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Abstract In this article a stabilizing feedback control is computed for a semilinear
parabolic partial differential equation utilizing a nonlinear model predictive (NMPC)
method. In each level of the NMPC algorithm the finite time horizon open loop
problem is solved by a reduced-order strategy based on proper orthogonal decompo-
sition (POD). A stability analysis is derived for the combined POD-NMPC algorithm
so that the lengths of the finite time horizons are chosen in order to ensure the
asymptotic stability of the computed feedback controls. The proposed method is
successfully tested by numerical examples.

Keywords Dynamic programming · Nonlinear model predictive control ·
Asymptotic stability · Suboptimal control · Proper orthogonal decomposition
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1 Introduction

In many control problems it is desired to design a stabilizing feedback control, but
often the closed-loop solution can not be found analytically, even in the unconstrained
case since it involves the solution of the corresponding Hamilton-Jacobi-Bellman
equations see, e.g., [7, 11] and [22]. But this approach requires the solution of a
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nonlinear hyperbolic partial differential equation with a high-dimensional spatial
variable.

One approach to circumvent this problem is the repeated solution of open-loop
optimal control problems. The first part of the resulting open-loop input signal is
implemented and the whole process is repeated. Control approaches using this strat-
egy are referred to as model predictive control (MPC), moving horizon control or
receding horizon control. In general one distinguishes between linear and nonlinear
MPC (NMPC). In linear MPC, linear models are used to predict the system dynam-
ics and considers linear constraints on the states and inputs. Note that even if the
system is linear, the closed loop dynamics are nonlinear due to the presence of con-
straints. NMPC refers to MPC schemes that are based on nonlinear models and/or
consider a nonquadratic cost functional and general nonlinear constraints. Although
linear MPC has become an increasingly popular control technique used in industry, in
many applications linear models are not sufficient to describe the process dynamics
adequately and nonlinear models must be applied. This inadequacy of linear mod-
els is one of the motivations for the increasing interest in nonlinear MPC; see. e.g.,
[3, 12, 15, 24]. The prediction horizon plays a crucial role in MPC algorithms. For
instance, the quasi infinite horizon NMPC allows an efficient formulation of NMPC
while guaranteeing stability and the performances of the closed-loop as shown in [4,
13, 19] under appropriate assumptions. For the purpose of our paper we will use a
different approach since we will not deal with terminal constraints.

Since the computational complexity of NMPC schemes grows rapidly with the
length of the optimization horizon, estimates for minimal stabilizing horizons are of
particular interest to ensure stability while being computationally fast. Stability and
suboptimality analysis for NMPC schemes without stabilizing constraints are studied
in [15, Chapter 6], where the authors give sufficient conditions ensuring asymptotic
stability with minimal finite prediction horizon. Note that the stabilization of the
problem and the computation of the minimal horizon involve the (relaxed) dynamic
programming principle (DPP); see [16, 23]. This approach allows estimates of the
finite prediction horizon based on controllability properties of the dynamical system.

Since several optimization problems have to be solved in the NMPC method, it is
reasonable to apply reduced-order methods to accelerate the NMPC algorithm. Here,
we utilize proper orthogonal decomposition (POD) to derive reduced-order models
for nonlinear dynamical systems; see, e.g., [18, 28] and [17]. The application of POD
is justified by an a priori error analysis for the considered nonlinear dynamical sys-
tem, where we combine techniques from [20, 21] and [27]. Let us refer to [14], where
the authors also combine successfully an NMPC scheme with a POD reduced-order
approach. However, no analysis is carried out ensuring the asymptotic stability of
the proposed NMPC-POD scheme. Our contribution focusses on the stability analy-
sis of the POD-NMPC algorithm without terminal constraints, where the dynamical
system is a semilinear parabolic partial differential equation with an advection term.
In particular, we study a minimal finite horizon for the reduced-order approximation
such that it guarantees the asymptotic stability of the surrogate model. Our approach
is motivated by the work [6]. The main difference here is that we have added an
advection term in the dynamical system and utilize a POD suboptimal strategy to
solve the open-loop problems. Since the minimal prediction horizon can be large, the
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numerical solution of the open-loop problems is very expensive within the NMPC
algorithm. The application of the POD model reduction reduces efficiently the com-
putational cost by computing suboptimal solutions. But we involve this suboptimality
in our stability analysis in order to ensure the asymptotic stability of our NMPC
scheme.

The paper is organized in the following manner: in Section 2 we formulate our
infinite horizon optimal control problem governed by a semilinear parabolic equation
and bilateral control constraints. The NMPC algorithm is introduced in Section 3. For
the readers convenience, we recall the known results of the stability analysis. Further,
the stability theory is applied to our underlying nonlinear semilinear equations and
bilateral control constraints. In Section 4 we investigate the finite horizon open loop
problem which has to be solved at each level of the NMPC algorithm. Moreover,
we introduce the POD reduced-order approach and prove an a-priori error estimate
for the semilinear parabolic equation. Finally, numerical examples are presented in
Section 5.

2 Formulation of the control system

Let � = (0, 1) ⊂ R be the spatial domain. For the initial time t◦ ∈ R
+
0 = {s ∈

R | s ≥ 0} we define the space-time cylinder Q = � × (t◦, ∞). By H = L2(�)

we denote the Lebesgue space of (equivalence classes of) functions which are
(Lebesgue) measurable and square integrable. We endow H by the standard inner
product – denoted by 〈· , ·〉H – and the associated induced norm ‖ϕ‖H = 〈ϕ, ϕ〉1/2H .
Furthermore, V = H 1

0 (�) ⊂ H stands for the Sobolev space

V =
{
ϕ ∈ H

∣∣∣∣
∫

�

|ϕ′(x)|2 dx < ∞ and ϕ(0) = ϕ(1) = 0

}
.

Recall that both H and V are Hilbert spaces. In V we use the inner product

〈ϕ, φ〉V =
∫

�

ϕ′(x)φ′(x) dx for ϕ, φ ∈ V

and set ‖ϕ‖V = 〈ϕ, ϕ〉1/2V for ϕ ∈ V . For more details on Lebesgue and Sobolev
spaces we refer the reader to [11], for instance. When the time t is fixed for a given
function ϕ : Q → R, the expression ϕ(t) stands for a function ϕ(· , t) considered as
a function in � only. Recall that the Hilbert space L2(Q) can be identified with the
Bochner space L2(t◦, ∞;H).

We consider the following control system governed by a semilinear parabolic par-
tial differential equation: y = y(x, t) solves the semilinear initial boundary value
problem

yt − θyxx + yx + ρ(y3 − y) = u in Q, (2.1a)

y(0, ·) = y(1, ·) = 0 in (t◦, ∞), (2.1b)

y(t◦) = y◦ in �. (2.1c)
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In Eq. (2.1a) it is assumed that the control u = u(x, t) belongs to the set of admissible
control inputs

Uad(t◦) = {u ∈ U(t◦) | u(x, t) ∈ Uad for almost all (f.a.a.) (x, t) ∈ Q } , (2.2)

where U(t◦) = L2(t◦, ∞;H) and Uad = {u ∈ R | ua ≤ u ≤ ub} with given ua ≤
0 ≤ ub . The parameters θ and ρ satisfy

(θ, ρ) ∈ Dad =
{
(θ̃ , ρ̃) ∈ R

2
∣∣∣ θa ≤ θ̃ and ρa ≤ ρ̃

}

with positive θa and ρa . Further, in Eq. (2.1c) the initial condition y◦ = y◦(x) is
supposed to belong to H .

A solution to Eqs. (2.1a–2.1c) is interpreted in the weak sense as follows: for given
(t◦, y◦) ∈ R

+
0 × H and u ∈ Uad(t◦) we call y a weak solution to Eqs. (2.1a–2.1c)

for fixed (θ, ρ) ∈ Dad if y(t) ∈ V , yt (t) ∈ V ′ hold f.a.a. t ≥ t◦ and y satisfies
y(t◦) = y◦ in H as well as

d

dt
〈y(t), ϕ〉H +

∫
�

θyx(t)ϕ
′ +

(
yx(t) + ρ(y3(t) − y(t))

)
ϕ dx =

∫
�

u(t)ϕ dx

(2.3)
for all ϕ ∈ V and f.a.a. t > t◦. Here, yt (t) stands for the distributional derivative with
respect to the time variable satisfying [10, p. 477]

d

dt
〈y(t), ϕ〉H = 〈yt (t), ϕ〉V ′,V for all ϕ ∈ V.

The following result is proved in [8], for instance.

Proposition 2.1 For given (t◦, y◦) ∈ R
+
0 × H and u ∈ Uad(t◦) there exists a unique

weak solution y = y[u,t◦,y◦] to Eqs. (2.1a–2.1c) for every (θ, ρ) ∈ Dad .

Let (t◦, y◦) ∈ R
+
0 ×H be given. Due to Proposition 2.1 we can define the quadratic

cost functional:

Ĵ (u; t◦, y◦) := 1

2

∫ ∞

t◦
‖y[u,t◦,y◦](t) − yd‖2H dt + λ

2

∫ ∞

t◦
‖u(t)‖2H dt (2.4)

for all u ∈ U(t◦) ⊃ Uad(t◦), where y[u,t◦,y◦] denotes the unique weak solution to
Eqs. (2.1a–2.1c). We suppose that yd = yd(x) is a given desired stationary state in
H (e.g., the equilibrium yd = 0) and that λ > 0 denotes a fixed weighting parameter.
Then we consider the nonlinear infinite horizon optimal control problem

min Ĵ (u; t◦, y◦) subject to (s.t.) u ∈ Uad(t◦). (2.5)

Suppose that the trajectory y is measured at discrete time instances

tn = t◦ + n�t, n ∈ N,

where the time step �t > 0 stands for the time step between two measurements.
Thus, we want to select a control u ∈ Uad(t) such that the associated trajectory
y[u,t◦,y◦] follows a given desired state yd as good as possible. This problem is called
a tracking problem, and, if yd = 0 holds, a stabilization problem.
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Since our goal is to be able to react to the current deviation of the state y at time
t = tn from the given reference value yd , we would like to have the control in
feedback form, i.e., we want to determine a mapping μ : H → Uad(t◦) with
u(t) = μ(y(t)) for t ∈ [tn, tn+1].

3 Nonlinear model predictive control

We present an NMPC approach to compute a mapping μ which allows a represen-
tation of the control in feedback form. For more details we refer the reader to the
monographs [15, 24], for instance.

3.1 The NMPC method

To introduce the NMPC algorithm we write the weak form of our control system
(2.1a–2.1c) as a parametrized nonlinear dynamical system. For (θ, ρ) ∈ Dad let us
introduce the θ -and ρ-dependent nonlinear mapping F which maps the space V ×H

into the dual space V ′ of V as follows:

F(ϕ, v) = θϕxx + ϕx + ρ(ϕ3 − ϕ) − v for (ϕ, v) ∈ V × H.

Then, we can express Eq. (2.3) as the nonlinear dynamical system

y ′(t) = F(y(t), u(t)) ∈ V ′ for all t > t◦, y(t◦) = y◦ in H (3.1)

for given (t◦, y◦) ∈ R
+
0 × H . The cost functional has been already introduced in

Eq. (2.4). Summarizing, we want to solve the following infinite horizon minimization
problem

min Ĵ (u; t◦, y◦) =
∫ ∞

t◦
	
(
y[u,t◦,y◦](t), u(t)

)
dt s.t. u ∈ Uad(t◦), (P(to))

where we have defined the running quadratic cost as

	(ϕ, v) = 1

2

(
‖ϕ − yd‖2H + λ ‖v‖2H

)
for ϕ, v ∈ H. (3.2)

If we have determined a state feedback μ for Eq. (P(to)), the control u(t) = μ(y(t))

allows a closed loop representation for t ∈ [t◦, ∞). Then, for a given initial condition
y0 ∈ H we set t◦ = 0, y◦ = y0 in Eq. (3.1) and insert μ to obtain the closed-loop
form

y′(t) = F(y(t), μ(y(t))) in V ′ for t ∈ (t◦, ∞),

y(t◦) = y◦ in H.
(3.3)

Note that the infinite horizon problem may be very hard to solve due to the dimen-
sionality of the problem. On the other hand it guarantees the stabilization of the
problem which is very important for certain applications. In an NMPC algorithm a
state feedback law is computed for Eq. (P(to)) by solving a sequence of finite time
horizon problems.
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To formulate the NMPC algorithm we introduce the finite horizon quadratic cost
functional as follows: for (t◦, y◦) ∈ R

+
0 × H and u ∈ U

N
ad(t◦) we set

Ĵ N (u; t◦, y◦) =
∫ tN◦

t◦
	
(
y[u,t◦,y◦](t), u(t)

)
dt,

where N is a natural number, tN◦ = t◦ + N�t is the final time and N�t denotes the
length of the time horizon for the chosen time step �t > 0. Further, we introduce the
Hilbert space UN(t◦) = L2(t◦, tN◦ ; H) and the set of admissible controls

U
N
ad(t◦) =

{
u ∈ U

N(t◦)
∣∣∣ u(x, t) ∈ Uad f.a.a. (x, t) ∈ QN

}

withQN = �×(t◦, tN◦ ) ⊂ Q; compare (2.2). In Algorithm 1 the method is presented.

Algorithm 1 (NMPC algorithm)

Require: time step �t > 0, finite horizon N ∈ N, weighting parameter λ > 0.
1: for n = 0, 1, 2, . . . do
2: Measure the state y(tn) ∈ V of the system at tn = n�t .
3: Set t◦ = tn = n�t , y◦ = y(tn) and compute a global solution to

min Ĵ N (u; t◦, y◦) s.t. u ∈ U
N
ad(t◦). (PN (t◦))

We denote the obtained optimal control by ūN .
4: Define the NMPC feedback value μN(t; t◦, y◦) = ūN (t), t ∈ (t◦, t◦ + �t]

and use this control to compute the associated state y = y[μN(·),t◦,y◦] by
solving (3.1) on [t◦, t◦ + �t].

5: end for

We store the optimal control on the first subinterval [t◦, t◦ + �t] = [0, �t] and
the associated optimal trajectory. Then, we initialize a new finite horizon optimal
control problem whose initial condition is given by the optimal trajectory ȳ(t) =
y[μN(·),t◦,y◦](t) at t = t◦ + �t using the optimal control μN(t; t◦, y◦) = ūN (t) for
t ∈ (t◦, t◦ + �t] . We iterate this process by setting t◦ = t◦ + �t . Of course, the
larger the horizon, the better the approximation one can have, but we would like to
have the minimal horizon which can guarantee stability [16]. Note that Eq. (PN (t◦))
is an open loop problem on a finite time horizon [t◦, t◦ +N�t] which will be studied
in Section 4.

3.2 Dynamic programming principle (DPP) and asymptotic stability

For the reader’s convenience we now recall the essential theoretical results from
dynamic programming and stability analysis. Let us first introduce the so called value
function v defined as follows for an infinite horizon optimal control problem:

v(t◦, y◦) := inf
u∈Uad (t◦)

Ĵ (u; t◦, y◦) for (t◦, y◦) ∈ R
+
0 × H.
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Let N ∈ N be chosen. The DDP states that the value function v satisfies for any
k ∈ {1, . . . , N} with tk◦ = tk + k�t :

v(t◦, y◦) = inf
u∈Uk

ad (t◦)

{∫ tk◦

t◦
	
(
y[u,t◦,y◦](t), u(t)

)
dt

+v
(
t◦ + k�t, y[u,t◦,y◦](t◦ + k�t)

)}

which holds under very general conditions on the data; see, e.g., [7] for more details.
The value function for the finite horizon problem (PN (t◦)) is of the following form:

vN(t◦, y◦) = inf
u∈UN

ad (t◦)
Ĵ N (u; t◦, y◦) for (t◦, y◦) ∈ R

+
0 × H.

The value function vN satisfies the DPP for the finite horizon problem for t◦ + k�t ,
0 < k < N :

vN(t◦, y◦) = inf
u∈Uk

ad (t◦)

{∫ t◦+k�t

t◦
	
(
y[u,t◦,y◦](t), u(t)

)
dt

+vN−k
(
y[u,t◦,y◦](t◦ + k�t)

)}
.

Nonlinear stability properties can be expressed by comparison functions which we
recall here for the readers convenience [15, Definition 2.13].

Definition 3.1 We define the following classes of comparison functions:

K = {
β : R+

0 → R
+
0

∣∣β is continuous, strictly increasing and β(0) = 0
}
,

K∞ = {
β : R+

0 → R
+
0

∣∣β ∈ K, β is unbounded
}
,

L =
{
β : R+

0 → R
+
0

∣∣∣βis continuous, strictly decreasing, lim
t→∞ β(t) = 0

}
,

KL = {
β : R+

0 × R
+
0 → R

+
0

∣∣β is continuous, β(· , t) ∈ K, β(r, ·) ∈ L
}
.

Utilizing a comparison function β ∈ KL we introduce the concept of asymptotic
stability; see, e.g. [15, Definition 2.14].

Definition 3.2 Let y[μ(·),t◦,y◦] be the solution to Eq. (3.3) and y∗ ∈ H an equilibrium
for Eq. (3.3), i.e., we have F(y∗, μ(y∗)) = 0. Then, y∗ is said to be locally asymp-
totically stable if there exist a constant η > 0 and a function β ∈ KL such that the
estimate

‖y[μ(·),t◦,y◦](t) − y∗‖H
≤ β

(‖y◦ − y∗‖H , t
)

holds for all y◦ ∈ H satisfying ‖y◦ − y∗‖H < η and all t ≥ t◦.

Let us recall the main result about asymptotic stability via DPP; see [16].
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Proposition 3.3 Let N ∈ N be chosen and the feedback mapping μN be computed
by Algorithm 1. Assume that there exists an αN ∈ (0, 1] such that for all (t◦, y◦) ∈
R

+
0 × H the relaxed DPP

vN(t◦, y◦) ≥ vN
(
t◦ + �t, y[μN(·),t◦,y◦](t◦ + �t)

)+ αN	
(
y◦, μN(y◦)

)
(3.4)

holds. Then we have for all (t◦, y◦) ∈ R
+
0 × H :

αNv(t◦, y◦) ≤ αN Ĵ (μN(y[μN(·),t◦,y◦]); t◦, y◦) ≤ vN(t◦, y◦) ≤ v(t◦, y◦), (3.5)

where y[μN(·),t◦,y◦] solves the closed-loop dynamics (3.3) with μ = μN . If, in
addition, there exists an equilibrium y∗ ∈ H and α1, α2 ∈ K∞ satisfying

	∗(y◦) = min
u∈Uad

	(y◦, u) ≥ α1
(‖y◦ − y∗‖H

)
, (3.6a)

α2
(‖y◦ − y∗‖H

) ≥ vN(t◦, y◦) (3.6b)

hold for all (t◦, y◦) ∈ R
+
0 × H , then y∗ is a globally asymptotically stable

equilibrium for Eq. (3.3) with the feedback map μ = μN and value function vN .

Remark 3.4. 1) Our running cost 	 defined in Eq. (3.2) satisfies condition (3.6a) for
the choice yd = y∗. Further, Eq. (3.6b) follows from the finite horizon quadratic
cost functional Ĵ N , the definition of the value function vN and our a-priori anal-
ysis presented in Lemma 3.6 below. Therefore, we only have to check the relaxed
DPP (3.4).

2) It is proved in [16] that lim
N→∞ αN = 1. Hence, we would like to find αN close to

one to have the best approximation of v in terms of vN . On the other hand, a large
N implies that the numerical solution of Eq. (PN (t◦)) is much more involved.
We will discuss the numerical computation of αN next.

3) By Eq. (3.5) we obtain the suboptimality estimate

Ĵ
(
μN

(
y[μN(·),t◦,y◦]

) ; t◦, y◦
)

≤ vN(t◦, y◦)
αN

≤ v(t◦, y◦)
αN

;
compare [15, Section 4.3].

In order to estimate αN in the relaxed DPP we require the exponential controllability
property for the system.

Definition 3.5. System (3.1) is called exponentially controllable with respect to the
running cost 	 if for each (t◦, y◦) ∈ R

+
0 × H there exist two real constants C >

0, σ ∈ [0, 1) and an admissible control u ∈ Uad(t◦) such that:

	(y[u,t◦,y◦](t), u(t)) ≤ Cσ t−t◦	∗(y◦) f.a.a. t ≥ t◦. (3.7)

We present an a-priori estimate for the uncontrolled solution to Eq. (3.1), i.e.,
the solution for u = 0. For a proof we refer to the Appendix A. Recall that V is
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continuously (even compactly) embedded intoH . Due to the Poincaré inequality [11]
there exists a constant CV > 0 such that

‖ϕ‖H ≤ CV ‖ϕ‖V for all ϕ ∈ V. (3.8)

Lemma 3.6 Let (t◦, y◦) ∈ R
+
0 × H and u = −Ky ∈ Uad(t◦) with an appropriate

real constant K > 0. Then, the solution y = y[u,t◦,y◦] to Eq. (3.1) satisfies the
a-priori estimate

‖y(t)‖H ≤ e−γ (K)(t−t◦) ‖y◦‖H f.a.a. t ≥ t◦ (3.9)

with γ (K) = γ (K; θ, ρ) = K + θ/CV − ρ.

Remark 3.7 1) LetK = 0 hold. Then, for θ > ρCV we have γ > 0. Then, Eq. (3.9)
implies that ‖y(t)‖H < ‖y◦‖H for any t > t◦. Moreover, the origin y◦ = 0 is
unstable for γ < 0; see[15, Example 6.27].

2) If K > ρ − θ/CV holds, ‖y(t)‖H tends to zero for t → ∞.

Let us choose yd = 0. Suppose that we have a particular class of state feedback
controls of the form u(x, t) = −Ky(x, t) with a positive constant K; see [6]. This
assumption helps us to derive the exponential controllability in terms of the running
cost 	 and to compute a minimal finite time prediction horizon N�t ensuring asymp-
totic stability. Combining Eq. (3.9) with the desired exponential controllability (3.7)
and using yd = 0 we obtain for all t ≥ t◦ [6]:

	(y(t), u(t)) = 1

2

(
‖y(t)‖2H + λ ‖u(t)‖2H

)
= 1

2
(1 + λK2) ‖y(t)‖2H

≤ 1

2
C(K)e−2γ (K)(t−t◦) ‖y◦‖2H = C(K)σ(K)t−t◦ 	∗(y◦)

(3.10)

f.a.a. t ≥ t◦ and for every (t◦, y◦) ∈ R
+
0 × H , where

C(K) = (1 + λK2), σ (K) = e−2γ (K). (3.11)

In the following theorem we provide an explicit formula for the scalar αN in
Eq. (3.4). A complete discussion is given in [16].

Theorem 3.8 Assume that the system (3.1) and 	 statisfy the controllability condition
(3.7). Let the finite prediction horizon N�t be given with N ∈ N and �t > 0. Then
the parameter αN depends on K and is given by:

αN(K) = 1 − (ηN(K) − 1)
∏N

i=2 (ηi(K) − 1)∏N
i=2 ηi(K) −∏N

i=2 (ηi(K) − 1)
(3.12)

where ηi(K) = C(1 − σ i)/(1 − σ) and the constants C = C(K), σ = σ(K) are
given by Eq. (3.11).
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Remark 3.9 1) Theorem 3.8 suggests how we can compute a minimal horizon N

which ensures asympotic stability; see [5]. Due to Eq. (3.11) we fix a small finite
horizon N ∈ N compute a (global) solution K̄ to

maxαN(K) s.t. γ (K) ≥ ε (3.13)

with 0 < ε � 1 and ηi(K) from Theorem 3.8. If the optimal value αN(K̄) is
greater than zero, the finite horizon guarantees asymptotic stability. If αN(K̄) <

0 holds, we enlarge N and solve Eq. (3.13) again.
2) Since we suppose that u ∈ U

N
ad(t◦), we have to guarantee the bilateral control

constraints
ua ≤ −Ky(x, t) ≤ ub f.a.a. (x, t) ∈ QN (3.14)

with ua ≤ 0 ≤ ub. This leads to additional constraints for K in Eq. (3.13).
Since we determine K in such a way that γ (K) > 0 is satisfied, we derive from
Eq. (3.9) that

‖y(t)‖H ≤ ‖y◦‖H f.a.a. t ≥ t◦.
Let us suppose that we have y◦ �= 0 and ‖y(t)‖C(�) ≤ ‖y◦‖C(�) f.a.a. t ≥ t◦.
Then, we define

y◦a = min
x∈�

y◦(x), y◦b = max
x∈�

y◦(x). (3.15)

Then, K has to satisfy γ (K) ≥ ε and the restrictions shown in Table 1. Summa-
rizing, K has always an upper bound due to the constraints ua , ub and a lower
bound due to the stabilization related to γ (K) > 0.

4 The finite horizon problem (PN(t◦))

In this section we discuss (PN (t◦)), which has to be solved at each level of
Algorithm 1.

4.1 The open loop problem

Recall that we have introduced the final time tN◦ = t◦ + N�t and the control space
U

N(t◦) = L2(t◦, tN◦ ; H). The space YN(t◦) = W(t◦, tN◦ ) is given by

W
(
t◦, tN◦

)
=
{
ϕ ∈ L2(t◦, tN◦ ; V )

∣∣∣ϕt ∈ L2
(
t◦, tN◦ ; V ′)} ,

Table 1 Constraints for the feedback factor K in u(x, t) = −Ky(x, t) considering the bilateral control
constraints (3.14) and the initial condition (3.15)

K y◦a < 0 y◦a ≥ 0

y◦b = 0 no constraints not considered

y◦b < 0 K ≤ ub/|y◦b| impossible

y◦b > 0 K ≤ min {|ua |/y◦b, ub/|y◦a |} K ≤ |ua |/y◦b
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which is a Hilbert space endowed with the common inner product [10, pp. 472-479].
We define the Hilbert space XN(t◦) = Y

N(t◦) × U
N(t◦) endowed with the standard

product topology. Moreover, we introduce the Hilbert space ZN(t◦) = Z
N
1 (t◦) × H

with Z
N
1 (t◦) = L2(t◦, tN◦ ; V ) and the nonlinear operator e = (e1, e2) : XN(t◦) →

Z
N(t◦)′ by

〈e1(x), ϕ〉
Z
N

�
(t◦)′,ZN

�
(t◦) =

∫ tN◦

t◦
〈yt (t), ϕ(t)〉V ′,V dt +

∫ tN◦

t◦

∫
�

θyx(t)ϕ(x)

+
(
yx(t) + ρ

(
y(t)3 − y(t)

)
− u(t)

)
ϕ(t) dxdt,

〈e2(x), φ〉H = 〈y(t◦) − y◦, φ〉H
for x = (y, u) ∈ X

N(t◦), (ϕ, φ) ∈ Z
N(t◦), where we identify the dual ZN(t◦)′

of ZN(t◦) with L2(t◦, tN◦ ; V ′) × H and 〈· , ·〉
Z

N
1 (t◦)′,ZN

1 (t◦) denotes the dual pairing

between Z
N
1 (t◦)′ and Z

N
1 (t◦). Then, for given u ∈ U

N(t◦) the weak formulation for
Eq. (2.3) can be expressed as the operator equation e(x) = 0 in Z

N(t◦)′. Further, we
can write Eq. (PN (t◦)) as a constrained infinite dimensional minimization problem

min J (x) =
∫ tN◦

t◦
	(y(t), u(t)) dt s.t. x ∈ F

N
ad(t◦) (4.1)

with the feasible set

F
N
ad(t◦) =

{
x = (y, u) ∈ X

N(t◦)
∣∣∣ e(x) = 0 in Z

N(t◦)′ and u ∈ U
N
ad(t◦)

}
.

For given fixed control u ∈ U
N
ad(t◦) we consider the state equation e(y, u) = 0 ∈

Z
N(t◦)′, i.e., y satisfies

d

dt
〈y(t), ϕ〉H +

∫
�

θyx(t)ϕ
′ +

(
yx(t) + ρ(y(t)3 − y(t))

)
ϕ dx

=
∫

�

u(t)ϕ dx f.a.a. t ∈ (t◦, tN◦ ], (4.2)

〈y(t◦), ϕ〉H = 〈y◦, ϕ〉H
for all ϕ ∈ V . The following result is proved in [29, Theorem 5.5].

Proposition 4.1 For given (t◦, y◦) ∈ R
+
0 × H and u ∈ U

N
ad(t◦) there exists a unique

weak solution y ∈ Y
N(t◦) to Eq. (4.2) for every (θ, ρ) ∈ Dad . If, in addition, y◦ is

essentially bounded in �, i.e., y◦ ∈ L∞(�) holds, we have y ∈ L∞(QN) satisfying

‖y‖YN(t◦) + ‖y‖L∞(QN) ≤ C
(‖u‖UN(t◦) + ‖y◦‖L∞(�)

)
(4.3)

for a C > 0, which is independent of u and y◦.

Utilizing Eq. (4.3) it can be shown that Eq. (4.1) possesses at least one (local)
optimal solution which we denote by x̄N = (ȳN , ūN ) ∈ F

N
ad(t◦); see [29, Chapter 5].

For the numerical computation of x̄N we turn to first-order necessary optimality con-
ditions for Eq. (4.1). To ensure the existence of a unique Lagrange multiplier we
investigate the surjectivity of the linearization e′ (x̄N

) : XN(t◦) → Z
N(t◦)′ of the
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operator e at a given point x̄N = (
ȳN , ūN

) ∈ X
N(t◦). Note that the Fréchet derivative

e′(x̄N ) = (
e′
1

(
x̄N
)
, e′

2

(
x̄N
))

of e at x̄N is given by

〈e′
1

(
x̄N
)

x, ϕ〉
Z

N
1 (t◦)′,ZN

1 (t◦)
=
∫ tN◦

t◦
〈yt (t), ϕ(t)〉V ′,V dt +

∫ tN◦

t◦

∫
�

θyx(t)ϕ(x)

+
(
yx(t) + ρ

(
3ȳN (t)2 − 1

)
y(t) − u(t)

)
ϕ(t) dxdt,

〈e′
2(x̄

N )x, φ〉H = 〈y(t◦), φ〉H
for x = (y, u) ∈ X

N(t◦), (ϕ, φ) ∈ Z
N(t◦). Now, the operator e′ (x̄N

)
is surjective if

and only if for an arbitrary F = (F1, F2) ∈ Z
N(t◦)′ there exists a pair x = (y, u) ∈

X
N(t◦) satisfying e′ (x̄N

) = F in ZN(t◦)′ which is equivalent with the fact that there
exist a u ∈ U

N(t◦) and a y ∈ Y
N(t◦) solving the linear parabolic problem

yt − θyxx + yx + ρ
(
3ȳ2 − 1

)
y = F1 in Z

N
1 (t◦)′, y(t◦) = F2 in H. (4.4)

Utilizing standard arguments [10] it follows that there exists for any u ∈ U
N(t◦)

a unique y ∈ Y
N(t◦) solving Eq. (4.4). Thus, e′(x̄N ) is a surjective operator and

the local solution x̄N to Eq. (4.1) can be characterized by first-order optimality
conditions. We introduce the Lagrangian by

L(x, p, p◦) = J (x) + 〈e(x), (p, p◦)〉ZN(t◦)′,ZN(t◦)

for x ∈ X
N(t◦) and (p, p◦) ∈ Z

N(t◦). Then, there exists a unique associated
Lagrange multiplier pair (p̄N , p̄◦) to Eq. (4.1) satisfying the optimality system

∇yL
(
x̄N , p̄N , p̄N◦

)
y = 0 ∀y ∈ Y

N(t◦) (adjoint equation)
∇uL

(
x̄N , p̄N , p̄N◦

)
(u − ūN ) ≥ 0 ∀u ∈ U

N
ad(t◦) (variational inequality),

〈e(x̄N ), (p, p◦)〉ZN(t◦)′,ZN(t◦) = 0 ∀(p̄, p̄0) ∈ Z
N(t◦) (state equation).

It follows from variational arguments that the strong formulation for the adjoint
equation is of the form

−p̄N
t − θp̄N

xx − p̄N
x − ρ

(
1 − 3(ȳN )2

)
p̄N = yd − ȳN in QN,

p̄N(0, ·) = p̄N (1, ·) = 0 in (t◦, tN◦ ),

p̄N (tN◦ ) = 0 in �.

(4.5)

Moreover, we have p̄N◦ = p̄N (t◦). The variational inequality base the form∫ tN◦

t◦

∫
�

(λūN − p̄N )(u − ūN ) dxdt ≥ 0 for all u ∈ U
N
ad(t◦). (4.6)

Using the techniques as in [30, Proposition 2.12] one can prove that second-
order sufficient optimality conditions can be ensured provided the residuum ‖ȳN −
yd‖L2(t◦,tN◦ ;H) is sufficiently small.

4.2 POD reduced order model for open-loop problem

To solve Eq. (4.1) we apply a reduced-order discretization based on proper orthogonal
decomposition (POD); see [17]. In this subsection we briefly introduce the POD
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method, present an a-priori error estimate for the POD solution to the state equation
e(x) = 0 ∈ Z

N(t◦)′ and formulate the POD Galerkin approach for Eq. (4.1).

4.2.1 The POD method for dynamical systems

By X we denote either the function space H or V . Then, for ℘ ∈ N let the so-called
snapshots or trajectories yk(t) ∈ X be given f.a.a. t ∈ [

t◦, tN◦
]
and for 1 ≤ k ≤ ℘.

At least one of the trajectories yk is assumed to be nonzero. Then we introduce the
linear subspace

V = span
{
yk(t) | t ∈ [t◦, tN◦ ] a.e. and 1 ≤ k ≤ ℘

}
⊂ X (4.7)

with dimension d ≥ 1. We call the set V snapshot subspace. The method of POD
consists in choosing a complete orthonormal basis in X such that for every l ≤ d the
mean square error between yk(t) and their corresponding l-th partial Fourier sum is
minimized on average:⎧⎪⎪⎨

⎪⎪⎩
min

℘∑
k=1

∫ tN◦

t◦

∥∥∥∥∥yk(t) −
l∑

i=1

〈yk(t), ψi〉X ψi

∥∥∥∥∥
2

X

dt

s.t. {ψi}li=1 ⊂ X and 〈ψi, ψj 〉X = δij , 1 ≤ i, j ≤ l,

(Pl)

where the symbol δij denotes the Kronecker symbol satisfying δii = 1 and δij = 0
for i �= j . An optimal solution {ψ̄i}li=1 to Eq. (Pl) is called a POD basis of rank l.
The solution to Eq. (Pl) is given by the next theorem. For its proof we refer the reader
to [17, Theorem 2.13].

Theorem 4.2 Let X be a separable real Hilbert space and yk
1 , . . . , y

k
n ∈ X be given

snapshots for 1 ≤ k ≤ ℘. Define the linear operatorR : X → X as follows:

Rψ =
℘∑

k=1

∫ tN◦

t◦
〈ψ, yk(t)〉X yk(t) dt for ψ ∈ X. (4.8)

Then, R is a compact, nonnegative and symmetric operator. Suppose that {λ̄i}i∈N
and {ψ̄i}i∈N denote the nonnegative eigenvalues and associated orthonormal eigen-
functions of R satisfying

Rψ̄i = λ̄i ψ̄i , λ̄1 ≥ . . . ≥ λ̄d > λ̄d+1 = . . . = 0, λ̄i → 0 as i → ∞. (4.9)

Then, for every l ≤ d the first l eigenfunctions {ψ̄i}li=1 solve (Pl). Moreover, the
value of the cost evaluated at the optimal solution {ψ̄i}li=1 satisfies

E(l) =
℘∑

k=1

∫ tN◦

t◦

∥∥∥∥∥yk(t) −
l∑

i=1

〈yk(t), ψ̄i〉X ψ̄i

∥∥∥∥∥
2

X

dt =
d∑

i=l+1

λ̄i . (4.10)

Remark 4.3. In real computations, we do not have the whole trajectories yk(t) at hand
f.a.a. t ∈ [t◦, tN◦ ] and for 1 ≤ k ≤ ℘. Moreover, the space X has to be discretized
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as well. In this case, a discrete version of the POD method should be utilized; see,
e.g., [17].

4.2.2 The Galerkin POD scheme for the state equation

Suppose that (t◦, y◦) ∈ R
+
0 ×H and tN◦ = t◦ +N�t with prediction horizon N�t >

0. For given fixed control u ∈ U
N
ad(t◦) we consider the state equation e(y, u) = 0 ∈

Z
N(t◦)′, i.e., y satisfies Eq. (4.2). Let us turn to a POD discretization of Eq. (4.2).

To keep the notation simple we apply only a spatial discretization with POD basis
functions, but no time integration by, e.g., the implicit Euler method. In this section
we distinguish two choices for X: X = H and X = V . We choose the snapshots
y1 = y and y2 = yt , i.e., we set ℘ = 2. By Proposition 4.1 the snapshots yk ,
k = 1, . . . , ℘, belong to L2(t◦, tN◦ ; V ). According to Eq. (4.9) let us introduce the
following notations:

RV ψ =
℘∑

k=1

∫ tN◦

t◦
〈ψ, yk(t)〉V yk(t) dt for ψ ∈ V,

RH ψ =
℘∑

k=1

∫ tN◦

t◦
〈ψ, yk(t)〉H yk(t) dt for ψ ∈ H.

To distinguish the two choices for the Hilbert space X we denote by the sequence
{(λV

i , ψV
i )}i∈N ⊂ R

+
0 × V the eigenvalue decomposition for X = V , i.e., we have

RV ψV
i = λV

i ψV
i for all i ∈ N.

Furthermore, let
{(

λH
i , ψH

i

)}
i∈N ⊂ R

+
0 × H in satisfy

RH ψH
i = λH

i ψH
i for all i ∈ N.

Then, d = dimRV (V ) = dimRH (H) ≤ ∞; see [27]. The next result – also taken
from [27] – ensures that the POD basis

{
ψH

i

}l
i=1 of rank l build a subset of the test

space V .

Lemma 4.3. Suppose that the snapshots {yk}℘k=1 belong to L2(t◦, tN◦ ; V ). Then, we
have ψH

i ∈ V for i = 1, . . . , d .

Let us define the two POD subspaces

V l = span
{
ψV
1 , . . . , ψV

l

}
⊂ V, H l = span

{
ψH
1 , . . . , ψH

l

}
⊂ V ⊂ H,

where H l ⊂ V follows from Lemma 4.4. Moreover, we introduce the orthogonal
projection operators Pl

H : V → H l ⊂ V and Pl
V : V → V l ⊂ V as follows:

vl = Pl
H ϕ for any ϕ ∈ V iff vl solves min

wl∈H l
‖ϕ − wl‖V ,

vl = Pl
V ϕ for any ϕ ∈ V iff vl solves min

wl∈V l
‖ϕ − wl‖V . (4.11)



Asymptotic stability of POD based MPC for a parabolic PDEs 1087

It follows from the first-order optimality conditions for Eq. (4.11) that vl = Pl
H ϕ

satisfies

〈vl, ψH
i 〉V = 〈ϕ, ψH

i 〉V , 1 ≤ i ≤ l. (4.12)

Writing vl ∈ H l in the form vl = ∑l
j=1 v

l
jψ

H
j we derive from Eq. (4.12) that the

vector vl = (vl1, . . . , v
l
l
)� ∈ R

l satisfies the linear system

l∑
j=1

〈ψH
j , ψH

i 〉
V
vlj = 〈ϕ, ψH

i 〉V , 1 ≤ i ≤ l. (4.13)

Summarizing, vl = Pl
H ϕ ∈ H l is given by the expansion

∑l
j=1 v

l
jψ

H
j , where the

coefficients {vlj }lj=1 satisfy the linear system (4.13). For the operator Pl
V : V → V l

we have the explicit representation

Pl
V ϕ =

l∑
i=1

〈ϕ, ψi〉V ψi for ϕ ∈ V. (4.14)

We conclude from Eq. (4.10) that

℘∑
k=1

∫ tN◦

t◦
‖yk(t) − Pl

V yk(t)‖2V dt =
d∑

i=l+1

λV
i . (4.15)

Let us define the linear space Xl ⊂ V as

Xl = span {ψ1, . . . , ψl} ,

where ψi = ψV
i in case of X = V and ψi = ψH

i in case of X = H . Hence, Xl = V l

and Xl = H l for X = V and X = H , respectively. Now, a POD Galerkin scheme
for Eq. (4.2) is given as follows: find yl(t) ∈ Xl f.a.a. t ∈ [t◦, tN◦ ] satisfying

d

dt
〈yl(t), ψ〉H +

∫
�

θyl
x(t)ψ

′ +
(
yl
x(t) + ρ(yl(t)3 − yl(t))

)
ψ dx

=
∫

�

u(t)ψ dx f.a.a. t ∈ (t◦, tN◦ ], (4.16)

〈yl(t◦), ψ〉H = 〈y◦, ψ〉H
for all ψ ∈ Xl. It follows by similar arguments as in the proof of Proposition 4.1 that
there exists a unique solution to Eq. (4.16). If y◦ ∈ L∞(QN) holds, yl satisfies the
a-priori estimate

‖yl‖YN(t◦) + ‖yl‖L∞(QN) ≤ C
(‖y◦‖L∞(�) + ‖u‖UN(t◦)

)
, (4.17)

where the constant C > 0 is independent of l and y◦. Let Pl denote Pl
V in case of

X = V and Pl
H in case of X = H . The next result is proved in Appendix B.

Theorem 4.5 Suppose that (t◦, y◦) ∈ R
+
0 × L∞(�), tN◦ = t◦ + N� with prediction

horizon N�t > 0. Further, let u ∈ U
N
ad(t◦) be a fixed control input. By y and yl
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we denote the unique solution to equations (4.2) and (4.16), respectively, where the
POD basis of rank l is computed by choosing ℘ = 2, y1 = y and y2 = yt . Then,

‖y − yl‖2
YN(t◦) ≤ C·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖yl(t◦) − Pl
V y◦‖2H +

d∑
i=l+1

λV
i , X = V,

‖yl(t◦) − Pl
H y◦‖2H +

d∑
i=l+1

λH
i ‖ψH

i − Pl
H ψH

i ‖2V , X = H

for a C > 0 which is independent of l. In particular, liml→∞ ‖y − yl‖YN(t◦) = 0.

4.2.3 The Galerkin POD scheme for the optimality system

Suppose that we have computed a POD basis {ψi}li=1 of rank l by choosing X = H

or X = V . Suppose that for u ∈ U
N
ad(t◦) the function yl is the POD Galerkin solution

to Eq. (4.16). Then the POD Galerkin scheme for the adjoint equation (4.5) is given
as follows: find pl ∈ Xl = span {ψ1, . . . , ψl} f.a.a. t ∈ [t◦, tN◦ ] satisfying

− d

dt
〈pl(t), ψ〉H +

∫
�

θpl
x(t)ψ

′ −
(
pl

x(t) + ρ(1 − 3yl(t)2)
)

pl(t)ψ dx

=
∫

�

(
yd − yl(t)

)
ψ dx = 0 f.a.a. t ∈ [t◦, tN◦ ), (4.18)

〈pl(tN◦ ), ψ〉H = 0

for all ψ ∈ Xl. A-priori error estimates for the POD solution pl to Eq. (4.18) can
be derived by variational arguments; compare [26] and [17, Theorem 4.15]. If pl is
computed, we can derive a POD approximation for the variational inequality (4.6):

∫ tN◦

t◦

∫
�

(λu − pl)(ũ − u) dxdt ≥ 0 for all ũ ∈ U
N
ad(t◦). (4.19)

Summarizing, a POD suboptimal solution x̄N,l = (ȳN,l, ūN,l) ∈ X
N
ad(t◦) to

Eq. (PN (t◦)) satisfies together with the associated Lagrange multiplier p̄N,l ∈
Y

N
1 (t◦) the coupled system equations (4.16), (4.18) and (4.19). The POD approxima-

tion of the finite horizon quadratic cost functional (4.1) reads

Ĵ N,l(u; t◦, y◦) =
∫ tN◦

t◦
	
(
yl[u,t◦,y◦](t), u(t)

)
dt,

where yl[u,t◦,y◦] is the solution to Eq. (4.16). In Algorithm 2 we set up the POD dis-
cretization for Algorithm 1. Due to our POD reduced-order approach an optimal
solution to Eq. (PN,l(t◦)) can be computed much faster than the one to Eq. (PN (t◦)).
In the next subsection we address the question, how the suboptimality of the control
influences the asymptotic stability.
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Algorithm 2 (POD-NMPC algorithm)

Require: time step �t > 0, finite control horizon N ∈ N, weighting parameter
λ > 0, POD tolerance τpod > 0.

1: Compute a POD basis {ψi}li=1 satisfying Eq. (4.10) with E(l) ≤ τpod .
2: for n = 0, 1, 2, . . . do
3: Measure the state y(tn) ∈ V of the system at tn = n�t .
4: Set t◦ = tn = n�t , y◦ = y(tn) and compute a global solution to

min Ĵ N,l(ul; t◦, yl◦) s.t. ul ∈ U
N
ad(t◦). (PN,l(t◦))

We denote the optimal control by ūN,l and the optimal state by ȳN,l.
5: Define the NMPC feedback value μN,l(t; t◦, y◦) = ūN,l(t) and use this

control to compute the associated state y = y[μN,l(·),t◦,y◦] by solving (3.1)
on [t◦, t◦ + �t].

6: end for

4.3 Asymptotic stability for the POD-MPC algorithm

In this subsection we present the main results of this paper. We give sufficient con-
ditions that Algorithm 2 gives a stabilizing feedback control for the reduced-order
model. Due to Definition 3.5 we have to find an admissible control u ∈ U

N(t◦) for
any N ∈ N so that the solution to Eq. (3.1) satisfies Eq. (3.7).

In Eq. (3.2) we have introduced our running quadratic cost. As in Section 3.2 we
choose yd = y∗ = 0. Suppose that yl is the reduced-order solution to Eq. (4.16) for
the control ul = −Kyl. If K satisfies appropriate bounds (see Remark 3.9-2)), we
can ensure that ul ∈ U

N
ad(t◦) holds. Analogously to equations (3.9) and (3.10) we

find
‖yl(t)‖2H ≤ σ(K)t−t◦ ‖y◦‖2H f.a.a. t ≥ t◦ (4.20)

and

	
(
yl(t), ul(t)

)
≤ C(K)

2
‖yl(t)‖2H . (4.21)

with the same constants C(K) and σ(K) as in Eq. (3.11). Let y[ul,t◦,y◦] be the (full-
order) solution to Eq. (4.16) for the same admissible control law u = ul. Utilizing
the Cauchy-Schwarz inequality we get

	
(
y[ul,t◦,y◦](t), u

l(t)
)

≤ 1

2
‖y[ul,t◦,y◦](t) − yl(t)‖2

H
+ 	

(
yl(t), ul(t)

)

+‖y[ul,t◦,y◦](t) − yl(t)‖
H

‖yl(t)‖H . (4.22)

If y◦ �= 0 holds, we infer that ‖yl(t)‖H is positive for all t ∈ [t◦, tN◦ ]. Then, we
conclude from equations (4.21), (4.22) and (4.20) that the exponential controllability
condition (3.7) holds for the admissible control law ul = −Kyl:

	
(
y[ul,t◦,y◦](t), u

l(t)
)

≤ 1

2

(
Err(t; l)2 + C(K) + 2Err(t; l)

)
‖yl(t)‖2H

≤ 1

2
Cl(K) σ(K)t−t◦ ‖y◦‖2H = Cl(K) σ(K)t−t◦ 	∗(y◦)
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with the error term

Err(t; l) = ‖y[ul,t◦,y◦](t) − yl(t)‖
H

‖yl(t)‖H

(4.23)

and the constant

Cl(K) = C(K) + 2Err(t; l) + Err(t; l)2 ≥ C(K). (4.24)

Thus, the constant Cl(K) takes into account the approximation made by the POD
reduced-order model. In the following theorem we provide an explicit formula for the
scalar αN,l which appears in the relaxed DPP. The notation αN,l intends to stress that
we are working with POD surrogate model. We summarize our result in the following
theorem.

Theorem 4.5 Let the constant Cl be given by Eq. (4.24) and N�t denote the finite
prediction horizon with N ∈ N and �t > 0. Then the parameter αN,l is given by the
explicit formula:

αN,l(K) = 1 −
(
ηlN(K) − 1

)∏N
i=2

(
ηli (K) − 1

)
∏N

i=2 ηli (K) −∏N
i=2

(
ηli (K) − 1

) (4.25)

with ηli (K) = Cl(K)(1 − σ i(K))/(1 − σ(K)) and σ(K) as in Eq. (3.11).

Remark 4.7 1) If Err(t; l) is small, Theorem 4.6 informs we can compute the con-
stant αN,l ≈ αN basically in the same way of the full-model, replacing the
constants C, η with Cl, ηl, respectively, taking into account the POD reduced-
order modelling. Then, Eq. (3.5) implies that a suboptimality estimate holds
approximately; see Remark 3.4. To obtain the minimal horizon which ensures
the asymptotic stability of the POD-NMPC scheme we maximize (4.25) accord-
ing to the constraints αN,l > 0, K > max(0, ρ − θ/CV ) and to the constraints
in Table 1.

2) Due to Eq. (4.20) and ul = −Kyl the norm ‖ul(t)‖H is bounded independent of
l. By Theorem 4.5 and Eq. (B.12) we have liml→∞ ‖y[ul,t◦,y◦](t) − yl(t)‖H = 0
holds for all t ∈ [t◦, tN◦ ]. Thus, if we choose l sufficiently large we can ensure
that Err(t; l) is small enough provided the denominator satisfies ‖yl(t)‖H ≥ C∗
with a positive constant C∗ which is independent of l.

3) In Algorithm 2 we compute the control law ūN,l instead of −Kyl. Therefore,
one can replace Err(t; l) by

Ẽrr(t; l) = ‖y[ūN,l(·),t◦,y◦](t) − yN,l(t)‖
H

‖yN,l(t)‖H

that can be evaluated easily, since yN,l(t) and y[ūN,l,t◦,y◦] are known from
Algorithm 2, steps 4 and 5, respectively. It turns out that for our test examples
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Fig. 1 FD state y for y◦ = 0.1sgn(x − 0.3) (left plot) and y◦ = 0.2 sinπx (right plot) with u = 0,
(θ, ρ) = (0.1, 11) andN = 99

both error terms lead to the same choices for the prediction horizon N ∈ N, for
the positive feedback factor K and for the relaxation parameter αN,l ∈ (0, 1].

5 Numerical tests

This section presents numerical tests in order to show the performance of our pro-
posed algorithm. All the numerical simulations reported in this paper have been made
on a MacBook Pro with 1 CPU Intel Core i5 2.3 Ghz and 8GB RAM.

5.1 The finite difference approximation for the state equation

For N ∈ N we introduce an equidistant spatial grid in � by xi = i�x, i =
0, . . . ,N + 1, with the step size �x = 1/(N + 1). At x0 = 0 and xN+1 = 1 the
solution y is known due to the boundary conditions (2.1a–2.1c). Thus, we only com-
pute approximations yh

i (t) for y(t, xi) with 1 ≤ i ≤ N and t ∈ [t◦, tf ]. We define
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Fig. 2 Open-loop solution y for y◦ = 0.1sgn(x − 0.3), (θ, ρ) = (0.1, 11), N = 99, tf = 2 (left plot)
and y◦ = 0.2 sinπx, (θ, ρ) = (0.1, 11),N = 99, tf = 2 (right plot)
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Table 2 Run 5.1: Setting for the optimal control problem, minimal stabilizing horizon N and feedback
constant K

T �t �x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1 11 0.2 sin(πx) −∞ ∞ 10 2.46

the vector yh(t) = (
yh
1 (t), . . . , yh

N (t)
)� ∈ R

N of the unknowns. Analogously, we
define uh = (uh

1, . . . , u
h
N )� ∈ R

N , where uh
i approximates u(xi, ·) for 1 ≤ i ≤ N .

Utilizing a classical second-order finite difference (FD) scheme and an implicit Euler
method for the time integration we derive a discrete approximation of the parabolic
problem. In Fig. 1 the discrete solutions are plotted for N = 99, for t ∈ [0, 2] and
two different initial conditions.

As we see from Fig. 1, the uncontrolled solutions do not tend to zero for t → ∞,
indeed it stabilizes at one.

5.2 POD-NMPC experiments

In our numerical examples we choose yd ≡ 0, i.e., we force the state to be close
to zero, and λ = 0.01 in Eq. (2.4). A finite horizon open loop strategy does not
steer the trajectory to the zero-equilibrium (see Fig. 2). Therefore, stabilization is
not guaranteed by the theory of asymptotic stability. Note that we are not dealing
with terminal constraints and the terminal condition of the adjoint equation (4.5) is
zero. In our tests, the snapshots are computed taking the uncontrolled system, e.g.
u ≡ 0, in Eqs. (2.1a–2.1c) and the correspondent adjoint equation (4.5). Several
hints for the computation of the snapshots in the context of MPC are given in [14].
The nonlinear term is reduced following the Discrete Empirical Interpolation Method
(DEIM) which is a method that avoid the evaluation of the full model of the nonlinear
part building new basis functions upon the nonlinear term; compare [9] for more
details. Note that, in our simulations, the optimal prediction horizon N is always
obtained from Theorem 4.6.

Run 5.1 (Unconstrained case with smooth initial data) The parameters are presented
in Table 2. According to the computation of αN in Eq. (3.12) related to the relaxed
DPP, the minimal horizon that guarantes asymptotic stability is N = 10. Even in the
POD-NMPC scheme the asymptotic stability is achieved for N = 10, provided that
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Fig. 3 Run 5.1: NMPC state with N = 3 (left plot), with N = 10 (middle plot) and with u = −Ky

(right plot)
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Table 3 Run 5.1: Evaluation of the cost functional, CPU time, suboptimal solution

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 0.0025 2.46 0.0145

Algorithm 1 0.0015 49s

Algorithm 2 (l = 13, lDEIM = 15) 0.0016 8s 0.0047

Algorithm 2 (l = 3, lDEIM = 2) 0.0016 6s 0.0058

Err(t; l) ≤ 10−3 for all t ≥ t◦. red Note that the horizon of the surrogate model is
computed by Eq. (4.25). In Fig. 3 we show the controlled state trajectory computed
by Algorithm 1 taking N = 3 and N = 10. As we can see, we do not get a stabilizing
feedback for N = 3, whereas N = 10 leads to a state trajectory which tends to zero
for t → ∞. Note that we plot the solution only on the time interval [0, 0.5] in order
to have a zoom of the solution. Further, in Fig. 3 the solution related to u = −Ky is
presented. As we can see, the NMPC control stabilized to the origin very soon while
the control law u = −Ky requires a larger time horizon. This is due to the fact that
MPC stabilizes in an optimal way, in contrast to the control law u = −Ky. In Table 3
we present the error in L2(t◦, T ; H)-norm considering the solution coming from the
Algorithm 1 as the ’truth’ solution (in our case the finite difference solution denoted
by yFD). The examples are computed with Err(t, l) ≤ 10−3. The CPU time for the
full-model turns out to be 49 seconds, whereas the POD-suboptimal approximation
with only three POD and two DEIM basis functions requires 6 seconds. We can easily
observe an impressive speed up factor eight. Moreover the evaluation of the cost
functional in the full model and the POD model provides very close values. We have
not considered the CPU time in the suboptimal problem since red it did not involve a
real optimazion problem. As soon as we have computed K , within an offline stage,
we directly approximate the equation with the control law u = −Ky.

Run 5.2 (Constrained case with smooth initial data) In contrast to Run 5.1 we
choose ua = −0.3 and ub = 0. As expected, the minimal horizon N increases com-
pared to Run 5.1; see Table 4. As one can see from Fig. 4 the NMPC state with
N = 14 tends faster to zero than the state with u = −Ky. The solution coming from
the POD model is in the middle of Fig. 4. Note that E(l = 3) = 0.01, E(l = 13) = 0,
and Err(t; l) ≤ 10−3 for any l and t ≥ t◦. Indeed, Table 5 presents the evaluation
of the cost functionals for the proposed algorithms and the CPU time which shows
that the speed up by the reduced order approach is about 16. Note that K in Run 5.2
is smaller compared to Run 5.1 due to the constraint of the control space. Further,

Table 4 Run 5.2: Setting for the optimal control problem, minimal stabilizing horizon N and feedback
constant K

T �t �x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1 11 0.2 sin(πx) −0.3 0 14 1.50
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Fig. 4 Run 5.2: NMPC state with N = 14 (left plot), POD-NMPC state with N = 14 (middle plot) and
state with u = −Ky (right plot)

the error is presented in Table 5. To study the influence of Err(t; l) we present in
Figure 5, on the left, how the optimal prediction horizon N changes according to dif-
ferent tolerance. The blue line corresponds to the optimal prediction horizon in Run
5.1, and the red one to Run 5.2. It turns out that, as long as Err(t; l) ≤ 10−3, we can
work exactly with the same horizon N we had in the full model in both examples.
In the middle plot of Fig. 5 there is a zoom of the function α with different values
of Err(t; l) with respect to Run 5.2. The right plot of Fig. 5 shows the relative error
Err(t; l) for 0 ≤ t ≤ 0.5 with l = 3. One of the big advantages of feedback control
is the stabilization under perturbation of the system. The perturbation of the initial
condition is a typical example which comes from many applications in fact, often
the measurements may not be correct. For a given noise distribution δ = δ(x) we
consider a perturbation the following form:

y0(x) = (1 + δ(x)) y◦(x) for x ∈ �.

The perturbation is applied only at every initial condition of the MPC algorithm (see
Eq. (PN (t◦)) in Algorithm 1) and it is random with respect to the spatial variable.
The study of the asympotic stability does not change: we can compute the minimal
prediction horizon as before. As we can see in Fig. 6 the POD-NMPC algorithm is
able to stabilize with a noise of |δ(x)| ≤ 30 %.

Run 5.4 (Constrained case with smooth initial data) Now we decrease the diffusion
term and, as a consequence, the prediction horizon N increases; see Table 6 and
middle plot of Fig. 6. Even if the horizon is very large, the proposed Algorithm 2
accelerates the approximation of the problem. The decrease of θ may give some
troubles with the POD-model since the domination of the convection term causes a

Table 5 Run 5.2: Evaluation of the cost functional, CPU times, suboptimal solution

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 0.0035 1.50 0.0089

Algorithm 1 0.0027 65s

Algorithm 2 (l = 13, lDEIM = 15) 0.0032 5s 0.0054

Algorithm 2 (l = 3, lDEIM = 2) 0.0033 4s 0.0055
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Table 6 Run 5.3: Setting for the optimal control problem

T �t �x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1/
√
2 10 0.2 sin(πx) −1 0 30 5

Table 7 Run 5.3: Evaluation of the cost functional and CPU time

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Suboptimal solution (u = −Ky) 0.0021 5 0.0208

Algorithm 1 0.0016 84s

Algorithm 2 (l = 16, lDEIM = 16) 0.0017 9s 0.0092

Algorithm 2 (l = 2, lDEIM = 3) 0.0018 5s 0.0093

Table 8 Run 5.4: Setting for the optimal control problem

T �t �x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1/2 5 0.1sgn(x − 0.3) -1 1 43 9.99
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Table 9 Run 5.4: Cost functional, CPU time and suboptimal solution

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 4.7e-4 9.99 0.0060

Algorithm 1 4.1e-4 50s

Algorithm 2 (l = 17, lDEIM = 19) 4.4e-4 12s 0.0034

Algorithm 2 (l = 3, lDEIM = 4) 4.4e-4 4s 0.0035

high-variability in the solution, then a few basis functions will not suffice to obtain
good surrogate models (see [1, 2]). Note that, in our example, the diffusion term
is still relevant such that we can work with only 2 POD basis functions. The CPU
time in the full model is 84 seconds, whereas with a low-rank model, such as l = 2
we obtained the solution in five seconds and an impressive speed up factor of 16.
Even with a more accurate POD model we have a very good speed up factor of nine.
The evaluation of the cost functional is given in Table 7. In the right plot of Fig. 6
the POD-NMPC state is plotted for l = 16 POD basis and lDEIM = 16 DEIM
ansatz functions. The error between the NMPC state and the POD-MPC state is less
than 0.01.

Run 5.4 (Constrained case with no-smooth initial data). In the last test we focus
on a different initial condition and different control constraints. The parameters are
presented in Table 8. The minimal horizon N which ensures asymptotic stability is
N = 43. Table 9 emphazises again the performance of the POD-NMPC method with
an acceleration 12 times faster than the full model.

The evaluation of the cost functional gives the same order in all the simu-
lation we provide. In Fig. 7 we present the NMPC state for N = 43 (left
plot), the POD-NMPC state with N = 43, l = 3, lDEIM = 4 (middle plot)
and the increase of the optimal horizon N according to the perturbation Err(t; l).
The error between the NMPC state and the POD-MPC state is 0.0035 when
E(l = 3) = 0.01, whereas for E(l = 17) = 0 the error is 0.0034.
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6 Conclusions

We have proposed a new numerical method for optimal control problems which
tries to stabilize a one dimensional semilinear parabolic equation by means of Non-
linear MPC. We presented asymptotic stability conditions, where the control space
is bounded for a suboptimal problem coming from a particular class of feedback
controls.

Since the CPU time of the full dimensional algorithm may increase with the
dimension of the prediction horizon, we have presented a deep study of the subop-
timal model which comes from POD model reduction. We have given an a-priori
error estimate for the computation of the prediction horizon of the suboptimal model.
The new reduced model approach turns out to be computationally very efficient with
respect to the full dimensional problem. If the approximation quality (4.23) of the
reduced-order model is taken into account, stabilization is also guaranteed by our
theory. Although the algorithm is applied to a one dimensional problem, the theory
is rather general and can be applied to higher dimensional equations, not only with
POD model reduction but any (reduced-order) method provided the error term in
Eq. (4.23) is small for reasonable small l.
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corresponding author.

Appendix A: Proof of Lemma 3.6

Choosing u(t) = −Ky(t), ϕ = y(t) in Eq. (2.3) and using
∫
�

y(t)4 dx ≥ 0,∫
�

yx(t)y(t) dx = 0 f.a.a. t ≥ t◦ we find

1

2

d

dt
‖y(t)‖2H + θ ‖y(t)‖2V + (K − ρ) ‖y(t)‖2H ≤ 0 f.a.a. t ≥ t◦

Hence, Eq. (3.8) imply

d

dt
‖y(t)‖2H ≤ −2

(
θ

CV

+ K − ρ

)
‖y(t)‖2H = −2γ (K) ‖y(t)‖2H f.a.a. t ≥ t◦.

Thus, by Gronwall’s inequality we derive

‖y(t)‖2H ≤ e−2γ (K)(t−t◦) ‖y◦‖2H f.a.a. t ≥ t◦.

which gives (3.9).

Appendix B: Proof of Theorem 4.5

Recall that H l ⊂ V holds. Consequently, ‖ψH
i − Pl

H ψH
i ‖V is well-defined for

1 ≤ i ≤ l. First we review a result from [27, Theorem 6.2], which is essential in our
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proof of Theorem 4.5 for the choice X = H : Suppose that yk ∈ L2(t◦, tN◦ ; V ) for
1 ≤ k ≤ ℘. Then,

℘∑
k=1

∫ tN◦

t◦
‖yk(t) − Pl

H yk(t)‖2V dt =
d∑

i=l+1

λH
i ‖ψH

i − Pl
H ψH

i ‖2V . (B.1)

Moreover, Pl
H yk converges to yk in L2(0, T ; V ) as l tends to ∞ for each k ∈

{1, . . . , ℘}.

Proof of Theorem 4.5. To derive an error estimate for ‖y − yl‖YN(t◦) we make use of
the decomposition

y(t) − yl(t) = y(t) − Ply(t) + Ply(t) − yl(t) = �l(t) + ϑ l(t) f.a.a. t ∈ [t◦, tN◦ ]
with �l(t) = y(t) − Ply(t) ∈ (Xl)⊥ and ϑ l(t) = Ply(t) − yl(t) ∈ Xl. Recall
that YN(t◦) = W(t◦, tN◦ ) holds. Since �l

t (t) ∈ V holds f.a.a. t ∈ [t◦, tN◦ ], we have
‖�l

t (t)‖V ′ = ‖�l
t (t)‖V due to the Riesz theorem [25, p. 43]. Hence it follows from

equations (4.15) and (B.1) that

‖�l‖2
YN(t◦) =

∫ tN◦

t◦
‖�l(t)‖2V + ‖�l

t (t)‖2V dt

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d∑
i=l+1

λV
i for X = V,

d∑
i=l+1

λH
i ‖ψH

i − Pl
H ψH

i ‖2V for X = H.

(B.2)

Next we estimate ϑ l(t). We infer from ϑ l(t) = Ply(t) − yl(t) that

〈ϑ l
t (t), ψ〉V ′,V + 〈θϑ l(t), ψ〉V = 〈yt (t) − yl

t (t) + Ply(t) − yl(t), ψ〉V ′,V

+θ 〈Ply(t) − yl(t), ψ〉V (B.3)

for all ψ ∈ Xl and f.a.a. t ∈ [t◦, tN◦ ]. For X = V we have

〈Pl
V y(t), ψ〉V = 〈y(t), ψ〉V for all ψ ∈ Xl and f.a.a. t ∈ [t◦, tN◦ ].

Hence, we derive from equations (B.3), (4.2) and (4.16) that

〈ϑ l
t (t), ψ〉V ′,V + 〈θϑ l(t), ψ〉V = 〈ρ(y(t) − yl(t)) − ρ(y(t)3 − yl(t)3), ψ〉H

+〈Pl
V yt (t) − yt (t), ψ〉V ′,V (B.4)

for all ψ ∈ V l and f.a.a. t ∈ [t◦, tN◦ ]. For s ∈ [0, 1] we define the function ξ l(s) =
yl + s(y − yl). Then it follows from equations (4.3) and 4.17 that

‖ξ l(s)‖L∞(QN) ≤ s ‖y‖L∞(QN) + (1 − s) ‖yl‖L∞(QN) ≤ C1 for all s ∈ [0, 1]
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with a constant C1 > 0 dependent on y◦, ua and ub, but independent of y, yl and l.
By the mean value theorem we obtain

〈y(t)3 − yl(t)3, ψ〉H =
〈
1

4

∫ 1

0
ξ l(s; t)4

(
y(t) − yl(t)

)
ds, ψ

〉
H

≤ C2 ‖y(t) − yl(t)‖H ‖ψ‖H for all ψ ∈ V l

with C2 = C4
1/4. We set C3 = ρ(1 + C2). Hence, choosing ψ = ϑ l(t) ∈ V l and

utilizing θ ≥ θa > 0 we obtain from y(t) − yl(t) = �l(t) + ϑ l(t), (B.4), (3.8) and
Young’s inequality

1

2

d

dt
‖ϑ l(t)‖2H + θa ‖ϑ l(t)‖2V

≤ C3 ‖y(t) − yl(t)‖H ‖ϑ l(t)‖H + ‖Pl
V yt (t) − yt (t)‖V ′ ‖ϑ l(t)‖V

≤ C3

(
C2

V

2
‖�l(t)‖2V + 3

2
‖ϑ l(t)‖2H

)
+ 1

2θa

‖�l
t (t)‖2V ′ + θa

2
‖ϑ l(t)‖2V

≤ C4

2

(
‖�l(t)‖2V + ‖�l

t (t)‖2V
)

+ 3C3

2
‖ϑ l(t)‖2H + θa

2
‖ϑ l(t)‖2V

f.a.a. t ∈ [t◦, tN◦ ] with the constant C4 = max(C3C
2
V , 1/θa). Hence, we have

d

dt
‖ϑ l(t)‖2H + θa ‖ϑ l(t)‖2V ≤ C5

(
‖�l(t)‖2V + ‖�l

t (t)‖2V + ‖ϑ l(t)‖2H
)

(B.5)

for C5 = max(C4, 3C3) and f.a.a. t ∈ [t◦, tN◦ ]. By Gronwall’s inequality and
Eq. (B.2 ) we derive from Eq. (B.5)

‖ϑ l(t)‖2H ≤ eC5(t−t◦)
(

‖ϑ l(t◦)‖2H +
∫ tN◦

t◦
‖�l(s)‖2V + ‖�l

t (s)‖2V ds

)

≤ C6

⎛
⎝‖ϑ l(t◦)‖2H +

∞∑
i=l+1

λV
i

⎞
⎠ f.a.a. t ∈ [t◦, tN◦ ] (B.6)

f.a.a. t ∈ [t◦, tN◦ ] with C6 = eC5(t
N◦ −t◦). Now we turn to the case X = H . We have

〈Pl
H y(t), ψ〉V = 〈y(t), ψ〉V + 〈Pl

H y(t) − y(t), ψ〉V
so that Eqs. (B.3), (4.2) and (4.16) that

〈ϑ l
t (t), ψ〉V ′,V + 〈θϑ l(t), ψ〉V = 〈ρ(y(t) − yl(t)) − ρ(y(t)3 − yl(t)3), ψ〉H

+〈P l
H y(t) − y(t), ψ〉V + 〈P l

V yt (t) − yt (t), ψ〉V ′,V
(B.7)
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for all ψ ∈ H l and f.a.a. t ∈ [t◦, tN◦ ]. Now we proceed analogously as in the case
X = V and obtain

1

2

d

dt
‖ϑ l(t)‖2H + θa ‖ϑ l(t)‖2V

≤ C7

2

(
‖�l(t)‖2V + ‖�l

t (t)‖2V + ‖ϑ l(t)‖2H
)

+ θa

2
‖ϑ l(t)‖2V

f.a.a. t ∈ [t◦, tN◦ ] with the constant C7 = max(C3C
2
V + 2/θa, 2C3). Therefore, we

derive

d

dt
‖ϑ l(t)‖2H + θa ‖ϑ l(t)‖2V ≤ C7

(
‖�l(t)‖2V + ‖�l

t (t)‖2V + ‖ϑ l(t)‖2H
)

; (B.8)

compare (B.5). Utilizing Gronwall’s inequality and (B.2 ) we infer – instead of Eq.
(B.6) – that

‖ϑ l(t)‖2H ≤ C8

⎛
⎝‖ϑ l(t◦)‖2H +

∞∑
i=l+1

λH
i ‖ψH

i − Pl
H ψH

i ‖2V

⎞
⎠ (B.9)

f.a.a. t ∈ [t◦, tN◦ ] with C8 = eC7(t
N◦ −t◦). We summarize Eqs. (B.6) and (B.8) in

‖ϑ l(t)‖2H ≤ C9 ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖ϑ l(t◦)‖2H +
d∑

i=l+1

λV
i for X = V,

‖ϑ l(t◦)‖2H +
d∑

i=l+1

λH
i ‖ψH

i − Pl
H ψH

i ‖2V for X = H

(B.10)
f.a.a. t ∈ [t◦, tN◦ ] with C9 = max(C6, C8). Furthermore, Eqs.(B.5) and (B.8),
respectively, imply by integration over [t◦, tN◦ ]

‖ϑ l‖2L2(t◦,tN◦ ;V ) ≤ 1

θa

‖ϑ l(t◦)‖2H + C10

θa

(
‖�l‖2W(t◦,tN◦ ) + ‖ϑ l‖2L2(t◦,tN◦ ;H)

)

≤ C11 ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖ϑ l(t◦)‖2H +
d∑

i=l+1
λV

i for X = V,

‖ϑ l(t◦)‖2H +
d∑

i=l+1
λH

i ‖ψH
i − Pl

H ψH
i ‖2

V
for X = H

(B.11)

with C10 = max(C5, C7) and C11 = C10 max(1, (tN◦ − t◦)max(C6, C8))/θa . From
estimates (B.10), (B.11), from

y(t)3 − yl(t)3 =
(
�l(t) + ϑ l(t)

) (
y(t)2 + y(t)yl(t) + yl(t)2

)
f.a.a. t ∈

[
t◦, tN◦

]

and from the embedding inequalities [11]

‖ϕ‖L∞(�) ≤ C∞ ‖ϕ‖V for all ϕ ∈ V,

‖ϕ‖C([t◦,tN◦ ];H) ≤ CW ‖ϕ‖W(t◦,tN◦ ) for all ϕ ∈ W(t◦, tN◦ )

(B.12)
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for two constants C∞, CW > 0 we infer that

‖ϑ l‖L2(t◦,tN◦ ;V ′) = sup
‖ϕ‖

L2(t◦,tN◦ ;V )
=1

∫ tN◦

t◦
〈ϑ l(t), ϕ(t)〉V ′,V dt

≤ sup
‖ϕ‖

L2(t◦,tN◦ ;V )
=1

∫ tN◦

t◦
〈ρ(y(t) − yl(t)), ϕ(t)〉H

+〈ρ(y(t)3 − yl(t)3), ϕ(t)〉H dt

+ sup
‖ϕ‖

L2(t◦,tN◦ ;V )
=1

∫ tN◦

t◦
〈Plyt (t) − yt (t), ϕ(t)〉V ′,V

−〈θϑ l(t), ϕ(t)〉V dt

≤ ρCV

(
‖�l‖L2(t◦,tN◦ ;H) + ‖ϑ l‖L2(t◦,tN◦ ;H)

)
+ θ ‖ϑ l‖L2(t◦,tN◦ ;V )

+C7

(
‖�l‖L∞(t◦,tN◦ ;H) + ‖ϑ l‖L∞(t◦,tN◦ ;H)

)
+ ‖�l

t‖L2(t◦,tN◦ ;V ′)

where C7 > 0 satisfies C∞ ‖y2 + yyl + (yl)2‖L2(t◦,tN◦ ;H) ≤ C7. Hence, there is a
constant C8 > 0 depending on θ, ρ, CW , C9, C11 such that

‖ϑ l‖2L2(t◦,tN◦ ;V ′)

≤ C8 ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖ϑ l(t◦)‖2H +
d∑

i=l+1

λV
i for X = V,

‖ϑ l(t◦)‖2H +
d∑

i=l+1

λH
i ‖ψH

i − Pl
H ψH

i ‖2V for X = H.

(B.13)

Form Eqs. (B.10), (B.11) and (B.13) we infer the a-priori error estimate of
Theorem 4.5, which motivates the use of a POD approximation for our state
(4.2).
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