zhu et al., 2014), who investigated its topological properties264

and identified its main communities. To the best of our knowledge, this is the first attempt265
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to model the dynamics of two networks jointly.266

The bilateral trade data come from the United Nations COMTRADE database3,267

whereas the data on bilateral outstanding capital come from the Bank of International268

Settlements database4, both are publicly available resources. For each couple (i, j) of269

countries, the international trade data from COMTRADE report total exports from country270

i to country j occurred during year t, while the BIS dataset gives the total amount of claims271

(i.e., credit) of country i vis-á-vis country j in year t. We use a subset of the COMTRADE272

database. Our sample of yearly observations for 10 countries (I1 = I2 = I = 10) runs from273

2003 to 2016. In order to remove potential non-linearities in the data, we take the logarithm274

all variables of interest. We thus consider the international trade and financial network in275

each period as one observation from a real-valued tensor-valued stochastic process. To sum276

up, our dataset consists in a 3-order tensor-valued time series of length T = 13. At each277

time t, the 3-order tensor Yt has dimension (I1, I2, I3), with I1 = I2 = I = 10 and I3 = 2,278

and it represents a 2-layer node-aligned network (or multiplex) with 10 vertices (countries),279

where each edge is given by a bilateral trade flow or financial stock. The entry (i, j, 1, t)280

of Yt reports the total exports of country i vis-à-vis country j, in year t, whereas entry281

(i, j, 2, t) contains the total outstanding credit from country i towards country j, in year t.282

The series (Yt)t, t = 1, . . . , T , has been standardized (over the temporal dimension).283

S.10 Additional results for the empirical application284

S.10.1 Estimation results285

Fig. 16 shows the estimated covariance matrices. In all cases, the highest values correspond286

to individual variances, while the estimated covariances are lower in magnitude and287

heterogeneous. We also find evidence of heterogeneity in the dependence structure, since288

Σ1, which captures the covariance between rows (i.e., exporting and creditor countries),289

differs from Σ2, which describes the covariance between columns (i.e., importing and debtor290

countries). With few exceptions, estimated covariances are positive.291

3https://comtrade.un.org
4http://stats.bis.org/statx/toc/LBS.html
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Figure 14: Posterior distribution (first row), MCMC plot (second row, dashed line represents

the progressive mean) and autocorrelation function (third row) for four randomly chosen cells

of the estimated coefficient tensor B̂ (in each column).

To assess the convergence of the MCMC algorithm, we have performed a convergence292

diagnostics analysis based on the coda functions of the LeSage’ Econometrics toolbox5
293

(LeSage, 1999). Specifically, we rely on the diagnostic criteria of the Geweke (1992) and294

Raftery and Lewis (1995).295

Raftery and Lewis’ approach allows to determine how long to monitor the chain in296

order to achieve a pre-specified level of accuracy of the posterior summaries. The default297

values require that, for nominal reporting based on a 95% interval using the 0.025 and298

0.975 quantile points, the actual posterior values should result lie between 0.95 and 0.96.299

The results of this procedure consists in the thinning factor, the burn-in period, and the300

total number of draws (N) needed to achieve the desired accuracy of the sampler. Also, the301

fourth column reports the number of draws that would be needed if the draws represented302

an i.i.d. chain (Nmin). Finally, the I-statistic, which is given by the ratio of the third to303

the fourth column (i.e., N/Nmin), provides evidence of convergence problems if its values304

exceeds 5.305

5See also https://www.spatial-econometrics.com.
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Figure 15: Posterior distribution (first row), MCMC plot (second row, dashed line represents

the progressive mean) and autocorrelation function (third row) for two randomly chosen cells of

the estimated covariance matrix Σ̂1 (first and second column) and Σ̂2 (third and fourth column).
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Figure 16: Estimated covariance matrices: Σ̂1 (left), Σ̂2 (center), Σ̂3 (right).

The Geweke diagnostics consists in the estimates of the numerical standard errors306

(NSE) and relative numerical efficiency (RNE), based on the assumption that the draws307

come from an i.i.d. process (first column), as well as on a 4%, 8%, and 15% tapering308

(or truncation) of the periodgram window used to approximate the spectral density of309

the parameter of interest (second to fourth column). This second set of columns take into310

account the autocorrelation among the MCMC draws, thus one should rely on them in case311

of disagreement with the i.i.d. estimates. To interpret the results, notice that the RNE312

provides an estimate of the number of MCMC draws that would be required to produce313
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the same numerical accuracy as if the draws had been made from an i.i.d. sample drawn314

from the posterior distribution. Therefore, values of the RNE close to unity are indicative315

of the i.i.d. nature of our sample.316

Moreover, Geweke proposed a test for assessing whether the chain for a given parameter317

has converged that is, it has reached the equilibrium. Specifically, he designed a Z-test for318

hypothesis of equality of the means computed using the first 20% and the last 50% of the319

draws from the chain. The resulting p-value greater than α implies the non-rejection of the320

null (of convergence) at the α confidence level.321

We compute these measures, together with the autocorrelation function at lags322

1, 5, 10, 50, for some randomly chosen entries of the coefficient tensor, B̂, and the covariance323

matrices, Σ̂1 and Σ̂2. The results reported in Tables 6 to 14 provide evidence of convergence324

according to all criteria each of the parameters.325

Autocorrelation function

lag 1 lag 5 lag 10 lag 50

B̂9,3,1,169 0.041 0.020 -0.015 -0.001

B̂2,8,2,163 -0.010 0.011 -0.001 0.010

B̂10,9,2,192 -0.024 -0.015 -0.011 -0.012

B̂5,5,2,28 -0.005 -0.007 0.011 -0.020

B̂2,8,2,30 0.023 0.007 0.025 0.010

B̂9,4,1,102 0.056 -0.008 -0.017 -0.022

B̂2,8,2,51 0.023 -0.025 0.020 0.014

B̂4,7,2,140 -0.022 -0.012 0.008 -0.004

B̂1,5,2,49 0.018 0.001 0.011 -0.022

B̂7,4,1,179 0.005 0.013 0.007 -0.004

B̂6,2,1,69 0.008 -0.010 -0.011 -0.025

B̂1,6,1,151 0.026 0.018 -0.008 -0.028

B̂1,1,2,52 -0.010 0.011 0.016 -0.015

B̂3,6,2,45 -0.016 -0.016 0.024 -0.037

B̂1,2,1,118 0.024 0.009 -0.021 0.029

B̂9,9,1,110 0.006 -0.003 0.001 -0.010

B̂1,8,2,186 0.013 0.046 -0.007 0.005

B̂4,1,1,52 0.039 0.018 -0.010 0.015

B̂10,10,2,70 0.002 0.016 0.009 0.007

B̂2,8,2,192 -0.013 -0.016 -0.028 -0.006

Raftery and Lewis diagnostics

thin burn total (N) Nmin I-stat

B̂9,3,1,169 1.000 2.000 984.000 937.000 1.050

B̂2,8,2,163 1.000 2.000 984.000 937.000 1.050

B̂10,9,2,192 1.000 2.000 984.000 937.000 1.050

B̂5,5,2,28 1.000 2.000 984.000 937.000 1.050

B̂2,8,2,30 1.000 2.000 984.000 937.000 1.050

B̂9,4,1,102 1.000 2.000 984.000 937.000 1.050

B̂2,8,2,51 1.000 2.000 984.000 937.000 1.050

B̂4,7,2,140 1.000 2.000 984.000 937.000 1.050

B̂1,5,2,49 1.000 2.000 984.000 937.000 1.050

B̂7,4,1,179 1.000 2.000 984.000 937.000 1.050

B̂6,2,1,69 1.000 2.000 984.000 937.000 1.050

B̂1,6,1,151 1.000 2.000 984.000 937.000 1.050

B̂1,1,2,52 1.000 2.000 984.000 937.000 1.050

B̂3,6,2,45 1.000 2.000 984.000 937.000 1.050

B̂1,2,1,118 1.000 2.000 984.000 937.000 1.050

B̂9,9,1,110 1.000 2.000 984.000 937.000 1.050

B̂1,8,2,186 1.000 2.000 984.000 937.000 1.050

B̂4,1,1,52 1.000 2.000 984.000 937.000 1.050

B̂10,10,2,70 1.000 2.000 984.000 937.000 1.050

B̂2,8,2,192 1.000 2.000 984.000 937.000 1.050

Table 6: Convergence diagnostics for randomly selected entries of B̂:

autocorrelation function (left), Raftery and Lewis convergence diagnostics (right).
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Geweke diagnostics

NSE iid RNE iid NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15%

B̂9,3,1,169 0.000 1.000 0.000 1.001 0.000 1.011 0.000 1.221

B̂2,8,2,163 0.001 1.000 0.001 0.828 0.001 0.811 0.001 0.732

B̂10,9,2,192 0.000 1.000 0.000 1.869 0.000 2.648 0.000 2.720

B̂5,5,2,28 0.001 1.000 0.001 1.217 0.001 1.442 0.000 2.151

B̂2,8,2,30 0.001 1.000 0.001 0.554 0.001 0.420 0.001 0.380

B̂9,4,1,102 0.000 1.000 0.000 0.833 0.000 0.874 0.000 0.800

B̂2,8,2,51 0.001 1.000 0.001 1.048 0.001 0.935 0.001 0.834

B̂4,7,2,140 0.000 1.000 0.000 0.913 0.000 0.870 0.000 1.224

B̂1,5,2,49 0.001 1.000 0.001 0.871 0.001 0.809 0.001 0.836

B̂7,4,1,179 0.000 1.000 0.000 0.855 0.000 0.892 0.000 0.923

B̂6,2,1,69 0.000 1.000 0.000 1.058 0.000 1.173 0.000 1.490

B̂1,6,1,151 0.000 1.000 0.000 0.927 0.000 1.371 0.000 2.041

B̂1,1,2,52 0.001 1.000 0.001 1.095 0.001 1.072 0.001 1.004

B̂3,6,2,45 0.000 1.000 0.000 1.131 0.000 1.161 0.000 1.367

B̂1,2,1,118 0.001 1.000 0.001 0.956 0.001 0.901 0.001 0.941

B̂9,9,1,110 0.000 1.000 0.000 1.095 0.000 1.182 0.000 1.377

B̂1,8,2,186 0.001 1.000 0.001 0.830 0.001 0.989 0.001 1.209

B̂4,1,1,52 0.000 1.000 0.000 1.046 0.000 1.382 0.000 2.434

B̂10,10,2,70 0.000 1.000 0.000 1.377 0.000 1.603 0.000 2.014

B̂2,8,2,192 0.001 1.000 0.001 1.768 0.000 2.359 0.000 2.553

Table 7: Geweke convergence diagnostics for randomly selected entries of B̂.
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Geweke’s test

i.i.d. 4% taper 8% taper 15% taper

mean NSE p-value mean NSE p-value mean NSE p-value mean NSE p-value

B̂9,3,1,169 0.003 0.000 0.643 0.003 0.000 0.669 0.003 0.000 0.673 0.003 0.000 0.657

B̂2,8,2,163 0.007 0.001 0.246 0.006 0.001 0.234 0.006 0.001 0.212 0.006 0.001 0.180

B̂10,9,2,192 -0.004 0.000 0.884 -0.004 0.000 0.867 -0.004 0.000 0.859 -0.004 0.000 0.833

B̂5,5,2,28 -0.002 0.001 0.889 -0.002 0.001 0.885 -0.002 0.001 0.883 -0.002 0.001 0.889

B̂2,8,2,30 -0.011 0.001 0.068 -0.010 0.001 0.109 -0.010 0.001 0.144 -0.010 0.001 0.180

B̂9,4,1,102 0.004 0.000 0.154 0.004 0.000 0.204 0.004 0.000 0.212 0.004 0.000 0.127

B̂2,8,2,51 0.002 0.001 0.063 0.002 0.001 0.097 0.002 0.001 0.073 0.002 0.001 0.039

B̂4,7,2,140 0.004 0.000 0.532 0.004 0.000 0.567 0.004 0.000 0.578 0.004 0.000 0.557

B̂1,5,2,49 -0.006 0.001 0.543 -0.006 0.001 0.515 -0.006 0.001 0.538 -0.006 0.001 0.560

B̂7,4,1,179 -0.000 0.000 0.996 -0.000 0.000 0.996 -0.000 0.000 0.996 -0.000 0.000 0.996

B̂6,2,1,69 0.000 0.000 0.217 0.000 0.000 0.287 0.000 0.000 0.288 0.000 0.000 0.292

B̂1,6,1,151 -0.006 0.000 0.571 -0.006 0.000 0.616 -0.006 0.000 0.646 -0.006 0.000 0.648

B̂1,1,2,52 -0.003 0.001 0.630 -0.003 0.001 0.619 -0.003 0.001 0.620 -0.003 0.001 0.637

B̂3,6,2,45 0.000 0.001 0.358 -0.000 0.000 0.255 0.000 0.000 0.269 0.000 0.000 0.276

B̂1,2,1,118 -0.003 0.001 0.196 -0.003 0.001 0.219 -0.003 0.001 0.209 -0.003 0.001 0.189

B̂9,9,1,110 -0.000 0.000 0.089 -0.000 0.000 0.068 -0.000 0.000 0.069 -0.000 0.000 0.036

B̂1,8,2,186 -0.005 0.001 0.380 -0.005 0.001 0.410 -0.005 0.001 0.430 -0.005 0.001 0.461

B̂4,1,1,52 -0.002 0.000 0.980 -0.002 0.000 0.979 -0.002 0.000 0.980 -0.002 0.000 0.978

B̂10,10,2,70 -0.002 0.000 0.199 -0.001 0.000 0.226 -0.001 0.000 0.195 -0.001 0.000 0.133

B̂2,8,2,192 0.009 0.001 0.697 0.010 0.001 0.628 0.009 0.001 0.607 0.009 0.001 0.589

Table 8: Geweke’s test for randomly selected entries of B̂.

Autocorrelation function

lag 1 lag 5 lag 10 lag 50

Σ̂1,7,9 0.187 0.069 0.039 -0.020

Σ̂1,7,3 0.148 0.065 0.027 -0.034

Σ̂1,5,6 0.229 0.065 0.005 -0.036

Σ̂1,8,6 0.105 0.002 0.021 0.022

Σ̂1,1,9 0.207 0.083 0.047 -0.008

Σ̂1,5,2 0.210 0.044 0.019 0.019

Σ̂1,6,9 0.182 0.078 0.014 -0.028

Raftery and Lewis diagnostics

thin burn total (N) Nmin I-stat

Σ̂1,7,9 1.000 3.000 1035.000 937.000 1.105

Σ̂1,7,3 1.000 3.000 1035.000 937.000 1.105

Σ̂1,5,6 1.000 3.000 1035.000 937.000 1.105

Σ̂1,8,6 1.000 3.000 1035.000 937.000 1.105

Σ̂1,1,9 1.000 3.000 1035.000 937.000 1.105

Σ̂1,5,2 1.000 3.000 1035.000 937.000 1.105

Σ̂1,6,9 1.000 3.000 1035.000 937.000 1.105

Table 9: Convergence diagnostics for randomly selected entries of Σ̂1:

autocorrelation function (left), Raftery and Lewis convergence diagnostics (right).
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Geweke diagnostics

NSE iid RNE iid NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15%

Σ̂1,7,9 0.001 1.000 0.001 0.290 0.001 0.286 0.001 0.275

Σ̂1,7,3 0.001 1.000 0.001 0.345 0.001 0.364 0.001 0.455

Σ̂1,5,6 0.001 1.000 0.001 0.415 0.001 0.617 0.001 0.717

Σ̂1,8,6 0.001 1.000 0.001 0.622 0.001 0.590 0.001 0.567

Σ̂1,1,9 0.001 1.000 0.001 0.369 0.001 0.389 0.001 0.526

Σ̂1,5,2 0.001 1.000 0.001 0.309 0.001 0.367 0.001 0.540

Σ̂1,6,9 0.001 1.000 0.001 0.407 0.001 0.359 0.001 0.293

Table 10: Geweke convergence diagnostics for randomly selected entries of Σ̂1.

Geweke’s test

i.i.d. 4% taper 8% taper 15% taper

mean NSE p-value mean NSE p-value mean NSE p-value mean NSE p-value

Σ̂1,7,9 0.112 0.001 0.658 0.112 0.001 0.787 0.112 0.001 0.787 0.112 0.001 0.790

Σ̂1,7,3 0.057 0.001 0.191 0.057 0.001 0.420 0.057 0.001 0.423 0.057 0.001 0.404

Σ̂1,5,6 0.189 0.001 0.520 0.189 0.001 0.689 0.189 0.001 0.656 0.189 0.001 0.591

Σ̂1,8,6 0.067 0.001 0.687 0.067 0.001 0.777 0.067 0.001 0.770 0.067 0.001 0.754

Σ̂1,1,9 0.143 0.001 0.118 0.142 0.001 0.378 0.142 0.001 0.363 0.142 0.001 0.247

Σ̂1,5,2 0.073 0.001 0.519 0.072 0.001 0.699 0.073 0.001 0.700 0.073 0.001 0.699

Σ̂1,6,9 0.126 0.001 0.735 0.126 0.001 0.830 0.126 0.001 0.829 0.126 0.001 0.826

Table 11: Geweke’s test for randomly selected entries of Σ̂1.

Autocorrelation function

lag 1 lag 5 lag 10 lag 50

Σ̂2,10,5 0.292 0.078 0.056 0.006

Σ̂2,9,8 0.210 0.036 0.035 0.013

Σ̂2,7,4 0.180 0.057 0.032 -0.015

Σ̂2,10,1 0.152 0.032 0.022 -0.002

Σ̂2,1,10 0.152 0.032 0.022 -0.002

Σ̂2,9,4 0.144 0.045 0.055 -0.004

Σ̂2,1,5 0.212 0.036 0.024 -0.006

Σ̂2,4,4 0.401 0.170 0.070 -0.041

Σ̂2,5,10 0.292 0.078 0.056 0.006

Σ̂2,9,5 0.163 0.023 0.028 -0.024

Σ̂2,5,3 0.249 0.077 0.028 -0.033

Raftery and Lewis diagnostics

thin burn total (N) Nmin I-stat

Σ̂2,10,5 1.000 3.000 1072.000 937.000 1.144

Σ̂2,9,8 1.000 3.000 1072.000 937.000 1.144

Σ̂2,7,4 1.000 3.000 1072.000 937.000 1.144

Σ̂2,10,1 1.000 3.000 1072.000 937.000 1.144

Σ̂2,1,10 1.000 3.000 1072.000 937.000 1.144

Σ̂2,9,4 1.000 3.000 1072.000 937.000 1.144

Σ̂2,1,5 1.000 3.000 1072.000 937.000 1.144

Σ̂2,4,4 1.000 3.000 1072.000 937.000 1.144

Σ̂2,5,10 1.000 3.000 1072.000 937.000 1.144

Σ̂2,9,5 1.000 3.000 1072.000 937.000 1.144

Σ̂2,5,3 1.000 3.000 1072.000 937.000 1.144

Table 12: Convergence diagnostics for randomly selected entries of Σ̂2:

autocorrelation function (left), Raftery and Lewis convergence diagnostics (right).

52



Geweke diagnostics

NSE iid RNE iid NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15%

Σ̂2,10,5 0.001 1.000 0.001 0.337 0.001 0.512 0.001 0.477

Σ̂2,9,8 0.001 1.000 0.001 0.329 0.001 0.335 0.001 0.429

Σ̂2,7,4 0.001 1.000 0.001 0.377 0.001 0.386 0.001 0.452

Σ̂2,10,1 0.001 1.000 0.001 0.501 0.001 0.484 0.001 0.404

Σ̂2,1,10 0.001 1.000 0.001 0.501 0.001 0.484 0.001 0.404

Σ̂2,9,4 0.001 1.000 0.001 0.585 0.001 0.683 0.001 0.860

Σ̂2,1,5 0.001 1.000 0.001 0.570 0.001 0.676 0.001 0.700

Σ̂2,4,4 0.001 1.000 0.002 0.281 0.002 0.417 0.002 0.502

Σ̂2,5,10 0.001 1.000 0.001 0.337 0.001 0.512 0.001 0.477

Σ̂2,9,5 0.001 1.000 0.001 0.712 0.001 0.939 0.001 0.975

Σ̂2,5,3 0.001 1.000 0.001 0.466 0.001 0.548 0.001 0.512

Table 13: Geweke convergence diagnostics for randomly selected entries of Σ̂2.

Geweke’s test

i.i.d. 4% taper 8% taper 15% taper

mean NSE p-value mean NSE p-value mean NSE p-value mean NSE p-value

Σ̂2,10,5 0.238 0.001 0.522 0.238 0.002 0.728 0.238 0.002 0.724 0.238 0.001 0.705

Σ̂2,9,8 0.141 0.001 0.278 0.141 0.001 0.525 0.141 0.001 0.539 0.141 0.001 0.462

Σ̂2,7,4 0.138 0.001 0.251 0.138 0.001 0.485 0.138 0.001 0.503 0.138 0.001 0.538

Σ̂2,10,1 0.133 0.001 0.214 0.133 0.001 0.390 0.133 0.001 0.377 0.132 0.001 0.314

Σ̂2,1,10 0.133 0.001 0.214 0.133 0.001 0.390 0.133 0.001 0.377 0.132 0.001 0.314

Σ̂2,9,4 0.131 0.001 0.396 0.131 0.001 0.554 0.131 0.001 0.590 0.131 0.001 0.607

Σ̂2,1,5 0.171 0.001 0.564 0.171 0.001 0.677 0.170 0.001 0.643 0.170 0.001 0.611

Σ̂2,4,4 0.637 0.001 0.714 0.637 0.003 0.875 0.637 0.003 0.879 0.637 0.002 0.872

Σ̂2,5,10 0.238 0.001 0.522 0.238 0.002 0.728 0.238 0.002 0.724 0.238 0.001 0.705

Σ̂2,9,5 0.190 0.001 0.436 0.190 0.001 0.614 0.190 0.001 0.628 0.190 0.001 0.631

Σ̂2,5,3 0.228 0.001 0.798 0.228 0.001 0.877 0.228 0.001 0.872 0.228 0.001 0.859

Table 14: Geweke’s test for randomly selected entries of Σ̂2.

S.10.2 Impulse response analysis326

Fig. 17 shows the block Cholesky IRF at horizon h = 1, 2, resulting from a negative 1%327

shock to GB’s outstanding debt6. The main findings follow.328

6Again, the shock is allocated across countries to reflect country-specific shares of the last period in the

sample.
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(a) Network IRF at h = 1
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(b) IRF for Germany’s edges at h = 1
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(c) Network IRF at h = 2
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(d) IRF for Germany’s edges at h = 2
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Figure 17: Shock to GB capital inflows by -1%. IRF at horizon h = 1 for all (panel a) and

Germany (panel b) financial and trade transactions. IRF at horizon h = 2 for all (panel c) and

Germany (panel d) financial and trade transactions. In each plot negative coefficients are in

blue and positive in red.

Global effect on the network. We observe heterogeneous effects across countries. Effects329

on the trade layer at horizon 1 are equally heterogeneous, but smaller in magnitude330
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(a) Network IRF at h = 1
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(b) IRF for Germany’s edges at h = 1
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(c) Network IRF at h = 2
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(d) IRF for Germany’s edges at h = 2
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Figure 18: Shock to GB capital inflows by -1% and outflows by +1%. IRF at horizon h = 1

for all (panel a) and Germany (panel b) financial and trade transactions. IRF at horizon h = 2

for all (panel c) and Germany (panel d) financial and trade transactions. In each plot negative

coefficients are in blue and positive in red.

compared with the financial layer.331

Local effect on Germany. Compared with other countries, the shock has smaller effects332

55



on Germany’s trade. The negative shock to GB’s outstanding debt has a negative impact333

on Germany’s exports and imports to all countries but Ireland and Sweden for exports334

and Denmark for imports. Germany’s outstanding credit increases vis-à-vis Denmark, GB,335

Japan and US. Germany’s outstanding debt increases against all countries but Denmark336

and Sweden, in particular against France, Japan and Ireland. At horizon 2 responses are337

not reverted, but nearly all effects turn insignificant, providing evidence of monotone and338

fast decay of the IRFs.339

Local effect on other countries. On the trade layer at horizon 1, we observe a positive340

response in Denmark’s exports and on average a negative response of Switzerland’s,341

Ireland’s and Japan’s exports. France and Sweden are the most affected countries on the342

financial layer: The increase in outstanding credit of France towards Germany, Denmark343

and GB is counterbalanced by a reduction in Sweden’s outstanding credit towards the same344

countries. We observe reverse effects concerning France’s and Sweden’s outstanding credit345

towards Switzerland and Ireland. Finally, Ireland’s outstanding credit reacts positively346

towards most other countries.347

Compared with responses to the shock to US imports, the persistence of a negative shock348

to GB’s outstanding debt is slightly stronger, see impulse responses at horizon 2 in Fig. 17.349

The decay is monotonic. However, the speed of decay is heterogeneous across countries.350

For some countries, there are small effects at horizon 2, while for others the effects are351

completely wiped already. Overall, we do not find evidence of a relation between the size352

of a country in terms of exports or outstanding credit and the persistence in the impulse353

response. At the most, persistence seems determined by the origin of the shock, the effects354

of a financial shock being more persistent than those of a trade shock.355

Finally, in Fig. 18 we plot the block Cholesky IRF, respectively, at horizon h = 1, 2,356

resulting from a 1% negative shock to GB’s outstanding debt coupled with a 1% positive357

shock to GB’s outstanding credit. The main findings follow.358

Global effect on the network. The results remarkably differ from the previous ones359

(see Fig. 17). The responses to this simultaneous shock in GB’s outstanding debt and360

credit are larger, in particular in the trade layer. However, already at horizon 2 responses361

are nearly fully decayed. The results in Fig. 17 and Fig. 18 suggest that an increase in362
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GB’s outstanding credit has an overall positive effect on trade, stimulating export/import363

activities of most other countries.364

Local effect on Germany. One period after the shock, we observe an overall positive365

effect on German exports, the exception being towards GB, Ireland and Sweden. Imports366

react mostly positively. Imports from US and Ireland react most, while those from Denmark367

react negatively. The responses of Germany’s outstanding debt vis-à-vis most countries368

but Denmark and Sweden are negative, especially against France. At horizon 2 Germany’s369

responses have nearly faded away, suggesting a rapid monotone decay of the shock’s effect.370

Local effect on other countries. In particular, the reactions of Switzerland’s imports371

and outstanding debt are strikingly different from the previous case, compare with Fig. 17.372

Imports from US and Ireland, and to a lesser extent from France and Austria, are strongly373

boosted, while those from Denmark and Sweden decrease strongly. Moreover, we note that374

Japan’s outstanding debt increases significantly against most countries. We interpret this as375

a signal for Japan’s attractiveness for foreign capital. Compared with the previous exercise,376

France’s financial responses are now mostly insignificant, or of opposite sign. Finally, the377

reactions of GB’s exports and outstanding credit are heterogeneous, the latter ones being378

larger in absolute magnitude.379
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