
A Visual Semantic Service Browser Supporting User-Centric Service Composition

Jian Yu
School of Computer Science

University of Adelaide
Adelaide, SA 5005, Australia

Email: jian.yu01@adelaide.edu.au

Quan Z. Sheng
School of Computer Science

University of Adelaide
Adelaide, SA 5005, Australia

Email: qsheng@cs.adelaide.edu.au

Paolo Falcarin
Dipartimento Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Email: paolo.falcarin@polito.it

Abstract—Follow the promising Web 2.0 paradigm, the
telecommunications world also wants to implement the Telco
2.0 vision by inviting its users to actively participate in the cre-
ating and sharing of services accessible using handheld devices.
The EU-IST research project OPUCE (Open Platform for User-
Centric Service Creation and Execution) aims at providing end
users with an innovative platform which allows an easy creation
and delivery of personalized communication and information
services. This paper introduces a novel visual semantic service
browser built on top of the OPUCE service repository which
enables intuitive visualized service exploring and discovery
while requires no technical semantic Web knowledge from the
user.

I. INTRODUCTION

In recent years the needs of users concerning telecom-
munications services, especially mobile ones, have evolved
rapidly, requiring the collaboration of an increasing number
of network resources of various technologies and user data.
On the other hand, users have been excluded from current
service provisioning models, having few chances to person-
alize their services according to their needs [25].

Influenced by the Web 2.0 trend of user-centric content
delivery, the Telco world tries to build its own Telco 2.0.
The European Union sponsored IST-FP6 integrated research
project OPUCE 1 (Open Platform for User-Centric Service
Creation and Execution) represents the newest development
following this vision. The OPUCE platform aims at devel-
oping a unique platform where end users could create and
publish mobile services from a converged Web of infor-
mation technologies and communications services. Taking a
simple yet outstanding example, with the OPUCE platform,
end users could easily create a useful personal service that
monitors an email account and then sends the incoming
mails out as SMS or text-to-speech transformed voice call
to the user’s mobile phone depending on its context.

A service repository is responsible for storing and man-
aging all sorts of information related to services and then
is at the very core of the OPUCE platform. since the user-
centricity feature of the platform, apart from common data
management needs, there are a few special requirements for
the repository. For example, the repository is required to

1http://www.opuce.eu/

support technically non-experienced users so that they can
on the one hand easily access and manage their own services,
and on the hand conveniently discover services suitable for
creating new value-added services.

In this paper, we discuss the visual semantic service
browser as one of the key component of the OPUCE
service repository. This browser leverage the semantic Web
technology to enable end users to visually exploring and
discovering OPUCE services in a intuitive and convenient
manner.

The reset of the paper is organized as follows. Section
2 gives a brief introduction to the OPUCE platform and
the role of the service repository in the whole architectural
picture. Section 3 describes the technical details of the
visual semantic service browser, including an ontology for
describing OPUCE services, the underpinning principle, and
also the implementation. Section 4 reports the evaluation of
the service browser. Section 5 discusses related work and
finally Section 6 concludes the paper.

II. OPUCE PLATFORM OVERVIEW

User-centricity is the dominant feature of the OPUCE
platform, which is reflected in the whole life-cycle of the
service provisioning process. As illustrated in Figure 1,
operators and service providers encapsulate diverse telecom-
munications and IT resources as OPUCE base services; and
prosumers use the OPUCE platform not only to create value-
added services, but also to manage, execute, share, and
adapt them. In general the OPUCE platform comprises the
following main components:

• Advanced Service Editor: It is a Web-based graphical
service editor for prosumers to create services and also
to deploy and manage services. . Service Lifecycle
Management: It manages the entire lifecycle of all
services, including deployment, provisioning, and mon-
itoring. It also hosts the Service Description Translator,
which is responsible for translating the user-created
OPUCE composite service description into executable
BPEL [6] scripts.

• Service Execution Environment: It hosts and runs the
real executable code of both OPUCE base services

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.113

244

Figure 1. The OPUCE platform

and user services. OPUCE base services can be im-
plemented using different technologies such as JSLEE,
J2EE, .NET or even legacy technologies as long as
they are encapsulated as WSDL-interfaced Web ser-
vices. The main components of the Service Execution
Environment are the Event Gateway and the BPEL
Engine. The Event Gateway reflects the event-driven
nature of the telecommunications applications. It is the
endpoint for all the event notifications generated by
the base services and will forward these notifications
to the BPEL Engine which serves as the service logic
execution engine.

• User Information Manager - It stores information about
users. Specifically, five groups of user information,
including User Profile, User Context (such as location,
presence, device capability, network condition), Service
Usage, Device Usage, and User Preferences are kept
to be used by the Service Advertising and Context-
Awareness components.

• Service Advertising - It recommends services to end
users based on both explicit user subscription to service
categories or keywords, and intelligent matching of user
profiles with service descriptions.

• Service Repository - It stores the descriptions of both
the OPUCE base services and user services. The reposi-
tory comes with a powerful search capability supporting
both keyword-based and semantic search.

• Context-Awareness - It allows the dynamic adaptation
of services according to the information retrieved from

the profiles within the User Information Manager. It
performs the necessary changes in the service logic
and/or the data handled in order to adapt the service
to the context of each user.

As for the repository itself, it can be divided
into three modules: the Faceted Repository that
serves as a common registry for publishing and re-
trieving service facets [26] ; the Visual Semantic
Service Browser that provides intuitive service explor-
ing and discovering functionalities; and the XDM/XCAP
Interfacing module that enables accessing the repos-
itory from handheld devices.

III. THE OPUCE VISUAL SEMANTIC SERVICE

BROWSER

A. Overview

One of the key functionalities of the service repository
is to support two important user tasks: exploring services
and discovering services. Herein exploring is the process of
navigating through available services and acquiring impor-
tant knowledge of them. And discovering is the process of
locating desired services that satisfy the criteria specified
by the user. Both of the two tasks heavily rely on how the
characteristics of services are represented, organized, and
rendered. An ontology is a formal explicit description of
concepts, or classes in a domain of discourse [15]. Various
features and attributes of a class can be described with the
properties of the class. In the service-oriented computing
area, using ontologies to describe the formal semantics of

245

Web services has proven its effectiveness in high-precision
service discovery [17], [11] and automatic service compo-
sition [24]. To facilitate service exploring and discovering,
we define the OPUCE Ontology which is based on OWL-
DL, a sublanguage of the Web Ontology Language (OWL)
W3C standard that is named for its correspondence with
description logics. OWL-DL achieves a balance between
expressiveness and computational completeness [14]. Rea-
soning on OWL-DL is decidable and supported by various
DL reasoning engines, e.g. Pallet 2 and Racer 3. And the
ability of OWL-DL to define new classes based on Boolean
combinations, such as intersection and union, and property
restrictions, such as existential restriction, is essential in our
service discovering approach.

Ontologies only answer part of our questions on how
to represent characteristics of services. The exploring and
discovering of large information spaces is still a diffi-
cult task, especially if the user is not familiar with the
terminology used to describe information and the query
language used to search specific information [9]. Work
on enhancing Web service discovery framework—such as
UDDI—with semantic features [11], [21] cannot solve the
problem since the user still needs to write the query in
a dedicated ontology language, or to fill a template with
terms defined in an ontology to find services. To cross this
hurdle, we develop the OPUCE Visual Semantic Service
Browser (OPUCE Browser in short) that provides intuitive
visual interfaces for users to easily carry out the tasks of
service exploring and discovering. As the most significant
feature, the browser does not require users to have any prior
knowledge of ontology languages or domain terms, which
highly pronounces the theme of the OPUCE project: user-
centricity.

In the next subsections, we first introduce the OPUCE
Ontology and then describe the technical details of the
OPUCE Browser.

B. The OPUCE ontology

The OPUCE Ontology is an OWL-DL based semantic
model that serves as the basis for representing and reasoning
upon characteristics of services. It is designed considering
the significant service characteristics that should be included
in the context of OPUCE. In general, the service properties
defined in the ontology can be divided into functional
properties and non-functional properties. Next we describe
the OWL object properties associated with the Service
concept in the OPUCE Ontology.

Functional Properties.
• hasInput and hasOputput:Just like most ser-

vice semantic models such as OWL-S [13] and FU-
SION [11], inputs and outputs (IO) are introduced to

2Pellet: http://clarkparsia.com/pellet/
3Racer: http://www.racer-systems.com/

represent the set of parameters that a service expects to
receive and the set of parameters that a service will pro-
duce if invoked. Furthermore, these two properties are
grouped as the sub-properties of the hasParameter
property. It is worth noting that we do not include the
other popular properties preconditions and effects (PE)
that represent the state-wise conditions that need to hold
before and after the service invocation. PE are mainly
used in the situation of automatic service composition
and thus out of the scope of OPUCE.

• hasFunctionality: Functionality represents the
‘functional ability’ property of services. In [19], func-
tional abilities are modeled as a list of actions using
pairs of <verb, noun>. Since there is overlapping
between the nouns and the service IO parameters
(e.g. message, location, context), we only use verbs
to capture the service functionalities. The range of
hasFunctionality is the Functionality con-
cept, and a list of subclass of Functionality, such
as Send, Search, Translate, are defined in the
ontology. So it is flexible either using a single verb
(e.g. send) or using a verb with an IO concept (e.g.
send message) to define a service functionality.

Non-Functional Properties.

Non-functional properties may relate to quality of ser-
vices (QoS), policy compliance, adherence to technical stan-
dards or protocols, or categorisation within a classification
scheme [11]. We define three non-functional properties for
Service:

• hasCategory: This property attaches services with
some semantically represented classification scheme for
course-grained filtering.

• hasQoS: QoS represents features such as performance,
reliability, security, integrity, and cost. Since much
work has been done on defining a formal QoS ontol-
ogy for services [18], [6], we use this property as a
placeholder for further extension and integration.

• hasTechnology: This property identifies the tech-
nical standards or protocols for implementing services.
The reason why we define this property is that OPUCE
is a platform spanning both the telecommunications and
the information technology domain. A clear statement
of what technology is used by a certain service helps
users get a better understanding of the service. For
example, a user may either select a VOIP call service
or a PSTN call service based on its current situation.

Except for the above properties of the Service con-
cept, two subclasses of Service, BaseService and
CompositeService, are defined to separate the basic
service provided to users as building blocks and the value-
added services created using the OPUCE platform.

246

Figure 2. OWL class constructors

C. Describing and querying OPUCE services

To describe the characteristics of a service, we can build
a new OWL class as the service’s semantic model (we call it
OPUCE semantic service) using OWL-DL class constructors
and the OPUCE Ontology.

As illustrated in Figure 2, we can construct a new class
from existing classes, properties and individuals by:

• applying set operators including intersection, union, and
complement on classes;

• explicitly and exhaustively enumerating the individuals
that are members of the new class;

• restricting a property of the class: the range of the
property either has all the individuals from a specific
class (universal restriction) or has some individuals in
a specific class (existential restriction);

• or restricting the cardinality of a property.

Using the OWL-DL class constructors, an OPUCE se-
mantic service can be built by first specifying whether it
is a basic or a composite service, and then restricting its
functional and non-functional properties one by one. For
example, a SendSMS basic service can be described as:

SendSMS ≡ BaseService � ≤ 2hasInput � ≥
2hasInput �
∃hasInput(Text)�∃hasInput(MobilePhoneNumber)�
∃hasFunctionality(Send) �
∃hasCategory(Telecom) � ∃hasTechnology(J2EE).

The above statement says that SendSMS is a basic service,
and it has exactly two inputs: one is a Text type and the
other a MobilePhoneNumber type, and its functionality
is Send, and it belongs to the Telecom domain, and one
of its associated technology is J2EE.

With all the OPUCE semantic services store in a knowl-
edge base, we can discover services using a DL reasoner. For
example, if we want to find all the Telecom services with
functionality Send, we can write the query in an OWL-DL
class as:

∃hasCategory(Telecom) � ∃hasFunctionality(Send).

And then send it to the DL reasoner for matchmaking.
Clearly SendSMS is on the match list since it is subsumed
by the above class.

As we can find, discovering services by directly querying
the DL reasoner has the following obstacles for a user:

1) She must know the query language (in our case OWL-
DL).

2) She must be familiar with the domain terminology.
3) Some intended services may not be discovered be-

cause of the subtle semantic differences of OWL-DL
statements. For example, existential restrictions and
universal restrictions are two different property restric-
tion class constructors, and two classes only differ
in restriction type, e.g. ∃hasCategogy(Telecom) and
∀hasCategogy(Telecom), cannot match each other
since they do not have a subsumption relationship [14].

Although some semantic matchmaking approaches such
as [11] and [21] use query templates to alleviate Problem
1 and 3, they still require the user to have knowledge of
the domain terminology to fill the template. In the next
subsection we discuss our visual semantic service browser
that aims at solving the above-stated problems and giving the
users an intuitive visual service discovering and exploring
environment.

D. Visually exploring and discovering OPUCE services

Through the above analysis, we can reach the ob-
servation that the characteristics of a service are de-
rived mainly by adding restrictions to its properties, and
the intersection (or logical ‘AND’) of these restrictions
gives a refined definition/semantics to this service. And
the task of discovering services amounts to finding ser-
vices that satisfy some property restrictions, e.g. dis-
covering Telecom (hasCategory restriction) services
that can send (hasFunctionality restriction) text
(hasInput restriction).

Based on the above principle, the OPUCE Browser first
collects all the property restriction classes and the services
each class subsumes, then graphically display them for
visual exploring and discovering.

The algorithm illustrated in Figure 3 formalizes the pro-
cess of generating the set of property restriction classes:
for each semantic service, we first recursively extract all
the component classes separated by the intersection operator
(‘�’) from its semantic description; and then we go through
all the extracted classes. If a class is a property restriction,
then the DL reasoner will be consulted to get the class’s
subsumed services.

Next we describe the graphical interface of the OPUCE
Browser. As illustrated in Figure 4, the browser is divided
into three panes. The left pane is an indented list con-
taining all the property restriction classes; since service
properties have been predefined in the OPUCE Ontology,
it is self-evident to use them as top-level elements and
attaching the associated restrictions under. For every ele-
ment on the indented list, there is a number on its right
indicating how many services it contains. For example,

247

PROC GENERATE-PROPERTY-RESTRICTION-SET()
Input: the set of semantic services S, where si.DL Desc is its semantic description string
Input: the DL Reasoner DLR
Output: the set of Property Restriction Classes P , where P.S is the set of services that can be subsumed by P
Auxiliary: sets of DL-Class V and T
Begin

V,T,P← ∅
for each si in S do

V← EXTRACT-INTERSECTED-CLASS(si.DL Desc)
T←T∪V

end for
for each ti in T do

if ti is a Property Restriction Class then
ti.S← DLR.FIND-SUBSUMPTION(ti)
P←P ∪ {ti}

end if
end for
DISPAY(P)

End

Figure 3. Algorithm for generating property restrictions

under the hasCategory property, the Telecom restric-
tion has 7 services. It is worth noting that we do not
expose the difference between existential restrictions and
universal restrictions to users, so in fact the Telecom
restriction represents the class: ∃hasCategogy(Telecom)�
∀hasCategogy(Telecom). To discover services, a user may
browse through the list; and when a desired property restric-
tion is found, she may select this restriction by clicking on
the checkbox attached and this restriction will be shown
in the middle pane as a piece of colored cloud with small
balls inside indicating its subsumed services; and if we
put the mouse cursor on top of a ball, a tooltip will be
shown indicating a URL linking to the semantic description
of this service. If more than one property restrictions are
selected, each one will be shown in the middle pane as a
piece of cloud but in different colors. And the overlapping
of clouds visually indicates the intersection of property
restrictions. For example in Figure 4, the middle pane shows
three property restrictions: hasCategory(Telecom),
hasInput(text) and hasFunctionality(Send);
and the intersection of these restrictions, which answers
the discovering question of what Telecom base services
can send text message, is visually shown as the overlap-
ping of four pieces of cloud: Telecom, Text, Send,
and BaseService that contains two services: SendSMS
and SendIM. The right pane is an enhanced feature to
facilitate fast locating elements on the indented list: instead
of browsing, if a user enters a ‘keyword’ in the right-bottom
input-box, all the elements containing this ‘keyword’ will be
listed for selection.

In summary, the OPUCE Browser provides a visual en-
vironment to facilitate service exploring and discovering.
Without knowing any ontology language and domain ter-
minology, a user can discover a desired service based on its
properties by several clicks.

Figure 5. OPUCE Browser Architecture

E. Implementation

Figure 5 shows the architecture of the OPUCE Browser.
On the server side, The core part is the Restriction Class
Manager that is built on top of OWL API 4, which is a Java
interface and implementation for OWL. And Pellet 5 is used
as the OWL-DL reasoner. The Restriction Class Manager
provides interfaces for the user to add, update, and remove
semantic service descriptions. Whenever a new semantic
service is added, updated, or removed, the manager will
consult Pellet and update the Restriction Class Set, which
is the input of the OPUCE Browser GUI. The GUI is built
on top of ClusterMap Library 6, a visual technique which
has been used in several Semantic web applications [9]. A
snapshot of the GUI in Figure 4 has been discusses in the
previous subsection.

IV. EVALUATION

The OPUCE Browser together with the service repos-
itory has been up and running in the OPUCE platform.

4http://owlapi.sourceforge.net/
5http://clarkparsia.com/pellet/
6http://www.aduna-software.com/technologies/clustermap/overview.view

248

Figure 4. OPUCE Browser Snapshot

To test and evaluate the repository, we defined totally 15
OPUCE services including SendSMS, MailMonitor, and
PhotoSearch etc. The repository is efficient and conve-
nient in terms of performance and ease of use. For the OP-
UCE Browser, it is worth noting that the process of exploring
and discovering services using the OPUCE Browser GUI is
very fast since during the process there is no need to interact
with the DL engine: the information on property restriction
classes and the associated services each class contains has
been generated and updated after each add/update/remove
operation on semantic service descriptions. Such design is
similar to the ‘eager’ approach discussed in [11], which takes
place at publication-time.

Enabling end users to manage service descriptions on
handheld devices dramatically brings convenience and then
promotes faster creation and delivery of services to other
users. The OPUCE Browser contributes to usability mainly
through its visual service exploring and discovering mecha-
nism. The Browser GUI proved to be intuitive for technically
non-experienced people: exploring services with indented
list is natural to most end users since they have been
accustomed to it in everyday tasks, like scanning the contents
at the beginning of a book or writing down a list of tasks
they have to perform [10]; discovering services can be done
visually with several clicks of the mouse. To do so, end users
are not required to have a high level of technical expertise
or even basic knowledge of ontology and semantic Web.

Apart from the above apparent benefits, we also identified
one weaknesses of the current OPUCE Browser: clearly,
when generating the restriction classes from OWL-DL, only
selected OWL-DL class constructors are considered, which
means the expressiveness of the OPUCE Browser is weaker
than OWL-DL and the information graphically rendered is

a projection of the original semantic services. But since
the OPUCE Ontology has defined a framework with great
emphasis on service properties, the OPUCE Browser still
can capture the essential information of OPUCE semantic
services.

V. RELATED WORK

With the prevalence of Service-Oriented Computing
paradigm in both the Internet and telecom domains, re-
search on repositories for convenient and efficient man-
aging and discovering of services has gained momentum.
Specifications such as UDDI [5] and ebXML Registry [4]
provide fundamental support for registering, discovering and
integrating services. Recognizing the limited capabilities
in offering accurate service discovery facilities of these
specifications, a rich body of work have been reported
in the literature aiming at enhancing service repositories
with ontology and semantic discovery facilities. In [20],
the authors discuss the major shortcomings of state-of-the-
art Web service repositories such as limited browsing and
discovering capabilities and suggest solutions using Seman-
tic Web related techniques. In [16], the authors propose a
semantic repository for discovering and selecting services in
the e-Government domain.

In [7], the authors enriches ebXML registries with OWL
by mapping various constructs of OWL to ebXML classifi-
cation hierarchies and then services can be queried through
standardized ebXML query facilities. A first work on adding
semantic matching capability to UDDI appears in [17] where
the authors propose a matchmaking engine inside the UDDI
registry to match service capability descriptions encoded in
DAML-S [3] Profile. It’s follow-up work reported in [23]
uses OWL-S Profile and also improves the matchmaking

249

algorithm. Another two works applying DAML-S or OWL-
S on UDDI are reported in [1] and [12]. Recently, with
the emerging of WSDL-S [2] and SAWSDL [8], in [22],
the authors map WSDL-S semantic annotations to UDDI
and in [11], the authors propose the FUSION Semantic
Registry which augments the UDDI’s service publication
and discovery facilities based on SAWSDL and OWL-DL.

In contrast, our work are based on ebXML Registry and
OWL-DL with great emphasis on providing an intuitive vi-
sual interface for facilitating discovering and also exploring
of semantic services.

Our visual service browser is built on top of ClusterMap
Library. In [9], the authors report three applications—the
DOPE Browser for exploring large online resources in the
domain of drugs and diseases, a peer-to-peer knowledge
management platform SWAP, and AutoFocus for managing
personal information sources—that also build the user inter-
face based on ClusterMap Library.

VI. CONCLUSION

In this paper, we have presented the OPUCE visual
semantic service browser inside the service repository. In
line with the user-centric theme of the OPUCE project, the
repository supports accessing facets of service descriptions
from handheld devices. And most importantly, we enhance
the repository with a visual service browser by adopting
ontology and semantic Web technology. The browser is
intuitive and efficient in a way that it does not require the
user to have any knowledge of ontology or semantic Web
and the task of exploring and discovering services can be
easily done with several steps of mouse-clicking.

In the future, we plan to investigate and integrate ontology
learning techniques into the repository to alleviate the burden
of manual ontology authoring. We also plan to apply our
visualization technique on other service ontologies other
than the OPUCE Ontology to test its effectiveness.

ACKNOWLEDGMENTS

This work is partly funded by research project OPUCE,
under Information Society Technologies (IST) priority of
the 6th Framework Program of the European Community,
Contract No. 34101. We thank all our partners in the project
for their valuable comments to this paper.

REFERENCES

[1] R. Akkiraju, R. Goodwin, P. Doshi, and S. Roeder. A method
for semantically enhancing the service discovery capabilities
of uddi. In 2003 Workshop on Information Integration on the
Web (IIWeb), pages 87–92, 2003.

[2] R. Akkiraju et al. Web service semantics - WSDL-S. W3C
Member Submission, November 2005.

[3] Anupriya Ankolekar et al. DAML-S: Web service description
for the semantic web. In 2002 International Semantic Web
Conference (ISWC), volume 2342 of LNCS, pages 348–363.
Springer, 2002.

[4] K. Breininger, F. Najmi, and N. Stojanovic (eds.). The
ebXML registry repository version 3.0.1. OASIS, Febuary
2007.

[5] L. Clement, A. Hately, C. von Riegen, and T. Rogers (eds.).
Uddi version 3.0.2 specification. UDDI Specification Com-
mittee, October 2004.

[6] Glen Dobson, Russell Lock, and Ian Sommerville. QoSOnt:
an ontology for QoS in service-centric systems. In 2005 UK
e-Science All Hands Meeting, pages 80–87, 2005.

[7] A. Dogac, Y. Kabak, and G.B. Laleci. Enriching ebXML
registries with OWL ontologies for efficient service discov-
ery. In 14th International Workshop on Research Issues
on Data Engineering: Web Services for e-Commerce and e-
Government Applications, pages 69–76, 2004.

[8] J. Farrell and H. Lausen (eds.). Semantic annotations for
WSDL and XML Schema. W3C Recommendation, August
2007.

[9] Christiaan Fluit, Marta Sabou, and Frank van Harmelen.
Ontology-Based Information Visulization: Toward Semantic
Web Applications, chapter 3, pages 45–58. Springer, 2004.

[10] Akrivi Katifori and Constantin Halatsis. Ontology visualiza-
tion methods—a survey. ACM Computing Surveys, 39(4):1–
43, 2007.

[11] Dimitrios Kourtesis and Iraklis Paraskakis. Combining
SAWSDL, OWL-DL and UDDI for semantically enhanced
web service discovery. In S. Bechhofer et al., editor, 5th Eu-
ropean Semantic Web Conference (ESWC 2008), volume 5021
of LNCS, pages 614–628. Springer-Verlag Berlin Heidelberg,
2008.

[12] J. Luo, B. Montrose, A. Kim, A. Khashnobish, and M. Kang.
Adding owl-s support to the existing uddi infrastructure.
In 2006 IEEE International Conference on Web Services
(ICWS), pages 153–162, 2006.

[13] David Martin et al. OWL-S: Semantic markup for web
services. W3C Member Submission, November 2004.

[14] D.L. Mcguiness and F. van Harmelen. OWL web ontology
language overview. W3C Recommendation, February 2004.

[15] N.F. Noy and D.L. McGuiness. Ontology development 101: A
guide to creating your first ontology. Technical Report KSL-
01-05, Stanford Knowledge Systems Laboratory Technical
Report, 2001.

[16] Matteo Palmonari, Gianlugii Viscusi, and Carlo Batini. A
semantic repository approach to improve the goverment to
business relationship. Data and Knowledge Engineering,
65:485–511, 2008.

[17] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara.
Semantic matching of web service capabilities. In I. Horrocks
and J. Hendler, editors, 2002 International Semantic Web
Conference (ISWC), volume 2342 of LNCS, pages 333–347.
Springer, 2002.

250

[18] I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki, and M.E.
Anagnostou. A QoS ontology language for Web-services.
In 20th International Conference on Advanced Information
Networking and Applications (AINA 2006), pages 101–106,
2006.

[19] R. Prieto-Diaz and P. Freeman. Classifying software for
reusability. IEEE Software, 4(1):6–16, January 1987.

[20] Marta Sabou and Jeff Pan. Towards semantcally enhanced
web service repositories. Journal of Web Semantics, Science,
Services and Agents on the World Wide Web 5:142–150,
2007.

[21] Amit P. Sheth, Karthik Gomadam, and Ajith Ranabahu.
Semantics enhanced services: METEOR-S, SAWSDL and
SA-REST. IEEE Data Engineering Bulletin, 31(3):8–12,
2008.

[22] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller.
Adding semantics to web services standards. In 2003 Interna-
tional Conference on Web Services (ICWS), pages 395–401,
2003.

[23] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara.
Adding OWL-S to UDDI, implementation and throughput.
In 1st Intl. Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004), pages 6–9, 2004.

[24] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and
Naveen Srinivasan. Automated discovery, interaction and
composition of semantic web services. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 1(1):27–
46, December 2003.

[25] Jian Yu, Paolo Falcarin, Jose M. del Alamo, Juergen Sienel,
Quan Z. Sheng, and Jose F. Mejia. A user-centric mobile
service creation approach converging telco and it services.
In 8th International Conference on Mobile Business, pages
238–242, 2009.

[26] Jian Yu, Paolo Falcarin, Sancho Rego, Isabel Ordas, Eduardo
Martins, Quan Sun, Ruben Trapero, and Quan Z. Sheng.
Xdm-compatible service repository for user-centric service
creation and discovery. In 7th IEEE International Conference
on Web Services, pages 992–999, 2009.

251

