
US011106685B2

(12) United States Patent
Dato et al .

(10) Patent No .: US 11,106,685 B2
(45) Date of Patent : Aug. 31 , 2021

(54) METHOD TO RANK DOCUMENTS BY A
COMPUTER , USING ADDITIVE ENSEMBLES
OF REGRESSION TREES AND CACHE
OPTIMISATION , AND SEARCH ENGINE
USING SUCH A METHOD

(58) Field of Classification Search
None
See application file for complete search history .

(56) References Cited
(71) Applicant : Istella S.p.A. , Milan (IT)

U.S. PATENT DOCUMENTS

5,825,944 A * 10/1998 Wang (72) Inventors : Domenico Dato , Pisa (IT) ; Claudio
Lucchese , Vicopisano (IT) ; Franco
Maria Nardini , Vicopisano (IT) ;
Salvatore Orlando , Pisa (IT) ; Raffaele
Perego , Pisa (IT) ; Nicola Tonellotto ,
La Spezia (IT) ; Rossano Venturini ,
Camaiore (IT)

G06K 9/033
382/309

G06F 8/433
717/140

6,662,354 B1 * 12/2003 Krablin

(Continued)

OTHER PUBLICATIONS
(73) Assignee : Istella S.p.A. , Milan (IT)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 568 days .

Search Report and Written Opinion dated Feb. 24 , 2016 of corre
sponding International application No. PCT / IT2015 / 000155 ; 17
pgs .

(Continued)
(21) Appl . No .: 15 / 747,224

(22) PCT Filed : Jun . 17 , 2015
Primary Examiner Hasanul Mobin
(74) Attorney , Agent , or Firm - Maier & Maier , PLLC

(86) PCT NO .: PCT / IT2015 / 000155
$ 371 (c) (1) , (57) ABSTRACT
(2) Date : Jan. 24 , 2018

(87) PCT Pub . No .: WO2016 / 203501
PCT Pub . Date : Dec. 22 , 2016

(65) Prior Publication Data
US 2018/0217991 A1 Aug. 2 , 2018

The present invention concerns a novel method to efficiently
score documents (texts , images , audios , videos , and any
other information file) by using a machine learned ranking
function modeled by an additive ensemble of regression
trees . A main contribution is a new representation of the tree
ensemble based on bitvectors , where the tree traversal ,
aimed to detect the leaves that contribute to the final scoring
of a document , is performed through efficient logical bitwise
operations . In addition , the traversal is not performed one
tree after another , as one would expect , but it is interleaved ,
feature by feature , over the whole tree ensemble . Tests
conducted on publicly available LtR datasets confirm
unprecedented speedups (up to 6.5x) over the best state - of
the - art methods .

(51) Int . Cl .
G06F 17700
GOOF 16/2457

(2019.01)
(2019.01)

(Continued)
(52) U.S. Cl .

CPC GO6F 16/24578 (2019.01) ; G06F 16/2246
(2019.01) ; G06F 16/24552 (2019.01) ;

(Continued) 8 Claims , 6 Drawing Sheets

x 2 < 0

x3 < 3

lu 13

e (x) 12 13

US 11,106,685 B2
Page 2

2002/0165860 A1 * 11/2002 Glover
2009/0328014 A1 * 12/2009 Kejariwal

GOOF 16/951
GO6F 9/30072

717/140
2010/0070457 A1
2011/0161076 A1 *

3/2010 Kejariwal et al .
6/2011 Davis

2011/0244919 A1 * 10/2011 Aller

(51) Int . Ci .
GOON 20/00 (2019.01)
G06F 16/93 (2019.01)
G06F 16/22 (2019.01)
G06F 16/9535 (2019.01)
G06F 16/2455 (2019.01)
G06F 16/903 (2019.01)
GO6N 20/20 (2019.01)
GOON 5/04 (2006.01)

(52) U.S. Cl .
??? GO6F 16/90335 (2019.01) ; G06F 16/93

(2019.01) ; G06F 16/9535 (2019.01) ; G06N
5/04 (2013.01) ; GO6N 20/00 (2019.01) ; GOON

20/20 (2019.01)

2011/0314007 A1 * 12/2011 Dassa

2012/0166284 Al * 6/2012 Tseng

G06K 9/6202
704/231

G06Q 30/0281
455 / 556.1

G06F 16/22
707/723

G06Q 30/0273
705 / 14.58

G06Q 10/101
707/732

GO6F 16/9032
707/734

G06F 21/52
GO6F 16/334

2014/0025673 A1 * 1/2014 Sinha

2015/0324454 A1 * 11/2015 Roberts

2016/0275289 A1 * 9/2016 Sethumadhavan
2016/0306877 A1 * 10/2016 Winther

(56) References Cited
OTHER PUBLICATIONS U.S. PATENT DOCUMENTS

7,181,438 B1
7,805,438 B2 *

2/2007 Szabo
9/2010 Liu

7,895,225 B1 * 2/2011 Thirumalai

G06F 21/6245
G06F 16/3346

707/723
G06F 16/355

707/758
G06F 40/237

707/723
G06F 3/04842
G06F 16/93
G06F 16/951

Nima Asadi et al . , “ Runtime Optimizations for Tree - Based Machine
Learning Models ” , IEEE Transactions on Knowledge and Data
Engineering , 2014 , p . 2281-2292 , vol . 26 ; 12 pgs .
Goetz Graefe et al . , “ B - tree indexes and CPU Caches ” , International
Conference on Data Engineering , 2001 , p . 349-358 ; 10 pgs .
Xun Tang et al . , “ Cache - conscious runtime optimization for ranking
ensembles ” , Research & Development in Information Retrieval ,
2014 , p . 1123-1126 ; 4pgs .

8,954,423 B2 * 2/2015 Chica

9,430,131 B1 *
9,836,461 B1 *
10,013,489 B2 *

8/2016 Zhang
12/2017 Mishne
7/2018 Jones * cited by examiner

U.S. Patent Aug. 31 , 2021 Sheet 1 of 6 US 11,106,685 B2

no x2) 570 0

ni) x [0 591 x [3] 572

lo 11 x { 21 574

e (x) 13 13 13

Fig . 1
11

12

10 Branch
Prediction
Mechanism 14

13 Cache
Controller

Cache
Memory

I
BUS

17

Input / Output
Memory

16

Fig . 2

U.S. Patent Aug. 31 , 2021 Sheet 2 of 6 US 11,106,685 B2

V ;, * 111111 A
00

0111111

lo D 111101 -

00 101

&

Se mere

True node False node Candidate exit leaf

Fig . 3

" Suomi

tree_ids III
.

IE

11 I bityectors IT) 2. W

offsets DDI

1) 01 :
OTT leaves #

Fig . 4

U.S. Patent Aug. 31 , 2021 Sheet 3 of 6 US 11,106,685 B2

NO
hezite vecto

Ensembles

for each tree 101 , initialize al bitvectors
vial with 3 bitmask 11.111

67

False

index of the leftmost 2 - bit in your
1.10 . of leaves of tree aj

0818
Det

Fig . 5

U.S. Patent Aug. 31 , 2021 Sheet 4 of 6 US 11,106,685 B2

tree To

O
1.4.FI

12 0,3 : F.

9.5 : F 11.2 : 4)
ó (4) 7

Fig . 6a

tree 14

0.3 : a 2

9.9 : F

0 : F2 a 9.3 : F.

C 3 21 12 -12

Fig . 6b

U.S. Patent Aug. 31 , 2021 Sheet 5 of 6 US 11,106,685 B2

F F

3313949910.1 1.2 13.4
TOT 0 3 ?? w

20

0 ©

Fig . 7

tree To tree To Document x
Fo F Fa 11111111

9.4 -0 .
0011111 11110111

V [O] 00111111 101

V [1 11010111

Fig . 8

U.S. Patent Aug. 31 , 2021 Sheet 6 of 6 US 11,106,685 B2

QS SEoring 1316

S obe Misses
Bos Caeta Miss

**

: >

Fig . 9a

Os Scores

cache MiSSES
awes Cache is

(1) san vuouop doua unos
Cache Missas (

?

Fig . 9b

15

one

US 11,106,685 B2
1 2

METHOD TO RANK DOCUMENTS BY A In a modern computer , instructions are dived in stages ,
COMPUTER , USING ADDITIVE ENSEMBLES which are processed simultaneously in pipeline . Different

OF REGRESSION TREES AND CACHE stages of different instructions may proceed in parallel in one
OPTIMISATION , AND SEARCH ENGINE clock cycle in separate portions of the processor . If a branch

USING SUCH A METHOD 5 instruction , such as a jump or a conditional branch , is in the
sequence of instructions , a modern computer faces the

FIELD problem of deciding the next instruction to process depend
ing on the branch result . Hence the processor tries to predict

The present invention concerns a method to rank docu- the outcome of the branch instruction , then inserting the
ments by a computer , using additive ensembles of regression 10 corresponding instructions into the pipeline immediately
trees and cache optimisation , and search engine using such following the branch instruction . As soon as the processor
a method . knows that a prediction was wrong , it must discard the

the whole pipeline content to exe More in detail , the present invention concerns a novel orrect branch , thus
method to efficiently score documents (texts , images , incurring in a substantial performance penalty .

The branch prediction mechanism is typically imple audios , videos , and any other information file) by using a mented in hardware on the processor chip , and it allows machine learned ranking function modelled by an additive huge performance gains if the predictions are accurate . ensemble of regression trees . A main contribution is a new Repetitive loops such as for - to - do commands are easily representation of the tree ensemble based on bitvectors , predictable : the instructions in a loop are always re - executed
where the tree traversal , aimed to detect the leaves that 20 except on the single case in which the loop condition is false . contribute to the final scoring of a document , is performed Conversely , conditional statements such as if - then - else com through efficient logical bitwise operations . In addition , the mands are usually largely unpredictable .
traversal is not performed one tree after another , as GRADIENT - BOOSTED REGRESSION TREES (GBRT) [4] and
would expect , but it is interleaved , feature by feature , over LAMBDA - MART (A - MART) [18] are two of the most effec
the whole tree ensemble . Tests conducted on publicly avail- 25 tive Learning - to - Rank (LtR) algorithms . They both generate
able LtR datasets confirm unprecedented speedups (up to additive ensembles of regression trees aiming at predicting
6.5x) over the best state - of - the - art methods . the relevance labels y ; of a query document pair (q , d ;) (the

ensembles are " additive ” because the final score is obtained
BACKGROUND as a summation over the partial scores obtained for each tree

30 of the model) . The GBRT algorithm builds a model by The computers are designed to process instructions one by approximating the root mean squared error on a given
one , completely processing one instruction before beginning training set . This loss function makes GBRT a point - wise
the next instruction in the sequence . A significant improve- LtR algorithm , i.e. , query - document pairs are exploited
ment in performance is obtained by using caches and branch independently . The A - MART algorithm improves over
prediction mechanisms . Making reference to the prior art 35 GBRT by directly optimizing list - wise information retrieval
FIG . 2 , a computer essential structure 10 is illustrated , measures such as NDCG [6] . Thus , A - MART aims at finding including a CPU 11 and a branch prediction mechanism 12 a scoring function that generates an ordering of documents
installed on the CPU 11 , a cache controller 13 connected to as close as possible to the ideal ranking . In terms of scoring
a cache memory 14 and to a bus 15 , which is in turn process there is thus no difference between A - MART and
connected to input / output means 16 and memory means 17. 40 GBRT , since they both generate a set of weighted regression
Such an architecture may be used with the method according trees .
to the invention . In the present invention , we propose algorithms and
A cache memory 14 is a typically small but fast memory optimizations for scoring efficiently documents by means of

holding recently accessed data . Accessing data stored in regression tree ensembles . Indeed , the findings of this inven
cache requires a single clock cycle , while accessing data 45 tion apply beyond LtR , and in any application where large
stored in main memory 17 requires several clock cycles . A ensembles of regression trees are used for classification or
cache controller 13 is responsible for transparently provide regression tasks .
data access to the processor 11 and manage the cache Each query - document pair (q , d) is represented by a
content . When the cache is full and the cache controller real - valued vector x of features , namely xER.FI with R the needs to store other data into the cache , a cache entry is 50
evicted and written back into main memory , if necessary . ensemble of real values and wherein F = { fo , f1 , ... } is the
The new data is then inserted into the cache . The perfor- set of features characterizing the candidate document d ; and
mance benefits of a cache memory depend on the access the user query q , and x [i] stores feature fi . Let T be an
patterns of the running program , i.e. , the sequence of ensemble of trees representing the ranking model . Each tree
memory locations being read and / or written during its 55 T = (N , L) in T is a decision tree composed of a set of internal execution : larger amounts of program instructions / data nodes N = { no , n1 , } , and a set of leaves L = { 10,11 , ... } . found in cache lead to faster programs . Cache eviction Each nEN is associated with a Boolean test over a specific policies are designed to exploit high spatial locality : if a
memory location is accessed , then nearby memory locations feature with id Q , i.e. fpEF , and a constant threshold YER .
are likely to be accessed in the next few clock cycles . Thus , 60 This test is in the form x [@] sy . Each leaf 1EL stores the
a running program should maximize its spatial locality by prediction 1.valER , representing the potential contribution
carefully laying out its instructions and data (e.g. , in array of tree T to the final score of the document .
data structures) so that they will be accessed sequentially All the nodes whose Boolean conditions evaluate to FALSE
and , hence , increase cache access rate . Instead random are called false nodes , and true nodes otherwise . The scoring
accesses to instructions / data that are not located close 65 of a document represented by a feature vector x requires the
together in memory typically lead to poor cache perfor- traversing of all the trees in the ensemble , starting at their

root nodes . If a visited node in N is a false one , then the right mance .

?rni :
d steps

:

T - 1

h = 0

US 11,106,685 B2
3 4

branch is taken , and the left branch otherwise . The visit positions holding the addresses of the left and right children
continues until a leaf node is reached , where the value of the nodes data structures . Then , the output of the test x [9] > Ys is
prediction is returned . Such leaf node is named exit leaf and directly used as an index of such array in order to retrieve the
denoted by e (x) EL . We omit x when it is clear from the next node to be processed . The visit of a tree of depth d is
context . 5 then statically “ un - rolled ” in d operations , starting from the

Hereinafter , we assume that nodes of T are numbered in root node no , as follows :
breadth - first order and leaves from left to right , and let ; and
Y ; be the feature id and threshold associated with i - th internal
node , respectively . It is worth noting that the same feature it no.idx [x [00] > yo]
can be involved in multiple nodes of the same tree . For 10 · idx [x [ºi] > yi]
example , in the tree shown in FIG . 1 , the features f , and f2
are used twice . Assuming that x is such that x [2] > Yo , it n ; .idx [x [ºi] > Yi] x [3] sy2 , and x [0] sy3 , the exit leaf e of the tree in the FIG .
1 is the leaf 12 .

The tree traversal process is repeated for all the trees of 15 Leaf nodes are encoded so that the indexes in idx generate
the ensemble T , denoted by T = { To , T1 , } . The score self loops , with dummy s and Ys . At the end of the visit , the
s (x) of the whole ensemble is finally computed as a weighted exit leaf is identified by variable i , and a look - up table is

used to retrieve the prediction of the tree . This approach , sum over the contributions of each tree Th = (NwLn) in T as : named Pred , removes control hazards as the next instruction
20 to be executed is always known . On the other hand , data

dependencies are not solved as the output of one instruction
s (x) = whef (x) • val is required to execute the subsequent . Memory access pat

terns are not improved either , as they depend on the path
along the tree traversed by a document . Finally , Pred intro

25 duces a new source of overhead : for a tree of depth d , even where e , (x) .val is the predicted value of tree Th having if document reaches a leaf early , the above d steps are
weight w , ER . executed anyway . To reduce data hazards the same authors

In the following we review state - of - the - art optimization proposed a vectorized version of the scoring algorithm ,
techniques for the implementation of additive ensemble of named VPred , by interleaving the evaluation of a small set
regression trees and their use in document scoring . 30 of documents (16 was the best setting) . VPredwas shown to
A naïve implementation of a tree traversal may exploit a be 25 % to 70 % faster than Predon synthetic data , and to

node data structure that stores the feature id , the threshold outperform other approaches . The same approach of Pred
and the pointers to the left and right children nodes . The was also adopted in some previous works exploiting GPUs
traversal starts from the root and moves down to the leaves [11] , and a more recent survey evaluates the trade - off among
accordingly to the results of the Boolean conditions on the 35 multi - core CPUs , GPUs and FPGA [13] .
traversed nodes . This method can be enhanced by using an In the invention description below we compare the inven
optimized data layout in [1] . The resulting algorithm is tion method against VPred which can be considered the best
named STRUCT + . This simple approach entails a number of performing algorithm at the state of the art . In the experi
issues . First , the next node to be processed is known only mental section , we show that the proposed invention “ QS ”
after the test is evaluated . As the next instruction to be 40 method has reduced control hazard , smaller branch mis
executed is not known , this induces frequent control haz- prediction rate and better memory access patterns .
ards , i.e. , instruction dependencies introduced by condi- Memory latency issues of scoring algorithms are tackled
tional branches . As a consequence , the efficiency of a code in Tang et al . [12] . In most cases , the cache memory may be
strongly depends on the branch mis - prediction rate [8] . insufficient to store the candidate documents to be scored
Finally , due to the unpredictability of the path visited by a 45 and / or the set of regression trees . The authors propose a
given document , the traversal has low temporal and spatial cache - conscious optimization by splitting documents and
locality , generating low cache hit ratio . This is apparent regression trees in blocks , such that one block of documents
when processing a large number of documents with a large and one block of trees can both be stored in cache at the
ensemble of trees , since neither the documents nor the trees same time . Computing the score of all documents requires to
may fit in cache . 50 evaluate all the tree blocks against all the document blocks .

Another basic , but well performing approach is IF - THEN- Authors applied this computational scheme on top of both
ELSE . Each decision tree is translated into a sequence of If - Then - Else and Pred , with an average improvement of
if - then - else blocks , e.g. in C ++ . The resulting code is about 28 % and 24 % respectively . The blocking technique is
compiled to generate an efficient document scorer . IF - THEN- indeed very general and can be used by all algorithms . The
Else aims at taking advantage of compiler optimization 55 same computational schema is applied to the invention “ QS ”
strategies , which can potentially re - arrange the tree method in order to improve the cache hit ratio when large
ensemble traversal into a more efficient procedure . The size ensembles are used .
of the resulting code is proportional to the total number of Unlike the invention method that aims to devise an
nodes in the ensemble . This makes it impossible to exploit efficient strategy for fully evaluating the ensemble of trees ,
successfully the instruction cache . IF - THEN - ELSE was proven 60 other approaches tries to approximate the computation over
to be efficient with small feature sets [1] , but it still suffers the ensemble for reducing the scoring time . Cambazoglu et
from control hazards . al . [3] proposed to early terminate the scoring of documents

Asadi et al . [1] proposed to rearrange the computation to that are unlikely to be ranked within the top - k results . Their
transform control hazards into data hazards , i.e. , data depen- work applies to an ensemble of additive trees like the one
dencies introduced when one instruction requires the result 65 considered by the present invention , but the authors aims to
of another . To this end , node n , of a tree stores , in addition save scoring time by reducing the number of tree traversals ,
to a feature id fs and a threshold Ys , an array idx of two and trades better efficiency for little loss in ranking quality .

5

US 11,106,685 B2
5 6

Although the invention method is thought for globally versed at scoring time for each document , these rankers are
optimizing the traversal of thousands of trees , the idea of also the most expensive in terms of computational time , thus
early termination can be applied as well along with the impacting on response time and throughput of query pro
invention method , by evaluating some proper exit strategy cessing . Therefore , devising techniques and strategies to
after the evaluation of some subsets of the regression trees . speed - up document ranking without loosing in quality is
Wang et al . [15 , 16 , 17] deeply investigated different definitely an urgent research topic in Web search [3 , 5 , 10 ,

efficiency aspects of the ranking pipeline . In particular , in 14 , 19] .
[16] they propose a novel cascade ranking model , which Usually , LtR - based scorers are embedded in complex unlike previous approaches , can simultaneously improve two - stage ranking architectures [3 , 16) , which avoid apply both top - k ranked effectiveness and retrieval efficiency . 10 ing them to all the documents possibly matching a user Their work is mainly related to the tuning of a two - stage query . The first stage retrieves from the inverted index a ranking pipeline . relatively large set of possibly relevant documents matching Patent Application EP 1 434 148 B1 introduces a multi - bit
trie network search engine implemented by a number of the user query . This phase is aimed at optimizing the recall
pipeline logic units corresponding to the number of longest- 15 and is usually carried out by using a simple and fast ranking
prefix strides and a set of memory blocks for holding prefix function , e.g. , BM25 combined with some document - level
tables . Each pipeline logic unit is limited to one memory scores [9] . LtR - based scorers are used in the second stage to
access , and the termination point within the pipeline logic re - rank the candidate documents coming from the first stage ,
unit chain is variable to handle different length prefixes . The and are optimized for high precision . In this two - stage
patent also defines a method of operating a multi - bit trie 20 architecture , the time budget available to re - rank the candi
search engine comprising processing an address prefix for a date documents is limited , due to the incoming rate of
route search collectively within a series of pipeline units to queries and the users ' expectations in terms of quality - of
determine a match to a value within an entry for a routing service . Strongly motivated by time budget considerations ,
table . the IR community has started to investigate low - level opti

Patent Application US 2014/0337255 Al illustrates 25 mizations to reduce the scoring time of the most effective
improvements to machine learning for ensembles of deci- LR rankers based on ensembles of regression trees , by
sion trees exploiting several techinques used in the computer dealing with features and peculiarities of modern CPUs and
vision fields . These techniques are based on function inlin- memory hierarchies [1 , 12] .
ing , C ++ concepts such as templating , and buffer contiguity , In this work we advance the state of the art in this field ,
and as such , are orthogonal to the proposed purely algorith- 30 and propose QUICKSSCORER (QS) , a new method to score
mic methods . documents with an ensemble of regression trees . The main

contributions of our proposal are :
SUMMARY a novel representation of an ensemble of binary regression

trees based on bitvectors , allowing QS to perform a fast
It is object of the present invention to provide a method 35 interleaved traversal (i.e. a traversal which is not made

and a system and a search engine which solve the problems by traversing each tree in the order , but a feature in all
and overcomes the drawbacks of the prior art . the trees) of the trees by using efficient logical bitwise

It is subject - matter of the present invention a method , a operations . The performance benefits of the resulting
system and a search engine according to the enclosed claims , traversal are unprecedented , due to a cache - aware
which are an integral part of the present description . approach , both in terms of data layout and access

Ranking query results according to a relevance criterion is patterns , and to a program control flow that entails very
a fundamental problem in Information Retrieval (IR) . low branch mis - prediction rates (see for a definition
Nowadays , an emerging research area named Learning - to- http://en.wikipedia.org/wiki/Branch_predictor) ;
Rank (LER) [2,7] has shown that effective solutions to the an extensive experimental assessment conducted on pub
ranking problem can leverage machine learning techniques . 45 licly available LtR datasets with various A - MARTmod
A LtR - based function , which scores a set of candidate els , differing for both the size of the ensemble and the
documents according to their relevance to a given user number of tree leaves . The results of the experiments
query , is learned from a ground - truth composed of many show that QS achieves impressive speedups over the
training examples . The examples are basically a collection best state - of - the - art competitor , ranging from 2x up to
of queries Q , where each query qed is associated with a set 50 6.5x . Moreover , to motivate the very good performance
of assessed documents D = { d . , d , ... } . Each pair (q , d ;) is of QS over competitors , we evaluate in - depth some
in turn labeled by a relevance judgment yi , usually a positive CPU counters that measure important performance
integer in a fixed range , stating the degree of relevance of the events , such as number of instructions executed , cache
document for the query . These labels induce a partial order- misses suffered , or branches mis - predicted ;
ing over the assessed documents , thus defining their ideal 55 a block - wise version of QS for scoring large tree
ranking [6] . The scoring function learned by a LtR algorithm ensembles and large sets of documents . BLOCKWISE - QS
aims to approximate the ideal ranking from the examples (BWQS) splits the set of documents and the tree
observed in the training set . ensemble in disjoint groups that can be processed
The ranking process is particularly challenging for Web separately . Our experiments show that BWQS performs

search engines , which , besides the demanding requirements 60 up to 1.55 times better than the original QS , thanks to
for result pages of high quality in response to user queries , cache reuse which reduces cache misses .
have also to deal with efficiency constraints , which are not It is here recalled that , in digital computer programming ,
so common in other ranking - based applications . Indeed , two a bitwise operation operates on one or more bit patterns or
of the most effective LtR - based rankers are based on addi- binary numerals at the level of their individual bits . It is a
tive ensembles of regression trees , namely GRADIENT- 65 fast , primitive action directly supported by the processor ,
BOOSTED REGRESSION TREES (GBRT) [4] , and LAMBDA - MART and is used to manipulate values for comparisons and
(A - MART) [18] . Due to the thousands of trees to be tra- calculations .

40

25

US 11,106,685 B2
7 8

The invention will be now described by way of illustra- process , the exit leaves in each tree for a given document .
tion but not by way of limitation , with particular reference These bitvector are eventually used to lookup the predicted
to the drawings of the enclosed figures , wherein : value of each tree .
FIG . 1 shows a decision tree according to prior art ; We start by presenting a simpler version of our tree
FIG . 2 shows a computer architecture of the prior art that 5 traversal and , then , we introduce two advantageous refine

can be used in the present invention ; ments for the performance of this method when used in the
FIG . 3 is a tree traversal example , according to an aspect interleaved evaluation of all the trees as described in the

of the invention ; following subsection .
FIG . 4 shows arrays used by invention method QS , Given an input feature vector x and a tree Th = (NhLn) , our

according to an aspect of the invention ; 10 tree traversal method processes the internal nodes of Tn with
the goal of identifying a set of candidate exit leaves , denoted FIG . 5 shows a block diagram of invention method QS by Ch with C_CLn , which includes the actual exit leaf en . according to an aspect of the invention ; Initially Ch contains all the leaves in Ln , i.e. , Ch = Ln . Then , FIG . 6a shows a toy ensemble of regression trees , accord the method evaluates one after the other in an arbitrary order ing to an aspect of the invention ; 15 the test conditions of all the internal nodes of Th . Consid FIG . 6b shows another toy ensemble of regression trees , ering the result of the test for a certain internal node nEN , according to an aspect of the invention ; the method is able to infer that some leaves cannot be the

FIG . 7 shows a QS representation of the toy ranking exit leaf and , thus , can safely remove them from Ch . Indeed ,
model , according to an aspect of the invention ; if n is a false node (i.e. , its test condition is false) , the leaves
FIG . 8 shows an example of scoring of a document , 20 in the left subtree of n cannot be the exit leaf and they can

according to an aspect of the invention ; be safely removed from Ch . Similarly , if n is a true node , the
FIG . 9a shows a per - tree per - document scoring time in us leaves in the right subtree of n can be removed from Ch . It

and percentage of cache misses of invention QS and BWQS is easy to see that , once all the nodes have been processed ,
on MSN - 1 with 64 - leaves à - MART models . the only leaf left in Ch is the exit leaf en
FIG . 9b shows a per - tree per - document scoring time in us The first refinement uses a oracle , called by the Inventors

and percentage of cache misses of invention QS and BWQS FindFalse , that , given Th and x , returns the false nodes in Nh
on Y ! S1 with 64 - leaves à - MART models . without the need of evaluating all the associated test con

ditions . Then , the method removes from C , the leaves in the
DETAILED DESCRIPTION left subtrees of all the false nodes returned by the oracle . For

30 the moment we concentrate on the set Ch obtained at the end
In order to efficiently exploit memory hierarchies and to of the method and we defer the materialization of the above

reduce the branch mis - prediction rate , we propose a method oracle to next subsection where the interleaved evaluation of

based on a totally novel traversal of the trees ensemble , all the trees makes its implementation possible . Observe that
which is here called QUICKSCORER (QS) . The building block Ch may now contain several leaves . As an extreme example ,
of our approach is an alternative method for tree traversal 35 the set Ch , in absence of false nodes , will contain all the
based on bitvector computations , which is presented in the leaves in Ln . Interestingly , we can prove (see Theorem

below) that the exit leaf en is always the one associated with following subsection . Given a tree and a vector of document the smallest identifier in Ch , i.e. , the leftmost leaf in the tree . features , our traversal processes all its nodes and produces
a bitvector which encodes the exit leaf for the given docu- 40 actual traversal (bold arrows) for a vector x , and also the true

A running example is reported in FIG . 1 which shows the
ment . In isolation this traversal is not particularly advanta and false nodes . The figure shows also the set Ch after the
geous over the others , since in principle it requires to removal of the leaves of the left subtrees of false nodes : Ch
evaluate all the nodes of tree . However , it has the nice is { 12 , 13 , 15 } and , indeed , the exit leaf is the leftmost leaf in
property of being insensitive to the order in which the nodes Ch , i.e. , en = 12 .
are processed . This makes it possible to interleave the 45 The second refinement implements the operations on Ch
evaluation of the trees in the ensemble in a cache - aware with fast operations on compact bitvectors . The additional
fashion . In addition , the proposed bitvector encoding allows technical concept is to represent Ch with a bitvector Vho
to save the computation of many test conditions . where each bit corresponds to a distinct leaf in Lho Vh is

It is here recalled that a bit array (also known as bitmap , the characteristic vector of Ch . Every internal node n is
bitset , bit string , or bitvector) is an array data structure that 50 associated with a node bitvector (of the same length) , acting
compactly stores bits . It can be used to implement a simple as a bitmask that encodes (with O's) the set of leaves to be
set data structure . A bit array is effective at exploiting removed from Ch whenever n is a false node . This way , the
bit - level parallelism in hardware to perform operations bitwise logical AND between Vn and the node bitvector of a
quickly . A typical bit array stores ków bits , where w is the false node n corresponds to the removal of the leaves in the
number of bits in the unit of storage , such as a byte or word , 55 left subtree of n from Ch . We finally observe that the exit leaf
and k is some nonnegative integer . If w does not divide the corresponds to the leftmost bit set to 1 in V ,. FIG . 3 shows
number of bits to be stored , some space is wasted due to how the initial bitvector Vh is updated by using bitwise
internal fragmentation . logical AND operations .
The interleaved evaluation of a trees ensemble is dis- The latter full approach is described in Method 1. Given

cussed . Intuitively , rather than traversing the ensemble tree 60 a binary tree Th = (Ln Nh) and an input feature vector x , let
after tree , our method performs a global visit of the u.bitvector be the precomputed bitwise mask associated with
ensemble by traversing portions of all the trees together , a generic nEN ,. First the result bitvector Vn is initialized
feature by feature . For each feature , we store all the asso- with all bits set to 1. Then , FindFalse (x , Th) returns all the
ciated thresholds occurring anywhere in the ensemble in a false nodes in Nh . For each of such nodes , Vh is masked with
sorted array , to easily to compute the result of all the test 65 the corresponding node bitvector . Finally , the position of the
conditions involved . A bitvector for each tree is updated leftmost bit of Vn identifies the exit leaf en , whose output
after each test , in such a way to encode , at the end of the value is

j.e. ,

5
T

h

Vh 11 ... 11
UE

1
2
3
4 .
5
6

30

US 11,106,685 B2
9 10

as one would expect , but does loop instead over all the
Method 1 : Scoring a feature vector x using features in F , hence incrementally discovering for each fe a binary decision tree In

F the false nodes involving fx in any tree of the ensemble . Input :
x : input feature vector This is a very convenient order for two reasons : i) we are
h = (Nh , Lh) : binary decision tree , with able to identify all the false nodes for all the trees without
NK = { no , 11 } : internal nodes off h even considering their true nodes , thus effectively imple Ln = { lo , 11 , ... } : leaves ofT menting the oracle introduced in the previous section ; ii) we n.bitvector : node bitvector associated with
n ENK are able to operate in a cache - aware fashion with a small
l ; .val : output value associated with l ; Eln 10 number of Boolean comparisons and branch mis - predic Output : tions . tree traversal output value

Score (x , In : During its execution , QS has to maintain the bitvectors
Vn's , encoding the set Ch's for all the tree Tn in the ensemble .

FindFalse (x , T n) The bitvector Vn of a certain tree is updated as soon as a false foreach node u EU do 15 node for that tree is identified . Once the method has pro Vh Vh Au.bitvector
j index of leftmost bit set to 1 of Vh cessed all the features in F , each of these Vn is guaranteed return 1 ; .val to encode the exit leaf in the corresponding tree . Now the

method can compute the overall score of x by summing up
returned . The correctness of this approach is stated by the 20 (and , possibly , weighting) the scores of all these exit leaves .
following theorem . Let us concentrate on the processing of a feature fx and
Theorem 1 Method 1 is correct . describe the portion of the data structure of interest for this
Proof . We prove that for each binary decision tree Th and feature . The overall method simply iterates this process over
input feature vector x , Method 1 always computes a result all features in F. Each node involving fx in any tree T , E bitvector Vho where the leftmost bit set to 1 corresponds to 25 T is represented by a triple containing : (i) the feature the exit leaf en . First , we prove that the bit corresponding to
the exit leaf eh in the result bitvector Vn is always set to 1 . threshold involved in the Boolean test ; (ii) the id of the tree

that contains the node , where the id is used to identify the Consider the internal nodes along the path from the root to bitvector Vn to update ; (iii) the node bitvector used to en , and observe that only the bitvectors applied for those possibly update Vn . We sort these triples in ascending order nodes may change the en's bit to 0 . of their thresholds .
Since en is the exit leaf , it belongs to the left subtree of any This sorting is important for obtaining a fast implemen

true node and to the right subtree of any false node in this tation of our oracle . Recall that all the conditions occurring path . Thus , since the bitvectors are used to set to 0 leaves in in the internal nodes of the trees are all of the form x [k] sy . " . the left subtrees of false nodes , the bit corresponding to en Hence , given the sorted list of all the thresholds involving
remains unmodified , and , thus , will be 1 at the end of 35
Method 1. Second , we prove that the leftmost bit equal to 1 fEF , the feature value x [k] splits the list in two , possibly
in Vn corresponds to the exit leaf eh . Let l be the leaf empty , sublists . The first sublist contains all the thresholds
corresponding to the leftmost bit set to 1 in Vn . Assume by Ys for which the test condition x [k] sys " evaluates to FALSE ,

while the second sublists contains all thresholds for which contradiction that en is not the leftmost bit set to 1 in Vho namely , 1_zen . Let u be their lowest common ancestor node 40 the test condition evaluates to True . Thus , if we sequentially
in the tree . Since l_ is smaller than en , the leaf 1 belongs scan the sorted list of the thresholds associated with fz , all
to u's left subtree while the leaf eh belongs to u's right the values in the first sublist will cause negative tests .
subtree . This leads to a contradiction . Indeed , on one hand , Associated with these thresholds entailing false tests , we
the node u should be a true node otherwise its bitvector have false nodes belonging to the trees in I. Therefore , for
would have been applied setting 1_'s bit to 0. On the other 45 all these false nodes we can take in sequence the corre
hand , the node u should be a false node since en is in its right sponding bitvector , and perform a bitwise logical AND with
subtree . Thus , we conclude that 1_ = en proving the correct- the appropriate result bitvector Vn .
ness of Method 1 . This large sequence of tests that evaluates to FALSE

Method 1 represents a general technique to compute the corresponds to the repeated execution of conditional branch
output value of a single binary decision tree stored as a set 50 instructions , whose behavior is indeed very predictable . This
of precomputed bitvectors . Given an additive ensemble of is confirmed by our experimental results , showing that our
binary decision trees , to score a document x we have to loop code incurs in very few branch mis - predictions .
over all the trees T , ET by repeatedly applying Method 1 . We now present the layout in memory of the required data
Unfortunately , this method is not particularly satisfactory , structure since it is important for the efficiency of our
since this method does not permit us to implement efficiently 55 method . The triples of each feature are stored in three
FindFalse (x , Th) . separate arrays , one for each component : thresholds , tree

In the following section we present the invention method _ids , and bitvectors . The use of three distinct arrays solves
QS , which overcomes this issue by performing a global visit some data alignment issues arising when tuples of hetero

geneous data types are stored contiguously in memory . The
of the whole tree ensemble I. The QS method realizes the 60 arrays of the different features are then juxtaposed one after goal of identifying efficiently the false nodes of all the tree the other as illustrated in FIG . 4. Since arrays of different ensemble by exploiting an interleaved evaluation of all the features may have different lengths , we use an auxiliary trees in the ensemble . array offsets which marks the starting position of each array

Making reference to FIG . 5 , our invention QS method in the global array . We also juxtapose the bitvectors Vn into
scores a feature vector x with an interleaved execution of 65 a global array v . Finally , we use an array leaves which stores
several tree traversals , one for each tree in the ensemble . The the output values of the leaves of each tree (ordered from left
method does not loop over all the trees in T one at the time , to right) grouped by their tree id .

:

5

Oth
per feature

10

15

ieo
enda

1
2
3
4
5
6
7
8
9

10
11

h
20

break

score o 25 12
13
14
15
16
17 return score

30

US 11,106,685 B2
11 12

of the ordered sequence of thresholds associated with a
Method 2 : The QUICKSCORER given feature F ¢ € { Fo , F1 , F2 } can be accessed directly by using the corresponding offset value stored in array Input offsets [9] . x : input feature vector

T : ensemble of binary decision trees , with array tree_ids is aligned to array thresholds . Specifically ,
Wo , , 7 -1 : weights , one per tree given the block of each array corresponding to
thresholds : sorted sublists of thresholds , one sublist feature Fæ , let i be an index used to identify the current

element of the block . Thus , i ranges in the integer
tree..ids : tree's ids , one per threshold interval [offsets [9] , offsets [9 + 1] –1] , and for each bitvectors : node bitvectors , one per threshold
offsets : offsets of the blocks of triples value of i the entry tree_ids [i] stores the ID of the tree ,
v : result bitvectors , one per each tree in turn containing a specific internal node with thresh
leaves : output values , one per each tree leaf old thresholds [i] . For example , from the Figure we can

Output : see that a value 9.9 is stored in the 4 - th position (i.e. Final score of x element thresholds [3]) to indicate that this value is a QUICKSCORER (x , T) :
foreach h E 0 , 1 , ... , T - 1 do threshold used for feature F , in the tree with ID tree_ids

| _ v [h] < 11 ... 11 [3] = 1 .
foreach k E 0 , 1 , ... , | F | - 1 do // Step 1 the array bitvectors is also aligned to thresholds (and

offsets [k] tree_ids) . offsets [k + 1]
while x [k] > thresholds [i] do Specifically , it stores in each position a bitvector of size

– tree_ids [i] equal to the (maximum) number of leaves of the trees in
v [h] - v [h] A bitvectors [i] T (8 in this case) . The bits in these bitvectors are set to 0 in iai + 1
if i end then correspondence to the leaves of the tree that are not reach

able if the associated test fails . For example , bitvectors [3]
stores 11110011 , stating that the 5 - th and the 6 - th leaves of
tree Ti (tree_ids [3] = 1) cannot be reached by documents for

foreach h E 0 , 1 , ... , T 1 - 1 do // Step 2 which the test x [0] 59.9 (thresholds [3] = 9.9) is FALSE .
j index of leftmost bit set to 1 of v [h] Finally , FIGS . 9a and 9b show how the bitvectors selected
1 < h : Lkl + ? by the QS method are used to devise the correct exit leaf of score = score + Wh leaves [1] each tree . The Figure shows the feature vector x [] of a

document to be scored . The bitvectors v [0] and v [1] are
initialized with a string of l’s , whose length corresponds to

Method 2 reports the steps of QS as informally described the number of tree leaves (8 in this example) . By visiting the
above . After the initialization of the result bitvectors of each ensemble T feature by feature , QS starts from the first
tree (loop starting al line 1) , we have the first step of QS that feature Fo , by inspecting x [0] . The method thus accesses the
exactly corresponds to what we discussed above (loop 35 list of thresholds of the feature starting from thresholds
starting at line 3) . The method iterates over all features , and [offsets [0]] , where offsets [0] = 0 . QS first detects that the
inspects the sorted lists of thresholds to update the result first two tests involving feature x [0] = 9.4 fail , since 9.4 > 9.1
bitvectors . Upon completion of the first step , we have the (thresholds [0] = 9.1) and 9.4 > 9.3 (thresholds [1] = 9.3) hold .
second step of the method (loop starting at line 13) , which Thus , the two bitvectors 00111111 and 11110111 , associated
simply inspects all the result bitvectors , and for each of them 40 with the trees having respectively IDs tree_ids [0] = 0 and
identifies the position of the leftmost bit set to 1 , and uses tree_ids [1] = 1 , are retrieved . Then , a bitwise AND operation
this position to access the value associated with the corre- (A) is performed between these bitvectors and the ones
sponding leaf stored array leaves . The value of the leaf is stored in v [0] and v [1] . Afterwards , since 9.459.4 succeeds ,
finally used to update the final score . features x [0] is considered totally processed , and QS con

Let us consider the ensemble of regression trees tinues with the next feature F1 , by inspecting x [1] = 0.9 . The
T depicted in FIGS . 6a and 6b , only including the two trees lists of thresholds for feature x [1] is accessed starting from

thresholds [offsets [1]] , where offsets [1] = 7 . Since 0.951.1 To and T . We assume that the ranking model of I was (thresholds [7] = 1.1) , the test succeeds , and thus the remain learned from a training dataset where each query - document ing elements of the threshold list associated with feature F1 pair is represented by a feature vector x [] with only three is skipped . Finally the last feature F2 , namely x [2] , is features , namely F , F and F. considered and compared with the first threshold stored in All the internal nodes of the two regression trees are thresholds [offsets [2]] , where offsets [2] = 9 . The first test labeled (see FIGS . 6a and 6b) with a pair (Y , FQ) , specifying involving x [2] = - 0.1 , namely -0.15-0.2 (thresholds [9] = the pair of parameters of the Boolean test x [@] sy : a feature 0.2) fails . Since tree_ids [9] = 1 , a bitwise AND operation is FøE { F0 , F1 , F2 } , and a constant threshold YER . thus performed between bitvectors [9] and v [1] . At this All the leaves of the two trees in turn store a value point , the next test over x [2] succeeds , and thus QS finishes representing the potential contribution of the tree to the final the ensemble traversal . The content of the bitvectors v [0] score of the document . and v [1] are finally used to directly read from array leaves Given this simple ranking model , QS compactly repre the contribution of trees To and T , to the final score of the
sents the ensamble T with the array data structures shown document .
in FIGS . 7 and 8. In particular by analyzing the figure we can In the following we discuss some optional details about

our data structures , their size and access modes .
array thresholds has 14 elements storing the values of 7 , A few important remarks concern the bitvectors stored in

2 , and 5 thresholds y associated , respectively , with the v and bitvectors . The learning method controls the accuracy
occurrences of the features Fo , F , and F2 in the internal of each single tree with a parameter A , which determines the
nodes of T. We note that each block of thresholds is maximal number of leaves for each Th = (N.L) in I
sorted in increasing order . Moreover , the first position namely ?L SA . Usually , the value of A is kept small (564) .

45

50

55

60

see that :

65

5

25

30

US 11,106,685 B2
13 14

Thus , the length of bitvectors , which have to encode tree We finally describe an optimization which aims at reduc
leaves , is equal to (or less than) a typical machine word of ing the number of comparisons performed at line 6 of
modern CPUs (64 bits) . As a consequence , the bitwise Method 2. The (inner) while loop in line 6 iterates over the
operations performed by Method 2 on them can be realized list of threshold values associated with a certain feature f / E
very efficiently , because they involve machine words (or F until we find the first index j where the test fails , namely ,
halfwords , etc) . the value of the kth feature of vector x is greater than We avoid any possible performance overhead due to thresholds [j] . Thus , a test on the feature value and the shifting operations to align the operands of bitwise logical current threshold is carried out at each iteration . Instead of ANDs by forcing the bitvectors to have uniform length of B bytes . To this end , we pad each bitvector on its right side 10 testing each threshold in a prefix of thresholds [i : end) , our optimized implementation test only one every A thresholds ,
with a string of 0 bits , if necessary . We always select the where A is a parameter . Since the subvector thresholds [i : minimum number of bytes BE { 1,2,4,8 } fitting A. end] is sorted in ascending order , if a test succeed the same Let us now consider Table 1 , which shows an upper bound necessarily holds for all the preceding A - 1 thresholds .
for the size of each linear array used by our method . The 15 Therefore , we can go directly to update the result bitvector
array offsets has | F | entries , one entry for each distinct Vn of the corresponding trees , saving A - 1 comparisons .
feature . The array v , instead , has an entry for each tree in T , Instead , if the test fails , we scan the preceding 4-1 thresh

olds to identify the target index j and we conclude . In our thus , 1T | entries overall . The sizes of the other data struc implementation we set A equal to 4 , which is the value tures depends on the number of total internal nodes or leaves 20 giving the best results in our experiments . We remark that in in the ensemble T , besides the datatype sizes . Any internal principle one could identify j by binary searching the
node of some tree of T contributes with an entry in each subvector thresholds [i : end) . Experiments have shown that
array thresholds , bitvectors and tree_ids . Therefore the total the use of binary search is not profitable because in general
number of entries of each of these arrays can be upper the subvector is not sufficiently long .

Let us consider an ensemble of regression trees composed bounded by [T I : , because for every tree Th we have
IN_1 < / N , / + 1 = L , SA . Finally , the array leaves has an entry by 1,000 trees . All trees are balanced , i.e. they are composed

by 7 internal nodes and 8 leaf nodes similar to tree T , in toy for each leaf in a tree of T , hence , no more than I l'Ain example 1. Moreover let assume we have 100 features .
total . Since there are a total of 7,000 internal nodes , we will have

7,000 threshold values , and we will assume that these value
TABLE 1 are evenly distributed among features , i.e. , each feature is

Data structures used by QS , the corresponding compared with 70 values .
maximum sizes , and the access modes . We try to sketch an high - level , back for the envelop

35 comparison between the IF - THEN - ELSE and QS approaches to Array Maximum , Size (bytes) score a single document using this ensemble . The IF - THEN
T.A. sizeof (float) 1. Sequential (R) Else approach on such an ensemble will produce a long

tree_ids T · A · sizeof (uint) sequence of assembly instructions including nested
F. sizeof (uint) branches . These instructions are executed one by one lin

1. Random (R / W) 40 early , with potentially many jumps from one memory loca
2. Sequential (R) tion to another , depending on the branch outcome . Con T : A sizeof (double) 2. Seq . Sparse (R) versely , the QS approach will lay out the required data in

contiguous memory locations , and the QS instructions will
The last column of Table 1 reports the data access modes be limited to two simple loops and a third loop with a nested

to the arrays , where the leading number , either 1 or 2 , simple one (see Method 2) . This compact memory layout
corresponds to the step of the method during which the data will fit in cache more easily the the IF - THEN - ELSE instruc
structures are read / written . Recall that the first step of QS tions . As a consequence , the number of cache evictions for
starts at line 3 of Method 2 , while the second at line 13. We QS will be reasonably lesser then the evitions for IF - THEN
first note that v is the only array used in both phases of Else , with less clock cycles spent to access the main
function QUICKSORER (X , T) . During the first step v is memory .
accessed randomly in reading / writing to update the v ; ' s . Moreover , it is easy to check that IF - THEN - Else requires 3
During the second step the same array is accessed sequen- comparisons per tree , for a total of 3,000 branches . We can
tially in reading mode to identify the exit leafs 1 , of each tree expect , on average , that the branch prediction mechanism
Th , and then to access the array leaves to read the contri- 55 will correctly predict 50 % of the branches , i.e. 1,500 branch
bution of tree Tn to the output of the regression function . mis - predictions . On the other side , QS will spend most of its
Even if the trees and their leaves are accessed sequentially time testing , for each feature , the associated values . For each
during the second step of QS , the reading access to array feature , the corresponding document feature value is com
leaves is sequential , but very sparse : only one leaf of each pared with all feature values in all trees , in increasing order .
block of Lnl elements is actually read . 60 The cycle exit condition for a given feature will always be

Finally , note that the arrays storing the triples , i.e. , thresh- false , until it becomes true for the first time and the method
olds , tree_ids , and bitvectors , are all sequentially read during moves on to the next feature . We can expect , on average , one
the first step , though not completely , since for each feature branch mis - prediction per feature , i.e. 100 .
we stop its inspection at the first test condition that evaluates Experiments
to TRUE . The cache usage can greatly benefit from the layout 65 In this section we provide an extensive experimental
and access modes of our data structures , thanks to the evaluation that compares our QS method with other state
increased references locality . of - the - art competitors and baselines over standard datasets .

Data access modes

thresholds

T.A : B bitvectors
offsets
V T.B

leaves

45

50

US 11,106,685 B2
15 16

Datasets and Experimental Settings each of the four cores , level 2 cache has size 256 KB for each
Experiments are conducted by using publicly available core , and at level 3 there is a shared cache of 8 MB .

LtR datasets : the MSN (http://research.microsoft.com/en- To measure the efficiency of each of the above methods ,
us / projects / mslr /) and the Yahoo! LETOR (http : // learning- we run 10 times the scoring code on the test sets of the
torankchallenge.yahoo.com) challenge datasets . The first 5 MSN - 1 and Y ! S1 datasets . We then compute the average
one is split into five folds , consisting of vectors of 136 per - document scoring cost . Moreover , to deeply profile the
features extracted from query - document pairs , while the behavior of each method above we employ perf (https : //
second one consists of two distinct datasets (Y ! S1 and perf.wiki.kernel.org) , a performance analysis tool available
Y ! S2) , made up of vectors of 700 features . In this work , we under Ubuntu Linux distributions . We analyze each method
focus on MSN - 1 , the first MSNfold , and Y ! S1 datasets . The 10 by monitoring several CPU counters that measure the total
features vectors of the two selected datasets are labeled with number of instructions executed , number of branches , num
relevance judgments ranging from 0 (irrelevant) to 4 (per- ber of branch mis - predictions , cache references , and cache
fectly relevant) . Each dataset is split in training , validation misses .
and test sets . The MSN - 1 dataset consists of 6,000 , 2,000 , Scoring Time Analysis
and 2,000 queries for training , validation and testing respec- 15 The average time (in us) needed by the different methods
tively . The Y ! S1 dataset consists of 19,944 training queries , to score each document of the two datasets MSN - 1 and Y ! S1
2,994 validation queries and 6,983 test queries . are reported in Table 2. In particular , the table reports the
We exploit the following experimental methodology . We per - document scoring time by varying the number of trees

use training and validation sets from MSN - 1 and Y ! S1 to and the leaves of the ensemble employed . For each test the
train A - MART [18] models with 8 , 16 , 32 and 64 leaves . We 20 table also reports between parentheses the gain factor of QS
use QuickRank (http://quickrank.isti.cnr.it) an open - sou- over its competitors . At a first glance , these gains are
ceparallel implementation of A - MART written in C ++ 11 for impressive , with speedups that in many cases are above one
performing the training phase . During this step we optimize order of magnitude . Depending on the number of trees and
NDCG @ 10 . The results of the invention can be also applied of leaves , QS outperforms VPRED , the most efficient solution
to analogous tree - based models generated by different state- 25 so far , of factors ranging from 2.0x up to 6.5x . For example ,
of - the - art learning methods , e.g. , GBRT [4] . We do not the average time required by QS and VPRED to score a
report results regarding the effectiveness of the trained document in the MSN - 1 test set with a model composed of
models , since this is out of the scope of this description . 1,000 trees and 64 leaves , are 9.5 and 62.2 us , respectively .

In our experiments we compare the scoring efficiency of The comparison between QS and IF - THEN - ELSE is even more
QS with the following competitors : 30 one - sided , with improvements of up to 23.4x for the model

IF - THEN - ELSE is a baseline that translates each tree of the with 10,000 trees and 32 leaves trained on the MSN - 1
forest as a nested block of if - then - else . dataset . In this case the QS average per - document scoring

VPRED and STRUCT + [1] kindly made available by the time is 59.6 us with respect to the 1396.8 us of IF - THEN - ELSE .
authors (http://nasadi.github.io/OptTrees/) . The last baseline reported , i.e. , STRUCT + , behaves worst in all

All the methods are compiled with GCC 4.9.2 with the 35 the tests conducted . Its performance is very low when
highest optimization settings . The tests are performed by compared not only to QS (up to 38.2x times faster) , but even
using a single core on a machine equipped with an Intel Core with respect to the other two algorithms VPRED and IF - THEN
i7-4770K clocked at 3.50 Ghz , with 32 GiB RAM , running Else . The reasons of the superior performance of QS over
Ubuntu Linux 3.13.0 . The Intel Core i7-4770K CPU has competitor algorithms are manyfold . We analyse the most
three levels of cache . Level 1 cache has size 32 KB , one for relevant in the following .

TABLE 2

Per - document scoring time in s of QS , VPred , If - Then - Else and Struct + on
MSN - 1 and Y ! S1 datasets . Gain factors are reported in parentheses .

Number of trees / datasets

1,000 5,000

Method MSN - 1 Y ! S1 MSN - 1 Y ! S1

8 QS
VPRED
IF - THEN - ELSE
STRUCT +

OS 16

VPRED
IF - THEN - ELSE

2.2)
7.9 (3.6x)
8.2 (3.7x)

21.2 (9.6x)
2.9 (4)

16.0 (5.5x)
18.0 (6.2x)
42.6 (14.7x)
5.2 ()

31.9 (6.1x)
34.5 (6.6x)
69.1 (13.3x)
9.5 (4)

62.2 (6.5x)

4.3)
8.5 (2.0x)

10.3 (2.4x)
23.1 (5.4x)
6.1 (1)

16.5 (2.7x)
21.8 (3.8x)
41.0 (6.7x)
9.7)

31.6 (3.2x)
36.2 (3.7x)
67.4 (6.9x)
15.1)
57.6 (3.8x)

10.5
40.2 (3.8x)
81.0 (7.7x)

107.7 (10.3x)
16.2)
82.4 (5.0x)

126.9 (7.8x)
424.3 (26.2x)
27.1 ()

165.2 (6.0x)
300.9 (11.1x)
928.6 (34.2x)
56.3)

355.2 (6.3x)

14.3 (4)
41.6 (2.9x)
85.8 (6.0x)

112.6 (7.9x)
22.2 (4)
82.8 (3.7x)

130.0 (5.8x)
403.9 (15.2x)
34.3 (A)

162.2 (4.7x)
277.7 (8.0x)
834.6 (24.3x)
66.9 (4)

334.9 (5.0x)

STRUCT +
32 QS

VPRED
IF - THEN - ELSE
STRUCT +

QS 64

VPRED

US 11,106,685 B2
17 18
TABLE 2 - continued

Per - document scoring time in s of QS , VPred , If - Then - Else and Struct + on
MSN - 1 and Y ! S1 datasets . Gain factors are reported in parentheses .

IF - THEN - ELSE 55.9 (5.9x)
109.8 (11.6x)

55.1 (3.6x)
116.8 (7.7x)

933.1 (16.6x)
1661.7 (29.5x)

935.3 (14.0x)
1554.5 (23.2x) STRUCT +

Number of trees / datasets

10,000 20,000

Method MSN - 1 Y ! S1 MSN - 1 Y ! S1

QS 8 48.1 (-)
VPRED

IF - THEN - ELSE

STRUCT +

QS 16

VPRED

IF - THEN - ELSE

20.0 (2) 25.4 (4) 40.5 (4)
80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x)

185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x)
373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x)
32.4 (1) 41.2 A) 67.8 (-)

165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x)
617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x)
1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (33.2x)

59.6 (4) 70.3 (4) 155.8 (4)
343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x)
1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x)
1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x)
157.5 (4) 159.4 (1) 425.1)
734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x)

STRUCT +

QS 32

164.8 (3.4.x)
772.2 (16.0x)
1141.6 (23.7x)

81.0 (4)
336.1 (4.1x)

1711.4 (21.1x)
2621.2 (32.4x)
160.1 (4)
694.8 (4.3x)

3105.2 (19.4x)
4332.3 (27.0x)
343.7)

1420.7 (4.1x)
4809.6 (14.0x)
5456.4 (15.9x)

VPRED

IF - THEN - ELSE

STRUCT +

QS 64

VPRED

IF - THEN - ELSE 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x)
3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) STRUCT +

40

45

Instruction Level Analysis of QS needs to process less nodes than in a traditional
We used the perf tool to measure the total number of root - to - leaf visit . This mostly explains the results achieved

instructions , number of branches , number of branch mis- by QS .
predictions , L3 cache references , and L3 cache misses of the As far as number of branches is concerned , we note that ,
different algorithms by considering only their scoring phase . not surprisingly , QS and VPRED are much more efficient than
Table 3 reports the results we obtained by scoring the IF - THEN - ELSE and STRUCT + with this respect . QS has a larger
MSN - 1 test set by varying the number of trees and by fixing total number of branches than VPRED , which uses scoring
the number of leaves to 64. Experiments on Y ! S1 are not functions that are branch - free . However , those branches are
reported here , but they exhibited similar behavior . As a highly predictable , so that the mis - prediction rate is very
clarification , L3 cache references accounts for those refer- low , thus , confirming our claims in Section 3 .
ences which are not found in any of the previous level of 50 Observing again the timings in Table 2 we notice that , by
cache , while L3 cache misses are the ones among them fixing the number of leaves , we have a super - linear growth
which miss in L3 as well . Table 3 also reports the number of of QS's timings when increasing the number of trees . For
visited nodes . All measurements are per - document and per- example , since on MSN - 1 with A = 64 and 1,000 trees QS
tree normalized . scores a document in 9.5 us , one would expect to score a
We first observe that VPRED executes the largest number of 55 document 20 times slower , i.e. , 190 us , when the ensemble

instructions . This is because VPRED always runs d steps if d size increases to 20,000 trees . However , the reported timing
is the depth of a tree , even if a document might reach an exit of QS in this setting is 425.1 us , i.e. , roughly 44 times slower
leaf earlier . IF - THEN - ELSE executes much less instructions as than with 1000 trees . This effect is observable only when the
it follows the document traversal path . STRUCT + introduces number of leaves A = { 32,64 } and the number of trees is
some data structures overhead w.r.t. IF - THEN - ELSE . QS 60 larger than 5,000 . Table 3 relates this super - linear growth to
executes the smallest number instructions . This is due to the the numbers of L3 cache misses .
different traversal strategy of the ensemble , as QS needs to Considering the sizes of the arrays as reported in Table 1
process the false nodes only . Indeed , QS always visits less in Section 3 , we can estimate the minimum number of trees
than 18 nodes on average , out of the 64 present in each tree that let the size of the QS's data structure to exceed the cache
of the ensemble . Note that IF - THEN - ELSE traverses between 65 capacity , and , thus , the method starts to have more cache
31 and 40 nodes per tree , and the same trivially holds for misses . This number is estimated in 6,000 trees when the
STRUCT + . This means that the interleaved traversal strategy number of leaves is 64. Thus , we expect that the number of

20
TABLE 3

Per - tree per - document low - level statistics
on MSN - 1 with 64 - leaves N - MART models .

5
Number of Trees

Method 1,000 5,000 10,000 15,000 20,000

Instruction Count
10

VPRED
IF - THEN - ELSE
STRUCT +

58 75 86 91
580 599 594 588
142 139 133 130
341 332 315 308

Num . branch mis - predictions (above)
Num . branches (below)

97
516
116
272

15

0.009 0.162
6.04
0.013

0.035
7.13
0.042

0.017
8.23
0.045
0.18

0.011
8.63
0.049

9.3
0.049 VPRED

20 0.2 0.21 0.21 0.21
IF - THEN - ELSE 1.541 1.608 1.615 1.627 1.748

US 11,106,685 B2
19

L3 cache miss starts increasing around this number of trees .
Possibly , this number is slightly larger , because portions of
the data structure may be infrequently accessed at scoring
time , due the small fraction of false nodes and associated
bitvectors accessed by QS .

These considerations are further confirmed by FIG . 9 ,
which shows the average per - tree per - document scoring
time (us) and percentage of cache misses QS when scoring
the MSN - 1 and the Y ! S1 with A = 64 by varying the number
of trees . First , there exists a strong correlation between QS's QS
timings and its number of L3 cache misses . Second , the
number of L3 cache misses starts increasing when dealing
with 9,000 trees on MSN and 8,000 trees on Y ! S1 .
BWQS : A Block - Wise Variant of QS
The previous experiments suggest that improving the

cache efficiency of QS may result in significant benefits . As QS

in Tang et al . [12] , we can split the tree ensemble in disjoint
blocks of size t that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy . This way , we are essentially scoring
each document over each tree blocks that partition the
original ensemble , thus inheriting the efficiency of QS on
smaller ensembles . Indeed , the size of the arrays required to 25
score the documents over a block of trees depends now on
T instead of T | (see Table 1 in Section 3) . We have ,
however , to keep an array that stores the partial scoring
computed so far for each document .

The temporal locality of this approach can be improved
by allowing the method to score blocks of documents
together over the same block of trees before moving to the
next block of documents . To allow the method to score a
block of d documents in a single run we have to replicate in 35
d copies the array v . Obviously , this increases the space
occupancy and may result in a worse use of the cache .
Therefore , we need to find the best balance between the QS
number of documents d and the number of trees t to process
in the body of a nested loop that first runs over the blocks of 40 VPRED
trees (outer loop) and then over the blocks of documents to
score (inner loop) .

This method is called BLOCKWISE - QS (BWQS) and its
efficiency is discussed in the remaining part of this section .

38.04
STRUCT + 6.339

42.61 41.31 39.16
4.498 5.082 5.864

89.9 88.91 85.55
L3 cache misses (above)

L3 cache references (below)

33.65
5.535

74.69 83.83

OS 0.323 0.51
2.33 2.14

VPRED
30

0.363
15.04

0.356
12.77
29.577 IF - THEN - ELSE 29.615

0.004 0.001 0.121
1.78 1.47 1.52
0.005 0.166 0.326

12.55 12.6 13.74
0.001 17.772 30.331

27.66 38.14 40.25
0.039 12.791 17.147
7.37 18.65 20.54

Num . Visited Nodes (above)
Visited Nodes / Total Nodes (below)

36.47
STRUCT +

40.76
15.923
19.87

13.971
18.38

15.79 16.65 18.00 9.71
15 %
54.38

13.40
21 % 25 %

55.79
26 %
55.23 56.23

29 %
48.45
77 % 86 % 89 % 89 % 88 %

STRUCT + 40.61 39.29 37.16 36.15 31.75
IF - THEN - ELSE 64 % 62 % 59 % 57 % 50 %

TABLE 4

Per - document scoring time in us of BWQS , QS and VPred algorithms on MSN - 1 .

MSN - 1 Y ! S1

Block Block

Method T Time Ô T Time

8 8

1 1

16 16
8 8

1 1

16 16

8 BWQS
QS
VPRED

16 BWQS
QS
VPRED

32 BWQS
QS
VPRED

64 BWQS
QS
VPRED

20,000
20,000
20,000
5,000

20,000
20,000
5,000

20,000
20,000
3,000

20,000
20,000

33.5 ()
40.5 (1.21x)
161.4 (4.82x)
59.6 ()
67.8 (1.14x)

336.4 (5.64x)
135.5 ()
155.8 (1.15x)
711.9 (5.25x)
274.7)
425.1 (1.55x)
1309.7 (4.77x)

20,000
20,000
20,000
10,000
20,000
20,000
5,000

20,000
20,000
4,000

20,000
20,000

40.5 (4)
48.1 (1.19x)
164.8 (4.07x)
72.34)
81.0 (1.12x)

336.1 (4.65x)
141.2 (4)
160.1 (1.13x)
694.8 (4.92x)
236.0 (-)
343.7 (1.46x)

1420.7 (6.02x)

2 8

1 1

16 16
1 1
1 1

16 16

US 11,106,685 B2
21 22

Table 4 reports average per - document scoring time in us setting) , we observed a slight degradation of performance .
of methods QS , VPRED , and BWQS . The experiments were To show that the invention method can be made scalable , a
conducted on both the MSN - 1 and Y ! S1 datasets by varying different embodiment called BWQS has been presented , a
A and by fixing the number of trees to 20,000 . It is worth block - wise version of QS that splits the sets of feature
noting that our OS method can be thought as a limit case of 5 vectors and trees in disjoint blocks that entirely fit in the
BWQS , where the blocks are trivially composed of 1 docu- cache and can be processed separately . Our experiments
ment and the whole ensemble of trees . VPRED instead vec- show that BWQS performs up to 1.55 times better than the
torizes the process and scores 16 documents at the time over original QS on large tree ensembles .
the entire ensemble . With BWQS the sizes of document and In the foregoing , preferred embodiments have been
tree blocks can be instead flexibly optimized according to 10 described and variations to the present invention have been
the cache parameters . Table 4 reports the best execution suggested , but it is to be understood that those skilled in the
times , along with the values of d and T for which BWQS art will be able to make modifications and changes without
obtained such results . thereby falling outside the relevant scope of protection , as
The blocking strategy can improve the performance of QS defined by the enclosed emails .

when large tree ensembles are involved . Indeed , the largest 15
improvements are measured in the tests conducted on mod The invention claimed is :
els having 64 leaves . For example , to score a document of 1. A method of managing a cache memory configured to
MSN - 1 , BWQS with blocks of 3,000 trees and a single use a branch prediction mechanism to rank stored docu
document takes 274.7 us in average , against the 425.1 us ments , in particular text or image or audio or video docu
required by QS with an improvement of 4.77x . 20 ments , using a ranking model represented by an ensemble

The reason of the improvements highlighted in the table I of additive regression trees Th with h = 1 , ... H , H being
are apparent from the two plots reported in FIG . 9. These a positive integer , the method providing a score value for
plots report for MSN - 1 and Y ! S1 the per - document and each document in a set of M candidate documents d , with
per - tree average scoring time of BWQS and its cache misses i = 1 , ... , M according to their relevance to a given user
ratio . As already mentioned , the plot shows that the average 25 query q , wherein ranking the documents according to the
per - document per - tree scoring time of QS is strongly cor- branch prediction mechanism comprises :
related to the cache misses measured . The more the cache each query - document pair (q , d) is represented by a
misses , the larger the per - tree per - document time needed to vector x whose component x [j] with j = 1 , ... , P , with
apply the model . On the other hand , the BWQS cache misses P positive integer , is a numerical feature values repre
curve shows that the block - wise implementation incurs in a 30 senting a corresponding feature of the set F = negligible number of cache misses . This cache - friendliness { fo , f? , .. fp } of features characterizing the query is directly reflected in the per - document per - tree scoring document pair (q , d .) ; each tree Th = (N? , Ln) comprises time , which is only slightly influenced by the number of a set of nodes Nh = { no , nj , ... } , wherein each node is trees of the ensemble . associated with a Boolean test over a specific feature Conclusions
We presented a novel method to efficiently score docu fEF and a pre - determined feature threshold y in the

ments (texts , images , audios , videos , and any other infor form of x [@] sy , and a set of leaves Lk = { 10 , 11 , ... } ,
mation file) by using a machine learned ranking function each leaf being associated to a prediction value repre
modeled by an additive ensemble of regression trees . A main senting the possible contribution of tree Th to the score
contribution is a new representation of the tree ensemble 40 value of a document , each node being the starting point
based on bitvectors , where the tree traversal , aimed to detect of a right subtree and a left subtree connecting to
the leaves that contribute to the final scoring of a document , respective node or leaf ;
is performed through efficient logical bitwise operations . In the nodes of said set of nodes whose Boolean conditions
addition , the traversal is not performed one tree after evaluate to FALSE are termed “ false nodes , ” and “ true
another , as one would expect , but it is interleaved , feature by 45 nodes ” otherwise ;
feature , over the whole tree ensemble . Tests conducted on the method providing , for a document , execution of a step
publicly available LtR datasets confirm unprecedented of traversing all the trees Tn in the ensemble T , by
speedups (up to 6.5x) over the best state - of - the - art competi- taking the right subtree if a visited node is a false node ,
tor . The motivations of the very good performance figures of and the left subtree otherwise , until a leaf is reached ,
the invention method are diverse . First , linear arrays are 50 which is termed “ exit leaf " en (x) EL , with associated
used to store the tree ensemble , while the method exploits prediction value e , (x) .val , the score value s (x) of the
cache - friendly access patterns (mainly sequential patterns) document being finally computed as a weighted sum
to these data structures . Second , the interleaved tree tra over the prediction values en (x) .val of each tree Thi
versal counts on an effective oracle that , with a few branch wherein each tree Th is traversed and a corresponding set Ch
mis - predictions , is able to detect and return only the internal 55 of candidate exit leaves is updated during the traversal , with
node in the tree whose conditions evaluate to FALSE . Third , C , CL) , including said exit leaf en wherein initially Ch
the number of internal nodes visited by QS is in most cases contains all the leaves in Ln , wherein the following further
consistently lower than in traditional methods , which recur- steps are executed :
sively visits the small and unbalanced trees of the ensemble A. for each tree Th , the Boolean test of all nodes in
from the root to the exit leaf . All these remarks are confirmed 60 N = { 10,11 , ... } are evaluated in an arbitrary order ,
by the deep performance assessment conducted by also B1 . for a false node , the leaves in the left subtree are
analyzing low - level CPU hardware counters . This analysis removed from Cho
shows that QS exhibits very low cache misses and branch B2 . for a true node , the leaves in the right subtree are
mis - prediction rates , while the instruction count is consis- removed from Che
tently smaller than the counterparts . When the size of the 65 C. the leftmost leaf in Cn is taken as the exit leaf en ,
data structures implementing the tree ensemble becomes wherein the set of candidate documents is split into blocks
larger the last level of the cache (L3 in our experimental and the tree ensemble is split into disjoint groups , one block

35

in Vn
15

US 11,106,685 B2
23 24

of documents and one block of trees being both stored in a an offset array is used which marks the starting position
cache memory of said computer at the same time , each block of values of said three separate arrays corresponding to
of document being scored with respect to each disjoint the nodes testing a feature ;

a leaves array is used which stores the prediction values group .
2. Method according to claim 1 , wherein Ch is represented 5 of the leaves of each node in T , grouped by their tree

by a bitvector Vho initialized with all bits equal to 1 , and each id .

node of the tree Th is associated to a node bitvector of the 5. Method according to claim 3 , wherein the testing of a
same length of Vh , and the following step is executed instead feature value against the thresholds array is carried out only
of steps B1 and B2 : one every A thresholds in the thresholds array , wherein A is
B3 . Performing a bitwise logical AND operation between 10 a pre - determined parameter , so that if a test succeeds the same necessarily holds for all the preceding A - 1 thresholds , vh and each node bitvector of a false node , instead , if the test fails , the preceding A - 1 thresholds are
In step C the exit leaf en corresponding to the leftmost bit tested against the feature value .

6. Method according to claim 1 , wherein , when pre
3. Method according to claim 2 , wherein step A , instead defined number of candidate documents have been scored

of evaluating the Boolean test of all nodes , provides the and a prediction value en (x) .val for a subsequent document
is to be found with respect to a tree Th , then such a discovering , for each fEF , of the false nodes involving subsequent document is discarded if en (x) .val is so low that

testing fz in any tree of the ensemble T , wherein each node the summation of any other prediction value from the
involving testing fz in any tree in T is represented by a triple remaining trees cannot give a sufficiently high score value

s (x) . containing : (i) the feature threshold involved in the Boolean
test ; (ii) a number id of the tree that contains the node , 7. Method according to claim 1 , wherein the Boolean test
wherein the number id is used to identify the bitvector Vk to has the form of x [@] zy , and the method providing , for a
be updated ; (iii) the node bitvector used to possibly update document , execution of a step of traversing all the trees Th
Vk , wherein the set of said triples involving testing fx are 25 in the ensemble T ' , by taking the left subtree if a visited
sorted in ascending / descending order of their thresholds , and node is a false node , and the right subtree otherwise , and
false nodes are determined by testing of a feature value steps B1 , B2 , C are now :
against the threshold array and finding where the value of the B1 . for a false node , the leaves in the right subtree are
feature threshold is reached in the ascending / descending removed from Chi
order . B2 . for a true node , the leaves in the left subtree are

4. Method according to claim 3 , wherein : removed from Cho
all the triples are stored in a cache memory of said C. the rightmost leaf in Ch is taken as the exit leaf en .

computer in three separate arrays , a thresholds array , a 8. Computer program product , comprising executable
tree ids array , and bitvectors array storing the corre- code and a processor coupled with memory and cache
sponding thresholds , tree ids and bitvectors for each 35 controller executed the method of claim 1 .
node in I ;

20

30

