
SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

705 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

Rule-based Monitoring and Error Detecting for
Converged Telecommunication Processes

Armando Ordóñez, Luis Eraso
Intelligent Mangement System Group

University Foundation of Popayán
Popayán, Colombia

{jaordonez,luise}@unicauca.edu.co

Paolo Falcarin
School of Architecture, Computing and Engineering

University of East London
London, UK

falcarin@uel.ac.uk

Abstract—Convergent process may be defined as a
composition of services which integrates functionalities from
Web and Telecommunication domains. However, during
execution of convergent processes some services may fail; in such
cases a reconfiguration process must be triggered to recover
normal behaviour of composite process. Previous works have
developed mechanisms for reducing reconfiguration time while
initial restrictions are maintained; this is achieved by replacing
regions of services instead of individual services. The present
work presents an approach for monitoring and error detecting in
convergent processes using rule production systems based on
ITIL model. The approach was tested in the monitoring module
of the AUTO framework, whose architecture and performance
are discussed to show that this approach can efficiently detect
errors and repair convergent processes in telecom environments.

Keywords—Service monitoring; automated reconfiguration;
automated planning; convergent services; service composition

I. INTRODUCTION AND BACKGROUND
Convergent process may be defined as a structured set of

services (Telecommunication and Web services) that works in
a coordinated manner to achieve a common goal [1]. One
example of convergent process is a service that manages
environmental early warnings (see Fig. 1). Environmental
manager is in charge of decision making about environmental
alarms and crops. To do so, the manager has information from
sensor networks and can also use Telecommunication and Web
services to process basic data and send information to both
farmers and sensors. Some typical requirements of such
systems are: i) to calculate hydrological balance of the zone
and receive the resulting map to the mobile, and ii) to emit an
alarm to every farmer within a radius of 2 miles from the river
if the river flow is greater than 15% of average. For the first
request, the system must gather information from sensors, and
then the system uses hydrological services from the Internet,
sending sensor data and maps fetched from Google maps.

Finally the resulting image is sent via MMS to the user's
mobile device. In the second request, sensor data are evaluated.
If necessary, an emergency map is generated. This map is
created drawing a radius of 2 miles from the sensor. To do so,
the system uses geographic services and maps from internet.
Finally, the system informs about the alarm to farmers inside
the emergency area; the best way to send the information is
selected: SMS, Cell Phone call, fixed telephone call, voice
message. In both cases, services from Web and

Telecommunications are used: these services work together
and in coordination to save lives or help to make decisions
about crops.

Fig. 1. Telecommunication and web services interaction in environmental
management systems

Due to the dynamic nature of the Internet, Web Services
may change, become unavailable and grow in number to
unmanageable size. This means that manual synthesis and
reconfiguration of convergent processes are unfeasible in
practice and consequently automation of such tasks becomes
necessary [2].

Identification and definition of guidelines for manual
composition of convergent services are problems that have
been investigated for years [3]; more recently, automation of
different phases of convergent composition has been actively
researched. Specifically, a framework called AUTO is
presented in [4][5][6], which aims at supporting automated
composition of convergent services using automated planning
for service composition and natural language processing for
user request processing.

Among phases for automated composition, reconfiguration
has been identified as one of the leading challenges in Service
oriented architectures [7][8][9]. Particularly, in the Telecom
industry, high reliability is a crucial factor and the
reconfiguration process must be as much transparent as
possible. However, due to the fact that reconfiguration is time-
consuming (the optimal service selection problem is NP-hard)

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

706 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

[10], the number of halts and reconfigurations of the whole
process must be minimized.

Previous works tackle service reconfiguration issue by
replacing failing services, and consequently, most of the
existing approaches are focused on service selection of
potential replacement [11][12]. However, existing proposals
are focused exclusively on Web Services, ignoring typical non-
functional features of Telecom services, such as service
deployment, real-time requirements, and event-based
interactions. Sometimes replacing a failing service with one
with different non-functional features prevents that initial user
constraints are maintained. One interesting approach in this
regard is CHOReOS project (FP7-ICT-2009-5) “Large Scale
Choreographies for the Future Internet (IP)” that aims for
elaborating new methods and tools related to Future Internet
ultra-large-scale (ULS) [13]. CHOReOS includes the study
mechanism for adaptability and QoS-awareness based on
monitoring choreography-based service composition in
service-oriented systems. CHOReOS present a general
approach applicable to different scenarios; however, the
authors did not consider the Telecommunication domain.

An approach for self-reconfiguration of convergent telecom
processes based on automated planning was presented in
[14][9]. In this approach, if a failure appears in a service, this
faulting service and the subsequent services in the convergent
processes were replaced by another set of services considering
user preferences during automated composition of the original
plan, and during reconfiguration (user situation and context
may change). In telecommunication domain, it is not desirable
to change the entire process but only the failing services [7].
Besides the new services must be deployed into executable
telecom environments, which is usually a time-consuming task.

In this paper an approach based on rules for monitoring and
detection of errors during execution of convergent services is
presented. This approach can possibly reduce the overhead of
repairing a complete faulty service process, since fewer
services are involved in recon guration. Furthermore the time
for undoing the task and recreating the whole convergent
process is decreased.

Other projects for reconfiguration have also been reported
in literature [10][15][16]. However, these works concentrate on
Web service selection of replacements, and the initial
requirements of users are not considered. The present work
proposes a region-based service reconfiguration that maintains
the Quality of Service (QoS) initially defined by user
requirements. The present approach is based on automated
planning for performing the replacement of failing regions. In
this context, the main contributions of this work are: a model
of error levels presented in the convergent services
architecture, a prototype of the rule based system for error
detection in AUTO, and a performance report of the
reconfiguration approach.

The rest of this paper is organized as follows: section 2
depicts the system architecture and the main components of
AUTO [5]; section 3 presents the recon guration architecture
and algorithm for reconfiguration of convergent processes,
Section 4 depicts the model for error detection, section 5 draws
the prototype, section 6 presents related work, section 7 depicts

the experimentation, and finally, section 8 draws the
conclusions and discusses future work.

II. OVERVIEW OF AUTO ARCHITECTURE
This section briefly depicts the components of the

architecture for automated convergent composition AUTO (see
Fig. 2). A deeper explanation can be found in [5]. AUTO
defines a series of sequential phases for automated service
composition: creation, synthesis, execution and
reconfiguration. The input method can be either by voice or
text, which means that AUTO can be accessed from a broad
range of devices.

Fig. 2. Architecture of AUTO

The Creation phase decomposes the request in constitutive
parts: the Natural Language Analysis deals with the treatment
of the user request expressed in natural language. In AUTO,
the transformation from natural language to planning language
is performed by a module composed of a set of underlying
components. The functional aspects and implementation of this
module has been already described elsewhere [5], so only high-
level description is provided here. Request processing in
natural language is a set of sequential steps. First, the input is
split into tokens, generating simple lexical units from complex
sentences. Next, individual units are filtered and tagged
according to their grammatical category. Additionally, each
token is labelled as either "Control", "Functional" or
"Situational" and classified according to three dimensions:
device, user and situation. Next, information gathered from
User Profile using the user's ID is added to the request. Finally,
the request is translated into a planning instance from which a
service composition is computed.

These requests as well the context information (user
preferences, device capabilities and situational context) are
translated into a problem file expressed in Planning Domain
Definition Language (PDDL). The automatically generated
problem in planning language is the input sent to the Synthesis
phase, based on the Planning and Learning Architecture
(PELEA) [17], which performs the synthesis of a plan
representing the convergent process using automated planning.

AUTO uses a robust execution environment for
telecommunications applications called Java Service Logic
Execution Environment (JSLEE). The integration between

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

707 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

PELEA and JSLEE is done in the Adaptation module. The
adaptation module takes the synthesized plans and creates an
executable convergent process. To do so, the adaptation
module associates the planning operations to Java Snippets and
generates a composite service out of JSLEE Service Building
Blocks (SBB). While in other JSLEE solutions [3], web
services are invoked through a SOAP resource adaptor, in
AUTO instead, SBBs are the basic components of the JSLEE
architecture and are responsible of invoking Web services and
Telecom functionalities. In situations in which the status and
characteristics of the services may change, AUTO can monitor
execution of the composite services and also repair the current
plan if needed. The reconfiguration process will be explained
in detail in the next section

III. AUTOMATED RECONFIGURATION
The execution flow of AUTO tasks within a

reconfiguration process is described in Fig. 3, and it is made of
10 phases (see Fig. 3). The Synthesis phase creates the abstract
plan that represents the convergent process ((1) in Fig. 3).
However, telecom requirements require the user to be served
immediately, so the elapsed time spent building the plan must
be minimized. Nevertheless, in order to get the plan that
represents the best solution, a big computational effort is
necessary. On the average case finding the optimal solution
requires exploring a very significant part of the search space,
which makes such an effort impractical. Therefore, the best
solution in a given time-window may be acceptable to begin
the execution, and afterwards the planner may refine the plan
while the first plan is executed”.

Fig. 3. Reconfiguration schema in AUTO

The additional plans generated after the initial solution
comprise the ranking of alternative plans that are possibly used
later. Later, the Adaptation module creates an executable
convergent process in JSLEE through a SBB root (2). JSLEE is
based on events, so during execution the SBB root controls the
execution of individual SBB (SBB1, SBB2 and SBB3 in Fig. 3)
which represent individual services. The communication
between SBBs is transmitted through the Event Router;
similarly the communication between SBB and external
networks is transferred by the Resource adaptors.

During normal execution, SBB root invokes SBB1 and
SBB2 using events (3), and get the successful response event
(4). However, it may happen that SBB3 does not receive the
response event or it may generate an error (5). SBB root tracks
all the execution results as well as the new "state of the world"
in the server log (6). The state of the world is the set of
information described in planning language that indicates the
preconditions and post-conditions associated with execution of
each service. For instance, a payment service changes the state
of the world from “not-paid” to “paid”, the next section
describes in detail the services representation.

The Monitoring module gathers information from the
execution of the convergent process execution in order to
collect necessary data that will be necessary for determining if
an error is present. This module gets information from the
server log and invokes the decision support module for
determining if SBB3 presents an error. In order to identify if an
error is present, the system compare the result of the invocation
of a Service with a set of acceptable values specified at design
time.

In case of failure, the reconfiguration algorithm is invoked.
This algorithm aims for replacing SBB3 and some surrounded
services by other service or set of services that performs the
same functionality. The algorithm starts from the current state
of the world (represented in planning language) and performs a
search in the existing services trying to minimize the set of
services to be replaced. To do so, Monitoring module invokes
the Decision Support module based on automated planning ((7)
in Fig. 3). If the calculated region is very large or if the error is
presented in the first service, so other plan is selected from the
ranking of alternative plans. Regardless if a region or a whole
process is changed, the Reconfiguration module performs the
changes in the Server using Javassist ((8) in Fig. 3), this
approach is described deeply in [18]. Finally, the replaced
services or set of services replacing the functionality of SBB3
respond to the SBB Root and the execution continues ((9) in
Fig. 3).

In order to establish an association between convergent
processes and SBB in JSLEE, the synthesized processes are
translated into Java components. To do so, the abstract
convergent processes are integrated with execution patterns
(conditional, fork, join,...) defined as Java snippets. This
process is performed at run time.

As explained before, convergent processes generated in
Java are monitored in the Monitoring module. The monitoring
in AUTO is done using JSLEE alarms. Alarms monitor the
execution of the services, and save the information into the log.
The source code of alarms is inserted in the Java code during
the translation between abstract convergent processes into SBB
Components in the Adaptation module.

Regarding the alarms, two issues must be considered:
firstly, if the number of alarms added to the SBB is very high,
the quality of monitoring will be reasonably good but
executing the verification process of each service so frequently
may negatively affect the performance. This means that, in
order to avoid an excessive overhead during monitoring, the
number of alarms must be minimized. Secondly, if the failure
is raised in more than one service, it could be necessary to re-

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

708 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

plan and/or re-adapt the entire process. Besides, it could be
necessary to undo all the tasks performed until the error
occurred. The latter may be very time consuming. To address
these issues, AUTO incorporates the region-based
reconfiguration that will be explained later.

During reconfiguration process, if any service malfunctions
during the execution, the failing service can be replaced by one
or several services that obtain the same effect. For example, an
operator called “communicate” may be divided into functions
to search the contact number (Search CN), locate contact
(Locate C) and make a call (Call). Similarly, a set of tasks may
be replaced by a new individual operator as long as the pre-
and post- conditions correspond to the original service (see Fig.
4). For instance, in Fig. 4 two paths, {s1, s2, s3} and {s4, s5,
s6, s7}, may be traversed to achieve the goal, which means that
the same high-level operator may be associated with different
services. This is possible thanks to the fact that each operator
may have several service candidates. For the sake of example,
let us assume in Fig. 4 that services s5 and s6 in the path 2
correspond to the functionality of the operator o2 in the first
graph.

Fig. 4. Levels of services

The central idea is to represent the region to repair using
input, output, pre- and post- conditions (IOPE). This is the goal
to reach using the planning algorithm that creates a new plan.
Furthermore, the planning algorithm considers user preferences
through the cost function that assigns a cost value to each
generated plan [5]. The algorithm continues and, if the repaired
region is very large and include too many nodes, the whole
plan will be replaced by the existing ranking of plans.

IV. MONITORING AND ERROR DETECTION

A. Event based monitoring
Monitoring provides an effective and reliable method for

error detection. Monitoring systems are responsible for
gathering context information and presentation of such
information to other components in order to provide tools for
performing appropriate actions; in this case, for error detection
and convergent reconfiguration.

According to management models of events and incidents
described in the ITIL1 framework (Information Technology
Infrastructure Library), an error is the root cause for service
interruption and reduces quality of service provisioning.
Within services operation, various events may be generated

1 www.itil-officialsite.com

which can be categorized in: Informative which indicate
regular service operations, Warning events that indicate an
unusual transaction or Exception events that may indicate a
failure. An Incident is the occurrence of a warning or exception
event. When an error occurs it can generate one or many
incidents associated with service execution such as decreasing
in level agreements (SLAs), sending of incorrect data in output
parameters, messages exception, or simply no response to
certain requests. In order to detect effectively and reliably
errors and their root causes, it is necessary to store, categorize
and prioritize properly events including information events and
incidents.

Previous work [19] focus on mechanisms to intercept
messages of generated events using handler-based, wrapper-
based and proxy-based mechanisms. Other works such as [20]
focus on a formal and more detailed definition of event types,
which facilitates error detection and interoperability between
different monitoring systems.

In the present architecture, messages associated to events
are stored in the server log. Thus monitoring module acts as a
message handler, which includes tasks such as message
interception of informative events and incidents, as well as
generation of new warning and exception messages which are
inferred from the expected service behaviour and of the rules
defined in the module. In order to categorize and prioritize
informative events and incidents, to generate new incidents,
and to diagnose errors, the module has a rule base and an
inference engine that detects errors from associated incidents
(warning and exception events). An advantage of rule-based
systems is that knowledge base can easily be modified to
include new rules, for example, to include rules associated with
known bugs (errors which root cause has been identified but
which has not been solved appropriately) from a set of
associated incidents; thus the effectiveness and reliability of the
module is improved. When an error is detected, this
information is sent to the decision support module to determine
whether the change in a region or entire process is necessary.

B. Components of monitoring module
AUTO monitoring module is detailed in Fig. 5, monitoring

module interfaces directly with the server log and with the
decision support module. The main components of the module
are: Service Register, Service Representation, Knowledge
Base, Working Memory, Inference Engine and Fault Detector.
Next, the components are explained in detail. The first step to
properly detect errors is to define the expected behaviour of
services taking into account functional and non-functional
aspects. Common methods for defining functional aspects in
web services are WSDL and WADL. Non-functional aspects
such as legal constraints, costs of use, reliability, and
performance may defined by using policy standards such as
WS-Policy.

Decision support module defines the services that will be
monitored according to the abstract plan and records such
services in the monitoring module ((1) in Fig. 5). A list of all
monitored services is stored in the Service Register which
generates the service representation and associated policies ((2)
in Fig. 5).

97

Fig. 5. Monitoring module in AUTO

In order to represent services the presen
SOA Ontology [21]. SOA ontology incl
definition, service contract and service interfac
those terms are platform independent so they
represent both Web and Telco services. S
defines legal aspects and interaction aspects
service use. Staring from this model, Contract
defined which are stored in the knowledge b
interface defines how other elements can intera
information with the service, considering
information (InformationType) and constrain
from this modelling, the Interface Policy R
which are also stored in the knowledge base. T
associated with the type of service (either
REST, or as SBBS Telco SIP Servlets, etc
Protocol Policy Rules.

As mentioned above, each time a service
service records execution information as even
log. All these events are verified by the fa
included as facts in the working memory ((4) in
service is successfully executed, so Inform
included, this event includes timestamp, sub
inputs, obtained outputs, and execution time. W
not successful executed because inputs we
submitted (not compliant with defined servic
Warning event details wrong inputs. When a
respond properly despite having correct inpu
defined service interface) so an Exception even

From the rules stored in the knowledge ba
in the working memory and service represen
Detector proceeds to call the inference engine
a result certain rules are activated which allow
of new events either informative, warning or e
Exception events are detected in workin
information is sent to decision support module
Fig. 5) which is responsible for determining if
change a service, a region or the entire process
monitoring process.

SAI Intellig
Novem

8-1-4673-7606-8/15/$31.00 ©2015 IEEE

nt approach uses
ludes a service
ce (see Fig. 6), as
y can be used to
Service contract

s associated with
t Policy Rules are
base. The service
act and exchange

g the types of
nts (Constraints),
ules are defined

Technical aspects
Web as SOAP,

c.) are stored as

e is running, this
nts in the server

ault detector and
n Fig. 5). When a
mation event is

bmitted values in
When a service is
ere not properly
ce interface) so a

service does not
uts (compliant to
nt is generated.

ase, events stored
ntation; the Fault
((5) in Fig. 5), as
w the generation

exceptions. When
ng memory this
e ((7) and (8) in

f it is necessary to
s, thus ending the

Fig. 6. Service concept in SOA Ontology (

C. Services levels for error detectio
SOA ontology defines servic

interface as a fundamental part of se
model, different levels have been de
that allow monitoring.

1) Level 1. Contract policy rule
The first level corresponds to

include service interaction issue
performance, and legal aspects such
associated with execution of servi
associated with this level may be:

• Service reliability is 99 %, i.
may fail once.

• Service performance is betw
service must respond within

• In addition, a general policy
performance of all service
warning events when servic
the maximum allowed (45m
The latter allows detection o
affected contracted issues (le

Given the flexibility of rule-base
representation model of proposed
administration of the policies is fa
easy modification of rules (values o
to suit the requirements of user requ

2) Level 2. Interface policy rule
At this level, ranges requiremen

and outputs as well as restrictio
formalized through policies. A co
basic Health service that using a U
weight, body temperature, respira
blood pressure.

• Restriction on inputs which
000000 and 999999 (allowa
the system).

• Restriction on outputs for he
numeric between 30.0 an
measurement units are centim

gent Systems Conference 2015
mber 10-11, 2015 | London, UK

709 | P a g e

(Adapted from [21])

on
ce contract and services
ervice modelling. From this
efined for definition of rules

es
o contract policies which
es such as reliability or
h as cost or responsibilities
ices. An example of rules

.e. in 100 executions only it

ween 10ms and 50ms, i.e. the
this range of values.

y can be defined to monitor
es including generation of
e performance is at 95% of

ms in the previous example).
of errors before these errors
egal and technical).

ed systems and formality of
d services, definition and
facilitated, the latter allows
f reliability or performance)

uests.

es
nts, values types for inputs
ons of pre-conditions are
oncrete example may be a
User ID as input retrieves:
atory rate, heart rate, and

h must be integer between
able values for User ID in

eight which must be floating
nd 250.0 considering that
metres (cm).

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

710 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

• As in the case of Level 1, general policies can be
defined to alert when sending or receiving values close
to maximum values.

3) Level 3. Protocol policy rules
Since services may fail at any time, so they may return

error messages associated with the protocol which are not part
of inputs and outputs defined in normal service operation.
Consequently, it is necessary to include policies which help to
determine the root cause of error from received messages. A
concrete example is the response messages of the HTTP
protocol.

• If the result of the service includes a message with Error
code 404 (Not Found), so the services has not been
found, therefore an exception is generated and the
support module is notified to perform the appropriate
action.

• If service result includes a HTTP message with code
500 (Internal Server Error), so it indicates that the
service exists and has been invoked according to
interface requirements, but an exception has been risen
and it should be notified.

V. RULES MODELLING AND PROTOTYPE
The objective of this section is to present rules modelling

that represent the different levels of the model. Drools rule
engine is implemented on the Java platform and has its own
language for the definition of the rules (DRL) which are stored
in the knowledge base; the facts (Log events server) are
instances of classes that are inserted into the working memory.
The inference engine is based on the RETE algorithm. Next it
is shown the implementation of policies for a basic health
service that serves patient information from its ID.

A. Registration and modelling of service
Initially when a service is registered in the monitoring

module, this service must be mapped to the model defined by
the SOA Ontology considering the contract interface and the
associated restrictions. A code snippet showing this process is
shown in Fig. 7, initially some information is registered: the
service interface and contract, the types of information
(InformationType), age, weight and height, as well as some
restrictions for value ranges and data types that can have
outputs and inputs. Finally service representation and event log
are inserted as facts in the Rules Engine session to be
monitored.

B. Failure detection and server registration
Information event messages generated during service

execution are sent to the fault detector and stored in the service
log for future use. Basic information events are the one that
corresponds to a service calls and include the time when the
service call was done and input and output values. When an
event is generated, the fault detector is responsible for inserting
as a fact in the working memory and then it executes the
inference engine in order to detect an error occurrence.

Fig. 7. Service mapping to SOA Ontology

An example of such messages following JSON
nomenclature is described in Fig. 8. In the second service call
an error occurs because the result for height is 274.0 which
exceeds the range of allowed values defined in the interface
(30.0 to 250.0).

Fig. 8. Information Events of services calls

[{
 "timestamp" : "14-04-2015 11:01:44.598",
 "serviceName" : "BasicHealthSings",
 "inputs":[
 {"parameter":"id","dataValue":"123456"}

],
 "outputs":[
 {"parameter":"age","dataValue":"30"},
 {"parameter":"weight","dataValue":"73.5"},
 {"parameter":"height","dataValue":"171.0"}

]},
{
 "timestamp" : "14-04-2015 11:01:45.821",
 "serviceName" : "BasicHealthSings",
 "inputs":[
 {"parameter":"id","dataValue":"789123"}

],
 "outputs":[
 {"parameter":"age","dataValue":"25"},
 {"parameter":"weight","dataValue":"68.3"},
 {"parameter":"height","dataValue":"274.0"}

]
},]

ServiceContract sc = new ServiceContract();
ServiceInterface si = new ServiceInterface();
InfoType id =
 new InfoType("id",InfoType.DataType.INT);
InfoType age =
 new InfoType("age",InfoType.DataType.INT);
InfoType weight =
 new InfoType("weight",InfoType.DataType.FLOAT);
InfoType height =
 new InfoType("height",InfoType.DataType.FLOAT);

ConstraintNumberRangeValue<Integer>
 ageConstraint= new ConstraintNumberRangeValue

<Integer>(age, 0, 120);
ConstraintNumberRangeValue<Float>
 heightConstraint=new ConstraintNumberRangeValue

<Float>(height, 30.0f, 250.0f);

si.getInputs().add(id);
si.getOutputs().add(age);
si.getOutputs().add(weight);
si.getOutputs().add(height);
si.getConstraints().add(ageConstraint);
si.getConstraints().add(heightConstraint);

Service bhSingns =
 new WebService("BasicHealthSings", sc, si);
IncidenceRegister incidenceRegister =
 new IncidenceRegister();
ksession.insert(incidenceRegister);
ksession.insert(bhSingns);

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

711 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

rule "ConstraintNumberRangeValue_PolicyRule"
dialect "mvel"
when
 Service(

$sName:serviceName,
$sInterface:serviceInterface)

 ServiceCallEvent(
serviceName==$sName,
$callEventOutputs : outputs)

 $infoItem: InfoType(

$itName:name,
dataType in (DataType.INT, DataType.FLOAT)
) from $sInterface.outputs

 $pValue: ParameterValueBinding(
parameter==$itName,
$dataValue: dataValue
) from $callEventOutputs

 $constraint : ConstraintNumberRangeValue(

informationType==$infoItem,
maxValue <= toNumber($dataValue, $infoItem)
) from $sInterface.constraints

 $incidenceRegister : IncidenceRegister()

then
 NumberRangeValueExceptionEvent exception =

new NumberRangeValueExceptionEvent(
$sName, $constraint, $pValue);

 $incidenceRegister.eventList.add(exception);

end

C. Rules definition
Knowledge base stores rules defined for policies at

different levels. These rules implement logic for accomplish
restrictions at each level. Every rule has a name that identifies
it, the "when" section which defines restrictions to be
accomplished for the rule to be triggered, and a "then" section
defining the actions to take when a rule is triggered.

Fig. 9 shows an example of a rule that implements the
policy to throw an exception; this exception is thrown if there
is a violation of a restriction for maximum and minimum
values in a service output. In the "when" section initially it is
verified that there is a service ($sName) registered in working
memory, additionally it verifies that there are call events to this
service (ServiceCallEvent). Then it is verified that the service
interface ($sInterface.outputs) contains numeric outputs,
specifically the type INT or FLOAT. From the service call
events (ServiceCallEvent) the output parameters values
($pValue) are taken. Finally the output values ($pValue) with
the maximum permissible values according to restrictions are
checked.

If the rule is accomplished, that is an output value is out of
range, the execution will be launched, i.e., the code in "then"
section is executed. In the example a new exception event
(NumberRangeValueExceptionEvent) is generated, next this
event is added to the event log, thus the fault detector notices
the error and send the event to decision support module.

Fig. 9. Rule implementing constraints policies for maximum values

The above rule applies to services that define numerical
outputs including restrictions for maximum and minimum
values in their service interfaces. The same steps may be
followed to define new restrictions, for example when an input
or output type is email. In this case the first step is to create the
class that defines the constraint (ConstraintEmailValue), then it
is defined the rule that implements the policy
(ConstraintEmailValue_PolicyRule), and finally it is defined
the event which is triggered when the restriction is violated
(EmailValueExceptionEvent or EmailValueWarningEvent).

VI. RELATED WORK
Vaculin and Sycara [20] describe a mechanism for

monitoring semantic web services based on OWL-S. The
authors present a model based on events that facilitates log
management and services monitoring. This work presents an
ontology comprising different kinds of events such as
procedure calls, inputs assignation, outputs processing,
precondition evaluation, results assessment, fault events and
errors, among other. During execution various events are
emitted, these events are included in the ontology and are used
to generate a log record. The ontology is platform independent
and can be used for diverse monitoring systems. The work
focuses on the definition of the ontology, but does not detail
the architecture and other components required for a
monitoring framework.

A proposal for monitoring cloud services is described in
[22]. This work shows how to discover suitable payment
services based on SLA service level agreements. To do this,
services and SLA are modelled through an extension of
WSMO that includes QoS requirements. This modelling
ensures interoperability in requirements definition and
facilitates monitoring. This approach includes also the
definition of dependencies between services and an algorithm
that allows correct fault detection when these faults are
dependent on other services. Unlike the present approach, this
work focuses on services offered in the cloud infrastructure
(IaaS) and also in the monitoring services discovery, but does
not detail how monitoring services should be built.

Emeakarohaa et al. [23] propose an infrastructure to detect
violations in the SLA (DeSVi - Detecting SLA Violation
infrastructure). For this, initially low-level metrics are defined
such as load and unload bandwidth, which allow adequate
monitoring of resources; then it is defined a mapping
mechanism (LoM2HiS) to convert these metrics to high-level
requirements defined in SLA such as service availability. The
proposed framework is tested on two cloud applications, during
tests time intervals are discussed for measurement depending
on the type of application. Authors focus on monitoring cloud
services, but clarify similarities with monitoring Web services
and Grid Systems. The main contribution of this work is the
mapping mechanism LoM2HiS therefore it does not delve into
formal description of SLA. Regarding the mechanism used
specifically to detect the occurrence of a violation of SALs the
authors mention that the logic is implemented by a Java routine
that compares SLA values with defined high-level metrics.

Other works focus on formalizing QoS attributes as part of
SLA definition for a service, and how these attributes can be
used as a basis for Web services monitoring [24] and [25].

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

712 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

However, they do not detail how to implement monitoring
mechanisms to verify compliance with defined QoS attributes.
Table 1 summarizes the characteristics of the related work.

TABLE I. RELATED WORK

FEATURES

Domain Contribution Difference

[20]
Semantic
web
services

Definition of event
ontology

It does not define a
mechanism to infer
the existence of errors
from generated
events.

 [22]

Cloud
services
monitoring,
IaaS

WSMO extension for
defining QoS based
error detection caused
by dependencies
between services

It focuses on the
discovery of existing
monitoring services
that meet the
requirements, but not
in its construction.

[23]
Cloud
services
monitoring

Defines a mapping
mechanism to convert
low-level metrics to
high-level
requirements.

The inference is
defined error routine
in Java; therefore it
has no sufficient
flexibility as a rule-
based system.

[24]
[25]

Web
services
monitoring

Definition of SLAs as
a basis for defining a
monitoring system

Implementation of
monitoring
mechanism is not
detailed

VII. EXPERIMENTATION
In order to evaluate the time that the monitoring module

spend to execute the verification of a possible error, several
tests were performed taking into account variations in the
number of service call events that are inserted into the working
memory and the number of errors presented. Basically time in
milliseconds that the module takes to execute the main tasks
was registered:

• Knowledge base creation time

• Service register time

• Inference engine execution time

Results are presented in Fig. 8 (a), (b) and (c) respectively:

It can be seen that the task that spent more time is the
creation of knowledge base; it is around 2.6 and 2.8 seconds. It
should be kept in mind that this task is only done once and is
independent of the number of facts, for this reason the variation
of time with respect to the number of events is minimal. Same
as the knowledge base creation, the service register time
remains constant over the number of events or errors.

Finally, it can be seen in figure 8-c there are an important
variance in the time needed to execute the inference engine in
relation to the number of events inserted into the working
memory. But it makes no difference whether these are
informative events or events that generate exceptions and fire a
rule. In this respect, it is important to define the period of time
in which the inference engine will be called. On one hand, if a
long time is used, there will be several events in the working
memory and the inference engine execution will be slow; on
the other hand, if a short time is used, it executes fast but it can
saturate the processor.

Fig. 10. Execution time vs. Number of events

VIII. CONCLUSIONS
Convergent service composition requires that such services

recover from failures efficiently. This work presents the results
of the ongoing work towards the definition of a mechanism for
planning-based reconfiguration of convergent services across
the web and telecom domains. Here an approach for services
monitoring in telecom environments using a rule based
approach is presented. This approach uses a model based on
ITIL. Future work will include the use of different planning
architectures for performing the reconfiguration of different
failing regions at the same time. Equally further testing to
evaluate performance and quality of the approach in cloud-
based platforms for convergent services will be carried out.

REFERENCES
[1] Y. Cardinale and M. Rukoz, “Fault tolerant execution of transactional

composite web services: An approach,” Proc. Fifth Int, Conf. on Mobile
Ubiquitous Computing, Systems, Services and Technologies, November
2011, pp. 158–164.

[2] Object Management Group. Profile for Advanced and Integrated
Telecommunication Services (TelcoML), Object Management Group
Standard. 2012.

[3] C. Venezia, P. Falcarin: “Communication web services composition and
integration”, In Proc. of IEEE International Conference on Web Services
(ICWS-06), 2006.

[4] A. Ordonez, V. Alcazar, J.C. Corrales, P. Falcarin, “An Automated
User-Centered Planning Framework for Decision Support in
Environmental Early Warnings,” Proc. IBERAMIA, pp. 591-600, 2012.

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

713 | P a g e
978-1-4673-7606-8/15/$31.00 ©2015 IEEE

[5] A. Ordonez, V. Alcázar, J.C. Corrales, and P. Falcarin, “Automated
context aware composition of advanced telecom services for
environmental early warnings”. Expert Systems with Applications, vol.
41, no 13 2014.

[6] A. Ordonez, J.C. Corrales, J. C. and P. Falcarin. , “HAUTO: Automated
composition of convergent services based on HTN planning”.
INGENIERÍA E INVESTIGACIÓN, Vol. 34, No. 1. 2014, pp.66-71,.

[7] K.-J. Lin, J. Zhang, Y. Zhai, and Xu, B., “The design and
implementation of service process reconfiguration with end-to-end QoS
constraints in SOA,” Service Oriented Computing and Applications,
Vol. 4, No. 3, 2010, pp. 157–168.

[8] M. Shiaa, P. Falcarin; A. Pastor, F. Lecue; E. Silva, and L. Ferreira
Pires, "Towards the automation of the service composition process: Case
study and prototype implementations", IEEE, ICT Mobile Summit,
2008.

[9] A. Ordonez, V. Alcázar, J. C. Corrales, and P. Falcarin, “Automated
context aware composition of Advanced Telecom Services for
environmental early warnings,” Expert Systems with Applications, vol.
41, no. 13, pp. 5907–5916, Oct. 2014.

[10] T. Yu, Y. Zhang and K. Lin, “Efficient algorithms for web services
selection with end-to-end QoS constraints,” ACM Transactions on the
Web (TWEB), Vol. 1, No. 1, 2007, pp. 6.

[11] E. Kaldeli., A. Lazovik, and M. Aiello, M, “Continual planning with
sensing for web service composition,” AAAI, April 2011, pp. 1198–
1203.

[12] K. Lin, J. Zhang Y. Zhai, “An efficient approach for service process
reconfiguration in SOA with end-to-end QoS constraints,” In: Proc. of
IEEE int. conf. on e-commerce technology (CEC). 2009.

[13] M. Lescevica, E. Ginters, E. and R. Mazza, “Unified theory of
acceptance and use of technology (UTAUT) for market analysis of FP7
CHOReOS products”. Procedia Computer Science, Vol. 26, 2013,
pp.51-68.

[14] A. Ordóñez, H. Ordóñez, C. Figueroa, C. Cobos, and J. C. Corrales
“Dynamic reconfiguration of composite convergent services supported
by multimodal search”. In Business Information Systems 2015, pp. 127–
139. Springer International Publishing.

[15] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Trans Softw Eng Vol. 33, No. 6, 2007, pp. 369–384.

[16] J. Wang, J. Yu, P. Falcarin, Y. Han; M. Morisio, "An approach to
domain-specific reuse in service-oriented environments", In Proc. of Int.
Conf. on Software Reuse (ICSR-08), Springer, 2008.

[17] C. Guzman, V. Alcazar, D. Prior, E. Onainda, D. Borrajo, J. Fernandez-
Olivares and E. Quintero, “PELEA: a domain-independent architecture
for planning, execution and learning,” in Proc. Scheduling and Planning
Applications workshop ICAPS conf., Freiburg, 2012, pp. 38–45.

[18] D. Adrada, E. Salazar, J. Rojas and J.C. Corrales, “Automatic code
instrumentation for converged service monitoring and fault detection,”
Proc. Advanced Information Networking and Applications Workshops
(WAINA), 2014 28th International Conference, May 2014, pp. 708-713

[19] K. Bratanis, D. Dranidis, and A. J. H. Simons, “An extensible
architecture for run-time monitoring of conversational web services,” in
Proceedings of the 3rd International Workshop on Monitoring,
Adaptation and Beyond, New York, NY, USA, 2010, pp. 9–16.

[20] R. Vaculin and K. Sycara, “Semantic web services monitoring: An
OWL-S based approach,” in Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual, 2008, pp. 313–313.

[21] The Open Group., "Technical Standard: Service Oriented Architecture
Ontology." Berkshire : The Open Group, 2010. 1-931624-88-7.

[22] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “A dependency-
aware ontology-based approach for deploying service level agreement
monitoring services in Cloud,” Softw. Pract. Exp., vol. 42, no. 4, pp.
501–518, Apr. 2012.

[23] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros, I. Brandic, R.
Buyya, and C. A. F. De Rose, “Towards autonomic detection of SLA
violations in Cloud infrastructures,” Future Gener. Comput. Syst., vol.
28, no. 7, pp. 1017–1029, Jul. 2012.

[24] B. Koller and L. Schubert, “Towards autonomous SLA management
using a proxy-like approach,” Multiagent Grid Syst, vol. 3, no. 3, pp.
313–325, Aug. 2007.

[25] G. Dobson and A. Sanchez-Macian, “Towards unified QoS/SLA
ontologies,” in Services Computing Workshops, 2006. SCW’06. IEEE,
2006, pp. 169–174.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

