
1

Exact Distributed Load Centrality Computation:
Algorithms, Convergence, and Applications

to Distance Vector Routing
Leonardo Maccari∗, Lorenzo Ghiro†, Alessio Guerrieri‡, Alberto Montresor†, Renato Lo Cigno§

∗University of Venice, †University of Trento, ‡SpazioDati srl, §University of Brescia

F

Abstract—Many optimization techniques for networking protocols take
advantage of topological information to improve performance. Often,
the topological information at the core of these techniques is a cen-
trality metric such as the Betweenness Centrality (BC) index. BC is, in
fact, a centrality metric with many well-known successful applications
documented in the literature, from resource allocation to routing. To
compute BC, however, each node must run a centralized algorithm and
needs to have the global topological knowledge; such requirements limit
the feasibility of optimization procedures based on BC. To overcome
restrictions of this kind, we present a novel distributed algorithm that
requires only local information to compute an alternative similar metric,
called Load Centrality (LC). We present the new algorithm together
with a proof of its convergence and the analysis of its time complexity.
The proposed algorithm is general enough to be integrated with any
distance vector (DV) routing protocol. In support of this claim, we provide
an implementation on top of Babel, a real-world DV protocol. We use
this implementation in an emulation framework to show how LC can be
exploited to reduce Babel’s convergence time upon node failure, without
increasing control overhead. As a key step towards the adoption of
centrality-based optimization for routing, we study how the algorithm can
be incrementally introduced in a network running a DV routing protocol.
We show that even when only a small fraction of nodes participate in
the protocol, the algorithm accurately ranks nodes according to their
centrality.

Index Terms—Multi-hop networks; Mesh networks; Ad-hoc networks;
Bellman-Ford; Load centrality; Distributed Algorithms; Failure recovery

1 INTRODUCTION

Topology awareness enables significant optimizations for dis-
tributed systems. For example, the influence of nodes placed in
strategic locations can be measured, and these measurements can
guide the optimal allocation of resources in the system. In this
regard, centrality metrics are well-known instruments provided
by graph theory to quantify the influence of the nodes in a
network. Among the multitude of centrality indexes proposed
in the literature, a widely used one is the Betweenness Central-
ity (BC) index: roughly speaking, BC measures the fraction of

This work has been partially funded by the European Commission, H2020-
ICT-2015 Programme, Grant Number 688768 ’netCommons’ (Network Infras-
tructure as Commons) and the H2020 GA No. 645274 “Wireless Software
and Hardware platforms for Flexible and Unified radio and network controL
(WiSHFUL)" with the project “Pop-Routing On WiSHFUL (POPROW)" fi-
nanced in Open Call 3. Lorenzo Ghiro PhD grant is partially supported by
the IEEE Smart Cities Initiative at Trento. This paper revises and extends a
paper presented at IEEE INFOCOM in 2018 [1], by studying the behavior of
the protocol under partial information. This work was initiated when all the
authors were with the University of Trento

global shortest paths passing through a vertex [2]. BC has found
numerous applications in distributed systems, where it is used
for optimal service placement [3], to improve routing [4–6], for
topology control [7, 8], for security [9, 10], and for several other
uses [11, 12].

We focus on a particular application of centrality in computer
networks, namely on the tuning of control messages for faster
routing convergence [4]. The idea is to increase the frequency of
control messages for the most central nodes while reducing it for
marginal ones: this leads to faster re-routing and reduced traffic
loss upon an average failure in the network, without increasing the
overall control overhead. This tuning technique based on BC has
been initially applied only to link-state (LS) routing protocols, as
these protocols enable each router to collect information about the
full network topology, which is a requirement for the computation
of BC [6, 13]. In distance-vector (DV) routing protocols, instead,
routers are not required to know the entire topology. This enables
networks managed by a DV protocol to scale up to millions of
nodes, but does not provide enough information to routers to
compute BC. As a consequence, the lack of an exact distributed
algorithm is still preventing the centrality-based optimization of
DV protocols.

In this paper we target another centrality metric, called Load
Centrality (LC) [2, 14], that is very similar to BC, but can be
computed in a distributed way. Instead of relying on the number
of shortest paths, LC estimates the amount of traffic that insists
on a node, assuming that the traffic is fairly distributed among
all shortest paths of the network. LC converges to BC in many
real-world cases, and we claim that in the rest of the cases LC is
a better metric than BC to measure the communication traffic in
today’s computer networks and should therefore be preferred for
distributed applications. We better detail this claim in Sec. 2.3.

The core of our contribution is the proposal of an efficient dis-
tributed algorithm able to exactly compute LC, paving the way for
centrality based optimizations in distributed systems. It is defined
on top of the Bellman-Ford algorithm, thus can be integrated into
any DV routing protocol introducing minimal modifications. The
convergence time of our algorithm scales linearly with the network
diameter D: after a number of steps bound by 3D, every vertex
knows its own centrality and the centrality of all the other vertices.

One critical step to go from a sound theoretical approach to
a real-world application is the study of the applicability of the
algorithm to real protocols. In this paper, we address this problem
by studying how the distributed algorithm can be incrementally
deployed in an existing network updating a running protocol.

2

We also show that the estimation of LC is possible when only
a subset of nodes in the network supports the updated protocol.
This is essential in real protocol deployments: as the network size
grows, it becomes less and less feasible to simultaneously upgrade
all of the nodes in that network. We provide a mathematical
characterization of the approximation errors as a function of the
penetration rate for both the centrality estimates and the centrality
rankings, and we show that, even with low penetration rate, our
algorithm ranks nodes accurately. Finally, we provide simulations
that confirm our theoretical findings.

To further show the practical applicability of our contribution,
we extend babeld, the open-source implementation of the widely
used DV routing protocol for mesh networks specified in RFC
6126 [15]. We show that, exploiting the notion of LC, the protocol
convergence time can be improved up to 13% without increasing
signaling overhead.

2 BACKGROUND AND CONTRIBUTIONS

Centrality measures have been used to enhance traffic monitor-
ing [5, 9], intrusion detection [16], resource allocation [11] and
topology control [7]. Among all, Betweenness Centrality (BC)
is a well-known centrality index, which can be computed with
Brandes’ centralized algorithm [17]. Brandes’ algorithm executes
an instance of Dijkstra’s algorithm rooted on each vertex of the
graph, while updating in parallel the BC indexes. In a network with
n nodes and m weighted edges, the computational complexity of
this approach is O(nm + n2 log n). Brandes’ algorithm can be
adapted to compute other centrality indexes based on minimum-
weight paths [2]. For example, Dolev et al. proposed a generaliza-
tion of BC to deal with different routing policies [5].

2.1 Centralized Algorithms for Centrality
There are two main problems that hinder the use of centralized
algorithms in a network of routers. First, only LS protocols
provide information on the whole network topology to nodes; a
mandatory requirement to perform the centralized BC calculation.
DV protocols are completely excluded. Second, when the network
size becomes large, centrality metrics may require excessive
computational resources with LS protocols as well. Despite the
introduction of several heuristics [18], the online computation of
the indexes on low-power hardware requires several seconds and
is generally not possible in real-time on large networks [10].

One natural approach to speed up the computation is random
sampling [19–24]. Independently from each other, Jacob et al. [22]
and Brandes and Pich [20] proposed approximated algorithms that
only consider contributions from a subset of vertices sampled
uniformly at random. Later proposals can compute BC with
adjustable accuracy and confidence [25, 26]. More recently, dy-
namism has been taken into consideration, with several algorithms
able to update BC on evolving graphs [27–30]. These randomized
algorithms are fast, but still centralized.

2.2 Distributed Algorithms for Centrality
Distributed algorithms for the computation of centrality with
sufficiently good scalability properties have been proposed, based
on a dynamic system approach, but only for specific topologies
(DAGs and trees) [31–33] or with approximated results [34], or are
designed under strong assumptions on the synchronism of com-
munications [35, 36], hypotheses that are not met in real-world

distributed systems. For example, [31] computes “the betweenness
centrality of an oriented tree [. . .] taking advantage of the fact
that a tree does not contain any loop, and therefore every pair of
nodes has at most one shortest path”, while [32, 33] are restricted
to “undirected and unweighted tree graphs”. Also most of the
alternative distributed algorithms for BC, such as [35, 36], usually
compromise generality as they are derived under the CONGEST
model [37], which sets the following strong assumptions:
• The network is an undirected connected graph G(V, E) with
N = |V| nodes;

• Both nodes and channels are reliable (failure-free);
• A global clock triggers consecutive rounds of message pass-

ing and processing, the processing is instantaneous as nodes
have infinite power.

To overcome the limitations in terms of generality and ex-
actness of the algorithms for BC, we direct our attention to a
different metric, the Load Centrality (LC). LC is similar to BC (it
is often confused with it [2]) and, above all, is a better metric than
BC for modern distributed systems that employ load balancing
techniques.

2.3 Load VS Betweenness Centrality
Def. 1: Load Centrality (LC) Consider a graph G(V, E) and an
algorithm to identify the (potentially multiple) minimum weight
path(s) between any pair of vertices (s, d). Let θs,d be a quantity
of a commodity that is sent from vertex s to vertex d. We
assume the commodity is always passed to the next hop following
the minimum weight paths. In case of multiple next hops, the
commodity is divided equally among them. We call θs,d(v) the
amount of commodity forwarded by vertex v. The load centrality
of v is then given by:

LC(v) =
∑
s,d∈V

θs,d(v) (1)

Normally it is assumed that s, d, v are all distinct and that
θs,d = 1. The latter makes LC a property fully defined by the
graph structure and by the algorithm used to discover minimum
weight paths. In that case, if the graph is undirected there are
N(N−1)

2 pairs (s, d) and LC can be normalized as

LC(v) =
2

N(N − 1)

∑
s,d∈V

θs,d(v) (2)

BC instead is defined as follows [38]:

Def. 2: Betweenness Centrality (BC) Let σsd be the number of
minimum weight paths between vertex s and vertex d, and let
σsd(v) be the number of those minimum weight paths passing
through vertex v (again, s, d, v are distinct). The normalized
betweenness centrality of v is defined as:

BC(v) =
2

N(N − 1)

∑
s,d∈V

σsd(v)

σsd
(3)

LC and BC are very similar, but they do not coincide as already
noted by Brandes [2]. Consider Fig. 1, reporting a sample network
annotated with the values of LC and BC on each node, assuming
every edge has the same weight. If the commodity moving from
s to d is split equally between two next hops that lie on two
paths with equivalent total weight, intuitively node v and w will
both carry half of it. This is what is measured by LC. BC instead

3

s d
w

v1/2

1/2

1/4

1/4

1/2

s d
w

v2/3

1/3

1/3

1/3

1/3

Figure 1. Difference between centrality computation in the case of load
(left) and betweenness (right) in the same network for the same (s, d)
couple.

reflects the fact the v, on its right side, has more minimum weight
paths towards d compared to w. Since BC counts the fraction of
minimum weight paths passing through a node, v turns out to be
more central than w.

The reasons why we consider LC instead of BC are primarily
three. First, the two metrics diverge when there are multiple paths
between couples of nodes, but in all situations in which there
is only one minimum weight path between s and d, the two
metrics coincide. Most IP-based routing protocols use only one
path at a time and thus, LC equals BC in all of them. Second,
for protocols that support multipath routing (such as the Stream
Control Transport Protocol [39] or Multipath TCP [40]) it is not
important how many paths exist between s and d, it is important
on how many paths the traffic is distributed upon. This is what
LC expresses and in this sense, the semantic of LC captures this
behavior better than BC. Third, LC better describes the behavior
of DV protocols, such as the Border Gateway Protocol (BGP [41])
that runs the Internet. With BGP every router takes a local decision
on which path to use based on its policies. Even the knowledge
of the full network graph would not be sufficient to compute
BC, as the local policies are not known. With our distributed
LC computation algorithm instead, centrality is computed as a
consequence of each router’s policy and propagated on all shortest
paths, which makes it suitable to be used also with BGP (and other
DV protocols).

2.4 Contributions

We propose a distributed and exact algorithm to compute LC
that is general, as it works on top of any network with arbitrary
topology. The only requirement (as explained in Sec. 3) is the
existence of an underlying routing protocol that keeps the routing
table up-to-date in each node. The exactness of our algorithm
is verified later in Sec. 7.1, where we show (see Fig. 6) that
LC values computed with our distributed algorithm match with
the values computed off-line with standard and well known
libraries for graph manipulation. Furthermore, our algorithm en-
ables centrality-based optimizations in distributed systems. As a
concrete example, in Sec. 7 we show our implementation on top
of Babel, a real-world DV protocol, and show that the LC-enabled
optimization effectively reduce losses upon failures and makes
the re-routing process faster. Summing up, our contributions and
advancements compared to the state-of-art are the following ones:

1) Our algorithm for LC is distributed (relies on local informa-
tion only), exact and more general than current alternatives;

2) It enables centrality-based optimizations in distributed sys-
tems;

Table 1
Variables used by each vertex v in Algorithm 1

Symbol Description
V The set of all vertices
neighbors The set of neighbors of v

NH
For each destination d 6= v, the vector NH [d] is the set of
vertices used by v as next hops to reach d

PH
For each destination d 6= v, vector PH [d] is the set of
previous hops, i.e., vertices that list v as one of the next
hops to reach d

loadOut
For each destination d 6= v, loadOut [d] is the overall
commodity passing through v to reach d

contrib
For each destination d 6= v, contrib[d] is the contribution
that v will send to each of its next hops to reach d, equal to
loadOut [d]/|NH [d]|

loadInu
For each neighbor u and for each destination d 6= v,
loadInu[d] is the commodity’s contribution that vertex u
sends to v toward d (as reported by u to v)

load The approximation of load centrality known so far

3) It can be incrementally deployed on an existing network
without requiring all nodes to be updated at the same time.

The last contribution is key to increase the potential for adop-
tion of centrality-based optimizations, as it is usually not possible
to fully stop and reboot a running network. Especially when
networks are large and managed by more than one entity, a full
redeployment requires a great coordination effort, with network
administrators that need to agree on a flag-day to perform the
simultaneous update of all network nodes. Distributed centrality-
based optimization instead can be incrementally deployed and
protocols can benefit from it even before all nodes in the network
support it.

3 DISTRIBUTED LC COMPUTATION

The distributed algorithm for LC computation, as executed by
vertex v, is shown in Algorithm 1, with Table 1 listing all infor-
mation maintained by v. Recall that to compute centrality metrics,
a routing table with the next hop is in general not sufficient and a
full topological knowledge is required.

Algorithm 1 is based on the commodity diffusion process
described in Definition 1. Each vertex generates a unitary amount
of commodity for all possible destinations; such commodity is
split and aggregated along the route to destinations.

The routing protocol keeps an up-to-date list of next hops
in vector NH , where NH [d] contains the next hops to reach
destination d. The algorithm computes the complementary vec-
tor PH , where PH [d] contains the previous hops from which
the commodity going toward d is coming. This is obtained by
periodically sending a message 〈v,NH , contrib〉 to all neighbors
of v; when these messages are received by each next hop, PH is
updated. The previous hops stored in PH [d] are used to aggregate
all the incoming commodity toward d before splitting it among all
next hops.

The rest of Algorithm 1 is designed to maintain information
about incoming and outgoing commodity. In particular, dictionary
loadOut stores the overall commodity passing through v to reach
every possible destination, while contrib stores the commodity’s
contributions that v sends to each of its next hops. Note that having
both loadOut and contrib is redundant; loadOut is introduced
only to clarify the algorithm and simplify the proof that load
converges to LC.

4

Alg. 1: General distributed Protocol (executed by v)
1 Init:
2 load = 0;
3 loadOut [v] = contrib[v] = 0;
4 foreach d ∈ V − {v} do
5 foreach u ∈ neighbors do
6 loadInu[d] = 0;

7 PH [d] = [];

8 Repeat every δ seconds:
9 foreach d ∈ V − {v} do

10 loadOut [d] = 1 +
∑

u∈PH [d] loadIn
u[d];

11 contrib[d] = loadOut [d]/|NH [d]|;
12 load = load + loadOut [d];

13 send 〈v,NH , contrib〉 to neighbors;

14 on receive 〈u,NH u, contribu〉 from u do
15 foreach d ∈ V − {v} do
16 if v ∈ NH u[d] then
17 PH [d].add(u);
18 loadInu[d] = contribu[d];
19 else
20 PH [d].delete(u);

• During initialization (lines 1-7), the commodity coming from
every neighbor is set to 0, while waiting for more up-to-date
information to come. PH entries are initialized to an empty
vector as well.

• Every δ seconds (lines 8-13), each vertex v re-computes
(for every destination d) its contribution to load for its next
hops and sends this contribution to all its neighbors with
the message 〈v,NH , contrib〉. The contribution is given by
1 (its unit contribution to the load addressed to d) plus all
contributions received so far, divided among all vertices that
are next hops for destination d (lines 10-12).

• When a message from vertex u is received (lines 14-20),
vertex v first updates the previous hop set PH , by either
adding (line 17) or deleting (line 20) u. Then, it copies the
contributions toward every d computed by u and received in
the message 〈u,NH u, contribu〉 into loadInu (line 18).

4 CONVERGENCE STUDY

We show that at steady state, under sufficiently stable conditions,
load in Algorithm 1 converges to the correct LC at each vertex.

4.1 Theoretical proof

Theorem 1. Let G = {Gd = (V, Ed) : d ∈ V} be the collection
of all routing graphs induced by all nodes running an underlying
routing protocol:

Ed = {(i, j) : i ∈ NH j}

If G remains stable for a long enough period of time then, for
each node v, the ‘load ’ variable maintained by v will eventually
converge to the correct LC of v.

Proof. Given a node v, we prove that for each destination d, the
commodity that v forwards toward d is eventually computed in the
correct way. Since the overall commodity forwarded by v towards

any possible destination is periodically aggregated into variable
load , this proves the theorem.

For each destination d, the routing protocol generates a routing
graph: a loop-free directed acyclic graph (DAG) made of all the
(potentially multiple) minimum weight paths ending in d. Let S =
{s = u0, u1, u2, . . . , u|V| = d} be a sequence representing a
topological sort of the DAG Gd. We prove that each node in the
sequence correctly computes the load that is passing through v, by
induction on the sequence of nodes.

Given that Gd is a DAG, the set PH [d] of the first node u0
is empty. Thus, loadOut [d] is set to 1, which is the correct value
for the load passing through this node. This load is then divided
equally among all nodes in NH [d].

Now, consider node uk and assume all preceding nodes in
the sequence have already computed the correct value for their
variable loadOut [d]. Each node u ∈ PH [d] is included in
{u0 . . . uk−1}, thanks to the topological sort. Thus, all of them
will eventually send a message to v, updating the corresponding
entries in variable loadIn .

As soon as node v receives all the required information from
all nodes in PH [d], variable loadOut [d] contains the correct
value. A special case is given by node d, where loadOut [d] = 0.

The theorem assumes that minimum weight paths are stable
long enough to allow the centrality computation to converge. In
case of dynamism, results can be temporarily different from the
correct ones, until the routing paths stabilize again. At that point,
given all the needed information is periodically broadcast to all
vertices, Algorithm 1 converges again to the correct LC values.

We can estimate the convergence time of Algorithm 1 in
the worst case scenario. We assume all clocks are synchronized
and time required to propagate data along an edge is very small
compared to the period δ, but not null. Therefore, vertex v
receives updates from neighbors always after it sent its own
updates, and time needed to propagate information on k hops
is always kδ seconds. We also assume that our algorithm starts
after the routing protocol convergence. Under this assumption, the
following corollary holds:

Corollary 1. Given a graph G with diameter D, the convergence
time ∆t of our algorithm is in the worst case proportional to
D − 1.

Proof. A vertex v converges when its load sums all contributions
from all minimum weight paths crossing v. Consider the load on
v generated from s and directed to d for which v is in at least one
of the minimum weight paths. If v = s or v = d, convergence is
immediate, as no contribution will be received. Let S be the graph
ordering relative to Gd, and v = uk. If k = 1 then v converges
after receiving the contribution from s, that is, after δ seconds.
Otherwise v converges when the load is propagated from s to v,
which requires k intervals. In the worst case v = uD−1 and the
load of v converges in δ(D − 1) seconds.

Generally, at node v the own centrality value is useful only
if compared to the other nodes’ centrality. This is why, after
the complete convergence of centrality in the network, another
message must be sent (and forwarded) by each vertex carrying its
own value of centrality, implementing a dissemination process. In
conclusion, again in the worst case scenario and after routing table
convergence, the time required to perform centrality computation
and dissemination will be proportional to 2×D.

5

 2

 4

 6

 8

 10

 12

 14

 3 4 5 6 7

V
ir

tu
a

l
ti
m

e
 [
δ

]

Network Diameter

TNH
Tl

(a) Barabási-Albert networks.

 2

 4

 6

 8

 10

 12

 3 4 5 6 7

V
ir

tu
a

l
ti
m

e
 [
δ

]
Network Diameter

TNH
Tl

(b) Erdős networks.

Figure 2. TNH and Tl vs. network diameter, with 99% confidence
interval, for Barabási-Albert and Erdős networks.

4.2 Time bounds in Simulation Analysis

We developed a Python simulator that takes the network as input
and implements both Algorithm 1 and the underlying dissemi-
nation of LC indexes. The simulator uses a virtual clock and
triggers a send event once every δ time units, so we can refer
to the convergence time simply as multiples of δ. A small random
jitter is added to events scheduled by nodes to avoid perfect
synchronization.

A simulation ends when all nodes converge to steady state,
i.e., when all nodes learned i) all their next-hops, ii) their own load
index, and iii) the load indexes of all other nodes. We separately
measure:

• The time needed for full convergence of NH (TNH);
• The time at which each node converges to its own value of

centrality, called self-convergence time (Tsl);
• The time Tl to learn the load of all other nodes in the

network.

Full convergence is determined by the slowest node. Since we
demonstrated that convergence time should grow, in the worst
case, linearly with the network diameter D, we generated graphs
with growing D ∈ {3, 4, 5, 6, 7}. For each D, we tested two
different graph models: the classical Erdős and the Barabási-
Albert model. For both we averaged results over 40 different
graphs with 1000 nodes each.

Figs. 2a and 2b report the average (with 99% confidence
intervals) of TNH and Tl simulated over Barabási-Albert and
Erdős graphs respectively. Both figures show how the growth
of convergence time is approximately linear with the diameter,
confirming the theoretical result of Sec. 4.1.

As expected, it takes approx D time units for RT to converge,
as DV messages need to travel across the whole network (and thus
along a whole diameter). Since we add some jitter, generation of
distance vectors is not synchronized, thus it may be that node i
receives an update from a neighbor j before generating its own. In
this case, in the same time unit, the information is sent from j to
i and propagated from i to its neighbors, so it can take less than
D time units for information to travel on the longest path. This
explains why in the figures TNH is generally smaller than D.

After convergence of NH , our theoretical analysis predicts a
time of 2×(D−1) to achieve full load convergence, while simula-
tions show that it requires much less than that. This improvement
is given by the parallelization of the two processes and can be seen
in Fig. 3, which reports all values of TNH , Tsl and Tl.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10 11 12 13

lo
a

d
 c

e
n

tr
a

lit
y
 (

L
C

)

Virtual Time [δ]

TNH
Tl

Tsl

Figure 3. TNH , Tsl, and Tl for all the nodes, 40 simulations, Erdős
graphs with diameter 7.

Fig. 3 reports all the results for all the 40 Erdős graphs with
diameter 7 (networks with different parameters are not shown
as they behave similarly) and shows that at time 6, when the
last RT converges, some nodes already reach self convergence.
Similarly at time 10, when all nodes reached self convergence,
some nodes already reached full convergence. This is because the
three processes are concurrent and thus, on typical networks, full
convergence time is smaller than in the worst case scenario. Fi-
nally, note the small group of nodes which reach self convergence
in only one time unit. This is a minimal fraction of leaf nodes
produced by the Erdős generator whose LC is initially set to zero
and never changes.

5 INCREMENTALLY DEPLOYABLE PROTOCOL

While so far we discussed the theoretical properties of the pro-
posed algorithm, in this section and in the following one we focus
on how our proposal can be implemented extending a real-world
DV routing protocol. To this end we describe its incremental
deployment on top of a DV protocol in which two kinds of
nodes will coexist: legacy nodes running the legacy version of
the protocol and upgraded nodes running the updated version.

RFC 6709 of IETF [42] provides general considerations about
extension mechanism for networking protocols. A fundamental
recommendation to design an extendable and incrementally de-
ployable protocol is to employ type-length-value (TLV) packets
to define protocol messages. Using TLVs it is easy to enrich a
protocol and build a new and backward-compatible version, sim-
ply defining new TLVs. This means that upgraded nodes will not
violate the syntax and semantics of all legacy protocol messages,
but instead they are able to include additional information in them.
Legacy nodes are typically designed to store and silently forward
the information they are not able to interpret.

Many popular protocols designed for extensions implement
this scheme. Three noteworthy examples are OLSR, Babel and
BGP that, with its Optional Transitive Attributes, constitutes a
prominent example of the so called Silent Propagation Scheme.
These three protocols represent all possible routing categories,
respectively: LS, DV and path-vector (PV).

In our context, legacy nodes perform only a basic DV routing
protocol based on Bellman-Ford: therefore they will silently prop-
agate the additional messages that upgraded nodes generate and
process to perform the algorithm for LC. To do an incremental de-
ployment Algorithm 1 is not suitable, and we need supplementary
notation as described in Table 2 to define the behavior of legacy

6

Table 2
Notation for Legacy and Upgraded nodes

Field Notation Description

Metric m distance of v from d according to a given metric

Buffer BUF
dictionary mapping destinations d to the list of
subTLVs contained in recent advertisements for d

Routing Table RT
dictionary mapping destinations d to distances ex-
pressed in a given metric m

SubTLV stv
tuple of information, appended to a parent TLV
such as a Route-Advertisement

Forwarded
subTLVs

fwd list of subTLVs

Source of load source id of the upgraded node generating a contribution

Remote NH rNH
next-hop selected by a remote upgraded node to
forward its subTLVs

Splitted
Contributions

splitC
load contributions that an upgraded-node v sends
toward destination d. If v has more NHs for d,
contributions are evenly split before begin sent

and upgraded nodes. The logic of a legacy node is represented in
Algorithm 2, while an upgraded node extends this logic as shown
in Algorithm 3.

As for all DV routing protocols (such as the classical RIP, or
Cisco EIGRP, or the Babel protocol adopted later in this work), the
Bellman-Ford algorithm is used to maintain a Routing Table (RT)
mapping each destination to a next hop and a distance. An RT is a
dictionary mapping destinations d to distances expressed in some
given metric m. We use the square brackets operator to retrieve
the information regarding a particular destination d recorded in
RT , i.e., RT [d] = (m,NH). We use the dotted notation to access
single fields of the tuple, as in RT [d].NH . For a dictionary, the
‘()’ operator returns the list of the keys of the dictionary, i.e.,
RT () = [d0, d1 . . . dN]. The ‘[]’ and ‘{}’ symbols refer to the
empty list and dictionary, respectively. Note that NH is an array of
next hops, therefore we support routing protocols that implement
multipath routing.

A legacy node owns a buffer (BUF) to store the list of
subTLVs that neighbors may attach to route-advertisements. On
line 9 of Algorithm 2, a legacy node starts the routine to process
a generic advertisement containing a destination d with cost m
together with fwd , i.e., a list of subTLVs that the sending neighbor
u may have silently forwarded. On lines 10-14, the node performs
the classic update of its RT selecting the NH that offers the
shortest-path to reach the advertised destination. Multipath is
supported by maintaining more next-hops if they offer paths with
equal cost (line 14). While processing a received advertisement, a
legacy node is not able to parse attached subTLVs, therefore it can
only put them all in its buffer as shown in lines 16-18. In particular,
subTLVs are indexed by d and marked with the id of the sending
neighbor and have a limited time validity. Before storing subTLVs
in BUF buffer, the legacy node discards previous information
received by the same neighbor for the same destination (line 15).

The silent propagation of subTLVs is implemented when
sending route advertisements (line 8), sent periodically when
the node sends DVs to all its neighbors1. Beyond the funda-

1. It is usually required to send different DVs to different neighbors, think
for instance of the classic split-horizon technique widely used to mitigate the
well-known count-to-infinity problem.

Alg. 2: Logic of a Legacy node v
1 Init:
2 RT [v].m = 0; RT [v].NH = []; BUF [v] = []

3 Repeat every δ seconds:
4 Cleaning(now) . Clean expired subTLVs from BUF
5 foreach u, d ∈ neighbors × RT () do
6 if u ∈ RT [d].NH then
7 fwd = BUF [d] . forward subTLV only on SPs
8 send 〈d,RT [d].m, fwd〉 to u

9 on receive 〈d,m, fwd〉 from u do
// Bellman-Ford

10 if d /∈ RT () OR m+ C[u] < RT [d].m then
11 RT [d].NH = [u]
12 RT [d].m = m+ C[u]
13 else if m+ C[u] == RT [d].m then
14 RT [d].NH .append(u)

15 Cleaning(u, d) . Clear old subTLVs from u to d
16 foreach stv ∈ fwd do
17 stv .holdTime = now + ε
18 BUF [d].append(〈u, stv〉) . Buffer subTLVs

// Dictionary C[·] contains the cost of the links to neighbors

Alg. 3: Logic of an Upgraded node v
1 Init:
2 RT [v].m = 0; RT [v].NH = []; RT [v].loadIn = { }

3 Repeat every δ seconds:
4 Cleaning(now) . Remove expired contributions
5 foreach u, d ∈ neighbors × RT () do
6 if u ∈ RT [d].NH then
7 loadOut = 1 . Generate/send contrib on SPs
8 foreach u ∈ RT [d].loadIn() do

// Aggregate received contributions
9 loadOut += RT [d].loadIn[u]

10 splitC = loadOut/|RT [d].NH|
// subTLV with source v sent via u

11 stv = (v, u, splitC)
12 send 〈d,RT [d].m, stv〉 to u

13 on receive 〈d,m, fwd〉 from u do
// Bellman-Ford as in Algorithm 2, plus

// Process list of subTLVs attached to d
14 foreach stv ∈ fwd do
15 source, rNH , C = stv

// Index received contributions by source and rNH
16 RT [d].loadIn[source, rNH] = splitC
17 RT [d].loadIn[source, rNH].holdTime = now + ε

/* The load centrality of v is given summing up all
contributions in RT ().loadIn . */

mental advertisement of the destination d with the best known
cost RT [d].m, legacy nodes also forward all the subTLVs that
were contained in advertisements announcing d. The subTLVs to
propagate are retrieved from the buffer (lines 5-7). Due to the
control performed on line 6, subTLVs are forwarded only to valid
neighbors: assuming routing convergence this means that subTLVs
flow through shortest paths only.

Compared to a legacy node, an upgraded one is also able to

7

parse subTLVs. SubTLVs define what we call centrality contribu-
tions, which are the minimal amount of information required to
run the distributed protocol for the computation of LC. The logic
of an upgraded node is described by Algorithm 3. Fundamentally,
an upgraded node is able to generate and send contributions (lines
5-12), and also to aggregate and store the contributions it may
receive (lines 14-17): summing up all the received contributions
an upgraded nodes determines its own LC index.

When an upgraded one receives a route-advertisement (line
13), it does not ignore the attached subTLVs, but it rather parses
them as shown on line 15. Line 15 defines the pieces of informa-
tion that compose a centrality contribution, which are:

• source: the id of the remote node (in fact, it may not be a
direct neighbor) that generated this contribution;

• rNH : the NH towards which the remote node sent the
contribution;

• splitC: the amount of forwarded load, with the same mean-
ing of θs,d(v) of Definition 1.

The received contributions are stored in RT indexed by their
source but also by their rNH (line 16): rNH is required to distin-
guish contributions split remotely by the same source that need to
be summed up in aggregation points reached after flowing through
different paths. Stored contributions have a limited time validity
(line 17). If a node stops being part of a given path, because of a
new routing decision by a remote node, after some time this node
will properly forget the contribution received previously on that
path. Expired contributions are discarded invoking periodically a
cleaning routine (line 4).

An upgraded node is able to create subTLVs to send centrality
contributions. Similarly to the advertisement sent by legacy nodes,
also upgraded nodes customize their announcements for their
various neighbors. They offer their unitary load contribution (line
7), and the aggregation of all other contributions directed to the
same d (lines 8-9), to those neighbors that lie on the shortest paths
towards d. Compared to Algorithm 1, the aggregated load directed
to d is equally split among all possible NH before being sent
(line 10); finally a subTLV defining a centrality contribution is
generated (line 11).

6 PERFORMANCE OF THE DISTRIBUTED LC COM-
PUTATION WITH PARTIAL INFORMATION

Consider a network in which only a subset H ⊆ V of upgraded
nodes participate to the protocol, while the legacy nodes in
W = V \ H do not participate. A node h ∈ H generates one
unit of commodity towards every other node v ∈ V , while a
node w ∈ W does not generate any commodity. Every node h
also aggregate and split commodity contributions when necessary
and, above all, h estimates its own centrality and those of all
other nodes in H. Legacy nodes store the contribution field of
the update packets they receive in their routing table as opaque
metadata, and pass it to the next hop when they generate their
own update packets. In this scenario, the upgraded nodes can only
compute an underestimate of their LC indexes, and it is interesting
to analyze how quickly this estimation reaches the true value
increasing the number of updated nodes. We start by proving the
following corollary:

Corollary 2. Given a graph G and a set H ⊆ V of nodes that
support the protocol, if G remains stable for a long enough period

of time then, for each node h ∈ H, the ‘load ’ variable maintained
by h will eventually converge to:

LC ′(h) =
∑
s∈H

∑
d∈V

θs,d(h) (4)

Proof. The proof is straightforward from Theorem 1. When con-
sidering a topological sort and a node uk, then from all nodes
in {u0 . . . uk−1} only those that belong to H generate the load
contribution after collecting the messages. The total number of
contributions that uk receives for destination d is thus given by
|{u0 . . . uk−1|ui ∈ H}| and loadOut [d] =

∑
s∈H θs,d(uk). The

same happens for every other destination, which means that with
partial deployment, Algorithm 3 computes a partial version of the
load centrality corresponding to Eq. (4).

6.1 Error Estimation with Partial Coverage
Corollary 2 is simple but powerful; it shows how, with reasonable
assumptions on the legacy nodes, we can exploit LC incrementally
and we can estimate the load centrality ranking even with partial
information. In the rest of the section, we go one step forward and
give a theoretical analysis of the average error introduced in the
estimation. An experimental study of how this error impacts the
nodes’ ranking in terms of centrality is presented in Sec. 6.2.

6.1.1 Error function definition
Given an arbitrary H, with H = |H|, we state the following:

Def. 3: Average Normalized Load Centrality
4
LC =

1

N

∑
v∈V

LC(v) =
2
∑

v∈V LC(v)

N2(N − 1)
(5)

Def. 4: Average Normalized Partial Centrality
4
LC ′ =

1

H

∑
h∈H

LC ′(h) =
2
∑

h∈H LC
′(h)

H2(N − 1)
(6)

Considering a partial deployment (i.e., looking at Eq. (6)), the
average is computed only over nodes belonging to H (which
are H instead of all N nodes); the normalization coefficient
changes accordingly. We are interested in computing the average
normalized relative error EH defined as:

Def. 5: Average Normalized Relative Error

EH =

4
LC −

4
LC ′

4
LC

(7)

We characterize analytically the relative error defined in Eq. (7),
rewriting it in terms of two main factors that describe the “missing
load contributions", which are lost because only a subset of nodes,
namely H ≤ N , perform the algorithm. This reformulation en-
ables us to derive lower and upper bounds for EH and understand
how it converges to zero for H approaching N . To this purpose,
we start computing the expected overall load in the network with
the following theorem.

Theorem 2 (Overall Network Load).∑
v∈V

LC(v) = N(N − 1)l (8)

where N(N − 1) is the number of (s, d) pairs in V with s 6= d
and l is the average shortest path length in V .

8

s d

Hops

1

0.5

0.25

0.25

0.5

1

1 2 3 4

0.5

s
d

1 1 1 1a)

b)

(a) Propagation of a contribution over a single path.

s d

Hops

1

0.5

0.25

0.25

0.5

1

1 2 3 4

0.5

s
d

1 1 1 1a)

b)

(b) Splitting of a contribution over multiple paths.

Figure 4. Considering the load contribution derived from the commodity
generated by s and sent to d, this contribution transits through all nodes
drawn in solid color.

Proof. Consider a shortest path between s and d as a sequence of
nodes {s, . . . d} and the path length as (|{s . . . d}| − 1) without
loss of generality2.

Consider the generic propagation of a commodity unit from
node s to node d on a single shortest path as depicted in case
Fig. 4a. All the nodes that forward the commodity increment their
load centrality metric by the amount of commodity they have
forwarded, which is 1. This means that the commodity sent by
source s to target d, by traveling on the shortest path from s to d,
induces an overall increment of load in the network equal to the
length of the shortest path linking s to d (|s . . . d| − 1).

If there are multiple shortest paths, as in case of Fig. 4b, we
assign load 1 to s itself (distance 0). At some distance i > 0
from s the path splits in k equivalent paths, then there are k
nodes at distance i + 1 from s, and by definition the sum of the
load centrality of nodes at distance k + 1 equals the sum of load
centrality at distance k. By induction, given the load at distance 0
equal to 1, the sum of the load of the nodes at any distance k+1 is
1 and the total load induced on the network equals (|s . . . d| − 1).

Extending this observation to all the N(N−1) possible (s, d)
couples the overall load in the network is equal to the sum of the
lengths of all the shortest paths, which by definition is N(N −
1)l̄.

Combining Eq. (8) and Eq. (5), we can rewrite the Average
Normalized Load Centrality as:

4
LC =

2l

N
(9)

We now need to reformulate the term
∑

h∈H LC
′(h) in the

right hand side of Eq. (6) adopting an approach similar to the one
used to prove Theorem 2. In the partial deployment scenario, only
shortest paths linking nodes h ∈ H to destinations in v ∈ V
are accounted for to estimate the load due to the commodity
propagation; consequently, the average path length l used in
Theorem 2 should be computed on the proper subset of shortest
paths that are actually used. We call l′ the average path length

2. If there are multiple minimum shortest paths for some endpoints s and
d, then they all have the same path length. For s directly connected to d the
path length is 0. The distance definition implies that we exclude from the
computation of LC for node v the contributions of paths terminating in v.

from all sources h ∈ H to destinations in v ∈ V . Furthermore,
we measure the centrality for the subset of nodes in H, which
are the only ones implementing the algorithm, based only on
the commodity they generate. This means we need to discard all
contributions that transit through legacy nodes in W if we want
to sum up only the load centrality computed by nodes in the H
set. Taking into account these two considerations we define the
Overall Estimated Load as follows:

Def. 6: Overall Estimated Load∑
h∈H

LC ′(h) = H(N − 1)l′ −
∑
w∈W

LC ′(w) (10)

We can now rewrite the definition of Average Normalized
Partial Centrality applying Eq. (10) to Eq. (6):

4
LC ′ = 2

H(N − 1)l′ −
∑

w∈W LC ′(h)

H2(N − 1)
(11)

and this leads to the main reformulation of the Normalized
Relative Error EH:

EH = 1− N

l

 l′

H︸︷︷︸
E1

−

∑
w∈W

LC ′(w)

H2(N − 1)︸ ︷︷ ︸
E2

 (12)

where E1 and E2 are the two factors accounting for legacy nodes
missing commodity.

6.1.2 Error function analysis
To gain insight into Eq. (12) we need to understand the roles of
E1 and E2. Based on the definition from Eq. (10) we observe that
E1 describes the load produced by commodity generated by the
upgraded nodes, whileE2 describes the amount of commodity that
can not be measured (must be subtracted) because legacy nodes
do not accumulate it as they do not understand its meaning.

We start the analysis setting E2 = 0, which yields the error
function in Eq. (13) and corresponds to a system where legacy
nodes do not generate commodity and were chosen among the
nodes that have zero centrality.

EH = 1− N

H

l′

l
(13)

This is a relevant case because it is equivalent to the estimation
of betweenness centrality using only a restricted number of single-
source shortest-paths computations from a set of selected pivots
[20]. This approach can be used with a centralized algorithm when
the number of nodes is too large to compute all possible shortest
paths. Assuming pivots are chosen at random, then l′ quickly
converges to l and the error is dominated by N/H . There are
many works in the literature that deal with this problem, given
that the execution of superlinear algorithms can be unfeasible
when the graph is in the order of billions of nodes (see the work
of Riondato et al. and cited bibliography [25]). Our problem is
different because we run a distributed protocol, with legacy nodes
not generating any load and not even estimating their centrality.
This is why, in Eq. (10), we subtracted contributions traversing
nodes inW , and hence E2 ≥ 0.

Let us now go back to consider the original scenario in which
we have a non-negligible number of legacy nodes that are not able

9

to estimate their centrality. How big can E2 be? Consider these
two extreme cases:

1) W includes all and only the nodes with zero centrality;
2) W includes all and only the nodes with non zero centrality.

In the first case
∑

w∈W LC ′(w) = 0 and we fall back to
Eq. (13). In the second case, the sum of the centrality of all
nodes inW accounts for the overall load generated in the network,
which is: H(N − 1)l′. Then E1 = E2 and the relative error is
1: Essentially we are trying to estimate the centrality of nodes
in H which do not lie on any shortest path. No matter how
many shortest paths we consider, the relative average error will
be always 1. Consider for instance a star graph: for any size ofH,
if H does not include the star center then the relative error will
always be 1.

In between these extremes, we note that, from Eq. (10):

l′ =

∑
h∈H LC

′(h) +
∑

w∈W LC ′(w)

H(N − 1)
=

∑
v∈V LC

′(v)

H(N − 1)
(14)

then we have:

E1 =
l′

H
=

∑
v∈V

LC ′(v)

H2(N − 1)
≥ E2 (15)

which means that EH always lies in between the two extreme
cases we just described, but also that upgrading more central nodes
the error done is smaller.

Summing up, the convergence of the relative normalized error
is quite slow. In the best case where E2 ' 0, then EH ' 1− N

H ,
meaning that with 80% nodes coverage we underestimate with a
25% error. Anyhow, the average error does not say much on how
the ranking is influenced and, in general, centrality rankings are
more important than the single centrality values. Estimating the
error on rankings is less straightforward than the average error,
but crucial. In Sec. 6.2 we compute rank correlation coefficients
and show that, even for very small fractions of upgraded nodes,
the algorithm preserves correct ranking with great accuracy.

6.2 Centrality Ranking with Partial Information
We implemented the new distributed, incrementally-deployable
algorithm in a Python simulator. We used this simulator to study
the Spearman’s rank correlation coefficient rs [43] and so evaluate
the degree of similarity between rankings computed respectively
with the exact and the approximated algorithms we provided (i.e.,
with Algorithm 1 and Algorithm 3). Spearman’s rs measures the
correlations of two rankings of the same population, and ranges in
[−1, 1]. When rs = 1 the two rankings are perfectly correlated,
when rs = −1 one ranking is perfectly specular to the other,
when rs = 0 there is no correlation between the two rankings.

We analyzed graphs generated using four well known gen-
erators: the already cited Barabási-Albert and Erdős plus the
Waxman [44] and Caveman [45] models. As in the previous
experiments, we generate 10 graphs of various size for each
diameter (from 3 to 7, for a total of 50 graphs). The results shown
in Fig. 5 are obtained following this methodology:

• For each graph we compute the exact centrality ranking using
the algorithm with H = V ;

• For each graph we also choose 5 instances of H at random,
with H size ranging from 10% to 100% of V size, and we
run a simulation. Each run produces an estimated ranking for
the elements of H.

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

S
p

e
a

rm
a

n
 R

a
n

k
 C

o
rr

e
la

ti
o

n
 r

s

Upgraded nodes penetration ratio [%]

ER
BA
CV
WX

Figure 5. Spearman’s rs for Barabási-Albert, Erdős, Waxman, and
Caveman graphs for 1000 nodes and diameter 5 with 95% confidence
intervals.

• Finally, for each run we compute Spearman’s coefficient
comparing the estimated and the exact rankings (limited to
the nodes in H), and we average it on the 50 runs for that
diameter (10 graphs times 5 random choices of H).

For brevity, we report here only the results with 1000 nodes
and diameter 5, but we obtained results with similar trends also
for all the other diameter values and with graphs of 400 nodes.

Fig. 5 reports the Spearman’s correlation coefficient between
the exact ranking and the estimated ranking, on the 4 families
of graphs. It shows that for any kind of graph, with H covering
30% of V , the correlation rs is already close to 0.8, while with
a coverage of 60% the correlation goes over 0.9 for all graphs.
Fig. 5 confirms that estimated ranking accurately classifies nodes
for their importance; they can therefore be used to fine-tune
network protocols even in presence of a small fraction of updated
nodes.

7 TUNING BABEL WITH CENTRALITY

Out of the many contexts in which our algorithm can be exploited,
we focus on advantages it can give to optimize DV routing
protocols in wireless mesh networks. To perform link sensing in
wireless networks, routing protocols define a timer tH used by each
node to control the generation of link-level HELLO messages.
This timer is crucial for a fast re-convergence in case of failures. A
trade-off must be found between a short timer, which guarantees
fast detection of link failures but subtracts link capacity to data
traffic, and a long timer, that is more resource-aware but makes
route convergence slow.

Maccari and Lo Cigno have introduced an optimization of
tH based on betweenness centrality [4]. Initially, they define the
average overhead per link (OH) when every node is configured
with the same tH. Then, they introduce a loss metric to express the
average estimated loss due to a node failure:

L(k) = VHtH(k)N(N − 1)bk (16)

where VH is a protocol parameter (the number of consecutive lost
packets after which a link is considered broken). Finally they show
that keeping OH constant, the average loss can be minimized if tH
is configured per-node as follows:

tH(i) =

√
di√
bi
tH

∑N
j=1

√
bjdj∑N

j=1 dj
∝
√
di√
bi

(17)

10

where bi and di are the betweenness and degree of node i. In
practice, if a node knows di and bi for all nodes, it can auto-tune its
tH(i) to achieve a convergence time distribution that minimizes the
average network disruption after a node failure, keeping a constant
signaling overhead in the network.

The authors used this technique for the OLSR protocol but,
in principle, it can be applied to any link-state protocol where
every node is aware of the whole topology. Conversely, it cannot
be applied to DV routing protocols because, in this latter case,
nodes have a limited topological knowledge and cannot compute
Eq. (17). Algorithm 1 does not mandate nodes to know the entire
topology and it is fully distributed, therefore its implementation
on a DV routing protocol is straightforward and we effectively
integrated it with the Babel protocol [15], a well-known DV
routing protocol3.

We implemented the distributed centrality computation algo-
rithm in babeld, the open source implementation of Babel, in
order to verify that centrality can be correctly computed. The
evaluation strategy and performance metrics are those proposed by
the authors of [4]; here, we just briefly recall them, while a detailed
description is provided in the original paper. Finally, note that to
use Eq. (17), the propagated distance vector should also contain
the degree of node i. If we drop this requirement, then we can
set tH(i) =

√
ti√
bi
K for some constant K . This will still optimize

the timers and keep a constant level of global overhead, but it
will not produce exactly the same overhead OH of the default
configuration. In return, it greatly simplifies the protocol as long
as every node can take decisions based only on its own centrality.
For our purpose, we used the value of K that generates the value
of OH corresponding to tH = 1s.

We run the code in an emulated network using the Mininet
platform. At time tf , we trigger the failure of node k, and we let
all routing tables stabilize again; we repeat this procedure for a
subset of Nf ≤ N nodes. Note that generally Nf < N because
we exclude two categories of nodes: leaf nodes (their centrality
is zero so their failure does not impact any other node) and cut-
points (nodes whose centrality may be high but they partition the
graph in disconnected components, so that it is not possible to
route around the failed node). During experiments we dump the
routing tables RT j

i [d] every 0.5 s: a dump contains the matching
between a destination d and the next hop nh for node i at time tj
(only one path is used in Babel). When the emulation is over, we
group the dumped routing tables according to timestamps, next we
recursively navigate each group to take a snapshot of all shortest
paths from every source s to any destination d. We call Lj the
number of broken shortest paths that, for tj > tf , are incomplete
or still pass through node k and we define Lbabel(k) =

∑
j Lj the

total loss value when the emulation runs with the original babeld
and Lcent(k) the same value but computed using the optimized
timers. Finally we compare the two approaches, computing the
relative loss value averaged over all possible failures as:

L = 1−
∑Nf

k=0 Lcent(k)∑Nf

k=0 Lbabel(k)
(18)

3. Eq. (17) uses betweenness centrality, while our approach computes load
centrality. However, in a mesh network links are weighted by their quality
(with any metric the protocol supports), which makes it hard to have multiple
paths with the same exact weights, therefore, in real-world mesh networks load
centrality converges to betweenness centrality. This said, we do not attempt
any comparison with [4]: comparing a DV and a link-state protocol goes well
beyond comparing centrality metrics.

If L > 0, then the tuned version of babeld, averaged
over Nf failures, produces lower loss compared to the non-
modified version, always keeping the same overhead due to control
messages.

Before presenting detailed results, it is worthwhile to discuss
some modifications to Algorithm 1 that are necessary to imple-
ment it in babeld and are in general required for any real DV
protocol.
Nodes vs. Routers. The common approach it the literature
focused on centrality is to treat nodes as sources, targets and
forwarders of traffic. In real networks, sources and targets are
IP addresses and routers have several interfaces with distinct IP
addresses. To overcome this issue, we aggregate all route-updates
coming from the same node based on the “router-id” field defined
by Babel to uniquely identify a router. This field is included in
all packets generated by a router and is propagated by all others,
therefore we can aggregate the centrality contributions pertaining
to different interfaces of the same router and do a mapping
between IP addresses and graph nodes.
Load Estimation. In our implementation, every router gener-
ates a unit of traffic θs,d = 1, but in real networks this value can
be arbitrarily tuned. It can be proportional to the dimension of
attached subnets (assuming more IPs will generate more traffic)
or it can be replaced with an estimation of the real outgoing
traffic measured locally. This way load centrality would effectively
represent the expected load on the node.
Protocol-specific Heuristics. In our tests we used networks that
have more than one shortest path with the same weight connecting
the same endpoints (s, d). The version of Babel that we used
does not support multipath routing: in these cases Babel performs
a tie-break to select one path over another. We also noticed
that babeld sometimes selects paths that are not minimum
weight. This is probably due to an implemented heuristic that
prevents changing from one path to another if their weight is
similar, just to avoid route flapping. Our algorithm follows choices
taken by babeld, which is the correct behavior on-line even if
the computed LC minimally diverges from the theoretical one.
Sec. 7.1 further details and explains this issue.

7.1 Experimental Results with Full Coverage
We test the protocol on several topologies extracted from real-
world networks [46]. Two of them are Ninux and FFGraz4 the
same ones used and published by the authors of [4], which
are topologies of two large-scale wireless mesh networks. We
were able to collect two more real network topologies, namely
Auerbach and Adorf, analysing information provided by the Frei-
Funk German community network (CN). FreiFunk is an umbrella
name that gathers together hundreds of wireless CNs in Germany:
some of them are made of few nodes, some others are made of
hundreds, all of them are mesh networks used to offer Wi-Fi
connectivity. Information on these network topologies is freely
available (with some effort to understand the format) from the
community website5. In the particular case of Auerbach and Adorf,
these two are heterogeneous networks, with a mix of wireless and
wired links inside a single routing domain. Finally, we also use 4
others extracted from the well-known Topology Zoo [47], namely
Interoute, Ion, GtsCe and TataNld; these are 4 wired topologies of

4. https://www.ninux.org — https://graz.funkfeuer.at/en/about.html
5. See https://api.freifunk.net, and the visualizer https://www.freifunk-karte.

de.

11

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140

lo
a

d
 c

e
n

tr
a

lit
y
 (

L
C

)

Nodes sorted by loadoffline

LCoffline
LCbabel

Figure 6. Comparison of LC computed on-line with and off-line with
networkx on the same topology computed by Babel

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60 70

#
B

ro
k
e

n
 P

a
th

s
 (

L
j)

Time [sec]

cent
babel

Figure 7. Comparison of the network loss in ninux topology after the
failure of one of the most central nodes

similar size that we use to extend our analysis. Table 3, discussed
later on, reports the names of all the 8 topologies with their key
characteristics and the loss reduction.

Babel is an event-driven protocol where messages are sent
in reaction to detected changes and expiration of local timers.
This, together with the heuristics mentioned in the previous
section, introduces slight differences in the centrality computation
compared to the ideal protocol presented in Sec. 3. Fig. 6 presents
a validation of our implementation in babeld and reports a
comparison between empirical and theoretical LC values com-
puted for all nodes in a network. On the one hand, LC has been
computed on-line using the modified babeld and, on the other
hand, running Python networkx libraries off-line on the same
topology built by babeld and saved in JSON format. The Mininet
network emulator allows running experiments with real instances
of babeld over real-world networks6. For instance, the results
shown in Fig. 6 are obtained running experiments on the topology
of ninux, a CN of Rome.

First of all we verified that the sum of all LC values is identical
in both cases, which means that Babel never uses a minimum
weight path that is longer (in terms of hops) than the shortest one
computed by networkx. Next, we noticed that nodes’ rankings are
not exactly the same, but very similar.

Fig. 7 reports the number of broken paths vs. time after one
of the most central nodes of the ninux topology has failed around
time t = 5 s. A path is said to be broken if it contains a node with
an invalid next-hop. Babel with centrality reacts slightly faster, but
above all recovers more routes in less time compared to standard
Babel. Thus we achieve a resilience gain without adding any cost,

6. Experiments cannot be run directly on working networks to avoid
disrupting their daily functioning.

as the complexity of LC computation is minimal: in fact, the
signaling overhead in terms of number of messages is constant,
while messages’ dimension increases only marginally.

Table 3
Loss reductions in real networks

Network |V | |E | Nf Loss Reduction Type

Interoute 110 148 63 8.37% Wired
Ion 125 146 58 3.10% Wired
GtsCe 149 193 98 6.05% Wired
TataNld 145 186 68 7.34% Wired
Ninux 126 147 17 10.65% Wireless
FFGraz 141 200 19 13.11% Wireless
Auerbach 123 223 70 11.29% Heterogeneous
Adorf 123 225 65 13.27% Heterogeneous

To get exhaustive results, we run the modified version of
babeld over a total of 8 emulated networks representing real
topologies. Table 3 and Fig. 8 report the results summary. Fig. 8
compares Lbabel(k) and Lcent(k) where nodes k = 1, 2, . . . , 15
are the 15 most central ones for each topology. The chosen
networks are ninux (Fig. 8a), Graz (Fig. 8b), and Ion (Fig. 8c),
because they represent well different classes of networks; however
results would not change significantly selecting other networks.
As we can see, in general Lcent is smaller than Lbabel, but
sometimes the fine-tuned timers’ frequency does not provide
any gain. However, a closer look to Table 3, which reports the
mean loss reduction for all the 8 considered networks, reveals
that averaging over all possible failures we obtain a global gain,
ranging from 3% up to 13% depending on the topology; still it
is always a clear advantage in favor of tuning timers based on
centrality.

In general, wireless and heterogeneous networks achieve larger
gains compared to wired and uniform networks due to structural
properties of the network graphs. In fact, the optimization level
that can be achieved exploiting centrality strongly depends on the
array of values of bi and di and on the availability of alternative
paths to route around a failure. Consider the extreme case of a
ring network, or in general an n-regular network over a torus:
in such networks all nodes have same degree and centrality and
Eq. (17) returns the same value for all timers. In these cases no
optimization is possible.

7.2 Analytical Results with partial Coverage
We conclude this section showing we can obtain a performance
improvement even when only a subset of nodes support centrality-
based optimization, applying the algorithms explained in Sec. 6.
We use the Python simulator introduced in Sec. 6.2 with the fol-
lowing procedure. Given a network with N nodes and ρ ∈ (0, 1],
we randomly select dρNe nodes that run Algorithm 3, while all
the other nodes run Algorithm 2. We let the network converge and
we obtain the estimated values of centrality bk for the upgraded
nodes. Then we compute the average loss exactly as explained in
Sec. 7, but, instead of running full emulations, for performance
reasons we compute Lbabel and Lcent in Eq. (18) using Eq. (16).
The different methodology makes the analytical value of L differ-
ent from the data we obtain with emulations. These results must
be considered as an upper bound of the possible improvement, and
thus Fig. 9 is not directly comparable with Table 3. On the other
hand, this allows repeating the process for 40 times, for ten values
of ρ and for all the networks in Table 3 in reasonable time.

12

0

50 k

100 k

150 k

200 k

250 k

T
o
ta

l
L
o
s
s

Failed node sorted by LC

Lcent
Lbabel

(a) Ninux.

0

50 k

100 k

150 k

200 k

250 k

300 k

350 k

400 k

T
o
ta

l
L
o
s
s

Failed node sorted by LC

Lcent
Lbabel

(b) Graz.

250 k

300 k

350 k

400 k

450 k

500 k

550 k

600 k

650 k

T
o
ta

l
L
o
s
s

Failed node sorted by LC

Lcent
Lbabel

(c) Ion.

Figure 8. Comparison of the loss induced by the failure of the 15 more
central nodes in ninux (a) Graz (b) and Ion (c) when standard Babel is
used (Lbabel) or the modified version is used (Lcent)

-10

 0

 10

 20

 30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o
s
s
 R

e
d
u
c
ti
o
n
 [
%

]

ρ

FFGraz
Interoute

Auerbach

GtsCe
Ion

Ninux

TataNld
Adorf

Figure 9. Comparison of loss on various networks with only a fraction
ρ of nodes supporting the improved protocol. For clarity, we report the
95% confidence interval for Adorf only, which has the largest ones in
average. The intervals are barely visible.

Fig. 9 shows that with ρ larger than 0.2, in all networks we

start to have a tangible improvement compared to the standard
behavior. This confirms that even if the convergence to the exact
centrality values is slow, it it sufficiently precise to improve the
protocol performance with as little as 20% of the upgraded nodes.
Such a result is very encouraging as it finally shows that we can
deploy centrality-based optimizations in an incremental way on
existing networks, and obtain a net improvement way before the
full coverage is reached. This is a key step in the path to improve
protocols in large-scale existing networks.

The fact that some of the curves are not monotonically growing
is probably a combination of several effects. First, when we apply
the improved protocol to a subset of nodes, we cannot strictly
enforce the condition of constant average overheadOH . We expect
this condition to hold in average as ρ approaches 1. Second, due
to the specific properties of each topology the convergence of the
centrality estimation may be faster or slower, and could even suffer
from a bias. As a result it could be that in Ninux and FFGraz for
some choices of ρ we slightly overestimate centrality, and thus we
produce a higher gain than with larger values of ρ.

8 CONCLUSIONS

Centrality metrics are key for understanding the importance of a
node in a network, and they have been extensively used in many
scientific fields. Betweenness and load centrality are two of the
most popular ones. In networks that do not support multipath
routing the two metrics coincide, and this is the case for most
communication networks.

In spite of its importance, and before this work, there was no
fully distributed algorithm that supports the computation of load
centrality in generic networks. In fact, among existing algorithms
there are those requiring a full topological knowledge, those that
are distributed but only approximated, and those that are exact
and distributed but applicable only on special topologies (such as
DAGs or trees). For this reason so far it was impossible to exploit
betweenness or load centrality in distributed network protocols.

This paper contributes, to the best of our knowledge, the
first algorithm for the exact computation of load centrality in a
generic graph. We demonstrated its convergence, the worst case
convergence time, and we showed it can be directly integrated
with minimal modification into a distance-vector (DV) routing
protocol. We provided a direct use-case implementing the dis-
tributed algorithm in Babel, a widely used standard DV protocol,
showing it can tangibly improve the convergence time in case of
nodes’ failure for all tested topologies, taken from real networks.

Finally, the algorithm does not require all nodes in the network
to support it; it can be gradually deployed in an existing network
and even with a small fraction of upgraded nodes it yields useful
rankings for node centrality. Many more applications than routing
can benefit from nodes’ rankings based on centrality. Caching
is the most obvious, but not the only one. We believe that
the availability of efficient centrality computation algorithms can
spawn research and applications exploiting it.

REFERENCES
[1] L. Maccari, L. Ghiro, A. Guerrieri, A. Montresor, and R. Lo Cigno,

“On the Distributed Computation of Load Centrality and Its Application
to DV Routing,” in IEEE Int. Conf. on Computer Communications
(INFOCOM), Honolulu, HI, USA, Apr. 2018, pp. 2582–2590.

[2] U. Brandes, “On Variants of Shortest-Path Betweenness Centrality and
their Generic Computation,” Social Networks, vol. 30, no. 2, pp. 136–
145, May 2008.

13

[3] P. Pantazopoulos, M. Karaliopoulos, and I. Stavrakakis, “Distributed
Placement of Autonomic Internet Services,” IEEE Trans. Parallel Distrib.
Syst, vol. 25, no. 7, pp. 1702–1712, Jul. 2014.

[4] L. Maccari and R. Lo Cigno, “Pop-Routing: Centrality-Based Tuning of
Control Messages for Faster Route Convergence,” in IEEE Int. Conf. on
Computer Communications (INFOCOM), San Francisco, CA, USA, Apr.
2016, pp. 1–9.

[5] S. Dolev, Y. Elovici, and R. Puzis, “Routing Betweenness Centrality,” J.
of the ACM (JACM), vol. 57, no. 4, pp. 25:1–25:27, Apr. 2010.

[6] L. Maccari and R. Lo Cigno, “Improving Routing Convergence With
Centrality: Theory and Implementation of Pop-Routing,” IEEE/ACM
Trans. on Networking, vol. 26, no. 5, pp. 2216–2229, Oct. 2018.

[7] A. Vázquez-Rodas and L. J. de la Cruz Llopis, “A centrality-based topol-
ogy control protocol for wireless mesh networks,” Ad Hoc Networks, vol.
24.B, pp. 34–54, Jan. 2015.

[8] L. Baldesi, L. Maccari, and R. Lo Cigno, “On the Use of Eigenvector
Centrality for Cooperative Streaming,” IEEE Communications Letters,
vol. 21, no. 9, pp. 1953–1956, Sep. 2017.

[9] P. Zilberman, R. Puzis, and Y. Elovici, “On Network Footprint of Traffic
Inspection and Filtering at Global Scrubbing Centers,” IEEE Trans. on
Dependable and Secure Comput., vol. 14, pp. 521–534, 2017.

[10] L. Maccari, Q. Nguyen, and R. Lo Cigno, “On the Computation of
Centrality Metrics for Network Security in Mesh Networks,” in IEEE
Global Communications Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[11] M. Kas, S. Appala, C. Wang, K. M. Carley, L. R. Carley, and O. K.
Tonguz, “What if Wireless Routers were Social?” IEEE Wireless Com-
munications, vol. 19, no. 6, pp. 36–43, Dec. 2012.

[12] L. Maccari and R. Lo Cigno, “Betweenness estimation in OLSR-based
multi-hop networks for distributed filtering,” J. of Computer and System
Sciences, vol. 80, no. 3, pp. 670–685, May 2014.

[13] D. Papakostas, S. Eshghi, D. Katsaros, and L. Tassiulas, “Energy-Aware
Backbone Formation in Military Multilayer Ad Hoc Networks,” Ad Hoc
Networks, vol. 81, pp. 17 – 44, Dec. 2018.

[14] K. I. Goh, B. Kahng, and D. Kim, “Universal Behavior of Load Distri-
bution in Scale-free Networks,” Physical Review Letters, vol. 87, no. 27,
pp. 1–4, Dec. 2001.

[15] J. Chroboczek, “The Babel Routing Protocol,” RFC 6126, Apr. 2011.
[16] R. Puzis, M. Tubi, Y. Elovici, C. Glezer, and S. Dolev, “A Decision

Support System for Placement of Intrusion Detection and Prevention
Devices in Large-Scale Networks,” ACM Trans. Modeling Computer
Simulation (TOMACS), vol. 22, no. 5, pp. 1–26, Dec. 2011.

[17] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” J. of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[18] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes, “Heuristics
for Speeding Up Betweenness Centrality Computation,” in ASE/IEEE Int.
Conf. on Social Computing and Int. Conf. on Privacy, Security, Risk and
Trust, Sep. 2012, pp. 302–311.

[19] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating
Betweenness Centrality,” in 5th Int. Conf. on Algorithms and Models for
the Web-Graph (WAW’07), Dec. 2007, pp. 124–137.

[20] U. Brandes and C. Pich, “Centrality Estimation in Large Networks,” Int.
J. of Bifurcation and Chaos, vol. 17, no. 7, pp. 2303–2318, Jul. 2007.

[21] R. Geisberger, P. Sanders, and D. Schultes, “Better Approximation of
Betweenness Centrality,” in SIAM Meeting on Algorithm Engineering &
Expermiments, Jan. 2008, pp. 90–100.

[22] R. Jacob, D. Koschützki, K. A. Lehmann, L. Peeters, and D. Tenfelde-
Podehl, “Algorithms for Centrality Indices,” in LNCS Vol. 3418: Network
Analysis, U. Brandes and T. Erlebach, Eds. Springer, 2005.

[23] Y. Lim, D. S. Menasché, B. Ribeiro, D. Towsley, and P. Basu, “Online
Estimating the k Central Nodes of a Network,” in IEEE Network Science
Workshop (NSW), Jun. 2011, pp. 118–122.

[24] A. Maiya and T. Y. Berger-Wolf, “Online Sampling of High Centrality
Individuals in Social Networks,” in Pacific-Asia Conf. on Knowledge
Discovery and Data Mining, Jun. 2010, pp. 91–98.

[25] M. Riondato and E. Upfal, “Abra: Approximating betweenness centrality
in static and dynamic graphs with rademacher averages,” in Int. Conf. on
Knowledge Discovery and Data Mining (SIGKDD), Aug. 2016.

[26] M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres, “Fast Exact Com-
putation of Betweenness Centrality in Social Networks,” in IEEE Int.
Conf. on Advances in Social Networks Analysis and Mining (ASONAM),
Aug. 2012, pp. 450–456.

[27] E. Bergamini and H. Meyerhenke, “Fully-dynamic Approximation of
Betweenness Centrality,” in 23rd European Symposium on Algorithms,
Sep. 2015, pp. 155–166.

[28] E. Bergamini, H. Meyerhenke, and C. L. Staudt, “Approximating Be-
tweenness Centrality in Large Evolving Networks,” in 17th SIAM Work-
shop on Algorithm Engineering and Experiments (ALENEX), Jan. 2014,

pp. 133–146.
[29] N. Kourtellis, G. De Francisci Morales, and F. Bonchi, “Scalable Online

Betweenness Centrality in Evolving Graphs,” IEEE Trans. on Knowledge
and Data Engineering, vol. 27, no. 9, pp. 2494–2506, Apr. 2015.

[30] Y. Yoshida, “Almost Linear-Time Algorithms for Adaptive Betweenness
Centrality using Hypergraph Sketches,” in 20th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, Aug. 2014, pp. 1416–1425.

[31] K. You, R. Tempo, and L. Qiu, “Distributed Algorithms for Computation
of Centrality Measures in Complex Networks,” IEEE Trans. Autom.
Control, vol. 62, no. 5, pp. 2080–2094, May 2017.

[32] W. Wang and C. Y. Tang, “Distributed Computation of Node and Edge
Betweenness on Tree Graphs,” in 52nd IEEE Conf. on Decision and
Control, Dec. 2013, pp. 43–48.

[33] ——, “Distributed Computation of Classic and Exponential Closeness on
Tree Graphs,” in American Control Conf. (ACC), Jun. 2014, pp. 2090–
2095.

[34] Q. S. Hua, H. Fan, M. Ai, L. Qian, Y. Li, X. Shi, and H. Jin, “Nearly
Optimal Distributed Algorithm for Computing Betweenness Centrality,”
in IEEE 36th Int. Conf. on Distributed Computing Systems (ICDCS),
Nara, Japan, June 2016, pp. 271–280.

[35] M. Pontecorvi and V. Ramachandran, “Distributed Algorithms for Di-
rected Betweenness Centrality and All Pairs Shortest Paths,” arXiv
preprint arXiv:1805.08124, 2018.

[36] L. Hoang, M. Pontecorvi, R. Dathathri, G. Gill, B. You, K. Pingali,
and V. Ramachandran, “A Round-Efficient Distributed Betweenness
Centrality Algorithm,” in 24th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’19), Feb. 2019, pp. 272–
286.

[37] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, ser.
Monographs on Discrete Mathematics and Applications. Society for
Industrial and Applied Mathematics (SIAM), Jan. 1987.

[38] L. C. Freeman, “A Set of Measures of Centrality Based on Betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[39] R. R. Stewart, “Stream Control Transmission Protocol,” RFC 4960, Sept.
2007.

[40] A. Ford et al., “TCP Extensions for Multipath Operation with Multiple
Addresses,” RFC 6824, Dec. 2019.

[41] “A Border Gateway Protocol 4 (BGP-4), section 5,” RFC 1771, Mar.
1995.

[42] B. Carpenter, B. Aboba, and S. Cheshire, “Design Considerations for
Protocol Extensions,” RFC 6709, Sept. 2012.

[43] W. W. Daniel, Applied Nonparametric Statistics, 2nd ed. Wadsworth
Pub Co., Aug. 1989.

[44] B. M. Waxman, “Routing of Multipoint Connections,” IEEE J. on
Selected Areas in Communications (JSAC), vol. 6, no. 9, pp. 1617–1622,
Dec, 1988.

[45] D. J. Watts, “Networks, Dynamics, and the Small-world Phenomenon,”
American J. of Sociology, vol. 105, no. 2, pp. 493–527, 1999.

[46] L. Maccari and R. Lo Cigno, “A week in the life of three large Wireless
Community Networks,” Ad Hoc Networks, vol. 24, Part B, pp. 175 – 190,
2015.

[47] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
Internet Topology Zoo,” IEEE J. on Selected Areas in Communications
(JSAC), vol. 29, no. 9, pp. 1765 –1775, Oct. 2011.

Leonardo Maccari Leonardo Maccari received
a Ph.D in the Faculty of Computer Science En-
gineering in the University of Florence in 2010
and he is currently an Associate Professor at the
University of Venice (Italy). He is an IEEE and
ACM member and co-authored about 60 pub-
lications among refereed conferences, journals,
book chapters and patents. Among his research
interest there are network protocols and privacy
in large-scale wireless mesh networks with spe-
cial focus on Community Networks.

14

Lorenzo Ghiro is a Ph.D. student in Computer
Science at the University of Trento, Italy. He re-
ceived his master’s degree in 2017 with honours,
with a thesis on routing optimization based on
centrality metrics. His research interests focus
on graph analysis and network algorithms.

Alessio Guerrieri is a Data Scientist at Spazio-
Dati SRL, a small innovative company in Trento,
Italy. He received his Master Degree in Com-
puter Science from the Georgia Institute of Tech-
nology with a thesis on distributed clustering
algorithms and obtained his Ph.D. on large scale
distributed graph processing in the University of
Trento in 2015. His main research interests are
graph algorithms and distributed systems.

Alberto Montresor is Associate Professor at
the University of Trento since 2005. He has
previusly been with the University of Bologna
(2002-2005). He has authored more than 100
papers on large-scale distributed systems, cloud
computing and P2P networks. He is Associate
Editor of Springer Computing and he served as
Steering Committee Chair of the IEEE Confer-
ence on P2P Computing and as General Chair
and Program Chair for DOA, DAIS, SASO, P2P.

Renato Lo Cigno is Full Professor at the Uni-
versity of Brescia, Italy. He received a degree
in Electronic Engineering with a specialization in
Telecommunications from Politecnico di Torino.
In 1998/9, he was Visiting Scholar at UCLA;
from 2002 to 2019 he was with the University of
Trento, Italy. Renato Lo Cigno has been General
Chair of IEEE P2P, ACM WMASH and IEEE
WONS, TPC Chair of IEEE VNC, ACM WMASH,
IEEE MedComNEt, and IEEE WONS. He is As-
sociate Editor for IEEE/ACM TNET. His current

research interests are in performance evaluation of wired and wireless
networks, modeling and simulation techniques, congestion control, P2P
networks and networked systems in general. Renato Lo Cigno is senior
member of IEEE and ACM and has co-authored around 200 papers in
peer reviewed journals and conferences.

