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Abstract: In extreme value studies models for observations exceeding a fixed high

threshold have the advantage of exploiting the available extremal information, while

avoiding bias from low values. In the context of space-time data, the challenge is to

develop models for threshold exceedances that account for both spatial and temporal

dependence. We address this issue through a modelling approach that embeds spatial

dependence within a time series formulation. The model allows for different forms
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of limiting dependence in the spatial and temporal domains as the threshold level

increases. In particular, temporal asymptotic independence is assumed, as this is often

supported by empirical evidence, especially in environmental applications, while both

asymptotic dependence and asymptotic independence are considered for the spatial

domain. Inference from the observed exceedances is carried out through a combination

of pairwise likelihood and a censoring mechanism. For those model specifications for

which direct maximization of the censored pairwise likelihood is unfeasible, we propose

an indirect inference procedure which leads to satisfactory results in a simulation

study. The approach is applied to a dataset of rainfall amounts recorded over a set of

weather stations in the North Brabant province of the Netherlands. The application

shows that the range of extremal patterns that the model can cover is wide and that

it has a competitive performance with respect to an alternative existing model for

space-time threshold exceedances.

Key words: Asymptotic dependence, Asymptotic independence, Gaussian spatial

process, Indirect inference, Max-stable process, Student’s t spatial process.

1 Introduction

Extreme value analyses of environmental phenomena are typically hindered by a

scarcity of data, but if time series of observations are available at different sites in

a region, there is the potential to alleviate this difficulty by aggregating information

both spatially and temporally. Furthermore, the exchange of spatial information can

be exploited to study the extremal features of the phenomenon at unobserved loca-
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tions. We will focus on observations above a fixed high level as they allow the study

of both the spatial pattern and temporal evolution of extremes, while avoiding po-

tential bias from the inclusion of low values. The challenge is to develop a model for

threshold exceedances that accounts for their spatial and temporal dependence. We

address this issue for a data structure commonly encountered in practice, character-

ized by recordings at regular times over a set of sites that are close enough in space

to induce a non-negligible spatial dependence.

A first step when studying dependence of threshold exceedances is to distinguish

between asymptotic dependence and asymptotic independence (Coles et al., 1999).

Broadly speaking, these two limiting forms are characterized, respectively, by persis-

tence of dependence or convergence to independence among observations exceeding

asymptotically increasing thresholds. More formally, let Y1 and Y2 be continuous ran-

dom variables with cumulative distribution functions (CDFs) F1 and F2, respectively,

and let

χ(p) := Pr(F2(Y2) > p|F1(Y1) > p), 0 ≤ p < 1. (1.1)

Then, Y1 and Y2 are said to be asymptotically independent if the limit χ := limp→1− χ(p)

is zero and asymptotically dependent if χ > 0, respectively. As many authors have

pointed out (Ledford and Tawn, 1997; Heffernan and Tawn, 2004; Wadsworth and

Tawn, 2012; Huser and Wadsworth, 2019, 2020; Simpson and Wadsworth, 2021) cor-

rect identification of the limiting dependence is a fundamental requirement, but is

not enough to guarantee reliable predictions of joint upcrossings, as the rate of con-

vergence to the asymptotic form is also important. While the value of χ is used to

discriminate between the two limiting classes, the function χ(p) is a natural choice to

assess the speed of convergence to the limit (see, for instance, Wadsworth and Tawn,
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2012, Sec. 5.4).

In the context of space-time data, different forms of asymptotic dependence could

arise in the spatial and temporal domains. The limiting class could itself change with

the temporal and/or spatial lag. For some environmental phenomena, the assump-

tion of asymptotic dependence in space is realistic when working within relatively

small regions (Davison and Gholamrezaee, 2012; Davison et al., 2013; Bacro et al.,

2016). On the other hand, for the time domain, empirical evidence in many studies

supports asymptotic independence even at short time lags (Bortot and Tawn, 1998;

Bortot and Gaetan, 2014; Simpson and Wadsworth, 2021). As an illustrative example,

we consider a dataset of daily rainfall recorded from 01-10-1999 to 28-02-2019 at 28

meteorological stations located over the North Brabant province in the south of the

Netherlands, as shown in Figure 1 (Klein Tank et al., 2002). A detailed description

of this dataset will be given in Section 4. Here we focus attention on the behaviour

of the empirical estimates of χ(p) for pairs of sites at increasing spatial distances,

averaging across all times, and for pairs of measurement times at increasing tempo-

ral lags, averaging across all sites. The two sets of estimates for the months from

October to February are displayed in Figures 2(a) and 2(b), respectively. To study

the convergence to the limiting value χ, p varies, taking values 0.90, 0.95, and 0.99.

The shaded area around each curve represents 95% pointwise confidence intervals

obtained by 200 replications of a block bootstrap of the original series with average

block length of 300 days. The empirical estimates decrease with both spatial and

temporal distances, i.e., a weakening of dependence occurs as one moves farther out

in space and time, as expected. As p increases, corresponding to increasing thresh-

old levels, both figures display a downward trend, but in Figure 2(b) the estimates

approach the 0 lower bound quickly at all time lags, whereas in Figure 2(a) the es-



A model for space-time threshold exceedances 5

timates remain well above 0, even accounting for sample variability. These findings

point strongly towards asymptotic independence in the temporal domain, while, for

the spatial domain, the large empirical value of χ(0.99) indicates that asymptotic de-

pendence cannot be ruled out. Therefore, a model for the extremal behaviour of the

rainfall process in the North Brabant province should be asymptotically independent

in time and allow for asymptotic dependence in space.

Four main frameworks for modelling spatio-temporal extremes can be identified in

the literature. A max-stable approach which employs max-stable processes (de Haan,

1984; Schlather, 2002; Kabluchko et al., 2009) to represent space and time interac-

tions, with time treated as a third continuous dimension added to the two dimensions

of space (Davis et al., 2013; Huser and Davison, 2014); a hierarchical approach where

spatio-temporal dependence is built in by including a stochastic component in the

model parameters (Sang and Gelfand, 2009; Turkman et al., 2010; Economou et al.,

2014; Nieto-Barajas and Huerta, 2017; Morris et al., 2017; Bacro et al., 2020); a time

series approach, where spatial dependence is embedded within a time series model

(Davis and Mikosch, 2008; Meinguet, 2012; Embrechts et al., 2016); a conditional

approach based on an asymptotic approximation of the conditional distribution of the

space-time process given one single site and time point (Wadsworth and Tawn, 2019;

Simpson et al., 2020; Simpson and Wadsworth, 2021). All models developed within

the max-stable approach imply spatial and temporal asymptotic dependence or exact

independence at all distances and time lags, by a fundamental property of max-stable

processes (Wadsworth and Tawn, 2012; Huser and Davison, 2014). The hierarchical

approach covers a wider range of limiting patterns, with asymptotic dependent mod-

els (e.g., Turkman et al., 2010; Morris et al., 2017) as well as asymptotic independent

models (e.g., Sang and Gelfand, 2009; Nieto-Barajas and Huerta, 2017; Bacro et al.,
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2020) being proposed in the literature. However, in the aforementioned references the

models maintain the same limiting dependence in both space and time. Within the

conditional approach, Simpson et al. (2020) and Simpson and Wadsworth (2021) pro-

vide examples of formulations for threshold exceeedances that enable different forms

of asymptotic dependence in the two domains. In this paper we follow a time series

approach, as it lends itself naturally to deal with the discreteness and ordering of

time. In addition, it gives a flexible framework to construct a model for threshold

exceedances that are serially asymptotically independent and spatially either asym-

potically independent or asymptotically dependent. One of the advantages of the

proposed model is the ease of simulation which facilitates extrapolation of extremal

functionals of interest. Estimation of model parameters is carried out by combining

composite likelihood, a censoring scheme and an indirect inference algorithm.

The paper is structured as follows. In Section 2 the model is motivated and developed.

Inferential issues are discussed in Section 3. In Section 4 the entire approach is applied

to the North Brabant rainfall data and compared with an existing alternative method

for space-time exceedances. Finally, Section 5 contains some concluding remarks and

proposals for extensions.

2 Model specification

Let Zt = {Zt(s), s ∈ S}, t = 1, 2, . . ., be a stationary spatio-temporal process on the

geographical space S ⊂ R2 with marginal univariate CDF FZ . Let also

χ(d)(p; t1, . . . , td, s1, . . . , sd) := Pr(FZ(Zt2(s2)) > p, . . . , FZ(Ztd(sd)) > p|FZ(Zt1(s1)) > p)
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and χ(d)(t1, . . . , td, s1, . . . , sd) := limp→1− χ
(d)(p; t1, . . . , td, s1, . . . , sd), for d = 2, 3, . . .

and any t1, . . . , td ∈ {1, 2, . . .} and s1, . . . , sd ∈ S. Extending the definitions in Huser

and Wadsworth (2019) from the spatial to the spatio-temporal framework, we will

term Zt, respectively, asymptotically dependent or asymptotically independent in

time if χ(d)(t1, . . . , td, s, . . . , s) > 0 or χ(d)(t1, . . . , td, s, . . . , s) = 0, for all d = 2, 3, . . .,

all s and all t1, . . . , td (with at least one time different from the others). Similarly,

the process is termed, respectively, asymptotically dependent or asymptotically inde-

pendent in space if χ(d)(t, . . . , t, s1, . . . , sd) > 0 or χ(d)(t, . . . , t, s1, . . . , sd) = 0, for all

d = 2, 3, . . ., all t and all s1, . . . , sd (with at least one site different from the others).

The above definitions do not cover all the possible limiting forms. Intermediate forms

of asymptotic dependence could also occur, for example χ(d)(t1, . . . , td, s, . . . , s) = 0

for some d and some t1, . . . , td, but, as Huser and Wadsworth (2019) point out, these

are unrealistic over relatively small ranges and will not be considered here.

The starting point in developing a model for threshold exceedances with the desired

asymptotic properties is a parsimonious, yet flexible, specification that falls within

the time series approach described in Section 1. First, we assume that the temporal

dynamics on an arbitrary site s ∈ S are driven by a Gaussian first-order autoregressive

model, namely, Zt(s) = αZt−1(s) + εt(s), with |α| < 1 and εt(s), t = 1, 2, . . ., a se-

quence of independent and identically distributed random variables with N (0, 1−α2)

distribution. For fixed s, all finite-dimensional distributions of the process are mul-

tivariate Gaussian with standard margins. As the multivariate Gaussian distribution

is asymptotically independent (Resnick, 2013, Corollary 5.8), at any location asymp-

totic independence in time is guaranteed. The second step is to incorporate spatial

dependence by assuming that the innovations are spatially related. Formally, we
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consider the stationary space-time process Zt = {Zt(s), s ∈ S}, t = 1, 2, . . ., given by

Zt(s) = αZt−1(s) + εt(s), s ∈ S, t = 1, 2, . . ., (2.1)

where |α| < 1 and εt = {εt(s), s ∈ S}, t = 1, 2, . . ., is a sequence of independent copies

of a stationary random field ε on S with N (0, 1−α2) univariate margins. A valuable

aspect of model (2.1) is its simple interpretation. The autoregressive component

controls time dependence through α, while spatial dependence is determined by εt.

On the other hand, interpretability comes at the expense of space-time interactions,

that (2.1) precludes. An extension of this formulation to accomodate interactions is

discussed in Section 5.

2.1 Spatial dependence

While the autoregressive structure of (2.1) and the marginal Gaussianity of the in-

novations constrain Zt to generate asymptotically independent exceedances in time,

both asymptotic dependence and asymptotic independence are possible for the spatial

domain, according to the formulation selected for ε. In particular, we will focus on two

cases: ε is either a Gaussian random field or a marginally transformed asymptotically

dependent random field.

If the innovations are Gaussian random fields, then Zt is a special case of a stochastic

integro-difference equation model (Wikle and Cressie, 1999; Brown et al., 2000). Un-

der this specification, all finite-dimensional distributions of Zt are multivariate Gaus-

sian with standard margins and the process is asymptotically independent in both

time and space. By contrast, if ε is a marginal transformation of an asymptotically

dependent random field, then Zt is itself asymptotically dependent in space. To clarify

the latter point, let e be a stationary random field on S, with Fe(x) = Pr(e(s) ≤ x),
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satisfying the asymptotic dependence requirement

lim
p→1−

Pr(Fe(e(s2)) > p, . . . , Fe(e(sd)) > p|Fe(e(s1)) > p) > 0 (2.2)

for all s1, . . . , sd and d = 2, 3, . . .. By letting ε in equation (2.1) be

ε(s) =
√
1− α2 · Φ−1 {Fe(e(s))} (2.3)

with Φ−1 denoting the quantile function of the standard Normal random variable, we

derive a space-time process Zt which is asymptotically dependent in space. It can

also be shown that χ(d)(t1, . . . , td, s1, . . . , sd) = 0 if at least one of t1, . . . , td is different

from the others, for all s1, . . . , sd, and all d = 2, 3, . . .: that is, non-simultaneous ex-

ceedances are asymptotically independent. Proofs of both properties are given in the

supplementary material, available at http://www.statmod.org/smij/archive.html.

Specification (2.3) of model (2.1) is a special case of the family of processes studied in

Davis and Mikosch (2008, Equation 1.1), but with innovations transformed to have

Gaussian univariate margins, as opposed to regularly varying univariate margins. The

transformation of the errors to the Normal scale is an essential component of the pro-

posed modelling procedure: working with regularly varying margins as in Davis and

Mikosch (2008) would yield a process that is not asymptotically independent in time

(Chernick et al., 1991, Proposition 2.1), thus failing to meet one of the objectives of

this work.

2.2 Specification of e

To complete the model, a formulation for the random field e in (2.3) is required. In

the sequel we will restrict attention to two families of processes: Student’s t random

fields (Røislien and Omre, 2006) and max-stable random fields (de Haan, 1984; Smith,
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1990b). Each constitutes a class of asymptotically dependent spatial processes for

which flexible parametric forms are available. At the same time, they can exhibit

quite different extremal behaviours so together they cover a wide range of spatial

patterns of threshold exceedances (Demarta and Mcneil, 2005).

A Student’s t random field, with ν > 0 degrees of freedom is defined by

e(s) =
√
UW (s) (2.4)

where W is a stationary Gaussian random field on S with standard margins and U is

an Inverse Gamma random variable with scale parameter ν/2 and shape parameter

ν/2, independent of W (s). All finite-dimensional distributions of process (2.4) are

multivariate t with ν degrees of freedom, which are known to be asymptotically

dependent (Chan and Li, 2008). Hence, process (2.4) satisfies condition (2.2). To

specify a family of models for ε, transformation (2.3) should be applied with Fe given

by the CDF of the Student’s t random variable with ν degrees of freedom. As ν → ∞,

e converges to a Gaussian random field. Therefore, as ν increases, ε will increasingly

resemble a Gaussian field, approaching spatial asymptotic independence.

Max-stable random fields were introduced by de Haan (1984) as an extension of max-

stable distributions. Asymptotic dependence of max-stable random fields follows from

Lemma 3.1 of Davis and Mikosch (2008). One of the most frequently used sub-classes

of the max-stable family is the Brown-Resnick process (Brown and Resnick, 1977;

Kabluchko et al., 2009) whose representation is

e(s) = max
i≥1

{Ri exp (Wi(s)− γ(s))} , (2.5)

where 0 < R1 < R2 < · · · are the points of a Poisson process on the positive half-line

with intensity r−2dr andWi, i = 1, 2, . . ., are independent copies of a Gaussian random
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field W on S with stationary increments, semi-variogram γ(s) = E(W (s)−W (0))2/2

and W (0) = 0 almost surely. Random field (2.5) has unit Fréchet univariate margins,

i.e. Fe(x) = exp(−1/x), for x > 0 and Fe(x) = 0, elsewhere. Hence, transformation

(2.3) becomes

ε(s) :=
√
1− α2 · Φ−1

{
exp

(
− 1

e(s)

)}
. (2.6)

An illustration of the different types of extremal patterns attainable under the pro-

posed specifications is given in the application presented in Section 4.

3 Inferential aspects

To prevent non-extreme observations from introducing bias in the analysis, our pro-

posal is to represent the extremal behaviour of the observed process through the tail of

model (2.1). Let Yt = {Yt(s), s ∈ S}, t = 1, 2, . . ., be the spatio-temporal process gen-

erating the data, which is assumed time-stationary and with Pr(Yt(s) ≤ y) = Fs(y).

The process Yt can be marginally transformed to have standard Gaussian univariate

margins through

Zt(s) = Φ−1 {Fs(Yt(s))} (3.1)

Equation (2.1) is then assumed to hold for the transformed process when its entire

space-time trajectory is above a fixed high threshold uz on the standard Gaussian

scale.

When inferring model (2.1) from the transformed threshold exceedances some issues

arise, stemming mainly from the intractability of the likelihood function and the need

to censor observations below the threshold. In the following sections we describe a

solution based on a combination of composite likelihood and indirect inference.
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3.1 Estimation

Let yt(si) be the original observation at time t, t = 1, . . . , T , and site si, i = 1, . . . , n,

and zt(si) be the corresponding transformed observation on the N (0, 1) scale. Trans-

formation (3.1) from yt(si) to zt(si) requires knowledge of Fs. In general, Fs is un-

known and should be estimated from data, but, to simplify the description of the

inference for the dependence structure, throughout this section it will be treated as

known. Estimation methods for Fs will be discussed in Section 4.

We assume that a parametric model εθ has been selected for ε in (2.1), where the

parameter vector θ = (α, ψ) comprises the autoregressive parameter α and the vector

ψ of spatial parameters. Evaluation of the likelihood function for θ is impractical,

even with a moderate number of observed locations, as the overall dimensionality

of the problem is determined by both space and time. We resort to a composite

likelihood approach (Lindsay, 1988; Varin et al., 2011) based on the bivariate marginal

distributions of the process. In addition, to account for model (2.1) being assumed

valid only above a fixed threshold uz, a censoring scheme similar to that originally

proposed by Smith et al. (1997), and later employed by Ledford and Tawn (1997),

Huser and Davison (2014) and Bacro et al. (2020) among others, is embedded within

the composite likelihood. The resulting estimating function for θ is given by the

following pairwise weighted log-likelihood (PL)

PL(θ; z) =
T∑
t=1

CT∑
k=0

n∑
i=1

n∑
j=i+1−k

log hsi,sj ,k(zt(si), zt+k(sj); θ)w(si,sj) (3.2)

where z is the set of available observations on the standard Gaussian scale, wsi,sj is a

weight such that wsi,sj = 1 if ||si − sj|| ≤ CS and wsi,sj = 0 otherwise (Davis et al.,

2013; Huser and Davison, 2014), and CS > 0 and CT ∈ {1, 2, . . .} are, respectively, the
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spatial and temporal cut-off points. The PL contributions are obtained as logarithmic

transformations of

hsi,sj ,k(z1, z2; θ) =



fsi,sj ,k(z1, z2; θ) if min{z1, z2} > uz

∂
∂z1
Fsi,sj ,k(z1, uz; θ) if z1 > uz, z2 ≤ uz

∂
∂z2
Fsi,sj ,k(uz, z2; θ) if z1 ≤ uz, z2 > uz

Fsi,sj ,k(uz, uz; θ) if max{z1, z2} ≤ uz

(3.3)

with fsi,sj ,k and Fsi,sj ,k being, respectively, the density function and CDF of

(Zt(si), Zt+k(sj)). When εθ is a Gaussian random field, the associated PL, which will

be denoted by PLG(θ; z), can be easily computed and θ estimated by maximization

of (3.2). If either a marginally transformed Student’s t or max-stable random field is

chosen for εθ, no analytical expression is available for either the marginal distribution

of Zt or the joint distribution of Zt and Zt+k for any k = 1, 2, . . .. Evaluation of

the terms in (3.3) therefore entails complicated numerical integration. To avoid this

computational burden, we propose the indirect inference procedure described below.

3.2 Indirect inference

Indirect inference, introduced by Smith (1990a) and later extended by Gourieroux

et al. (1993) and Gallant and Tauchen (1996), is a simulation-based approach to clas-

sical estimation pre-dating the main developments of Approximate Bayesian Com-

putation (ABC), with which it shares similar goals. For details on the connections

between ABC and indirect inference see, for example, Drovandi (2019). Indirect in-

ference proves to be particularly effective in situations where the likelihood function,

or any other criterion function that forms the basis of estimation, is too difficult to

evaluate, but simulation from the model is feasible. Model (2.1) with innovations

that are either a marginally transformed Student’s t process or max-stable process
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satisfies both conditions, as it can be sampled but its PL is intractable.

Equation (6) of Heggland and Frigessi (2004) summarizes the indirect inference ap-

proach advocated here. An auxiliary model depending on a set of parameters β

is identified and used to construct an auxiliary estimating function Q(β; z) whose

analytical expression is available. Let θ be the set of parameters of the model we

wish to infer, hereafter termed the target model, and zobs be the original sample.

For fixed θ, M independent samples, z(m,θ), m = 1, . . . ,M , of the same size as zobs

are simulated from the target model. The auxiliary estimating function is maxi-

mized with respect to β over the set of simulated samples, yielding the estimate

β̂(θ) = argmaxβ
∑M

m=1Q(β; z
(m,θ)). Finally, θ is estimated through

θ̂I = argmax
θ

[
Q(β̂(θ); zobs)

]
. (3.4)

By results in Gourieroux and Monfort (2018), if the target model is stationary and

satisfies suitable mixing conditions, as the size of the observed sample diverges β̂(θ)

converges almost surely and uniformly to a deterministic limit b(θ), often referred

to as the binding function. If the function b(θ) is one-to-one, θ̂I is a consistent and

asymptotically Gaussian estimator of θ.

In applying the above procedure, we selected process (2.1) with Gaussian innovations

as the auxiliary model, and let ε = εβ and Q(β; z) = PLG(β; z). This choice is

based on two arguments. First, PLG is readily computed and the auxiliary parameter

β can be estimated directly. Second, the tail of a Gaussian random field provides

a reasonable approximation of a wide range of exceedance patterns. The auxiliary

model is therefore likely to be close enough to the target model for the algorithm

to perform well. Equation (3.4) involves the solution of two nested maximization

problems, an outer maximization with respect to θ and an inner maximization with
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respect to β, whose steps are outlined below.

Indirect Inference Algorithm (IIA)

Step 1.1: For given θ, simulate M independent samples

z(m,θ) = {z(m,θ)t (si), i = 1, . . . , n, t = 1, . . . , T}, m = 1, . . . ,M,

from model (2.1) with ε = εθ.

Step 1.2: Maximize
∑M

m=1 PL
G(β; z(m,θ)) with respect to β to obtain β̂(θ).

Step 1.3: Evaluate PLG(β̂(θ); zobs).

Repeat Steps 1.1 to 1.3 till maximization of PLG(β̂(θ); zobs) to obtain θ̂I.

For |α| < 1, process (2.1) is time-stationary and α-mixing, which guarantees almost

sure convergence of β̂(θ) to the binding function b(θ) as T → ∞. The limit b(θ) is

unknown; however, it is reasonable to assume that it satisfies the one-to-one property

required for consistency of θ̂I, as θ and β have the same number of components with

similar interpretations.

In the implementation of IIA we used the Nelder-Mead routine for the inner maxi-

mization and a simulated annealing routine for the outer maximization. Simulated

annealing typically requires more iterations than the Nelder-Mead routine, but is more

robust and suited especially for irregular surfaces like PLG(β̂(θ); zobs). The perfor-

mance of IIA has been assessed through a simulation study whose details are available

as supplementary material. We have found that in all the scenarios considered it leads

to entirely satisfactory results.
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3.3 Approximation of the estimator distribution

In this section, the issue of quantifying the variability of the proposed estimators is

addressed.

When εθ is a Gaussian random field, θ is estimated directly from PLG without resort-

ing to indirect inference and a parametric bootstrap is a viable way to approximate the

estimator distribution. This consists of repeatedly simulating a sample of the same

size as zobs from the fitted Gaussian model and re-estimating θ on each simulated

sample. The resulting estimates are treated as realizations of the estimator.

When εθ is either a spatial t or a max-stable process marginally transformed to the

Gaussian scale, i.e. when estimation is carried out via the indirect inference approach,

we approximate the estimator distribution by exploiting the output from the iterations

of IIA. We assume that the binding function b(θ) is bijective and denote its inverse

by t(β). Let β̂ be the estimate of β obtained by maximizing Q on the original

sample: β̂ = argmaxβ Q(β; z
obs). The rationale behind the proposed procedure is

that for large T the distribution of θ̂I can be approximated by the distribution of

t(β̂). The distribution of β̂ can be estimated via a parametric bootstrap similar to

the one described above: samples are simulated from the target model with θ = θ̂I

and β is estimated on each sample by direct maximization of PLG. A simulation-

based estimate of t can be obtained as follows. Suppose that N iterations of IIA

have been run before convergence. The N repetitions of Steps 1.1 and 1.2 output

the set of pairs {(θj, β̂(θj)), j = 1, . . . , N} from which a semiparametric estimate t̂

of t can be derived. Note that the choice of a simulated annealing routine for the

outer maximization of IIA yields a relatively high number of iterations which allows
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an accurate reconstruction of t.

Standard Error Algorithm

Step 2.1: Compute a semiparametric estimate t̂(β) of t(β) from the inter-

mediate output {(θj, β̂(θj)), j = 1, . . . , N} of IIA.

Step 2.1: Simulate L samples of the same size as zobs from model (2.1)

with ε = εθ̂I and obtain the bootstrap estimates β̂1 . . . , β̂L by

maximizing Q on each sample.

Step 2.3: Calculate t̂(β̂1), . . . , t̂(β̂L) as approximate realizations

from the distribution of θ̂I.

4 Application

The approach described in Sections 2 and 3 was applied to recordings of daily rain-

falls from 01-10-1999 to 28-02-2019 over the North Brabant province in the south of

the Netherlands. The dataset was downloaded from the European Climate Assess-

ment (ECA) & Dataset website (https://www.ecad.eu), which provides a zipped

file containing a separate ASCII file for each station. In the reference region 40 sta-

tions are installed, but 10 of them were discarded for having more than 10% missing

values. Of the 30 remaining stations, 28 are manual rainfall stations, and two, corre-

sponding to Eindhoven and Gilze Rijen weather stations, are automatic. We noticed

non-negligible differences in the magnitude of the recordings between the automatic

stations and the nearby manual ones. This is a known phenomenon (Brandsma, 2014)

which led us to exclude from the analysis the two automatic stations. Figure 1 shows

a map of the 28 manual stations analyzed.
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Flood events are mainly determined by aggregations in space and/or time of extreme

rainfalls (Richards et al., 2021). A spatio-temporal study of threshold exceedances

of the rainfall process therefore has important practical implications in evaluating

flood risk. Figure 2 suggests that the exceedances of the rainfall process are spatially

and temporally related, though in ways that change between the two domains. De-

pendence weakens rapidly with threshold level in the temporal domain and slowly in

the spatial domain where it retains a significant strength even at the most extreme

quantiles. These patterns are compatible with asymptotic independence in time but

leave ambiguity about the type of asymptotic dependence in space. We investigate

these features by fitting model (2.1) with Gaussian innovations and asymptotically

dependent innovations.

An exploratory analysis of the dataset was carried out in order to evaluate possible de-

partures from the model assumptions. No evidence of an annual trend was found over

the 21-year period, but a seasonal variation was detected. Deseasonalizing each series

would only partially address this issue as it would not account for seasonal changes

in the spatial dependence. A separate-season modelling is therefore a safer approach.

In the following we will focus on the period from October to February within which

approximate time-stationarity appears to hold. Anisotropy at extreme levels was also

assessed. The assessment, whose details are reported in the supplementary material,

revealed no significant differences across directions for the summary statistics consid-

ered. To investigate presence of interactions between space and time, Figure 3 shows

site-specific estimates and 95% confidence intervals for the autoregressive parameter

α, computed from observations above the 0.90 quantile. Also included in Figure 3

is a vertical line representing the estimate of α obtained by combining all the series

into a single one and assuming a common autoregressive coefficient over the region.
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The horizontal line intersects all of the sitewise confidence intervals, supporting the

hypothesis of a constant α for the North Brabant data.

4.1 Marginal and dependence modelling

Fitting model (2.1) requires the original data to be transformed to the Gaussian

scale through equation (3.1) which, in turn, requires specification and estimation

of Fs(y) = Pr(Yt(s) ≤ y). As the inferential procedure of Section 3 involves only

threshold exceedances, the problem can be simplified to estimating the tail of Fs. It is

common practice in studies of spatial exceedances (Eastoe and Tawn, 2009; Northrop

and Jonathan, 2011) to model the marginal tails via the Generalized Pareto (GP)

distribution whose parameters vary spatially, namely

Fs(y) =


ζ(s) + (1− ζ(s))

(
1 + ξ(s) (y−u(s))

σ(s)

)−1/ξ(s)

+
y > u(s),

ζ(s) y ≤ u(s)

(4.1)

where (a)+ = max(0, a) and, for all s ∈ S, ζ(s) = Pr(Yt(s) ≤ u(s)), u(s) is the

threshold level, σ(s) a positive scale parameter and ξ(s) a real shape parameter, re-

spectively. In principle, estimation of marginal and dependence parameters could

be carried out simultaneously, by explicitly including the transformation from the

GP scale to the Gaussian scale in expression (3.3). However, simultaneous estima-

tion increases substantially the computational burden, especially when implementing

IIA. For this reason, we resort to a two-step procedure, whereby model (4.1) is first

estimated and the dependence model is then fitted to the transformed exceedances.

For the first step, a preliminary analysis showed that the GP model provides a good

fit above the 0.90 quantile at all sites. We therefore set ζ(s) = 0.90 for all s ∈ S.

The threshold level u(s) was then estimated by quantile regression, as proposed by
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Northrop and Jonathan (2011). The shape and scale parameters were modelled via

the semi-parametric approach advocated by Youngman (2019) and implemented in

the companion R package evgam. In particular, we considered

log σ(s) = λσ0 + λσ1 (lon(s), lat(s)) and ξ(s) = λξ0 + λξ1(lon(s), lat(s)) (4.2)

where λσ0 and λξ0 are real constants, and each of λσ1 and λξ1 is a thin plate regres-

sion spline (Wood, 2003) with lon(s) and lat(s) denoting longitude and latitude,

respectively. By fitting model (4.1)-(4.2) through the evgam package, we infer that

the following simplifications hold for the North Brabant data: log σ(s) = λσ0 and

ξ(s) = λξ0. Working with this reduced form, the observed threshold exceedances,

yt(si) with yt(si) > u(si), i = 1, . . . , 28, were transformed to the standard Gaussian

scale through zt(si) = Φ−1(F̂si(yt(si))), where F̂si denotes the estimated GP distribu-

tion.

In the second step of the procedure, process (2.1) was fitted to the transformed

exceedances. For the innovation process ε, in light of the findings from the exploratory

analysis, we considered four isotropic parametric specifications εθ, each characterized

by a three-dimensional vector of parameters θ = (α, ψ), with ψ = (ψ1, ψ2). These

are:

• Model 1: a spatial Gaussian model with N (0, 1 − α2) univariate margins and

powered exponential correlation function

ρ(h;ψ) = exp
(
−(h/ψ1)

ψ2
)
, h ≥ 0, ψ1 > 0, 0 < ψ2 < 2, (4.3)

• Model 2: a spatial t process as in (2.4) with ν = 5 degrees of freedom and W

having correlation function (4.3), marginally transformed to the N (0, 1 − α2)

scale through equation (2.3).
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• Model 3: a spatial t process as in (2.4) with ν = 2 degrees of freedom and W

having correlation function (4.3), marginally transformed to the N (0, 1 − α2)

scale through equation (2.3).

• Model 4: a spatial Brown-Resnick process as in (2.5) with W having a power-

law semi-variogram (Chilès and Delfiner, 2002, pag. 266) γ(h;ψ) = (h/ψ1)
ψ2 ,

h ≥ 0, ψ1 > 0, 0 < ψ2 < 2, marginally transformed to the N (0, 1 − α2) scale

through equation (2.6).

The degrees of freedom of the spatial t process cannot be estimated by the proposed

indirect inference algorithm. If ν itself were treated as an unknown dependence pa-

rameter, the parametric space of the auxiliary model would have smaller dimension

than that of the target model, failing to meet the identifiability condition of Gourier-

oux and Monfort (2018). We therefore profiled over a grid of reasonable integer values

for ν which comprises ν = 2, 5 and 10. Results for ν = 10 are omitted in the sequel

as we found only slight differences with respect to the Gaussian specification.

The interpretation of θ remains the same across all four formulations: ψ1 is a spatial

range parameter, ψ2 a spatial smoothness parameter and α the temporal autore-

gressive parameter. The numbering of the models reflects the strength of spatial

asymptotic dependence, with Model 1 being asymptotically independent, and Models

2-4 having increasing degree of asymptotic dependence for a common value of θ.

Model 1 was estimated by direct maximization of PLG, while Models 2-4 were esti-

mated via IIA, using Model 1 as the auxiliary model and selecting M = 10, as in

the simulation study described in the supplementary material. For all models, the

temporal cut-off point CT in (3.2) was set at 1 on account of the first-order Markov
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nature of the generating process and efficiency results obtained by Davis and Yau

(2011). The spatial cut-off point CS was set at the maximum distance between ob-

served sites, so that all pairs of sites were included in the evaluation of PL. Estimates

of θ for all four models are reported in Table 1, with standard errors in parentheses.

For Model 1, standard errors were computed by the parametric bootstrap procedure

described in Section 3.3 with 200 bootstrapped samples. For Models 2-4 standard

errors were computed by the standard error algorithm, with L = 200 in Step 2.2

and estimating t in Step 2.1 by a second-order polynomial regression with trivariate

response. Estimates of α are essentially constant across all four models, as would

be expected given their common autoregressive construction. Estimates of ψ2 are

also stable, denoting a similar smoothness in the spatial dependence decay with dis-

tance. The greatest variation is shown by the estimates of ψ1, which decrease with

model number, thus counterbalancing the increasing strength of asymptotic spatial

dependence. An example of code for estimating the previous models is given in the

supplementary material.

An alternative model for space-time exceedances proposed by Simpson andWadsworth

(2021), hereafter referred to as the SWmodel, was also fitted to the data. Simpson and

Wadsworth (2021) extend to the space-time setting the conditional approach devel-

oped by Wadsworth and Tawn (2019) for spatial extremes. As the SW model enables

different forms of limiting dependence in space and time, it provides a benchmark to

assess the performance of Models 1-4. The parametric specification selected for the

SW model is given by equations (2)–(4) and (7) of Simpson and Wadsworth (2021).

It involves, among others, the parameters ∆S and ∆T , determining the asymptotic

dependence class of the spatial and temporal domains, respectively. On the basis

of the same diagnostic tools as those used for Models 1-4 and described in the next
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section, we found that the best fitting formulation within the SW class has ∆S equal

to the maximum spatial distance between observed sites, corresponding to asymp-

totic dependence in space, and ∆T = 0, corresponding to asymptotic independence

in time, respectively. Model parameters were estimated by composite likelihood

(see Simpson and Wadsworth, 2021, for details), with the threshold fixed at the 0.90

marginal quantile as for Models 1-4.

Model α ψ1 ψ2

Model 1 0.33 (0.035) 887.1 (109.9) 0.74 (0.020)

Model 2 0.33 (0.039) 719.2 (75.4) 0.73 (0.019)

Model 3 0.33 (0.039) 458.7 (73.42) 0.78 (0.028)

Model 4 0.32 (0.038) 148.0 (15.60) 0.72 (0.022)

Table 1: Estimates and standard errors (in parentheses) of model parameters.

4.2 Diagnostics and results

As a tool to assess and compare the quality of fit of the estimated models, we analyzed

the behaviour of

χ(p; l, ∥h∥) = Pr(Fs(Yt+l(s)) > p|Fs+h(Yt(s+ h)) > p) (4.4)

= Pr
(
Zt+l(s) > Φ−1(p)|Zt(s+ h) > Φ−1(p)

)
as ∥h∥, l and p vary. The function χ(p; l, ∥h∥), which gives the conditional probabil-

ity of observing an exceedance at time t+ l at one site given that an exceedance has

occurred at time t at an inter-location distance ∥h∥, is used as a summary measure

of the bivariate dependence of the process. Figures 4 and 5 compare estimates of

χ(p; l, ∥h∥) from Models 1, 2, 4 and SW with empirical estimates. Results for Model



24 Paola Bortot and Carlo Gaetan

3 are not shown, since they are very close to those of Model 4. For Models 2-4,

χ(p; l, ∥h∥) was evaluated by simulation, as no closed-form expression is available;

analytical calculations are possible for Model 1 and the SW model. To investigate

space-time patterns, χ(p; l, ∥h∥)) is plotted as a function of ∥h∥, for different choices

of l, with l = 0 in Figure 4 and l = 1 in Figure 5, respectively. To verify the goodness-

of-fit at the selected threshold, as well as the quality of extrapolations to higher levels,

within each plot different values of p are considered, with p ∈ {0.90, 0.95, 0.99, 0.995}.

For l = 0, Model 4 and the SW model fail to capture the decay of dependence at

increasing distances for fixed p and for increasing p at fixed distances. Under both

formulations, extrapolations to higher values of p exhibit a stability that causes de-

partures from the empirical estimates. This is not surprising, given that, for ∆S equal

to the maximum observed distance, the spatial dependence of the SW model is driven

by a Brown-Resnick process (Wadsworth and Tawn, 2019) as for Model 4. Models 1

and 2 provide a better overall fit, but for p = 0.99 and p = 0.995 Model 2 outperforms

Model 1, which shows an increasing tendency to underestimate dependence between

simultaneous exceedances. For l = 1, the empirical estimates decay rapidly with p.

Models 1, 2 and 4 follow this behaviour closely; SW model estimates also decrease

with p for fixed ∥h∥, as a consequence of the temporal asymptotic independence, but

exhibit positive bias for p = 0.90 and p = 0.95. The case l = 2 was also considered.

All four formulations perform satisfactorily in this case, as shown by the results sum-

marized in the supplementary material. Figure 6 focuses on the temporal dynamics

by displaying empirical estimates and model-based estimates from Models 1, 2, 4 and

the SW model of χ(p; l, ∥h∥) as a function of l, for p ∈ {0.90, 0.95, 0.99, 0.995} and

∥h∥ = 0, i.e. on a single site. Unlike process (2.1), the SW model is non-Markovian

in time. The lag-1 dependence is slightly overestimated by all models, but other-
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wise Models 1, 2 and 4 approximate the empirical pattern well; by contrast, the SW

model yields too fast a decline for both p = 0.90 and p = 0.95. The first-order Markov

assumption therefore seems adequate for the North Brabant data.

All five models were also fitted at a higher threshold level, corresponding to the 0.95

marginal quantile. Qualitatively, no changes occurred in the fitting and extrapola-

tions for Models 1 and 2. A net improvement was found in the performance of Models

3 and 4 and SW model for p = 0.95, but for p > 0.95 we observed the same limita-

tions as above. Diagnostics therefore point to Models 1 and 2 as providing the best

formulations for this application, with a preference for Model 2 when inferring depen-

dence between pairs of simultaneous exceedances of extremely high thresholds. These

findings give additional support to asymptotic dependence in the spatial domain.

Model 2 is now used to further investigate extremal features of the rainfall phe-

nomenon in the North Brabant region. Under this formulation, analytical compu-

tations are generally unfeasible, but simulation is simple and fast. As an example,

Figure 7 displays the temporal evolution of a simulated realization of Model 2 over

the entire North Brabant area. Dots represent the observed stations. At time t − 1

(top-left panel) no upcrossings of the 0.90 marginal quantiles occur on the whole

region: as the model governs only the exceedances, the map shows the thresholds

u(s) obtained by quantile regression, as described in Section 4.1. At time t (top-right

panel) an extreme event takes place, affecting a sub-region, and subsequently evolves

to produce the map at time t + 1 (bottom-left panel). At time t + 2 (bottom-right

panel) the extreme event dies out and again only the thresholds u(s) are displayed in

the map. Stochastic properties of functionals of space-time trajectories lying above

0.90 marginal quantiles, e.g. rainfall aggregates over areas involved in an extreme
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event, can be studied by repeated simulations. This approach was applied to an-

alyze the number of observed stations exceeding a high threshold in a single day

Nt(p, 0) =
∑n

i=1 I(F̂si(Yt(si)) > p), where I(A) is the indicator function of the event

A, and in two consecutive days Nt(p, 1) =
∑n

i=1

∏1
l=0 I(F̂si(Yt+l(si)) > p). Condi-

tioning upon Nt(p, 0) > 0, i.e. on having at least one exceedance in a day, Nt(p, 0)

and Nt(p, 1) can be seen as measures of spatial clustering of extreme rainfalls on a

single day and over a two-day period, respectively. In Figure 8, Model 2 estimates

of E(Nt(p, 0)|Nt(p, 0) > 0) and E(Nt(p, 1)|Nt(p, 0) > 0) are plotted against p. For

the empirical estimates, p ranges from 0.90 to 0.975, whereas model-based estimates

extrapolate up to p = 0.99. Also shown on each figure are 95% confidence bands for

the empirical estimates obtained by block bootstrapping the original data. As p→ 1,

estimates in Figure 8(b) converge to 0, by the asymptotic independence in time, and

to a strictly positive value in Figure 8(a), by the asymptotic dependence in space.

5 Conclusions

Motivated by extremal features that can be observed in some environmental studies,

we developed a model for space-time exceedances which comprises serial asymptotic

independence and either asymptotic dependence or asymptotic independence in space.

The proposed model has the advantages of exploiting all the information above a fixed

high threshold, possessing an easy-to-interpret structure and respecting the ordered

and discrete nature of the measurement times. In the application to a dataset of

rainfall amounts over the North Brabant province, it was found to cover a wide

range of extremal patterns. In particular, among the four parametric specifications
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considered, two appear to provide the best fit to the data: the one with Gaussian

errors and the one with Student t5 errors, with a superiority of the latter when

focussing on extrapolations to higher threshold levels. These findings support the

conjecture that rainfall amounts in the North Brabant province are asymptotically

independent in time, but asymptotically dependent in space.

The model can be extended to include cases that fall outside the studied framework.

For example, an extension that accommodates more complex forms of space-time in-

teractions consists in letting the autoregressive parameter α depend on space. Model

(2.1) would then become Zt(s) = α(s)Zt−1(s) + εt(s), where α(s) is formulated ac-

cording to the pattern of spatial variations observed in the temporal dynamics. As

an example, we could specify a logistic-type function α(s) = 1 − 2 exp{α0 + α1x +

α2y}/ {1 + exp{α0 + α1x+ α2y}}, with α0, α1, α2 ∈ R and s = (x, y) ∈ R2, which

ensures that the condition |α(s)| < 1 for time-stationarity at each location is satis-

fied. An extension of the model that would enlarge its range of applicability would be

to avoid an a priori choice of the limiting dependence class for the temporal dimen-

sion. One way is to replace the Gaussian autoregressive component in (2.1) with a

Markov chain whose transitions encompass both asymptotic dependence and asymp-

totic independence. In this setting, the data itself would drive the selection between

the two dependence classes. The Ledford and Tawn (1997) procedure or the condi-

tional extreme value approach of Heffernan and Tawn (2004) could be used for the

specification of the chain transitions. We are currently exploring these possibilities.
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Figure 1: Map of the 28 manual weather stations analyzed in the North Brabant

province. Longitude and latitude are in decimal degrees.
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Figure 2: For the North Brabant rainfall data, empirical estimates of χ(p), p =

0.90, 0.95, 0.99, for pairs of observations at increasing spatial distances (in km) in

(a) and temporal lags (in days) in (b), respectively. The shaded areas represent

approximate 95% confidence regions based on a stationary bootstrap procedure. In

(a), estimates and bounds are smoothed.
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Figure 3: Sitewise estimates and 95% confidence intervals for α computed from ob-

servations above the 0.90 quantile. The vertical line corresponds to the estimate of α

obtained from all the exceedances of the 0.90 marginal quantile without distinction

of location.
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Figure 4: Estimates of χ(p; 0, ∥h∥) as a function of ∥h∥, for p ∈

{0.90, 0.95, 0.99, 0.995}. In each plot, the dashed line corresponds to smoothed em-

pirical estimates. In (a) the continuous line corresponds to Model 1 estimates, in (b)

to Model 2 estimates, in (c) to Model 4 estimates and in (d) to SW model estimates,

respectively.
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Figure 5: Estimates of χ(p; 1, ∥h∥) as a function of ∥h∥, for p ∈

{0.90, 0.95, 0.99, 0.995}. In each plot, the dashed line corresponds to smoothed em-

pirical estimates.In (a) the continuous line corresponds to Model 1 estimates, in (b)

to Model 2 estimates, in (c) to Model 4 estimates and in (d) to SW model estimates,

respectively.
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Figure 6: Estimates of χ(p; l, 0) as a function of l, for p ∈ {0.90, 0.95, 0.99, 0.995}. In

each plot, triangles correspond to empirical estimates. In (a) circles correspond to

Model 1 estimates, in (b) to Model 2 estimates, in (c) to Model 4 estimates and in

(d) to SW model estimates, respectively.
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Figure 7: Simulations from the estimated Model 2. Highlighted are the exceedances

over the 0.90 marginal quantile. Dots denote the observed stations.
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Figure 8: For the North Brabant data, in (a), the continuous line corresponds to

Model 2 estimates of E(Nt(p, 0)|Nt(p, 0) > 0), and, in (b), of E(Nt(p, 1)|Nt(p, 0) > 0),

plotted against p, for p ∈ [0.90, 0.99]. The dashed line and the filled region represent

smoothed empirical estimates and approximate 95% confidence bands on the empirical

estimates, respectively.
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