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Abstract

Recent studies have raised concerns about the potential reemergence of infectious diseases in Arctic
regions associated with warming temperatures. Among these, particular attention has been
devoted to anthrax, as a consequence of the outbreak that occurred in the Russian Yamalo-Nenets
peninsula in 2016. Understanding how environmental change might influence the diffusion of this
pathogen could allow informed decisions to prevent further zoonotic or epidemic episodes. To that
end, the present study aims to identify and investigate the driving variables that may favor anthrax
transmission within the Arctic, in order to build environmental niche maps describing the future
suitability of these regions for the pathogen. To do so, we use the MaxEnt statistical learning tool
informed by Arctic-specific variables, such as reindeer herd distribution and active-layer variation.

Because of the relative lack of reliable georeferenced information in these regions, the resulting
potential distribution maps are to be considered preliminary, but they can already provide a first
assessment tool for local communities living in potential risk areas. They also indicate areas in
which additional investigation is needed to improve the reliability of environmental niche
modeling, hence the accuracy of risk mapping and the usefulness to Arctic communities.

1. Introduction

More than other regions, the Arctic environment
is experiencing dramatic modifications as a con-
sequence of climate change and human activities, and
these modifications have global implications (see e.g.
the IPCC Fifth Assessment Report [1]). Indeed, over
the last few decades, many studies have brought atten-
tion to the unprecedented rates of coastal erosion,
carbon and contaminant release, global sea-level rise,
and active-layer thawing occurring in the Arctic,
leading to an overall degradation of this crucial, yet
fragile environment [2—6]. As a result, the liveli-
hoods, health, and cultural heritage of indigenous
communities might be compromised [7]. Moreover,
recent studies have investigated the presence of poten-
tially reemerging bacteria and viruses in permafrost
[8-10] and even in deep layers of Arctic sea ice [11].
Among these pathogens, anthrax has recently
raised major concerns in light of the 2016 outbreak
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in the Yamalo-Nenets peninsula, where over 2000
reindeer and one child died, and around 100 people
were hospitalized. Reports by the World Organiza-
tion for Animal Health (OIE; World Animal Health
Information Database [12]), suggested that the out-
break may have been triggered by the exposure of
herds to infected carcasses that were buried dur-
ing an anthrax outbreak that had occurred in the
region in the past, and that were brought to sur-
face as a consequence of unprecedented thawing rates
of the active layer. This assumption has been fur-
ther supported by other studies [13, 14]. Experts
had already warned about the potential existence of
infected sites in Siberia, which was severely affected
by anthrax outbreaks between 1915 and 1920, about
one century before the 2016 incident [15]. Their
rational, indeed, was that sites that once were home
to an outbreak could be ‘re-activated’ as a con-
sequence of the increasing rates of active-layer and
permafrost thawing, in combination with imperfect
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burial practices and the long-term viability of anthrax
spores.

Anthrax is a global zoonotic disease triggered by
the spore-forming bacterium Bacillus anthracis. It
principally affects sub-Saharan Africa, Asia and South
America, and some areas in Central and North Amer-
ica [16-18]. However, it has recently been repor-
ted that climate change might promote a northward
range expansion of anthrax potential suitability in the
northern hemisphere, as a consequence of changes
in habitat conditions, wildlife distribution, and other
environmental factors [19]. For this reason, anthrax is
listed among the so-called ‘climate-sensitive’ diseases
[19-21].

Investigating how environmental variables and
their changes might influence disease diffusion can
prove instrumental towards providing institutions
and communities alike with useful information about
potential precautionary and surveillance measures.
Ecological niche modeling has been widely used for
this purpose. Concerning anthrax, its spatial distribu-
tion has been investigated at multiple spatial scales,
ranging from local and national (e.g. [22-25]) to
regional and global [16, 19]. However, its poten-
tial relevance for the Arctic region is still under-
investigated, and thus possibly underestimated,
mainly because the relative lack of easily accessible
and sufficiently detailed georeferenced information
makes it difficult to properly characterize the pecu-
liarities of this environment (e.g. spatial informa-
tion about remote human settlements, reindeer hus-
bandry, infected burial sites).

For this reason, in this study we investigate the
spatial suitability of the Arctic region for anthrax,
leveraging on the spatially-distributed data currently
available. Our purpose is twofold: on the one hand,
we aim to produce an indicative map describing the
environmental conditions that may be conducive to
anthrax outbreaks and favor the diffusion of this
pathogen in the Arctic; on the other, we try and high-
light the limitations of this approach linked to data
deficiency, which could be usefully overcome with
the implementation of suitable surveillance systems.
We follow the methodology applied by Walsh et al
[19], namely the MaxEnt (Maximum Entropy) stat-
istical learning tool [26-28]. We include variables
that are relevant to the Arctic environment, including
reindeer herd distributions and active-layer thawing
depths, building also on recent modeling work [29]
suggesting that these factors may play a relevant role
in disease transmission dynamics.

2. Methods and data

MaxEnt is a machine learning algorithm that is
widely used in ecological applications for mod-
eling species distributions from presence-only
data [27, 28, 30, 31]. In general, distribution mod-
els like MaxEnt can be used to characterize the
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environmental niche occupied by a species, which
in turn can be thought of as the set of habitat require-
ments under which a certain species can persist
without immigration [32]. These methods have been
also applied in epidemiology, namely to investig-
ate the suitability of the environment for sustain-
ing infections and to predict potentially at-risk areas
[33-35]. In the following, we briefly outline how
MaxEnt can be applied to evaluate the potential dis-
tribution of anthrax in the Arctic region, based on
the available spatial data on anthrax outbreaks and
some relevant covariates. Given a set of environ-
mental features within a certain area of interest, Max-
Ent is trained on a selected fraction of sites where
outbreaks have occurred (training presence sites).
Accordingly, the algorithm identifies the range values
of the environmental features for which the disease
is more likely to emerge. Results are then tested on
the remaining fraction of known outbreak locations
(testing presence sites). Eventually, outbreak risk can
be projected over the whole study area.

2.1. Anthrax data and environmental variables

To gather a sufficient amount of data and obtain
significant results with MaxEnt, we trained and val-
idated our model on a larger geographical scale
and then discussed its projections for the Arctic
area. Indeed, we considered predictive variables and
anthrax outbreak occurrences above the 25° parallel
north. Based also on previous studies [19, 16], the
sites of known anthrax outbreaks have been taken
from the WAHIS database portal maintained by OIE
and from the Global Animal Disease Information
System (EMPRES-i) portal maintained by the Food
and Agriculture Organization. Additional informa-
tion was acquired in ProMED-mail, an alert pro-
gram run by the International Society for Infectious
Diseases, in order to cover North America, Canada,
and China. After removing duplicates, a total dataset
of 151 anthrax outbreaks, occurred between January
2005 and December 2019, was used.

Since few data were available within Arctic
regions, we included additional information in order
to better resolve feature selection and model res-
ults in this region. Specifically, we added four out-
break occurrences in the Yakutia region, in North-
ern Siberia, where many old infected burial sites
have been reported [15]. Since the exact locations
of old burial sites are unknown, the coordinates of
these outbreaks have been randomly selected within
the region. This number was balanced to include
the characteristics of this region in the evaluation
of the environmental suitability of anthrax, while at
the same time avoiding out-weighting the features of
other regions where outbreaks were reported. Slightly
different numbers (in the range 2-8) gave similar res-
ults. Although the environmental conditions used in
this study might have been slightly different when
these past outbreaks occurred, we argue in favor of
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Figure 1. Reported outbreaks sites in northern countries (red points) and random locations of potential infected burial sites in
Yakutia (light blue markers). Dashed grey line outlines the Arctic circle.

their inclusion to better characterize the risk in this
region. As the 2016 Siberian outbreak has suggested,
old infected burial sites in the Arctic might still be
active, and the release of spores should be considered
a potential threat also at present. All the considered
sites where anthrax outbreaks occurred are shown in
figure 1.

Covariates have been chosen in order to highlight
environmental characteristics that might contribute
to anthrax proliferation and transmission accord-
ing to available literature [18, 19], and that can be
relevant also for the Arctic regions [29]. Accord-
ingly, we used soil temperature anomaly, Priestley—
Taylor coefficient, soil pH and organic carbon (OC),
reindeer and livestock densities, and active layer
depth variations (figure 2). Soil temperature anom-
aly (T) for the period 2005-2019 was obtained from
the NASA Earth Observations repository based on
data provided by the NASA Goddard Institute for
Space Studies (GISS). The soil temperature anom-
aly of a given year describes changes in temperature
registered with respect to the period 1951-1980 [36].
GISS provides annual mean values at two degrees
spatial resolution, from which we derived the over-
all mean temperature anomaly across the period
2005-2019 [37-39]. The Priestly-Taylor o (PT-cv)
coefficient was used as an indicator of soil water
stress, representing water availability with respect to
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the water requirement of the vegetation. It ranges
between zero, for high water stress, and one, when
water availability is high. A global raster map of
PT-« of 30 arc-seconds cell size was obtained from
the Consultative Group for International Agricultural
Research Consortium for Spatial Information [40].
Soil pH and OC content were retrieved at 30 arc-
second resolution from the Global Soil Dataset for
Earth System Modelling [41]. One-kilometre resol-
ution spatial rasters of active-layer thickness were
obtained from the Permafrost Project run by the
European Space Agency within its Climate Change
Initiative [42]. Grid products are released in annual
files containing the maximum depth of seasonal thaw,
which corresponds to the active-layer thickness. The
dataset covers the Northern Hemisphere (north of
30°, where there is permafrost) for the period 2003—
2017. We then calculated the average rate of change in
the active-layer thickness (following referred to also as
AL), obtained as the slope of the linear trend across
the entire period.

Cattle, goat, and sheep population density dis-
tributions in 2010 were obtained from the Grid-
ded Livestock of the World database at a spatial res-
olution of five arc-minutes [43]. We summed up
these variables and formed a unique spatial raster,
in the following referred to as livestock. Informa-
tion about reindeer herds has been derived from
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the International Centre for Reindeer Husbandry
webpage [44], which provides the number of reindeer
within herders at approximate locations. A plaus-
ible spatial distribution of all herd communities was
obtained by gauging additional information from
the report by Magga et al [45]. From these two
sources we inferred the spatial distribution of reindeer
abundance within the study area. To obtain a real-
istic estimate of population density (number of
animals/km?), the spatial abundance pattern was ran-
domly downscaled using a negative binomial dis-
tribution (with mean corresponding to the average
density of reindeer in the study area) to describe
the observed clumping of herders [46]. In addition,
the abundance of migratory herds of caribou (North
America and Greenland) and wild reindeer (Russia
and Norway) was retrieved from the Report Card of
the Arctic Program of the U.S. National Oceanic and
Atmospheric Administration [47]. We then applied
the same procedure described for reindeer herders to
derive spatial grids of reindeer and caribou densit-
ies. We finally combined the derived grids and cre-
ated a spatial raster that sums up all the reindeer
data. Since the preparation of this dataset involved
a stochastic downscaling procedure, different realiz-
ations may produce slightly different spatial distribu-
tions of reindeer density.

All the variables described so far were mapped
using the Lambert azimuthal equal-area projection
to avoid distortions at northern latitudes. Environ-
mental features as well as MaxEnt outputs were pro-
cessed at a spatial resolution of 5 km x 5 km. Correl-
ation between covariates was tested and found to be
low in most cases. Indeed, the pairwise Pearson cor-
relation coefficient, p, was lower than 0.65 for all fea-
tures (figure 2).

2.2. Model set-up and evaluation

Preliminary to MaxEnt runs, the sites where
anthrax outbreaks occurred were randomly split
into 70%-30% training-testing sets. Also, 10000
points with no known outbreaks but with avail-
able information about the environmental covari-
ates were randomly sampled within our area of
interest. These background points are used by Max-
Ent to contrast presences against background loc-
ations where presence/absence is unmeasured and
help estimate site-specific presence probabilities
[27, 30].

MaxEnt was then set up by using the KUENM
package [48], implemented in R software (version
4.0.3). We created 84 models by combining four sets
of environmental and host variables (see table 1),
seven values of the regularization parameter, used in
machine learning to reduce model overfitting [30],
B (ie. B ={0.25,0.5,0.75,1,1.25,1.5,2}), and three
sets of feature classes (linear, 1, quadratic, q, and their
combination, lq). Best model candidates were chosen
by evaluating
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e the partial receiver operating characteristic (ROC)
curve and the associated area under the curve
(AUC), to measure overall classification perform-
ance and statistical significance. Partial ROCs were
used instead of full ROCs, because more suitable
for niche modeling applications, usually based on
presence data only [49]. AUC values were com-
pared against null expectations (i.e. AUC=0.5,
that is a model does not distinguish between true
and false positive) by defining the AUC ratio
(AUC/0.5) [48, 49]. The statistical significance of
each candidate model was assessed by bootstrap-
ping 50% of the test sites 500 times and then by
counting the proportion of bootstrap replicates
that have AUC ratio <1;

e the omission rate, E, to test whether models created
using training points fit well values at testing loca-
tions [50, 51]. The target omission rate was set to
be below 10%; and

o the Akaike information criterion corrected for
small-sample size, AIC. [52], to weigh model
accuracy vs. complexity. AIC. was chosen over
the common AIC because of the relatively small
sample size of known outbreak locations. A target
AAIC, <2 was chosen, which corresponds to the
default value in the KUENM package [48].

The final model was then created with the whole
set of occurrences and the parameters chosen dur-
ing the evaluation process described above. We pro-
duced five replicates of MaxEnt predictions by boot-
strap, and calculated their mean.

3. Results

Out of the 84 candidate models evaluated, all resul-
ted significant (i.e. the proportion of bootstrap rep-
licates with AUC <1 resulted always zero), 12 met
the omission rate criterion, and, out of these, only
one met the AIC, condition (figure 3(a)). The selec-
ted model includes active layer variations, soil pH,
PT-a, temperature anomaly, livestock and reindeer
densities (Set 3 in table 1), with a regularization para-
meter 3 = 0.25, and with both linear and quadratic
features (lq). Figure 3(b) shows the ROC curve for
all five replicate runs of the selected model and its
average pattern. The average AUC over all the five
replicates resulted 0.840, with a standard deviation
of 0.006.

The modeled spatial distribution of anthrax
potential suitability is shown in figure 4. The over-
all picture (panel a) is consistent with the distribu-
tion identified by previous studies, in particular the
one conducted by Walsh et al [19]. Model results
suggest higher anthrax suitability in Europe, in the
south-central zone of the Eurasian continent, and
between northern USA and southern Canada. On
the other hand, our model predicts a comparatively
lower, yet still appreciable, anthrax suitability in the
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Figure 2. Model predictors maps and pairwise correlation plot (bottom right). In the pairwise correlation plot ‘reind. and ‘lives’
are the abbreviation for reindeer and livestock, respectively.

Arctic region. Indeed, zooming in on this region
(panel b), it becomes apparent that widespread areas
within northern latitudes are potentially suitable for
anthrax reemergence. In general, it can be noted
that the spatial distribution of the areas projected

to be potentially at risk agrees with higher values of
temperature anomaly and active-layer variation rates
(see figure 2), confirming the importance of these
variable in determining potential anthrax reemer-
gence and diffusion.
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Table 1. Chosen sets of environmental and host variables.

AL Reindeer T Livestock PH TP-« OC
Set 1 X X X X X X X
Set 2 X X X X
Set 3 X X X X X X
Set 4 X X X X
a) o oo ccoe ® b) e
N
s © |
@ o @ [ e
2
s 2 2 o
c ° = o
Ke] 00 OO0 O O '5,'
0
82 8 s = U
g © w °
@)
© © N
S o
IS)
o Significant models
PY ® Selected models o
o
I I I I I I I I I I I I I I
7.81 7.83 7.85 7.87 0.0 0.2 0.4 0.6 0.8 1.0

Natural logarithm AICc

1-Specificity

Figure 3. Model classification performance overview. (a) Distribution of significant (all candidate models, empty grey circles) and
selected (filled light-blue circle) models in terms of omission rates and AIC. values. (b) ROC curve of the best model candidate
(grey shaded area: envelope of all five replicate runs; light-blue curve: average).

4, Discussion and conclusions

We applied the MaxEnt statistical learning algorithm
to study the spatial distribution of anthrax disease
outbreaks. Specifically, the present work constituted
a first attempt at investigating the spatial suitability
of the Arctic region for the reemergence of anthrax.
To this purpose, we included in our model Arctic-
specific information related to e.g. reindeer herders
and permafrost active-layer thawing. As a matter of
fact, the distribution of reindeer herds is directly
linked to the magnitude of the pool of organisms that
are susceptible to the disease, a primary driver for
outbreak risk, while permafrost dynamics is a typical
feature of the Arctic environment, one that has been
linked to the reemergence of anthrax transmission in
this region [29].

The overall resulting projections of anthrax spa-
tial distribution (figure 4) agree well with previous
studies [16, 19]. Regarding Arctic regions, environ-
mental niche modeling suggests that anthrax may
be more likely to reemerge in areas with higher val-
ues of temperature anomaly and active-layer rate
of change. The former variable has been used in
a previous study to identify the influence of cli-
mate warming [19]. The latter is an original addi-
tion of this work, whose inclusion allowed us to

highlight the specific effects of warming temperatures
in the Arctic environment, especially in terms of
increasing active-layer thawing rates. Therefore, our
results stress once more the importance of including
the region-specific effects of climate change in any
modeling effort aimed to evaluate the spatial patterns
of potential anthrax suitability, in particular within
the Arctic region, where higher temperatures have led
to drastic modifications of the environment [3, 53,
54]. Regarding the other environmental variables that
prove instrumental to risk mapping, anthrax spores
are known to be sensitive to soil pH, water con-
tent, OC, and temperature, whose values are crit-
ical for their maintenance [18, 19, 55]. The selection
of livestock and reindeer distributions as covariates
of the risk map, instead, highlights the importance
of host populations for anthrax transmission and
proliferation.

In general, we note that an exact detection of areas
potentially at risk does not seem completely at reach
yet, mostly for the limitation of the currently available
data. For example, our results indicate low probability
of anthrax transmission in the Yamalo-Nenets region,
where the 2016 outbreak occurred. In this regard, we
acknowledge that our analysis is based on data of
possibly inconsistent quality. Therefore, the presen-
ted results should be intended as preliminary, and the
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a)

High

Figure 4. Average projections of anthrax suitability in northern countries (a) and zoomed results in Arctic regions (b). Shown are
results averaged over the five MaxEnt replicates with the selected model.

High

low

identification of the spatial locations characterized by
higher potential risk of anthrax transmission should
be interpreted with caution as well. For example, it
is worth remarking that the reindeer distribution has
been statistically derived starting from information
available at a larger scale. By contrast, ground-truthed
population density estimates, possibly complemen-
ted by the identification of summer grazing areas and
migration routes, would make reindeer information
more accurate, thereby improving our estimates of
spatial anthrax suitability.

While collecting the data for our analysis, we also
noted a general under-representation of the Arctic
region in the reporting of anthrax outbreaks. In fact,
of the 149 reported episodes accounted for in our
dataset, just 3 referred to this region, in contrast with
the reported presence of infected burial sites [15]. In
this regard, knowing the exact locations of infected
burial sites would represent a crucial piece of inform-
ation to improve the accuracy of model-based risk
projection. The availability of reliable, georeferenced
information would make it possible to focus more
specifically on the Arctic, thus allowing a better qual-
ification of its peculiar environmental characteristics,
with possible implications for risk projections. Com-
pared to previous studies, our application suggests
that neglecting the proxies related to Arctic-specific
features, such as active-layer depth and reindeer herd-
ing practice, would lead to a likely misrepresentation
of the potential suitability of northern latitudes for
anthrax diffusion. By allowing a more accurate iden-
tification of areas subject to high (albeit potential)
risk of anthrax reemergence, improved data availabil-
ity could thus allow herding communities to face the
risk associated with the reemergence and transmis-
sion of this pathogen in an informed way, thereby
possibly helping them to adapt their practices and
prevent future infections.
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