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ABSTRACT
NowadaysMachine Learning (ML) techniques are extensively adopted

in many socially sensitive systems, thus requiring to carefully study

the fairness of the decisions taken by such systems. Many ap-

proaches have been proposed to address and to make sure there is

no bias against individuals or specific groups which might origi-

nally come from biased training datasets or algorithm design. In this

regard, we propose a fairness enforcing approach called EiFFFeL

–Enforcing Fairness in Forests by Flipping Leaves– which exploits

tree-based or leaf-based post-processing strategies to relabel leaves

of selected decision trees of a given forest. Experimental results

show that our approach achieves a user-defined group fairness

degree without losing a significant amount of accuracy.
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1 INTRODUCTION
Machine Learning is used in a wide range of systems, such as health

care [9, 20], education [24–26], financial lending [4, 21], and so-

cial services [12, 23], to facilitate decision making and automate

services which has a critical implications to individuals and com-

munities. This extensive use of machine learning creates a growing

concern, as algorithms might introduce far-reaching bias that treats

individuals or groups unfairly, based on certain characteristics such

as age, race, gender, or political affiliation. Thus, it is becoming very

important to develop fairness aware algorithms.

In recent years many methods have been developed addressing

both individual-based and group-based fairness. Most of the works

tackles issues of discovering discrimination, and adding solutions
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to eliminate such discrimination to have fair and accurate decisions

[31, 32]. The bias mitigation approaches on either the training data

or the learned model can be categorized into three main groups [8]:

(1) Pre-processing approaches such as reweighting [5], massaging

[17], aiming to eliminate discrimination at the data level; (2) In-
processing algorithms such as [3, 18] addressing discrimination

by modifying algorithms; (3) post-processing methods such as

[15, 18] take the learned model and change the predicted labels

appropriately to meet fairness requirements.

Algorithms proposed recently in bias mitigation has focused

on neural networks. However, the efficiency and explainability of

tree ensembles for many applications makes them preferable to

be implemented in many areas. Even though there are few works

focused on studying fairness for trees and tree ensembles, notably

[14, 18, 28, 30], most of them are focused on single decision tree

classifiers and in-processing approaches. Our interest mainly lies

in developing fair random forest classifiers with post-processing

approaches designed to relabel leaves with accuracy and discrimina-

tion constraints. We take advantage of implementing a post-process

approach, in which we do not require to know the training process.

Contributions. We focus on decision tree ensembles for binary

classification tasks susceptible to group discrimination with respect

to attributes sensitive classes such as age, gender, race, etc. We

propose a post-processing approach named EiFFFeL –Enforcing

Fairness in Forests by Flipping Leaves– that given a forest, however

trained, selects a subset of its leaves and changes their predictions

so as to reduce the discrimination degree of the forest.

We summarize the main contributions of our work as follows.

(1) We propose an iterative leaf flipping post-processing algo-

rithm to ensure group fairness .

(2) We devise tree-based and leaf-based flipping methodologies

on top of random forest classifier to enforce fairness.

(3) We report experimental evaluations of group fairness on

three different datasets, aiming to empirically show the ef-

fectiveness of our method.

2 FAIRNESS IN MACHINE LEARNING
Without loss of generality, we consider a binary classifier𝑔 : X → Y
that maps an input feature vector 𝒙 ∈ X to a binary class label

𝑦 ∈ Y = {0, 1}. Among the attributes in the feature space X, a
binary attribute called sensitive feature 𝑆 ∈ {0, 1} identifies the
aspects of data which are socio-culturally precarious for the appli-

cation of machine learning. Specifically, given 𝑥 ∈ X and 𝑥 .𝑆 the

value of the sensitive attribute 𝑆 for the given instance, if 𝑥 .𝑆 = 0

then we say that 𝑥 belongs to the unprivileged group that could

possibly be discriminated.

https://doi.org/10.1145/3477314.3507319
https://doi.org/10.1145/3477314.3507319
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2.1 Fairness and Discrimination Definitions
To achieve non-discriminatory and fair machine learning model,

it is essential to first define fairness. In a broad context, fairness

can be seen from an individual or a group point of view. Individual
fairness requires that similar individuals being treated similarly.

Group fairness requires fairness of the classification model to apply

on the two groups, defined through the binary sensitive feature

𝑆 [11]. Our work focuses on group fairness, in which a group of

individuals identified by 𝑆 risks for experiencing discrimination.

We define the discrimination of a classifier measured by group
fairness as follows. Recall that attribute 𝑆 = 0 identifies the unprivi-

leged group, while 𝑆 = 1 corresponds to the privileged one, whose

members are not discriminated but rather favoured by a learnt ML

model. Moreover, we assume that the values 1 and 0 of class label

𝑌 represent favorable and unfavorable outcomes, respectively. For

example, 𝑌 = 1 might correspond to the decision of granting a loan,

thus favouring a bank customer.

A classifier 𝑔 applied over 𝑥 ∈ X is non-discriminatory if its

prediction 𝑔(𝒙) is statistically independent of the sensitive attribute
𝑆 . Hence, a classifier is fair if both groups have equal probability

of being classified as belonging to the favorable class, which is the

desirable outcome.

Using the problem formalization by [18], the discrimination of

a model 𝑔 with respect to a sensitive attribute 𝑆 and a dataset

D = {(𝒙𝑖 , 𝑦𝑖 )}𝑁𝑖=1 can be computed as follows:

𝑑𝑖𝑠𝑐D,𝑆,𝑔 :=
|{(𝒙, 𝑦) ∈ D | 𝒙 .𝑆 = 1 ∧ 𝑔(𝒙) = 1}|

|{(𝒙, 𝑦) ∈ D | 𝒙 .𝑆 = 1}|

− |{(𝒙, 𝑦) ∈ D | 𝒙 .𝑆 = 0 ∧ 𝑔(𝒙) = 1}|
|{(𝒙, 𝑦) ∈ D | 𝒙 .𝑆 = 0}| ,

where 𝒙 .𝑆 refers to the sensitive attribute of the instance 𝒙 . When 𝑆

and D are clear from the context we simply use the notation 𝑑𝑖𝑠𝑐𝑔 .

To clarify the above definition, let’s consider the case of a classi-

fier 𝑔 used by the HR staff of a company. The classifier 𝑔 suggests

hiring when𝑔(𝒙) = 1 vs. not hiring when𝑔(𝒙) = 0.Wemaywonder

whether the classifier favours men (𝑆 = 1) over women (𝑆 = 0). The

value of 𝑑𝑖𝑠𝑐𝑔 is large if the ratio of men with a favorable hiring

prediction is larger than the ratio of women with a favorable hiring

prediction. By minimizing 𝑑𝑖𝑠𝑐𝑔 we can provide a fairer classifier

w.r.t. the gender attribute.

2.2 Related Works
Notably, in recent years works identifying and solving bias in

machine learning algorithms have progressed. Pre-processing, in-
processing, and post-processing approaches have been used to mit-

igate and quantify bias coming from training data, learning algo-

rithms, or the interaction between the twos.

Algorithms which are identified in the Pre-processing category

deal with discrimination at the dataset level by altering its distribu-

tion to ensure there is no bias against a specific group or individ-

ual. This can be achieved by removing the sensitive attribute, re-

sampling the data, or changing class labels. One of the well known

pre-processing method is massaging [17], which changes the class

labels of a subset of carefully selected instances. Another work in

this category is re-weighting [5], which assigns different weights

to different groups of the dataset to reduce bias. A re-sampling

approach in [7] limits the sample size to control discrimination.

In the In-processing bias mitigation algorithms, discrimination

is accounted during the training phase of the learning algorithm.

Strategies in this group take different approaches to discount dis-

crimination by including fairness penalty into the loss function

such as in [29], which integrates decision boundary covariance

constraint for logistic regression. In [1] regularization terms are

added to penalize discrimination in mixed-integer optimization

framework of decision tree. Another interesting work is [6], which

proposes three approaches for fairness-aware Naïve Bayes classi-

fiers. The approaches are: altering the decision distribution until

there is no more discrimination, building a separate model for

each sensitive group to remove the correlation between sensitive

attribute and class label, and adding latent variable representing

unbiased label.

Kamiran et al. [18] included a discrimination factor into the

information gain splitting criterion of a single decision tree classifier

by considering the split of a node under the influence of a sensitive

feature, i.e., before a node split happens not only the usual purity

w.r.t. to the target label is calculated, but also the purity of the

split w.r.t. the sensitive feature. Three alternative splitting criteria

are given based on the way discrimination is accounted. The first

option is subtracting discrimination gain from accuracy gain, which

allows for a split if it is non-discriminatory, second option is an

accuracy-discrimination trade-off split where the accuracy gain is

divided by discrimination gain to have the final gain value. The third

option is adding the accuracy and discrimination gain to decide

the best feature to split a node. The authors claim the additive

information gain criterion produces a lower discrimination. We

also implement this method for the base trees of our forest and

evaluate the impact of it to the overall forest discrimination value.

Finally, authors propose an additional relabeling of some leaves of

the tree so as to further reduce its discrimination degree.

A recent work, called Distributed Fair Random Forest (DFRF) [13]

exploits randomly generated decision trees and filters them by their

fairness before adding them to the forest. This is achieved through

a hyper-parameter fairness constraint, which forces to accept only

decision trees with statistical parity below the given threshold. The

generation and fairness thresholding of each individual tree can be

done in distributed framework that optimizes the trade-of between

discrimination and accuracy of the tree before being added to the

forest. Furthermore, this algorithm uses randomness constraint to

train base trees in which one feature is randomly selected to split a

node for building a randomized decision tree.

Post-processing mitigation approaches focus on adjusting the

final output of the trained model rather than the underline loss

function or training data. The algorithms discussed in [16, 27] aim

at achieving same error rates between privileged and unprivileged

groups,

[16] uses equalized odd and equalized opportunity to promote

features which are more dependent on the target label than the

sensitive attribute. While in [27] the proposed algorithm aims to

achieve both privileged and unprivileged groups to have the same

false negative rate and false positive rate by taking into account a

calibrated probability estimates. Another post-processing algorithm

called Reject Option based Classification (ROC) [19] takes in to
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consideration the decision boundary of classifiers; in a region where

uncertainty is high, it gives favorable outcomes to the unprivileged

group and unfavorable outcomes to the privileged group to reduce

discrimination.

Among the various works, the closest to our proposal is [18],

which relabels leaves of a single tree classifier with a small effect

on the model accuracy. We borrow from this approach and propose

a novel algorithm for enforcing fairness in forests of decision trees.

Table 1: Notation Summary

Symbol Meaning

D Dataset

𝑆 Sensitive feature

𝜆 leaf

Λ Set of Leaves to be flipped

𝑑𝑖𝑠𝑐F Forest discrimination

𝑑𝑖𝑠𝑐T Tree discrimination

𝑎𝑐𝑐𝑢F Forest accuracy

Δ𝑑𝑖𝑠𝑐𝜆 change in discrimination after flipping

Δ𝑎𝑐𝑐𝑢𝜆 change on accuracy after flipping

𝛿 Ratio of change in accuracy and discrimination

3 THE EIFFFEL ALGORITHM
We propose a novel post-processing algorithm named EiFFFeL that,

given a forest of decision trees for a binary classification task, modi-

fies the prediction of a carefully chosen set of leaves so as to reduce

the forest’s discrimination degree. This process is named leaf rela-

beling, or, since we are focusing on a binary prediction task, leaf
flipping.

The rationale is to flip the prediction of the leaves that contribute

the most to the model discrimination degree so as to make them

fair. Recall that the score 𝑑𝑖𝑠𝑐D,𝑆,𝑔 adopted to evaluate the model’s

discrimination depends on the number of privileged/unprivileged

instances with a favorable prediction. Therefore, by flipping a leaf

label we can increase or decrease the number of instances that con-

tribute to the discrimination score. Note that, while leaf relabeling

can be done judiciously so as to reduce discrimination, modifying

the leaf predictions determined at training time may reduce the

accuracy of the whole forest.

Therefore the goal of EiFFFeL is to find a sweet-spot in the

accuracy vs. discrimination trade-off. While leaf relabeling was

introduced by [18] for a single tree, we improve such strategy and

extend it to a forest of decision trees.

In this work we focus on Random Forests ensembles, which, for

their high accuracy and limited bias, are an optimal candidate for

building a fair classifier. The approach is however general and we

leave to future work the application to other tree ensembles, such

as those obtained by bagging and boosting approaches.

The proposed EiFFFel algorithm accepts a user-definedmaximum

discrimination constraint 𝜖 and a minimum relative accuracy drop

constraint 𝛼 . Given a forest F , it iteratively modifies the prediction

associated with a subset of the leaves of F , until either the desired
discrimination 𝜖 is achieved, or the maximum required accuracy

drop 𝛼 is hit.

Below we first illustrate the Leaf Scoring strategy used to find

the most discriminative leaves of a tree, and then we illustrate two

variants of the EiFFFeL algorithm.

Algorithm 1 Score_Leaves

Input: Decision Tree T
Dataset D
Sensitive feature 𝑆

Output: Candidate flipping leaves Λ
1: Λ← ∅
2: for all 𝜆 ∈ T | ¬𝜆.𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 do

3: Δ𝑎𝑐𝑐𝑢𝜆 ← −𝑎𝑏𝑠
(
|D𝜆

𝑦=1
|−|D𝜆

𝑦=0
|

|D|

)
4: Δ𝑑𝑖𝑠𝑐𝜆 ← 𝑠𝑖𝑔𝑛

(
|D𝜆

𝑦=1
| − |D𝜆

𝑦=0
|
)
·
(
|D𝜆

𝑆=1
|

|D𝑆=1 |
− |D

𝜆
𝑆=0
|

|D𝑆=0 |

)
5: 𝛿 ← Δ𝑑𝑖𝑠𝑐𝜆

Δ𝑎𝑐𝑐𝑢𝜆
6: if 𝛿 ≥ 0 then
7: 𝜆.𝑠𝑐𝑜𝑟𝑒 ← 𝛿

8: Λ← Λ ∪ {𝜆}
9: end if
10: end for
11: return Λ

3.1 Leaf Scoring
EiFFFeL borrows from [18] a simple strategy for scoring leaves

according to their impact Δ𝑎𝑐𝑐𝑢𝜆 and Δ𝑑𝑖𝑠𝑐𝜆 on accuracy and dis-

crimination respectively. Then, the ratio 𝛿 between the two is used

as a score to greedily select the best leaves to be flipped.
We proceed as described in Alg. 1. We consider only leaves of the

tree that were not flipped during previous iteration of the EiFFFeL

algorithm (see subsection below). For those leaves we compute the

accuracy and discrimination variation in the case of flipping the

leaf prediction. We illustrate shortly the computations below, please

refer to [18] for a more detailed description.

The change in accuracy Δ𝑎𝑐𝑐𝑢𝜆 clearly depends on the number

of instances of D that fall into the leaf 𝜆 denoted with D𝜆
. The

training process sets the leaf prediction to the majority class among

such instances. Therefore, when flipping the leaf prediction the

accuracy may only decrease depending on the instances with label

1 and 0, denoted by D𝜆
𝑦=1

and D𝜆
𝑦=0

respectively. The difference

between the size of these two sets results in the accuracy loss as

computed in line 3.

The change in discrimination Δ𝑑𝑖𝑠𝑐𝜆 depends on the number

of privileged and unpriviledged instances that fall in the leaf 𝜆

respectively denoted by D𝜆
𝑆=1

and D𝜆
𝑆=0

, and on their analogous

on the whole dataset D𝑆=1 and D𝑆=0. If the leaf prediction equals

1 (favourable class), then increasing D𝜆
𝑆=1

would increase the dis-

crimination, while increasingD𝜆
𝑆=0

would decrease it. The opposite

holds if the prediction of the leaf equals 0 (unfavourable class). As

the original leaf prediction depends on the majority of the instances

betweenD𝜆
𝑦=1

andD𝜆
𝑦=0

, the sign of their difference is used to cor-

rect the above contributions as computed in line 4.

The ratio 𝛿 = Δ𝑑𝑖𝑠𝑐𝜆/Δ𝑎𝑐𝑐𝑢𝜆 is positive if the flipping generates

a discrimination drop, and it is large if the benefit to discrimination

is larger than the harm to accuracy. If the value of 𝛿 is positive,

then this is stored with the leaf 𝜆, and 𝜆 is recorded into the set of

candidate leaves Λ. The set Λ is eventually returned and exploited

during the iterations of EiFFFeL.
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Algorithm 2 EiFFFeL-TF (Tree-based Flipping)

Input: Random Forest classifier F
Discrimination Constraint 𝜖 ∈ [0, 1]
Accuracy Constraint 𝛼 ∈ [0, 1]
Training Dataset D
Sensitive feature 𝑆

Output: Fair Random Forest F
1: for all T ∈ F do
2: T .𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

3: for all 𝜆 ∈ T do
4: 𝜆.𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

5: end for
6: end for
7: 𝑎𝑐𝑐𝑢∗F ←

|D𝑦=1∧F(𝒙 )=1| + |D𝑦=0∧F(𝒙 )=0|
|D|

8: Δ𝑎𝑐𝑐𝑢F ← 0

9: while | {T ∈ F | ¬T .𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 } | > 0 ∧
𝑑𝑖𝑠𝑐D,𝑆,F > 𝜖 ∧ Δ𝑎𝑐𝑐𝑢F < 𝛼 do

10: T† ← argmaxT∈F 𝑑𝑖𝑠𝑐D,𝑆,T
11: Λ← Score_Leaves(T†,D, 𝑆)

12: if Λ ≠ ∅ then
13: for all 𝜆 ∈ Λ do
14: 𝜆.𝑝𝑟𝑒𝑑 = 1 − 𝜆.𝑝𝑟𝑒𝑑
15: end for
16: end if
17: T† .𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 = 𝑡𝑟𝑢𝑒

18: 𝑎𝑐𝑐𝑢F ←
|D𝑦=1∧F(𝒙 )=1| + |D𝑦=0∧F(𝒙 )=0|

|D|
19: Δ𝑎𝑐𝑐𝑢F ← 𝑎𝑐𝑐𝑢∗F − 𝑎𝑐𝑐𝑢F
20: end while
21: return F

3.2 EiFFFeL Leaf Flipping Strategies
By exploiting the scoring technique discussed before, we propose

two strategies to choose which trees and which leaves in those

trees to flip.

The first strategy, named Tree-based Flipping, is illustrated in

Alg. 2. During each iteration of EiFFFeL, the tree T † with the largest
discrimination degree is greedily selected: this is the best tree to

be attacked in order to significantly reduce the discrimination of

the full forest. Then, we use the previous scoring technique to

find the set of leaves Λ in T † that should be relabeled. If Λ is

not empty, the predictions 𝜆.𝑝𝑟𝑒𝑑 of such leaves will be flipped.

Then, the whole tree is marked as already flipped. The selection is

repeated by considering only the remaining non-flipped trees. The

algorithm endswhen all trees have been flipped, or when the desired

discrimination 𝜖 is achieved, or when tolerated accuracy drop 𝛼 is

met. Note that the accuracy drop is computed by comparing the

accuracy of the original forest with the accuracy of the current

forest after the flipping step.

Such tree-based strategy might be too aggressive, as it imme-

diately flips all the candidate leaves of the selected tree. Indeed,

only a few leaves may be sufficient to meet our discrimination and

accuracy requirements. Therefore we propose a second strategy,

named Leaf-Based Flipping, illustrated in Alg 3. As in the former

strategy, we first select the tree T † with the largest discrimination.

Then we use the leaf scoring technique to find a set of candidate

leaves from T †. If such set is empty, e.g., because they were already

flipped or they cannot improve the discrimination, the full tree is

Algorithm 3 EiFFFeL-LF (Leaf-based Flipping)

Input: Random Forest classifier F
Discrimination Constraint 𝜖 ∈ [0, 1]
Accuracy Constraint 𝛼 ∈ [0, 1]
Training Dataset D
Sensitive feature 𝑆

Output: Fair Random Forest F
1: for all T ∈ F do
2: T .𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

3: for all 𝜆 ∈ T do
4: 𝜆.𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

5: end for
6: end for
7: 𝑎𝑐𝑐𝑢∗F ←

|D𝑦=1∧F(𝒙 )=1| + |D𝑦=0∧F(𝒙 )=0|
|D|

8: Δ𝑎𝑐𝑐𝑢F ← 0

9: while | {T ∈ F | ¬T .𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 } | > 0 ∧
𝑑𝑖𝑠𝑐D,𝑆,F > 𝜖 ∧ Δ𝑎𝑐𝑐𝑢F < 𝛼 do

10: T† ← argmaxT∈F 𝑑𝑖𝑠𝑐D,𝑆,T
11: Λ← Score_Leaves(T†,D, 𝑆)

12: if Λ = ∅ then
13: T .𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ← 𝑡𝑟𝑢𝑒

14: else
15: 𝜆† ← argmax𝜆∈Λ 𝜆.𝑠𝑐𝑜𝑟𝑒

16: 𝜆† .𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 = 𝑡𝑟𝑢𝑒

17: 𝜆† .𝑝𝑟𝑒𝑑 = 1 − 𝜆.𝑝𝑟𝑒𝑑
18: 𝑎𝑐𝑐𝑢F ←

|D𝑦=1∧F(𝒙 )=1| + |D𝑦=0∧F(𝒙 )=0|
|D|

19: Δ𝑎𝑐𝑐𝑢F ← 𝑎𝑐𝑐𝑢∗F − 𝑎𝑐𝑐𝑢F
20: end if
21: end while
22: return F

marked as flipped and the procedure is repeated on the remaining

non-flipped trees. Otherwise, the leaf with the largest score 𝜆† is
selected, marked as flipped, while its prediction is inverted. The

process is repeated until all trees have been flipped, or the desired

discrimination 𝜖 is achieved, or the tolerated accuracy drop 𝛼 is

met.

We argued that the Leaf-based approach exploits a more fine-

grained tuning of the given forest, and therefore it can achieve the

desired accuracy with a smaller set of alterations. Indeed, reducing

the flips applied to the forest provides a larger accuracy.

4 EXPERIMENTAL EVALUATION
4.1 Datasets.
We use datasets publicly available, widely used in fairness litera-

ture, concerning binary classification. We pre-process them using

one-hot encoding for categorical features, binary encoding of sen-

sitive feature, and removing of instances containing missing values.

Moreover, we use an 80/20 training/test split.

• Adult: The Adult UCI income dataset [10] contains 14 demo-

graphic attributes of more than 45,000 individuals, together

with class labels which states whether their income is higher

than $50K or not. As sensitive attribute, we use the gender
encoded as a binary attribute 1/0 for male/female respec-

tively.



EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves SAC ’22, April 25–29, 2022, Virtual Event,

Table 2: Comparison of accuracy reduction and discrimination decrease onAdult dataset with respect to baseline accuracy of 0.85
and discrimination 0.2. Along with ΔAccu and ΔDisc, we also report (within parentheses) the final accuracy and discrimination
values obtained.

DFRF EOP EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF
★

EiFFFeL-LF
★

ΔAccu↓ ΔDisc ↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑

Adult 𝜖

0.01 7(0.78) 18(0.02)

2(0.83) 7(0.13)

4(0.81) 19(0.01) 4(0.81) 20(0) 6(0.79) 15(0.05) 3(0.82) 17(0.03)

0.05 3(0.82) 13(0.07) 3(0.82) 16(0.04) 2(0.83) 15(0.05) 6(0.79) 16(0.04) 3(0.82) 16(0.04)
0.10 4(0.81) 15(0.05) 2(0.83) 12(0.08) 1(0.84) 12(0.08) 1(0.84) 12(0.08) 2(0.83) 10(0.1)

0.15 2(0.83) 10(0.1) 0(0.85) 8(0.12) 0(0.85) 9(0.11) 0(0.85) 7(0.13) 0(0.85) 7(0.13)

Table 3: Comparison of accuracy reduction and discrimination decrease on Bank dataset with respect to baseline accuracy
of 0.82 and discrimination 0.18. Along with ΔAccu and ΔDisc, we also report (within parentheses) the final accuracy and
discrimination values obtained.

DFRF EOP EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF
★

EiFFFeL-LF
★

ΔAccu↓ ΔDisc ↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑

Bank 𝜖

0.01 9(0.73) 13(0.05)

0(0.82) 14(0.04)

7(0.75) 17(0.01) 10(0.72) 15(0.03) 8(0.74) 14(0.04) 5(0.77) 10(0.08)

0.05 4(0.78) 11(0.07) 3(0.79) 13(0.05) 8(0.74) 14(0.04) 8(0.74) 13(0.05) 5(0.77) 13(0.05)

0.10 4(0.78) 6(0.12) 2(0.80) 10(0.08) 1(0.81) 7(0.11) 7(0.75) 9(0.09) 4(0.78) 8(0.10)

0.15 4(0.78) 9(0.09) 0(0.82) 4(0.14) 0(0.82) 4(0.14) 6(0.76) 5(0.13) 2(0.80) 5(0.13)

Table 4: Comparison of accuracy reduction and discrimination decrease on Compas dataset with respect to baseline accuracy
of 0.69 and discrimination 0.3. Along with ΔAccu and ΔDisc, we also report (within parentheses) the final accuracy and
discrimination values obtained.

DFRF EOP EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF
★

EiFFFeL-LF
★

ΔAccu↓ ΔDisc ↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑ ΔAccu↓ ΔDisc↑

COMPAS 𝜖

0.01 11(0.58) 28(0.02)

4(0.65) 5(0.25)

25(0.44) 29(0.01) 5(0.64) 26(0.04) 9(0.60) 29(0.01) 1(0.68) 7(0.23)

0.05 5(0.64) 13(0.17) 12(0.57) 28(0.02) 5(0.64) 22(0.08) 9(0.60) 28(0.02) 1(0.68) 7(0.23)

0.10 4(0.65) 7(0.23) 7(0.62) 21(0.09) 5(0.64) 21(0.09) 1(0.68) 21(0.09) 1(0.68) 7(0.23)

0.15 2(0.67) 6(0.24) 1(0.68) 19(0.11) 2(0.67) 15(0.15) 0(0.69) 16(0.14) 1(0.68) 7(0.23)

• COMPAS: The COMPAS dataset [2] contains data collected

on the use of the COMPAS (Correctional Offender Manage-

ment Profiling for Alternative Sanctions) risk assessment

tool. It contains 13 attributes of more than 7,000 convicted

criminals, with class labels that state whether or not the

individual reoffend within 2 years of her/his most recent

crime. We use race as sensitive attribute encoded as a binary
attribute 1/0 for Others/African-American, respectively.

• Bank: Bankmarketing dataset [22] contains 16 features about

45,211 clients of direct marketing campaigns of a Portuguese

banking institution. The goal is to predict whether the client

will subscribe or not to a term deposit. We consider the age
as sensitive attribute, encoded as a binary attribute 1/0, indi-

cating whether the client’s age is ≥25 or <25, respectively.

4.2 Experimental Setup.
We apply our proposed EiFFFeL algorithm over a Random Forest

classifier with/without the fair splitting of nodes for individual base

trees, and evaluate the performance of the algorithms in terms of

model accuracy and discrimination over the three datasets men-

tioned above.

We compare our results against a DFRF classifier (Distributed fair
random forest) [13], which only includes fair decision trees within

the forest. The setting of hyper-parameters of DFRF are the same as

the one described in the original work.We use fair split and sensitive

feature as hyper-parameters, along with tree number and maximum

tree depth. Additionally, we also compare our results against EOP

(Equalized Odds Post-processing) [16, 27], a random forest classifier

with the same number of base estimators and maximum depth as

ours. After training and achieving the desired equalized odd we

score the discrimination in the same approach we used for our

experiments.

In conclusion, the comparisons of accuracy and discrimination

values are among the following methods:

• DFRF [13],
1
which adds base trees to the forest only if they

are fair;

• EOP [16, 27],
2
which adopts a post-processing method based

on achieving equalized odds requiring the privileged and

unprivileged groups to have the same false negative rate and

same false positive rate;

• our implementations of EiFFFeL-TF and EiFFFeL-LF algo-

rithms, whose post-processing is applied to a plain Random

Forest of trees;

1
https://github.com/pjlake98/Distributed-Fair-Random-Forest

2
https://github.com/Trusted-AI/AIF360/blob/master/aif360/algorithms/

postprocessing/calibrated_eq_odds_postprocessing.py

https://github.com/pjlake98/Distributed-Fair-Random-Forest
https://github.com/Trusted-AI/AIF360/blob/master/aif360/algorithms/postprocessing/calibrated_eq_odds_postprocessing.py
https://github.com/Trusted-AI/AIF360/blob/master/aif360/algorithms/postprocessing/calibrated_eq_odds_postprocessing.py
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Figure 1: Accuracy vs. discrimination scores after relabeling for constraints 𝜖 = 0.01, 0.05, 0.1, 0.15.

Figure 2: Accuracy of the model as a function the 𝜖 constraint.

Figure 3: Discrimination scores as a function of the 𝜖 constraint.

• the same post-processing techniques of EiFFFeL-TF and EiFFFeL-

LF applied on top of a random forest with discrimination

aware base trees [18]. These versions are denoted by EiFFFeL-

TF
★
and EiFFFeL-LF

★
.

Finally, the baseline accuracy and discrimination used to compare

the various methods are the ones obtained by a plain Random

Forest of trees, trained on the three datasets through the scikit-

learn algorithm Random Forest Classifier
3
. The various EiFFFeL

methods are applied to the same baseline Random Forest.

3
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

4.3 Results.
Tables 2), 3), and 4) compare the decreases in accuracy and discrim-

ination, obtained by the different algorithms, on the three datasets

with respect to the baseline results obtained by plain Random Forest

models.

Recall that increasing 𝜖 , we reduce the space for improving dis-

crimination, and as a side effect, we preserves the baseline accuracy.

Indeed, in these experiments the accuracy constraint 𝛼 was set to 1,

so that there are no limits in the possible accuracy reduction ΔAccu.
This allows us to compare our methods against DFRF and EOP,

which do not have this 𝛼 constraint. Indeed, EOP is completely

parameter free, and does not support neither 𝛼 nor 𝜖 .

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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In more details, Tables 2), 3), and 4) report, for different values

of 𝜖 in the set {0.01, 0.05, 0.10, 0.15}, the ΔAccu and ΔDisc values
obtained by the different algorithms, where ΔAccu and ΔDisc in-
dicate the absolute difference in accuracy and discrimination w.r.t.

the baselines. Indeed, we express these Δ absolute differences in

points/hundredths (each point corresponds to 1/100). Note that

while greater values of ΔDisc are better, greater values of ΔAccu
are worse, so a trade-off is needed. In addition, besides the absolute

Δ values, we also report (within parentheses) the final values for

accuracy and discrimination score obtained by the various tech-

niques.

For example, for theAdult dataset (Table 2) and 𝜖 = 0.01, EiFFFeL-

TF can reach a very low discrimination score of 0.01, by only losing 4

points in accuracy (from 0.85 of the baseline to 0.81). In comparison,

the best results we can obtain with DFRF in terms of discrimination

is a score of 0.02, by losing 7 points in accuracy (from 0.85 of the

baseline to 0.78). Overall, our algorithms are capable of reducing

discrimination better than DFRF while maintaining the same ac-

curacy. Also EOP does not work well, as the best discrimination

score is only 0.13, by losing 2 points in accuracy. In addition, using

𝜖 = 0.15 for EiFFFeL-TF and EiFFFeL-LF (also EiFFFeL-TF
★
and

EiFFFeL-LF
★
), we can decrease the baseline discrimination of about

7 − 9 points, by keeping the same accuracy of the baseline.

Results for the Bank dataset (Table 3) shows that EiFFFeL-TF

can reach for 𝜖 = 0.01 the desired discrimination score, but losing

7 points in accuracy (from 0.82 to 0.75), whereas DFRF has worse

discrimination score of 0.05 and a worse accuracy of 0.73. EOP does

not lose any accuracy for lowering the discrimination score by 14

points to 0.04.

Finally, considering the results obtained for the COMPAS dataset

(Table 4), we observe in some cases DFRF works pretty well, but

always one of our algorithms gets better results. For example, for

𝜖 = 0.01, the best discrimination score of 0.01 is obtained by EiFFFeL-

TF
★
, by only losing 9 points in accuracy, against the 11 points lost

by DFRF with a discrimination score of 0.02.

Figures 1, 2, and 3 report the same data of the above tables, where

we varied the discrimination constraint 𝜖 = {0.01, 0.05, 0.1, 0.5},
with no constraints on accuracy. The results obtained by EOP are

not plotted, as its results are always worse than the competitors

and do not vary with 𝜖 .

Specifically, Figure 1 reports results for the three datasets, and

aims at showing the tradeoff of accuracy vs. discriminationwhenwe

vary 𝜖 . Recall that we are interested in achieving low discrimination

and high accuracy, and thus the best tradeoff corresponds to points

of curves falling in the top-left quadrant.

First, we highlight that DRFR performs poorly on most settings

compared to the proposed EIFFFeL variants. On the Adult dataset,

EIFFFeL-LF dominates the other algorithms for all values of 𝜖 and

achieves the desired or better discrimination with the largest accu-

racy. To appreciate the strict relationships between of the setting

of 𝜖 and the discrimination/accuracy obtained, the reader can refer

to the other two Figures 1 and 2.

Returning to Figure 1, the COMPAS EIFFFeL-LF provides the best

performance together with EIFFFeL-TF
★
. This is the only dataset

where EIFFFeL-TF
★
provides interesting performance, and thus

the discrimination aware splitting at training time provides some

benefits. We also highlight that when using 𝜖 = 0.15 (see Figure 3)

the algorithm DFRF only gets a discrimination score of 0.25. Note

that EIFFFeL-LF
★
is not able to provide better performance when

varying 𝜖 , thus resulting in a constant curve.

Finally, on the Bank Dataset, EIFFFeL-TF and EIFFFeL-LF achieve

the best results, with an advantage for EIFFFeL-TF for smaller val-

ues of 𝜖 . Finally, the results show how we can obtain the desired

discrimination degree with a limited drop in accuracy. Overall, the

proposed EIFFFEL algorithm outperforms the competitor DFRF,

and, on average, it is advisable to avoid the discrimination aware

node splitting. We believe that working only at post-processing

allows us to exploit a richer set of trees grown, by exploring a larger

and unconstrained search space.

The effect of varying the discrimination constraint 𝜖 without

constraining accuracy can be observed in Figure 2, where we dis-

cover that lower discrimination is achieved with large accuracy

reduction. This is due to the fact that a small discrimination thresh-

old allows our flipping strategies to force the change of many leaves,

thus changing more the classification decision regions, with a final

lower accuracy. However our approach of selecting potential leaves

to relabel seems better than training random forest with only fair

trees. In addition, training and then rejecting trees (because they

are not fair) makes longer the training of the forest, particularly

when we fail often in finding fair trees.

Finally, Figure 3 contrasts the discrimination measured on the

test set against the desired discrimination constraint 𝜖 . Clearly,

the twos do not always match. In particular, DFRF has an unstable

behaviour, meaning that filtering the tree to be added to the forest is

not the best option. Conversely, EiFFFeL-TF and EiFFFeL-LF provide

a much more stable behaviour.

We also discuss the results of other experiments, aiming to eval-

uate the effects of different values for the 𝛼 constraints. Note that

only the EiFFFeL algorithms support the 𝛼 parameter, so we cannot

reports any results for the competitors DFRF and EOP. Specifically,

Table 5 reports results relative to the Adult dataset, where, for a

fixed 𝜖 = 0.01, we vary the 𝛼 constraint over the expected accuracy,

with values ranging in the set {0.01,0.02,0.03,0.05}. For each 𝛼 value,

we show in bold the best results in terms of discrimination score.

We observe that the accuracy constraint 𝛼 has an indirect impact

on the final discrimination score obtained. Using EiFFFeL-LF with

𝛼 = 0.01, the loss in accuracy is 1 point as expected, while the

baseline discrimination score decreases by more than half (from

0.2 to 0.08). Furthermore, as the 𝛼 value increases, discrimination

score decreases further. With 𝛼 = 0.05, EiFFFeL-LF is able to reduce

by 4 points the final accuracy, by also achieving a discrimination

score of 0, thus showing the power of our method in achieving a

very good trade-off between accuracy and discrimination.

5 CONCLUSION
In this work we deal with fairness in machine learning, and specif-

ically in binary classifiers trained by a Random Forest algorithm.

We are interested in group fairness, so as to mitigate the effect of

bias against specific groups, which may comes from biased training

datasets or algorithm design.

We develop EiFFFeL, a novel post-process approach, which main-

tains good predictive performance of the trained model with a low
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Table 5: Accuracy and discrimination scores on the Adult dataset for 𝜖 = 0.01 and 𝛼 = 0.01, 0.02, 0.03, 0.05. The baseline accuracy
and discrimination score are 0.85 and 0.2, respectively.

EiFFFeL-TF EiFFFeL-LF EiFFFeL-TF
★

EiFFFeL-LF
★

Accu Disc Accu Disc Accu Disc Accu Disc

Adult 𝜖=0.01 𝛼

0.01 0.83 0.09 0.84 0.08 0.84 0.10 0.84 0.11

0.02 0.83 0.09 0.83 0.06 0.83 0.10 0.83 0.07

0.03 0.82 0.04 0.82 0.05 0.82 0.07 0.82 0.04
0.05 0.81 0.01 0.81 0.00 0.80 0.08 0.82 0.03

discrimination score. Our approaches flips the label of selected leaf

(or leaves) of base trees in a random forest by using two algorithms:

(𝑖) an aggressive tree-based approach, which flips all candidate

leaves of a tree, and (𝑖𝑖) a leaf-based strategy which only flips the

label of the most discriminative leaf of a tree. Both strategies are im-

plemented by considering accuracy and discrimination constraints.

Indeed, the constraints are used to control the minimum accuracy

decrease we can tolerate in order to achieve the desired discrimina-

tion value. In addition, we have tested the impact of incorporating

discrimination aware node split strategies for base trees of the

forest, by adding discrimination gain value in their node splitting

criterion [18].

By using three publicly available datasets, our experimental re-

sults show that effective non-discriminative models can be obtained,

while keeping a strict control over both accuracy and discrimina-

tion level. Compared to state-of-the-art methods, which adopt both

in-process and post-process bias mitigation approaches, EiFFFeL

resulted to produce the most accurate models that also exhibit the

best levels of fairness.

As part of the future work, we plan to extend our methods

by studying the effect of multiple sensitive features in relation to

discrimination and accuracy, by also extending our work to other

tree ensemble learning methods.
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