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A B S T R A C T

Understanding the role of sticky price and sticky information for inflation dynamics is a key issue in economics.
The literature has treated the two forms of stickiness as independent. This paper proposes a new dual stickiness
Phillips curve based on dependence among the events of setting prices and updating information. Using US
data over the period 1947Q1–2020Q1, the new model is scrutinized against a dual stickiness model without
dependence, a pure sticky price model, and a pure sticky information model, through in- and out-of-sample
analyses. The results show: (i) the new model outperforms the model without dependence in-sample; (ii) the dual
stickiness models perform similarly out-of-sample; and (iii) the pure sticky models yield the worst forecasts. The
results have some implications for policy makers and practitioners. A policy maker may consider the new model
given its performance in- and out-of-sample, while a practitioner may prefer the model without dependence,
given its lesser complexity and its competitive forecasting performance.

1. Introduction

Understanding the inflation dynamics is one of the main issues in
economics. Over the last 20 years, models based on price or informa-
tion rigidities (see, for example, Galí and Gertler, 1999; Mankiw and
Reis, 2002; Coibion, 2006; Carrera and Ramírez-Rondán, 2019; Bilbiie,
2021), on both rigidities but taken separately (see Keen, 2007; Kiley,
2007; Coibion, 2010; Carrillo, 2012), and on the combination of the
two form of stickiness (Klenow and Willis, 2007; Knotek, 2010; Dupor
et al., 2010; Arslan, 2010; Coibion and Gorodnichenko, 2011; Kim and
Kim, 2019), have been proposed to study inflation dynamics.

The literature on dual stickiness Phillips curve has offered a funda-
mental contribution to the interpretation of inflation dynamics, both
theoretically and empirically. In particular, Klenow and Willis (2007)
simulated a general equilibrium model featuring state-dependent sticky
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1 Time-dependent pricing models assume an exogenously given probability of price adjustment and/or information upgrading. In state-dependent pricing models,
firms choose when to change price or update information subject to menu or information costs.

price and sticky information. To keep the model tractable, they assumed
that information regarding macro state variables arrives exogenously in
a staggered fashion. Their results show that price changes reflect old
inflation innovations. Knotek (2010) proposed a micro-founded Phillips
curve that relies on both form of stickiness and is on based on state-
dependent pricing decisions (as in Klenow and Willis, 2007).1 In the
empirical application, Knotek (2010) shows that the sticky information
plays a role in explaining the dynamics of inflation at both micro and
macro level for the US over the period 1983–2005.

Dupor et al. (2010) proposed a time-dependent approach to model a
dual stickiness Phillips curve (DS-PC) and show that both rigidities are
present in US data for the period 1960–2007. Similarly, Arslan (2010)
derived a DS-PC using a time-dependent approach. The estimates of
the structural model show that both kind of stickiness are statistically
and quantitatively important for price setting in the US over the period
1960–2007. Coibion and Gorodnichenko (2011) estimated a DSGE
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model with different forms of time-dependent price setting regimes.
They find that the model embodying sticky price and sticky informa-
tion outperforms a pure sticky price model and a pure sticky informa-
tion model for the US over the period 1984–2008. Finally, Kim and Kim
(2019) studied the dynamics of inflation using a Bayesian DSGE model
with (time-dependent) dual stickiness. The empirical results based on
an historical decomposition analysis reveal that supply and inflation
target shocks are found to be dominant forces driving long-run changes
in inflation rate for the US over the period 1968–2008.

In the dual stickiness models, firms may change prices and update
information. However, the aforementioned studies have ruled out any
dependence among the events of setting price and updating infor-
mation. This is primarily due to the mathematical tractability of the
solution, as pointed out by Arslan (2010) and Dupor et al. (2010).
This paper fills the gap and proposes a new DS-PC model (with time-
dependent pricing rule) for inflation that assumes dependence among
the events of changing price and updating information through a bivari-
ate Bernoulli distribution. This is the first contribution of the paper.

The assumption of dependence among the events of setting price
and updating information relies on rational arguments. Under condi-
tions of uncertainty, that is absence of adequate information, economic
agents tend to maintain the status quo when making decisions con-
cerning target variables (see Samuelson and Zeckhauser, 1988; Sautua,
2017; Foellmi et al., 2019). When the target variable is price, then price
stickiness and information stickiness may be correlated, and firms mod-
ify the target value of price (expected optimal price) only when the
available information is adequately updated, given the fact that firms
do not know the probability distribution of all the potential outcomes
(Bewley, 2002). Therefore, firms anchor the price to the value previ-
ously set to not incur in potential losses, if they are not fully and ade-
quately informed, and the events of (not) updating price and of (not)
updating information turn out to be positively correlated. This paper
assumes positive correlation among the events of adjusting price and
updating information. In this respect, Ball and Mankiw (1994) argue
that firms adjust prices only after updating the information, and the
stickiness of price is mainly due to the costs of gathering information.2
Further, Zbaracki et al. (2004) and Harris et al. (2020) provide some
empirical evidence on the correlation among the events of chancing
price and updating information using firms data for the US and France,
respectively.

Using US data over the period 1947Q1–2020Q1, this paper focuses
on in- and out-of-sample analyses for inflation by considering the GDP
deflator as a measure of inflation and the labour share (a proxy of real
marginal costs) as forcing variable.3 This is the second contribution of
the paper.

The in-sample analysis is carried out for the new DS-PC model with
dependence and the DS-PC model without dependence proposed by
Dupor et al. (2010). For the out-of-sample forecasts, two additional
models, such as a pure sticky price model and a pure sticky informa-
tion model, are also taken into account.

For the estimation of the models, a two-step procedure based on a
rolling estimation scheme is adopted. In the first step, expectations of
inflation and real marginal costs are estimated by a rolling VAR model.
In the second step, the parameters of the different Phillips curves are
estimated by Bayesian inference.

The in-sample analysis proceeds as follows. A rolling window esti-
mation of the key parameters of the two DS-PC models is first carried
out to ascertain the significance of these parameters. Then, the perfor-

2 “The most important cost of price adjustment are the time and attention
required of managers to gather the relevant information and make and imple-
ment decisions” (Ball and Mankiw, 1994, p.24-25).

3 The forcing variable represents the excess of demand. In the empirical lit-
erature, it is measured as output gap (difference between real and potential
output) or labour share (a proxy of real marginal costs).

mance of the two DS-PC models is compared by the Bayes factor.
For the out-of-sample analysis, we use the four different Phillips

curves and two different measures of forecast accuracy, namely the
mean square error (MSE) and the directional accuracy (DA) by
Blaskowitz and Herwartz (2009, 2011). To the best of our knowledge,
this is the first paper to use the DA measure to evaluate the forecasts
of sticky price and sticky information models. The relevance of the
direction of the forecasts is widely documented in forecasting literature.
Leitch and Tanner (1995) pointed out that the direction is what mostly
concerns entrepreneurs when making a decision on how to invest. Like-
wise the direction of the forecasts is at core of the decisions of the policy
makers (see, for example, Öller and Barot, 2000; Sinclair et al., 2010;
Bergmeir et al., 2014; Chen et al., 2016; Costantini et al., 2016).4

The main empirical results are as follows. First, the in-sample anal-
ysis shows that: (i) the parameter that rules the dependence is highly
significant, while it tends to reduce after the crisis of 2008; and (ii)
the new DS-PC model with dependence outperforms the model without
dependence. Second, the out-of-sample analysis shows that the DS-PC
models perform similarly in terms of both MSE and DA, and the two DS-
PC models outperform the pure sticky price and pure sticky information
models, with the latter model being the worst performer.

For both in- and out-of-sample analysis, a set of robustness checks
is performed. First, diverse combinations of the rolling window for the
expectations and the estimation of the models are considered. Second, a
different measure of inflation (CPI) and a forcing variable (output gap)
are used. The results show that the parameter of dependence is always
statistically significant and the DS-PC models are equally competitive in
terms of forecasts and outperform the pure sticky price and pure sticky
information models. These findings confirm the main conclusions.

The empirical findings may have some implications for policy mak-
ers and practitioners. A policy maker, who is interested in the effec-
tiveness of policy interventions and in the predictions of inflation, may
favour the use of the dual stickiness model with dependence given its
in-an out-of-sample performance. Further, given the relevance of the
parameter of dependence for firms, policy interventions should look
at the dynamics of dependence parameter. On the other hand, a practi-
tioner may advocate the use of the dual stickiness model without depen-
dence given its lesser complexity and its competitive forecasting perfor-
mance.

The rest of the paper is organized as follows. Section 2 presents the
new DS-PC model with dependence. Section 3 describes the data and
methodology. Section 4 presents and discusses the empirical results.
Section 5 concludes.

2. Dependence in sticky price and sticky information Phillips
curve

Consider a continuum of firms engaged in monopolistic competi-
tion. Suppose that each firm updates information and adjusts prices
infrequently (dual stickiness). Let Z1 and Z2 be the price adjustment
and information updating events, respectively. If (Z1,Z2) has a bivari-
ate Bernoulli distribution, then there are four possible events, (1,1),
(1,0), (0,1), (0,0), with the following probabilities

P(Z1 = 1,Z2 = 1) = p11 = (1 − 𝛾) (1 − 𝜙) + 𝛿

P(Z1 = 1,Z2 = 0) = p10 = (1 − 𝛾)𝜙− 𝛿

P(Z1 = 0,Z2 = 1) = p01 = 𝛾 (1 − 𝜙) − 𝛿

P(Z1 = 0,Z2 = 0) = p00 = 𝛾𝜙+ 𝛿,

(1)

where p11 + p10 + p01 + p00 = 1. In our setting, p11 indicates
the probability that a firm updates both price and information, p00 is

4 For example, monetary policy interventions change as a consequence of
unexpected inflation shocks (see, for example, Mallick and Sousa, 2013).
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the probability that neither price nor information are updated, and p10
and p01 are probabilities of updating only price and only information,
respectively.

The parameter 𝛿 captures the dependence among the probability
related to the events of (not) changing prices 1 − 𝛾 (𝛾) and (not) updat-
ing information 1 − 𝜙 (𝜙).5 Firms usually operate in a context where
both the aforementioned events may be correlated: firms may decide
to not changing the (target) price if not adequately informed, whereas
they are inclined to revise prices if they are fully informed (Ball and
Mankiw, 1994). It is easy to show that when 𝛿 = 0 (independence
among events), our parametrization collapses into that of Dupor et al.
(2010).

In detail, the marginal distributions are

P(Z1 = 1) = p1+ = p10 + p11 = 1 − 𝛾

P(Z1 = 0) = p0+ = p00 + p01 = 𝛾

P(Z2 = 1) = p+1 = p11 + p01 = 1 − 𝜙

P(Z2 = 0) = p+0 = p10 + p00 = 𝜙.

In our model, the dependence between price and information stick-
iness is ruled by (see Marshall and Olkin, 1985)

Cov(Z1,Z2) = E(Z1 · Z2) − E(Z1) · E(Z2)

= p11 − (p10 + p11)(p01 + p11)

= p11p00 − p10p01 = 𝛿.

(2)

Using Fréchet bound inequalities (Joe, 2014, p. 48–49), and the fact
that covariance is assumed to be positive (see section 1), we can define
the lower and upper bound of 𝛿6

0 ⩽ 𝛿 ⩽ min {(1 − 𝛾)𝜙, (1− 𝜙)𝛾} . (3)

Using the marginal probabilities and equation (2), the dynamics of
the log aggregate price level pt can be described by

pt = (p00 + p01)pt−1 + p11pf
t + p10pb

t

= [(𝛾𝜙+ 𝛿) + [𝛾 (1 − 𝜙) − 𝛿]] pt−1 +

[(1 − 𝛾) (1 − 𝜙) + 𝛿] pf
t + [(1 − 𝛾)𝜙− 𝛿] pb

t (4)

= 𝛾pt−1 + (1 − 𝛾) qt ,

where qt = (1 − 𝜙) pf
t + 𝜙pb

t +
𝛿

1−𝛾

(
pf

t − pb
t

)
. Equation (4) says that the

log aggregate price can be expressed as a weighted average of the price
observed in the previous period, pt−1, and the price index for all newly
set prices at time t, qt . In particular, qt is the sum of pf

t (the price set on
the basis of new information), pb

t (the price set on the old information)
and 𝛿∕(1 − 𝛾), which captures the dependence among events for new
and old informed firms.

The prices pf
t and pb

t are given by

pf
t = (1 − 𝛾)Etp∗t + (1 − 𝛾) 𝛾Etp∗t+1 + (1 − 𝛾) 𝛾2Etp∗t+2 +…

= (1 − 𝛾)
∞∑

j=0
𝛾 jEtp∗t+j (5)

5 One may argue that firms are reluctant to change prices due to the presence
of imperfect competition or menu costs (see, for example Akerlof and Yellen,
1985; Ball and Mankiw, 1994), and they update the information very rarely
because of the presence of costs related to the acquisition of information or the
limited capacity of elaborating the information (see, for example Sims, 2003;
Reis, 2006).

6 The correlation is expressed as 𝜌 = 𝛿√
(1−𝛾)𝛾(1−𝜙)𝜙

, and the admissible range

of correlation is 0 ⩽ 𝜌 ⩽ min
{√

(1−𝛾)𝜙√
(1−𝜙)𝛾

,
√
(1−𝜙)𝛾√
(1−𝛾)𝜙

}
.

pb
t = (1 − 𝜙)Et−1pf

t + (1 − 𝜙)𝜙Et−2pf
t + (1 − 𝜙)𝜙2Et−3pf

t +…

= (1 − 𝜙)
∞∑

k=0
𝜙kEt−k−1pf

t , (6)

where Et(·) = E(·| t) indicates the conditional expectation given the
information set  t available at time t and p∗t represents the desired price
at time t. Equation (5) states that firms with zero period old information
account for the expected future path of desired prices given the likeli-
hood that the price may remain fixed for multiple periods (𝛾). Instead,
equation (6) collects the individual optimal prices conditional on old
information set; it consists of a weighted average of each individual
price for inattentive firms with old information sets  t−k, k ≥ 1.

After some algebra (see A.1 in Appendix A), one can obtain the
following equation for inflation

𝛾 + 𝜙 (1 − 𝛾)
1 − 𝛾 𝜋t = (1 − 𝜙)

(
pf

t − pt

)
+ 𝛾

1 − 𝛾 𝜙𝜋t−1 + (1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

]

×
∞∑

k=0
𝜙kEt−k−1Δpf

t + 𝛿Δp∗t + 𝛿𝛾
∞∑
j=0
𝛾 jEtΔp∗t−j+1 + 𝛿𝛾𝜏t ,

(7)

where 𝜏 t is a (random) variable capturing the revision of expectations
(see A.1 in Appendix A for more details).

The Phillips curve (PC) can be derived by complementing equation
(7) with the optimal price equation that is given by the marginal cost
function p∗t = mcn

t = mct + pt , where mcn
t denotes the nominal marginal

cost. Therefore, equation (7) can be re-written as (see A.2 in Appendix
A)

𝜋t = 𝜌D𝜋t−1 + 𝜁D
1 (1 − 𝛾)

∞∑
j=0
𝛾 jEt

(
mct+j +

j∑
k=1

𝜋t+k

)

+𝜁D
2 (1 −𝜙)

∞∑
k=0

𝜙k

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt−k−1

(
Δmct+j + 𝜋t+j

)]
+ 𝜁N

1 Δmct

+𝜁N
2 (1 − 𝛾)

∞∑
j=0
𝛾 jEt

(
Δmct+j+1 + 𝜋t+j+1

)
+ 𝜁N

2 𝜏t , (8)

where 𝜌D ≡ p00−𝛿
1−p11+(p00+p01)𝛿

≡ 𝜙𝛾
𝛾+(1−𝛾)(𝜙−𝛿) , 𝜁D

1 ≡ p11−𝛿
1−p11+(p00+p01)𝛿

≡
(1−𝛾)(1−𝜙)
𝛾+(1−𝛾)(𝜙−𝛿) , 𝜁

D
2 ≡ p10

1−p11+(p00+p01)𝛿
≡ 𝜙(1−𝛾)−𝛿

𝛾+(1−𝛾)(𝜙−𝛿) , 𝜁
N
1 ≡ 𝛿(p10+p11)

1−p11+(p00+p01)𝛿

≡ 𝛿(1−𝛾)
𝛾+(1−𝛾)(𝜙−𝛿) , 𝜁N

2 ≡ 𝛿(p00+p01)
1−p11+(p00+p01)𝛿

≡ 𝛿𝛾
𝛾+(1−𝛾)(𝜙−𝛿) . Equation (8)

represents the new DS-PC model with dependence.
When 𝛿 = 0, 𝜁N

1 = 𝜁N
2 = 0, equation (8) collapses into the DS-PC

model without dependence (i.e., Dupor et al. (2010)’s specification)

𝜋t = 𝜌D𝜋t−1 + 𝜁D
1 (1 − 𝛾)

∞∑
j=0
𝛾 jEt

(
mct+j +

j∑
k=1

𝜋t+k

)

+𝜁D
2 (1 −𝜙)

∞∑
k=0

𝜙k

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt−k−1

(
Δmct+j + 𝜋t+j

)]
. (9)

Pure sticky price PC is obtained from (8) setting 𝛿 = 0 and 𝜙 = 0

𝜋t = 𝜅mct + Et𝜋t+1, (10)

where 𝜅 ≡ (1−𝛾)2
𝛾

. Since the derivation of (10) is not straightforward,
more details are reported in A.3, Appendix A.

Finally, pure sticky information PC is easily obtained from (8) set-
ting 𝛿 = 0 and 𝛾 = 0

𝜋t = 𝜈mct + (1 − 𝜙)
∞∑

k=0
𝜙kEt−k−1(Δmct + 𝜋t), (11)

where 𝜈 ≡ (1−𝜙)
𝜙

.
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3. Data and methodology

This section describes the data and the methodology used for the
estimation of models (8)–(11) and the comparison among them. More
specifically, in section 3.1 the data and the empirical strategy for the in-
sample and out-of-sample analyses are presented. Section 3.2 describes
the Bayesian inference approach for the estimation of equations 8–11,
while sections 3.3 and 3.4 detail the Bayesian approach for the in-
sample evaluation and the forecast accuracy measures for the out-of-
sample evaluation, respectively.

3.1. Data and empirical strategy

All versions of Phillips curves are estimated using the following
variables for the US: inflation (𝜋t), labour share (Lt) – the proxy
of real marginal costs (see, for example, Rotemberg and Woodford,
1999; Lawless and Whelan, 2011) – and their expectations when
needed (see equations 8–11). For the reconstruction of expectations
we consider a VAR model with the following variables: 𝜋t , Lt , out-
put gap (yt), and interest rate spread (St).7 US data are at quarterly
frequency and cover the period 1947Q1–2020Q1. Inflation is mea-
sured as the percentage change from preceding period of GDP implicit
price deflator (source: U.S. Bureau of Economic Analysis). Labour
share is defined as the amount of income paid out in wages, salaries,
and benefits in the US private business sector (source: Giandrea and
Sprague (2017) (1947Q1–2013Q4) and U.S. Bureau of Labor Statistics
(2014Q1–2020Q1)). Output gap is defined as the different between real
GDP (source: U.S. Bureau of Economic Analysis) and a quadratic time
trend. Interest rate term spread is defined as the difference between
long (10y) and short (3m) term interest rates (source: Federal Reserve
Bank of St. Louis). All variables (except for interest rates) are seasonally
adjusted.

The in-sample analysis is conducted through a comparison among
the new DS-PC model with dependence (equation (8)) and the DS-PC
model without dependence (equation (9)). The analysis proceeds as fol-
lows. First, we generate the series of expectations of inflation and real
marginal costs by estimating a rolling VAR model with 𝜋t , Lt , yt , and
St . The rolling window used to generate the expectations (wex) is equal
to 60 observations. The lag order of the VAR is set to two. In the sec-
ond step, we estimate (8) and (9) using a rolling Bayesian procedure
according to the prior specification and the Markov Chain Monte Carlo
(MCMC) procedure for posterior approximation given in section 3.2 to
check the statistically significance of key parameters.8 The rolling win-
dow used for the estimations of the models (wes) is of 40 observations. It
is well known (see, for example, Schorfheide, 2010; Bauwens and Koro-
bilis, 2013) that the Bayesian procedure is suitable for small sample.
Third, the Bayes factor measure to compare the in-sample performance
of the two models is applied (a full description of the Bayes factor is
given in section 3.3).

In the out-of-sample analysis, we use the four different Phillips curve
models described in section 2, and MSE and DA by Blaskowitz and Her-
wartz (2009, 2011) for the evaluation of the forecasts (both measures
are described in section 3.4). The out-of-sample analysis considers three
different out-of-sample periods, 1995Q1–2020Q1, 2000Q1–2020Q1,
and 2008Q1–2020Q1, three forecast horizons, h = 1,4,8, and

7 The assumption that agents form expectations with a forecasting unre-
stricted VAR is common in the Phillips curve literature – see, for example, Rudd
and Whelan (2005), Cogley and Sbordone (2008), Dupor et al. (2010). Interest
rate spread is taken into account since is a good predictor of the economic cycle
(see, for example, Wheelock and Wohar, 2009).

8 All of our estimates are based on 50,000 MCMC samples, a burn-in sample
of 10,000 iterations, and a thinning rate of 0.25 as to improve the efficiency of
the MCMC estimator.

wex = 60 and wes = 40.9
A robustness check for the in- and out-of-sample analyses is also

carried out. For the in-sample analysis, two exercises are performed:
(i) we consider two different values of wes equal to 50 and 60, respec-
tively, along with wex = 60 for the estimation of the key parameters
of the two dual stickiness models; and (ii) GDP deflator is first replaced
with consumer price index (CPI), and then output gap is used instead
of real marginal costs, both for wex = 60 and wes = 40.10 As for the
forecasts, we also consider the following three combinations wex = 60
and wes = 50, wex = 80 and wes = 40, and wex = 80 and wes = 50.
Further, we first replace GDP deflator with CPI, and then real marginal
costs with output gap, for wex = 60 and wes = 40.

3.2. Posterior distribution and numerical approximation

Equation (8) can be rewritten as

𝜋t = 𝜌D𝜋t−1 + 𝜁D
1 b′Xt + 𝜁D

2 c′
∞∑

k=0
𝜙kAkXt−k−1 + 𝜁N

1 e′mcΔXt

+ 𝜁N
2 (1 − 𝛾)d′Xt + 𝜁N

2 𝜏t ,

(12)

where b′, c′, and d′ corresponds to

b′ =
[
(1 − 𝛾)e′mc + 𝛾e′𝜋A

]
[I − 𝛾A]−1

c′ = (1 − 𝛾) (1 − 𝜙)
[
e′mc (A − I) + e′𝜋A

]
[I − 𝛾A]−1

d′ =
(

e′mc (A − I) + e′𝜋A
)
(I − 𝛾A)−1

and emc and e𝜋 are the selection vectors with 3p elements as defined in
Dupor et al. (2010).

Let y1∶T = (𝜋1,… , 𝜋T)′ be the T × 1 vector of observations, x1:T =
(X1,… ,XT ) the T × n matrix of covariates, and 𝜽 = (𝛾, 𝜙, 𝛿)′. The like-
lihood function is

L(y1∶T |𝜽) = T∏
t=1

(2𝜋𝜎2(𝜽))−
1
2 exp

{
− 1

2𝜎2(𝜽)𝜀t(𝜽)2
}

(13)

where

𝜀t(𝜽) = 𝜋t −
(
𝜷1(𝜽)′Xt + 𝜷2(𝜽)′Xt−1 +

K∑
k=1

𝜷2+k(𝜽)′Xt−k−1

)
(14)

with 𝜷1(𝜽) = 𝜁D
1 b + 𝜁N

1 emc + 𝜁N
2 (1 − 𝛾)d, 𝜷2(𝜽) = 𝜚De𝜋 + 𝜁D

2 c − 𝜁N
1 emc,

𝜷2+k(𝜽) = 𝜁D
2 𝜙

k(Ak)′c, k = 1,… ,K, where K indicates the truncation
value, and 𝜎(𝜽) = 𝜁N

2 . In the empirical analysis K is set equal to 5.11

To complete the Bayesian model, we elicit a prior distri-
bution on the parameter vector 𝜽 = (𝛾, 𝜙, 𝛿)′. We assume the
following uniform joint prior distribution 𝜋(𝜽) ∝ 𝕀Θ(𝜽), where
Θ = {𝜽s.t.𝜙 ∈ [0,1], 𝛾 ∈ [0,1], 𝛿 ∈ [0, min{(1 − 𝛾)𝜙, (1 − 𝜙)𝛾}],
∀ i, j}.

Given these prior distributions, the goal of the Bayesian analysis is
to know about the parameter 𝜽 from the joint posterior distribution,
𝜋(𝜽|y1:T ) ∝ 𝜋(𝜽)L(y1:T |𝜽). The posterior distribution is not tractable,
thus Markov Chain Monte Carlo (MCMC) procedure is applied to pro-
duce sample from this density and to approximate all posterior quan-
tities of interest. Our MCMC algorithm is a Metropolis-Hastings (MH)

9 The starting point of the three out-of-sample periods is selected on the basis
of three relevant events: the beginning of world-wide diffusion of information
and communication technology (ITC) (1995Q1), the peak of the ICT bubble
(2000Q1), and the housing bubble burst and the beginning of global financial
crisis (2008Q1).

10 Data for CPI (seasonally adjusted) are taken from Federal Reserve of St.
Louis (FRED) and cover the period 1947Q1–2020Q1.

11 The results are robust to different values of K.
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with the following target distribution:

f (𝛾, 𝜙, 𝛿|y1∶T ) ∝
(
𝜎2(𝜽)−

T
2 exp

{
− 1

2𝜎2(𝜽)

T∑
t=1

𝜀t(𝜽)2
}

𝕀Θ(𝜽). (15)

In order to impose the restriction on the parameters the follow-
ing re-parameterization is considered: (𝜃1, 𝜃2, 𝜃3)′ = g(𝝃), where 𝝃 =
(𝜉1, 𝜉2, 𝜉3), 𝜃1 = 𝜙(𝜉1), 𝜃2 = 𝜙(𝜉2) and 𝜃3 = 𝜙(𝜉3), with
𝜙(x) = 1∕(1 + exp(−x)) the logistic transform.

The random walk proposal distribution 𝝃∗ ∼  3(𝝃(j−1),Λ) is
applied, with Λ = diag{(0.01,0.01,0.01)} the scale matrix and 𝝃(j−1)

the value of the MH chain at the previous iteration. The log-acceptance
probability is

0 ∧
(

log f (g(𝝃∗)|𝜎2,y1∶T ) + J(𝝃̃∗) − log f (g(𝝃(j−1))|𝜎2,y1∶T ) − J(𝝃̃(j−1))
)
,

where J(𝝃) = ∑3
i=1 (log𝜙(𝜉i) − log(1 − 𝜙(𝜉i))) denotes the log-Jacobian

of the parameter transform used.

3.3. Bayes Factor

This section describes the Bayes Factor (BF) used to compare the in-
sample performance of the DS-PC model with dependence (2, see
equation (8)) with the DS-PC model without dependence (1, see
equation (9)). The BF is the ratio of the posterior normalizing constants
of models under comparison

BF21 = f (2|y1∶T )
f (1|y1∶T )

, (16)

where

f (j|y1∶T ) = mj(y1∶T )𝜋(j) (17)

is the model posterior, with 𝜋(j) the model prior and

mj(y1∶T ) = ∫ L(y1∶T |𝜽,j)𝜋(𝜽|j)d𝜽 (18)

the marginal likelihood. Following Geyer (1994) we evaluate the log-
arithmic BF 𝜅 = K2 − K1 with Kj = log f (j|y1∶T ) by maximizing the
quasi-likelihood function of a reverse logistic regression

𝓁n(𝜅) =
n∑

i=1
log p1(xi1,K1) +

n∑
i=1

log p2(xi2,K2) (19)

where

p(x|j) =
hj(x) exp(Kj)

h1(x) exp(K1) + h2(x) exp(K2)
, j = 1,2 (20)

is the probability assigned to the model j, n is the number of MCMC
draws for each model and xij = log f (y1∶T |𝜽(i),j) is the log-likelihood
of the model j evaluated at the i-th MCMC sample for each model.

3.4. Forecast accuracy measures

For the evaluation of the forecasts of the models (8)–(11), we use a
standard accuracy measure, MSE, and DA by Blaskowitz and Herwartz
(2011, 2014).12 As for the MSE, we have

MSE = 1
T

T∑
t=1

(𝜋t+h − 𝜋t,t+h)2, (21)

where 𝜋t + h is the actual values of inflation, 𝜋t+h is the forecasts of
inflation, and h represents the forecast horizon.

Let Xh
t and Yt + h be the h ahead forecast available at time t and

the realized value, respectively.13 Let us consider h = 1. Using the

12 For the directional accuracy, see also Chen et al. (2016) and Costantini et
al. (2016).

13 In our out-of-sample analysis, this corresponds to the predicted and realized
inflation, respectively.

indicator function I(•), the realized and predicted directions are given
gained as Ỹ t = I(Yt+1 − Yt > 0) and X̃t = I(X1

t − Yt > 0), respectively
(see Blaskowitz and Herwartz, 2011).

The (In-)correct directional forecast can be defined by the binary
variable Z̃t = I(X̃t = Ỹt). A loss function for directional forecast is given
by (see Blaskowitz and Herwartz, 2011):

LDA(X1
t ,Yt+1,Yt) =

{
a if Z̃t = 1
b if Z̃t = 0

(22)

where (a, b) ≠ (0,0). A correct direction forecast will take the value of
a, while an incorrectly predicted direction will take value of b. Usually
(a, b) = (1,0) or (a, b) = (1,−1). In this paper, we use (a, b) = (1,0) as
in Swanson and White (1997a,b), Diebold (2007) and Costantini et al.
(2016).

4. Empirical results

Fig. 1 reports in-sample estimates of pij and 𝛿 for the new DS-PC
model with dependence and of pij for the DS-PC model without depen-
dence in case of wex = 60 and wes = 40, respectively. The results
show that: (i)𝛿 is highly statistically significant; (ii) the estimates of pij
show a similar dynamics over time, but different magnitude; and (iii)
the new DS-PC model seems to give more weights to symmetric joint
probabilities (i.e., pij with i = j).

The parameter 𝛿, which measures the dependence among the events
of adjusting price and updating information, displays a reduction in
magnitude over time after some years of the occurrence of the finan-
cial crisis (see the vertical line in Fig. 1 for the financial crisis). This
may be due to the fact that firms may have experienced difficulties in
gathering information during the crisis, with a decreasing probability of
updating information. However, even during this period of uncertainty,
the parameter 𝛿 remains positive and statistically significant.

In order to establish the best in-sample performance among the two
DS-PC models, the new model (2) and the model with stickiness
independence (1), we use BF, which is the ratio K2∕K1 of the poste-
rior normalizing constants Kj of the two models under comparison (see
section 3.3). We evaluate the log-BF using the reversion logistic estima-
tor proposed in Geyer (1994). In Bayesian inference, the Jeffrey’s scale
(Kass and Raftery, 1995) provides the thresholds to compare and assess
the performance of two models. If the log-BF is larger than 5, there is
a very strong evidence in favour of 2 against 1. The dynamics in
Fig. 2 show that there is a very strong evidence in favour of the new
DS-PC model with dependent stickiness.14

For a robustness check, two further exercises are carried out.15 First,
the estimates illustrated in Fig. 1 are also obtained for wes = 50 and
wes = 60, and the results are reported in Figs. B1 and B2, respec-
tively (see Appendix B). The symmetric joint probabilities (p00 e p11) of
the DS-PC model with dependence are statistically significant and show
larger values than those of the model without dependence (see Figs. B1a
and B1d, and B2a and B2d, respectively). Further, the 𝛿 parameter is
also statistical significant, and shows a reduction after the financial cri-
sis as in Fig. 1. Second, GDP deflator is first replaced by CPI as infla-
tion measure (see Fig. B3), and then the output gap is used instead
of real marginal costs (see Fig. B4). When using CPI, the joint proba-
bilities are statistically significant and larger in value for the new DS-
PC model with dependence; the parameter 𝛿 is also statistical signif-
icant. Both the joint probabilities and the dependence parameter do
not show a decreasing tendency as in case of GDP deflator. This may

14 As pointed out in section 3.1, a battery of robustness checks is performed.
For reasons of space, the results for the Bayes factor are not reported here.
However, the results are qualitatively similar to those in Fig. 2.

15 For reasons of space, we report in B all the results of robustness checks.
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Fig. 1. Rolling estimates of key parameters for the model with dependent (solid lines) and independent (dashed lines) dual stickiness with wex = 60 and wes = 40,
GDP deflator as inflation measure, and real marginal costs as forcing variable. 90% confidence intervals (gray areas) refer to parameters estimates of the model with
dependent dual stickiness. p11, p00, p01, and p10 indicates the probabilities of the four possible events of setting price and updating information (see equation (1)). 𝛿
measures the dependence among the two events. All parameters are estimated by using a two-step rolling scheme described in section 3.1. The effective sample is
1972Q3-2020Q1. The vertical dotted line corresponds to 2007Q4.

Fig. 2. Rolling estimate of the logarithmic Bayes Factor (solid line) and the
very-strong evidence thresholds (dashed lines) following the Jeffrey’s scale of

evidence. Log BF
def
= log(BF)(2,1), where 2 indicates the new DS-PC model

with dependence and 1 is the DS-PC model without dependence. When log-BF
> 5, we have a very-strong evidence in favour of model 2; if log-BF < −5, there
is a very-strong evidence in favour of model 1. Log-BF is calculated using the
two-step rolling scheme procedure (see also notes in Fig. 1). The effective sample
is 1972Q3–2020Q1.
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Table 1
Mean square error (MSE) and directional accuracy (DA). wex = 60 and wes = 40, GDP
deflator as inflation measure, and real marginal costs as forcing variable.

Out-of-sample period: 1995Q1–2020Q1

MSE DA

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.47 0.48 1.21 1.37 0.62 0.63 0.59 0.54
h = 4 0.48 0.50 1.24 1.42 0.63 0.63 0.60 0.54
h = 8 0.54 0.55 1.32 1.53 0.62 0.62 0.58 0.50

Out-of-sample period: 2000Q1–2020Q1

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.54 0.55 1.34 1.52 0.64 0.63 0.60 0.56
h = 4 0.58 0.58 1.31 1.55 0.63 0.63 0.60 0.54
h = 8 0.63 0.64 1.35 1.62 0.64 0.65 0.59 0.52

Out-of-sample period: 2008Q1–2020Q1

Horizon∕models 1 2 3 4 1 2 3 4

h = 1 0.68 0.69 1.25 1.44 0.69 0.67 0.67 0.59
h = 4 0.75 0.75 1.46 1.63 0.65 0.65 0.65 0.57
h = 8 0.82 0.83 1.62 1.81 0.69 0.69 0.67 0.59

Notes: wex = 60 and wes = 40 denote the number of observations of the rolling window
to generate the expectations and estimate the Phillips curve, respectively; h = 1,4,8
indicate the forecast horizons; 1, 2, 3, and 4 denote the dual stickiness Phillips
curve model without dependence (equation (9)), the dual stickiness Phillips curve model
with dependence (equation (8)), the pure sticky price model (equation (10)) and the
pure sticky information model (equation (11)), respectively; the numbers of DA denote
the proportion of corrected predictions of the direction.

be attributed to the different features of CPI and GDP deflator.16 Simi-
lar results for the joint probabilities and the dependence parameter are
observed when output gap is used instead of real marginal costs as forc-
ing variable (see Fig. B4). All this shows that our findings are robust
to different rolling windows and measures of forcing variables, and the
dependence parameter plays a role in influencing the probability of
changing princes when firms update their information.

As far as the out-of-sample performance is concerned, the results for
MSE and DA in case of wex = 60 and wes = 40 are reported in Table 1.
When looking at the MSE, the prediction errors vary over the different
sub-sample periods and forecast horizons. More specifically, the fore-
casts tend to worsen in the last out-of-sample period (2008Q1–2020Q1)
for all the models, likely due to the impact of financial crisis on the pre-
dictions, and for h = 8, likely due to the increasing uncertainty. Slight
different findings are observed for DA over the three sub-sample peri-
ods, with larger values for this accuracy measure in the last sub-sample
period, while DA values do not change much over the forecast hori-
zons. The improvement of the forecasts in the last sub-sample period
may be due to the relatively persistent and negative dynamics of infla-
tion during the years of the crisis and afterwards (see, for example,
Granville and Zeng, 2019), making the prediction of the direction less
challenging. When looking into the performance of the single models, it
can be noticed that the two DS-PC models perform similarly across the
three forecast horizons (h = 1,4,8 quarters) and out-of-sample peri-
ods (1995Q1–2020Q1, 2000Q1–2020Q1, 2008Q1–2020Q1) in terms of
both MSE and DA, while the pure sticky price and pure sticky informa-
tion models do much worse, with the latter being the worst performer.

Tables B1–B3 illustrate the results of the first robustness check for
MSE and DA in case of wex = 60 and wes = 50, wex = 80 and wes = 40,

16 First, GDP deflator includes only domestic goods, while CPI includes all
goods bought by consumers, included foreign goods. Second, GDP deflator is
a measure of the prices of all goods and services, while the CPI is a measure
of only goods bought by consumers. This implies that CPI captures the prices
of goods not produced by domestic companies and reflects only the choices
of consumers. More importantly, the two inflation series exhibit a different
volatility (see, for example, McKnight et al., 2020).

and wex = 80 and wes = 40, respectively (see Appendix B). Some gen-
eral findings emerge. First, the use of a lager rolling window to generate
the expectations seems to produce better results in terms of MSE, while
DA do not vary substantially. Second, the results in terms of MSE for
all the models tend to worsen as the forecast horizon increases, and the
worst performance is uncovered in the last sub-sample period. Third,
the two dual stickiness models are equally competitive in terms of both
MSE and DA, and they do better than the two pure sticky models, with
a very few exceptions in case of DA for the pure sticky price model,
which seems to gains some ground (see Table B3). All these findings
seem to confirm those reported in Table 1.

Tables B4 and B5 display the results for MSE and DA for the second
robustness check. In particular, Table B4 includes those findings when
GDP deflator is replaced with CPI, whereas Table B5 reports the find-
ings in case of output gap instead of real marginal costs. Some general
evidence emerges. First, the two dual stickiness models are still equally
competitive and outperform the pure sticky models, both in terms of
MSE and DA. Second, when using CPI inflation instead of GDP deflator,
the forecasts tend to deteriorate, especially in terms of MSE (the impact
on DA is less pronounced). Yet, this result may depend on the features
of CPI as a measure of inflation. Third, the use of the output gap instead
of real marginal costs helps to improve the forecasts of all the models.
This result is in line with that obtained in Rudd and Whelan (2005).

5. Conclusions

This paper investigates the role of dependence in the sticky price
and sticky information Phillips curve. A new dual stickiness Phillips
curve is derived by assuming dependence among the events of setting
prices and updating information. The dependence is modelled through
a bivariate Bernoulli distribution. This is the first contribution of the
paper.

The performance of the new model with dependence is scrutinized
against other models through in- and out-of-sample analyses for infla-
tion using US data over the period 1947Q1–2020Q1. The in-sample
analysis is carried out for two dual stickiness Phillips curves, with and
without dependence. For the forecasts, two additional models, such as
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a pure sticky price model and a pure sticky information model, are also
taken into account. This is the second added value of the paper.

To estimate the models, a two-step procedure based on a rolling esti-
mation scheme is adopted. Expectations of inflation and real marginal
costs are first estimated by a rolling VAR model. Then, the parameters
of the different Phillips curves are estimated by Bayesian inference.

For the in-sample analysis, we proceed as follows. A rolling window
estimation of the key parameters of the two dual stickiness models is
first carried out to ascertain the significance of these parameters. Then,
the performance of these two models is compared by the Bayes factor.
Two robustness checks are also carried out. First, diverse combinations
of rolling windows for the expectations and the estimations of the mod-
els are considered. Second, a different measure of inflation, CPI, and a
forcing variable, output gap, are used.

The out-of-sample analysis is conducted using four different Phillips
curve models: the two dual stickiness models, a pure sticky price model
and a pure sticky information model. For the evaluation of the fore-
casts, we use the mean square error and the directional accuracy by
Blaskowitz and Herwartz (2009, 2011), three different out-of-sample
periods, 1995Q1–2020Q1, 2000Q1–2020Q1, and 2008Q1–2020Q1,
and three different forecast horizons, h = 1,4,8. Similarly to the in-
sample analysis, a robustness check is also performed.

The main results in-sample show that the key parameters of the two
dual stickiness Phillips curves are statistically significant: (i) the param-
eter that measures the dependence is positive; and (ii) the estimates of
the two models reveal that the joint probabilities related to the events of
setting price and updating information have a larger magnitude in case
of the dual stickiness model with dependence. Further, the comparison

among the two dual stickiness models through the Bayes factor point to
strong evidence in favour of the new model with stickiness dependence
with respect to the model without dependence. The robustness check
results seem to confirm those in the main exercise.

The out-of-sample findings unveil similar performances among the
two dual stickiness models over all the forecast horizons and across the
sub-sample periods in terms of mean square error and directional accu-
racy. Further, the two dual stickiness models outperform the pure sticky
models, both in terms of mean square error and directional accuracy.
Moreover, among the two pure sticky models, the pure sticky informa-
tion model records the worst performance, while the pure sticky price
model seems to gain some ground in terms of directional accuracy. In
general, these results indicate that the new dual stickiness model rep-
resents a good alternative to the model without dependence, and the
robustness checks confirm these conclusions.

All in all, some implications for policy makers and practitioners can
be drawn. A policy maker, who looks at both in and out-of-sample anal-
yses for policy interventions and predictions respectively, may opt for
the dual stickiness model with dependence given its performance in
both analyses. This is because the dependence parameter plays a sig-
nificant role for the events of setting price and updating information.
On the other hand, a practitioner may be primarily interested in the
predictions, and the dual stickiness model with no dependence may be
preferable, given its lesser complexity and its competitive forecasting
performance.
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Appendix A. Derivations of the model

A.1. Proof of equation (7)

By subtracting 𝛾pt on both sides of equation (4) of the main text, and after some manipulations, one yields:

𝜋t =
(1 − 𝛾)
𝛾

(qt − pt) . (A.1)

According to equation (6), qt can be written as

qt = (1 − 𝜙)Etp
f
t + 𝜙 (1 − 𝜙) Et−1pf

t + 𝜙
2 (1 − 𝜙)Et−2pf

t +…+ 𝛿
1 − 𝛾

(
pf

t − pb
t

)
. (A.2)

Equation (A.2) can be written in two different and equivalent ways:

qt = (1 − 𝜙) pf
t +𝜙 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−1pf
t +

𝛿
1 − 𝛾

(
pf

t − pb
t

)
(A.3)

qt = (1 − 𝜙)
∞∑

k=0
𝜙kEt−kpf

t +
𝛿

1 − 𝛾

(
pf

t − pb
t

)
. (A.4)

Focusing on equation (A.3) and noting that pf
t = Δpf

t + pf
t−1, we can write qt as follows:

qt =
[
(1 −𝜙) + 𝛿

1 − 𝛾

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡𝜓

pf
t + 𝜙 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−1

(
Δpf

t + pf
t−1

)
− 𝛿

1 − 𝛾 pb
t . (A.5)

Since

𝛿
1 − 𝛾 pb

t = 𝛿
1 − 𝛾 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−1pf
t

= 𝛿
1 − 𝛾 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−1

(
Δpf

t + pf
t−1

)
,

then equation (A.5) becomes
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qt = 𝜓pf
t + 𝜙 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−1pf
t−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡A

+ 𝜙 (1 − 𝜙)
∞∑

k=0
𝜙kEt−k−1Δpf

t −
𝛿

1 − 𝛾 (1 − 𝜙)
∞∑

k=0
𝜙kEt−k−1

(
Δpf

t + pf
t−1

)
. (A.6)

Now we focus on the quantity A. According to equation (A.4)

A = 𝜙(1 − 𝜙)
∞∑

k=0
𝜙kEt−k−1pf

t−1

= 𝜙qt−1 − 𝜙
𝛿

1 − 𝛾 (p
f
t−1 − pb

t−1)

= 𝜙qt−1 −𝜙
𝛿

1 − 𝛾 pf
t−1 + 𝜙

𝛿
1 − 𝛾 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−2pf
t−1. (A.7)

Inserting equation (A.7) into equation (A.6) and rearranging the quantities containing the term Δpf
t one obtains

qt = 𝜓pf
t + 𝜙qt−1 − 𝜙

𝛿
1 − 𝛾 pf

t−1 + 𝜙
𝛿

1 − 𝛾 (1 − 𝜙)
∞∑

k=0
𝜙kEt−k−2pf

t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t −

𝛿
1 − 𝛾 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−1pf
t−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡B

. (A.8)

The last term can be written as:

B = 𝛿
1 − 𝛾 (1 − 𝜙)

∞∑
k=0

𝜙kEt−k−1pf
t−1

= 𝛿
1 − 𝛾 (1 − 𝜙)

[
Et−1pf

t−1 + 𝜙
∞∑

k=0
𝜙kEt−k−2pf

t−1

]
. (A.9)

Substituting in equation (A.10) and rearranging terms, we obtain

qt = 𝜓pf
t + 𝜙qt−1−𝜙

𝛿
1 − 𝛾 pf

t−1 −
(1 − 𝜙) 𝛿

1 − 𝛾 pf
t−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=− 𝛿
1−𝛾 pf

t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t

+(1 − 𝜙) 𝛿
1 − 𝛾

∞∑
k=0

𝜙k
[
𝜙Et−k−2pf

t−1 − 𝜙Et−k−2pf
t−1

]
= 𝜓pf

t +𝜙qt−1 −
𝛿

1 − 𝛾 pf
t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t . (A.10)

Subtracting pt on both sides of (A.10), we have

qt − pt = 𝜓pf
t + 𝜙qt−1 −

𝛿
1 − 𝛾 pf

t−1 + (1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t − pt

= 𝜓pf
t +𝜙qt−1 −

𝛿
1 − 𝛾 pf

t−1 + (1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t − 𝜙𝜋t −𝜙pt−1 − (1 − 𝜙) pt ,

which holds the expression

qt − pt =
[
(1 − 𝜙) + 𝛿

1 − 𝛾

]
pf

t −
𝛿

1 − 𝛾 pf
t−1 + 𝜙 (qt−1 − pt−1) − 𝜙𝜋t − (1 −𝜙) pt + (1 − 𝜙)

[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t

= (1 − 𝜙)
(

pf
t − pt

)
+ 𝛿

1 − 𝛾 Δpf
t + 𝜙 (qt−1 − pt−1) − 𝜙𝜋t + (1 − 𝜙)

[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t . (A.11)

9
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Now we focus on the quantity Δpf
t . This variable, according to equation (5) (see the main text), is equal to

Δpf
t = (1 − 𝛾)Δp∗t + 𝛾(1 − 𝛾)

∞∑
j=0
𝛾 j
[
Etp∗t+j+1 − Et−1p∗t+j

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡F

. (A.12)

By using the rational expectation hypothesis, we can express the expectation at time t − k of p∗ in time t + j in the following way

Et−kp∗t+j = Et−k−1p∗t+j + 𝜏t−k, (A.13)

where 𝜏 t−k is a (random) variable which captures the revision of expectations in correspondence of an information updating between time t − k − 1
and t − k.17

We now consider the expression F in equation (A.12). We can write it in the following way by using equation (A.13)

Δpf
t = (1 − 𝛾)𝛿p∗t + 𝛾(1 − 𝛾)

{
Etp∗t+1 − Etp∗t + 𝜏t + 𝛾Etp∗t+2 − 𝛾Etp∗t+1 + 𝛾𝜏t + 𝛾2Etp∗t+3 − 𝛾

2Etp∗t+2 + 𝛾
2𝜏t +…

}
= (1 − 𝛾)Δp∗t + 𝛾(1 − 𝛾)

∞∑
j=0
𝛾 jEtΔp∗t+j+1 + 𝛾(1− 𝛾)

∞∑
j=0
𝛾 j𝜏t .

(A.14)

As j → ∞, the previous equation can be written as

Δpf
t = (1 − 𝛾)Δp∗t + 𝛾(1 − 𝛾)

∞∑
j=0
𝛾 jEtΔp∗t+j+1 + 𝛾𝜏t. (A.15)

Multiplying both side of equation (A.15) by 𝛿∕(1 − 𝛾), we have

𝛿
1 − 𝛾Δpf

t =
𝛿

1 − 𝛾

[
(1 − 𝛾)Δp∗t + 𝛾(1− 𝛾)

∞∑
j=0
𝛾 jEtΔp∗t+j+1 + 𝛾𝜏t

]
.

Now it is easy to show that equation (A.11) corresponds to equation (7) of the main text[
𝛾 + 𝜙 (1 − 𝛾)

1 − 𝛾

]
𝜋t = (1 − 𝜙)

(
pf

t − pt

)
+ 𝛾

1 − 𝛾 𝜙𝜋t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙kEt−k−1Δpf
t

+𝛿Δp∗t + 𝛿𝛾
∞∑
j=0
𝛾 jEtΔp∗t−j+1 + 𝛿𝛾𝜏t . (A.16)

A.2. Proof of equation (8)

According to the optimal price p∗t expressed as a function of the marginal cost, we have[
𝛾 + 𝜙 (1 − 𝛾)

1 − 𝛾

]
𝜋t = (1 − 𝜙)

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEtmcn

t+j − pt

]

+ 𝛾
1 − 𝛾 𝜙𝜋t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙k

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt−k−1

(
Δmct+j + 𝜋t+j

)]

+𝛿 (𝜋t +Δmct) + 𝛿𝛾
∞∑
j=0
𝛾 jEt

(
Δmct+j+1 + 𝜋t+j+1

)
+ 𝛿𝛾𝜏t . (A.17)

Since 𝛾 < 1, it is possible to import pt inside the summation in the first term in the square brackets on the right-hand side of equation (A.17),
thus obtaining

17 In particular, note that E
[
𝜏t−k

]
= 0.

10



R. Casarin, M. Costantini and A. Paradiso Economic Modelling 105 (2021) 105644

[
𝛾 + 𝜙 (1 − 𝛾)

1 − 𝛾

]
𝜋t = (1 − 𝜙)

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt

(
mcn

t+j − pt

)]

+ 𝛾
1 − 𝛾 𝜙𝜋t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙k

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt−k−1

(
Δmct+j + 𝜋t+j

)]

+𝛿 (𝜋t +Δmct) + 𝛿𝛾
∞∑
j=0
𝛾 jEt

(
Δmct+j+1 + 𝜋t+j+1

)
+ 𝛿𝛾𝜏t . (A.18)

Noting that

mcn
t+j − pt =

{
mct , for j = 0
mct+j + 𝜋t+1 + · · · + 𝜋t+j, for j ⩾ 1,

we can write equation (A.18) as:[
𝛾 + 𝜙 (1 − 𝛾)

1 − 𝛾

]
𝜋t = (1 − 𝜙)

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt

(
mct+j +

j∑
k=1

𝜋t+k

)]

+ 𝛾
1 − 𝛾 𝜙𝜋t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙k

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt−k−1

(
Δmct+j + 𝜋t+j

)]

+𝛿 (𝜋t +Δmct) + 𝛿𝛾
∞∑
j=0
𝛾 jEt

(
Δmct+j+1 + 𝜋t+j+1

)
+ 𝛿𝛾𝜏t . (A.19)

or equivalently as[
𝛾 + (1 − 𝛾) (𝜙− 𝛿)

1 − 𝛾

]
𝜋t = (1 − 𝜙)

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt

(
mct+j +

j∑
k=1

𝜋t+k

)]

+ 𝛾
1 − 𝛾 𝜙𝜋t−1

+(1 − 𝜙)
[
𝜙− 𝛿

1 − 𝛾

] ∞∑
k=0

𝜙k

[
(1 − 𝛾)

∞∑
j=0
𝛾 jEt−k−1

(
Δmct+j + 𝜋t+j

)]

+𝛿Δmct + 𝛿𝛾
∞∑
j=0
𝛾 jEt

(
Δmct+j+1 + 𝜋t+j+1

)
+ 𝛿𝛾𝜏t , (A.20)

from which it is possible to obtain the result in equation (8) of the main text.

A.3. Proof of equation (10)

From (8), setting 𝛿 = 0 and 𝜙 = 0 we have

𝜋t =
(1 − 𝛾)
𝛾

(1 − 𝛾)
∞∑
j=0
𝛾 jEt

(
mct+j +

j∑
k=1

𝜋t+k

)

= (1 − 𝛾)
𝛾

[
(1 − 𝛾)Etmct + (1 − 𝛾)

∞∑
j=1
𝛾 jEt(mcn

t+j − pt)
]

= (1 − 𝛾)2
𝛾

mct + (1 − 𝛾)Et(p
f
t+1 − pt).

Since pt = 𝛾pt−1 + (1 − 𝛾)pf
t , it is immediate to have Et

𝜋t+1
(1−𝛾) = Et(p

f
t+1 − pt). So that, we have

𝜋t = 𝜅mct + Et𝜋t+1. (A.21)
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Appendix B. Robustness checks

Fig. B1 Rolling estimates of key parameters for the model with dependent (solid lines) and independent (dashed lines) dual stickiness with wex = 60 and wes = 50, GDP deflator as
inflation measure, and real marginal costs as forcing variable. 90% confidence intervals (gray areas) refer to parameters estimates of the model with dependent dual stickiness. p11, p00,
p01, and p10 indicates the probabilities of the four possible events of setting price and updating information (see equation (1)). 𝛿 measures the dependence among the two events. All
parameters are estimated by using a two-step rolling scheme described in section 3.1. The effective sample is 1975Q1-2020Q1. The vertical dotted line corresponds to 2007Q4.
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Fig. B2 Rolling estimates of key parameters for the model with dependent (solid lines) and independent (dashed lines) dual stickiness with wex = 60 and wes = 60, GDP deflator as
inflation measure, and real marginal costs as forcing variable. 90% confidence intervals (gray areas) refer to parameters estimates of the model with dependent dual stickiness. p11, p00,
p01, and p10 indicates the probabilities of the four possible events of setting price and updating information (see equation (1)). 𝛿 measures the dependence among the two events. All
parameters are estimated by using a two-step rolling scheme described in section 3.1. The effective sample is 1977Q3-2020Q1. The vertical dotted line corresponds to 2007Q4.
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Fig. B3 Rolling estimates of key parameters for the model with dependent (solid lines) and independent (dashed lines) dual stickiness with wex = 60 and wes = 40, CPI inflation, and
real marginal costs as forcing variable. 90% confidence intervals (gray areas) refer to parameters estimates of the model with dependent dual stickiness. p11, p00, p01, and p10 indicates
the probabilities of the four possible events of setting price and updating information (see equation (1)). 𝛿 measures the dependence among the two events. All parameters are
estimated by using a two-step rolling scheme described in section 3.1. The effective sample is 1972Q3-2020Q1. The vertical dotted line corresponds to 2007Q4.
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Fig. B4 Rolling estimates of key parameters for the model with dependent (solid lines) and independent (dashed lines) dual stickiness with wex = 60 and wes = 40, GDP deflator as
inflation measure, and output gap as forcing variable. 90% confidence intervals (gray areas) refer to parameters estimates of the model with dependent dual stickiness. p11, p00, p01,
and p10 indicates the probabilities of the four possible events of setting price and updating information (see equation (1)). 𝛿 measures the dependence among the two events. All
parameters are estimated by using a two-step rolling scheme described in section 3.1. The effective sample is 1972Q3-2020Q1. The vertical dotted line corresponds to 2007Q4.

15



R. Casarin, M. Costantini and A. Paradiso Economic Modelling 105 (2021) 105644

Table B1
Mean square error (MSE) and directional accuracy (DA). wex = 60 and wes = 50, GDP deflator as
inflation measure, and real marginal costs as forcing variable

Out-of-sample period: 1995Q1–2020Q1

MSE DA

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.54 0.56 1.34 1.60 0.60 0.61 0.56 0.50
h = 4 0.59 0.60 1.49 1.77 0.61 0.60 0.56 0.50
h = 8 0.66 0.69 1.84 2.07 0.58 0.58 0.55 0.50

Out-of-sample period: 2000Q1–2020Q1

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.63 0.63 1.36 1.67 0.63 0.65 0.59 0.51
h = 4 0.67 0.69 1.54 1.86 0.60 0.60 0.58 0.49
h = 8 0.74 0.78 1.92 2.21 0.60 0.60 0.57 0.51

Out-of-sample period: 2008Q1–2020Q1

Horizon∕models 1 2 3 4 1 2 3 4

h = 1 0.79 0.80 1.50 1.71 0.73 0.71 0.67 0.59
h = 4 0.84 0.85 1.51 1.76 0.71 0.67 0.67 0.59
h = 8 0.73 0.75 1.47 1.79 0.67 0.67 0.63 0.57

Notes: wex = 60 and wes = 50 denote the number of observations of the rolling window to
generate the expectations and estimate the Phillips curve, respectively; h = 1,4,8 indicate the
forecast horizons; 1, 2, 3, and 4 denote the dual stickiness Phillips curve model without
dependence (equation (9)), the dual stickiness Phillips curve model with dependence (equation
(8)), the pure sticky price model (equation (10)) and the pure sticky information model (equa-
tion (11)), respectively; the numbers of DA denote the proportion of corrected predictions of the
direction.

Table B2
Mean square error (MSE) and directional accuracy (DA). wex = 80 and wes = 40, GDP deflator as
inflation measure, and real marginal costs as forcing variable

Out-of-sample period: 1995Q1–2020Q1

MSE DA

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.32 0.32 0.81 0.86 0.63 0.63 0.64 0.61
h = 4 0.35 0.35 0.90 0.90 0.62 0.62 0.61 0.58
h = 8 0.41 0.41 1.00 1.12 0.64 0.62 0.60 0.54

Out-of-sample period: 2000Q1–2020Q1

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.38 0.37 0.82 0.97 0.62 0.62 0.60 0.57
h = 4 0.40 0.40 0.94 1.03 0.63 0.62 0.59 0.55
h = 8 0.48 0.47 1.09 1.23 0.63 0.62 0.60 0.53

Out-of-sample period: 2008Q1–2020Q1

Horizon∕models 1 2 3 4 1 2 3 4

h = 1 0.48 0.47 0.97 1.07 0.63 0.63 0.61 0.59
h = 4 0.52 0.51 1.07 1.15 0.63 0.61 0.63 0.55
h = 8 0.63 0.62 1.18 1.40 0.67 0.67 0.65 0.53

Notes: wex = 80 and wes = 40 denote the number of observations of the rolling window to
generate the expectations and estimate the Phillips curve, respectively; h = 1,4,8 indicate the
forecast horizons; 1, 2, 3, and 4 denote the dual stickiness Phillips curve model without
dependence (equation (9)), the dual stickiness Phillips curve model with dependence (equation
(8)), the pure sticky price model (equation (10)) and the pure sticky information model (equa-
tion (11)), respectively; the numbers of DA denote the proportion of corrected predictions of the
direction.
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Table B3
Mean square error (MSE) and directional accuracy (DA). wex = 80 and wes = 50, GDP deflator as
inflation measure, and real marginal costs as forcing variable

Out-of-sample period: 1995Q1–2020Q1

MSE DA

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.41 0.42 1.05 1.14 0.59 0.57 0.57 0.50
h = 4 0.42 0.42 1.08 1.19 0.60 0.60 0.56 0.50
h = 8 0.42 0.43 1.17 1.36 0.60 0.60 0.60 0.50

Out-of-sample period: 2000Q1–2020Q1

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.49 0.49 1.18 1.28 0.59 0.58 0.59 0.51
h = 4 0.48 0.50 1.26 1.37 0.60 0.60 0.57 0.52
h = 8 0.50 0.51 1.37 1.55 0.69 0.67 0.69 0.57

Out-of-sample period: 2008Q1–2020Q1

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.64 0.63 1.15 1.31 0.63 0.63 0.65 0.53
h = 4 0.64 0.64 1.15 1.29 0.67 0.67 0.63 0.55
h = 8 0.64 0.64 1.27 1.50 0.69 0.67 0.69 0.57

Notes: wex = 80 and wes = 50 denote the number of observations of the rolling window to
generate the expectations and estimate the Phillips curve, respectively; h = 1,4,8 indicate the
forecast horizons; 1, 2, 3, and 4 denote the dual stickiness Phillips curve model without
dependence (equation (9)), the dual stickiness Phillips curve model with dependence (equation
(8)), the pure sticky price model (equation (10)) and the pure sticky information model (equa-
tion (11)), respectively; the numbers of DA denote the proportion of corrected predictions of the
direction.

Table B4
Mean square error (MSE) and directional accuracy (DA). wex = 60 and wes = 40, CPI inflation, and
real marginal costs as forcing variable

Out-of-sample period: 1995Q1–2020Q1

MSE DA

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.93 0.97 1.67 1.74 0.60 0.58 0.55 0.55
h = 4 0.94 0.97 1.67 1.77 0.59 0.63 0.55 0.55
h = 8 0.94 0.97 1.68 1.83 0.62 0.61 0.54 0.56

Out-of-sample period: 2000Q1–2020Q1

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 1.10 1.14 1.93 1.99 0.60 0.59 0.56 0.56
h = 4 1.11 1.15 1.85 1.96 0.60 0.62 0.57 0.56
h = 8 1.10 1.14 1.77 1.93 0.64 0.64 0.56 0.59

Out-of-sample period: 2008Q1–2020Q1

Horizon∕models 1 2 3 4 1 2 3 4

h = 1 1.42 1.48 1.94 1.89 0.63 0.61 0.61 0.59
h = 4 1.26 1.31 1.98 1.91 0.59 0.61 0.61 0.59
h = 8 1.33 1.38 2.17 2.13 0.59 0.61 0.57 0.57

Notes: wex = 60 and wes = 40 denote the number of observations of the rolling window to
generate the expectations and estimate the Phillips curve, respectively; h = 1,4,8 indicate the
forecast horizons; 1, 2, 3, and 4 denote the dual stickiness Phillips curve model without
dependence (equation (9)), the dual stickiness Phillips curve model with dependence (equation
(8)), the pure sticky price model (equation (10)) and the pure sticky information model (equa-
tion (11)), respectively; the numbers of DA denote the proportion of corrected predictions of the
direction.
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Table B5
Mean square error (MSE) and directional accuracy (DA). wex = 60 and wes = 40, GDP deflator as
inflation measure, and output gap as forcing variable

Out-of-sample period: 1995Q1–2020Q1

MSE DA

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.41 0.43 1.23 1.35 0.65 0.67 0.59 0.52
h = 4 0.44 0.45 1.15 1.31 0.64 0.65 0.59 0.53
h = 8 0.46 0.46 0.91 1.07 0.67 0.66 0.66 0.58

Out-of-sample period: 2000Q1–2020Q1

Horizons∕models 1 2 3 4 1 2 3 4

h = 1 0.49 0.51 1.37 1.55 0.67 0.68 0.62 0.52
h = 4 0.53 0.54 1.29 1.52 0.65 0.66 0.62 0.54
h = 8 0.56 0.56 1.07 1.28 0.70 0.68 0.67 0.58

Out-of-sample period: 2008Q1–2020Q1

Horizon∕models 1 2 3 4 1 2 3 4

h = 1 0.57 0.58 1.11 1.39 0.71 0.73 0.67 0.55
h = 4 0.64 0.65 1.18 1.51 0.69 0.69 0.65 0.55
h = 8 0.71 0.72 1.04 1.35 0.73 0.69 0.71 0.59

Notes: wex = 60 and wes = 40 denote the number of observations of the rolling window to
generate the expectations and estimate the Phillips curve, respectively; h = 1,4,8 indicate the
forecast horizons; 1, 2, 3, and 4 denote the dual stickiness Phillips curve model without
dependence (equation (9)), the dual stickiness Phillips curve model with dependence (equation
(8)), the pure sticky price model (equation (10)) and the pure sticky information model (equa-
tion (11)), respectively; the numbers of DA denote the proportion of corrected predictions of the
direction.
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