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Abstract
Estimating and interpreting ecosystem metabolism remains an important challenge in stream ecology. Here,

we propose a novel approach to model, estimate, and predict multiseasonal patterns of stream metabolism
(gross primary production [GPP] and ecosystem respiration [ER]) at the reach scale leveraging on increasingly
available long-term, high-frequency measurements of dissolved oxygen (DO). The model uses DO measure-
ments to estimate the parameters of a simple ecosystem model describing the underlying dynamics of stream
autotrophic and heterotrophic microbial biomass. The model has been applied to four reaches within the Ybbs
river network, Austria. Even if microbial biomasses are not observed, that is, they are treated as latent variables,
results show that by accounting for the temporal dynamics of biomass, the model reproduces variability in met-
abolic fluxes that is not explained by fluctuations of light, temperature, and resources. The model is particularly
data-demanding: to estimate the 11 parameters used in this formulation, it requires sufficiently long, for exam-
ple, annual, time series, and significant scouring events. On the other hand, the approach has the potential to
separate ER into its autotrophic and heterotrophic components, estimate a richer set of ecosystem carbon fluxes
(i.e., carbon uptake, loss, and scouring), extrapolate metabolism estimates for periods when DO measurements
are unavailable, and predict how ecosystem metabolism would respond to variations of the driving forces. The
model is seen as a building block to develop tools to fully appreciate multiseasonal patterns of metabolic activity
in river networks and to provide reliable estimations of carbon fluxes from land to ocean.

Lotic ecosystems are key components of the global carbon
cycle. They transform and bury more than half of the lateral car-
bon flux from terrestrial ecosystems (Cole et al. 2007; Battin et al.
2008; Regnier et al. 2013). The river network conceptualization
has now moved from the notion of a “pipeline,” where transport
of organic carbon from land to ocean dominates the processes, to
the active ecosystem concept, where organic carbon is mineral-
ized, buried, and/or transported (Battin et al. 2009; Trimmer et al.
2012). The key components of stream ecosystem metabolism are
gross primary production (GPP), which is the carbon fixed
through photosynthesis by primary producers (autotrophs) and
ecosystem respiration (ER), which is the sum of the carbon
respired by both heterotrophs and autotrophs (Tank et al. 2010).
The prominent role in carbon cycling of microorganisms attached

to stream sediments is acknowledged for headwater streams and
low-order rivers (Naegeli and Uehlinger 1997; Battin et al. 2016),
whereas microorganisms suspended in the water column may
become more relevant in larger lowland rivers (Battin et al. 2008).

Modeling stream metabolism can be dated back to the 1950s
when Odum (1956) introduced the open-water method, based on
reach-scale diel oxygen mass balance techniques. Such method
(see, e.g., Demars et al. 2015) model diel fluctuations of dissolved
oxygen (DO) concentration in the water column as the balance
between areal GPP, generally assumed to vary with light, ER,
assumed constant throughout the day or temperature dependent,
and reareation that tends to equilibrate DO to saturation. The con-
ceptual pathway usually followedwhen studying stream ecosystem
metabolism consists of estimating daily GPP and ER from DO data
and statistically relating these fluxes to environmental variables
(e.g., light and nutrient availability, temperature, position in the
river network) to unravel possible drivers and controls (see,
e.g., Holtgrieve et al. 2010; Grace et al. 2015; Ulseth et al. 2018). An
environmental variable often used in such analyses is the time
elapsed since the last flood as a possible proxy of benthic microbial
biomass (i.e., periphyton) (see, e.g., Uehlinger et al. 1996). Indeed,
peak flow conditions can restructure or transiently perturb sedi-
mentary habitats and their biofilms and thus, the related
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ecosystem fluxes. At low densities of primary producers
(i.e., periphytic algae and cyanobacteria), GPP is expected to
increase proportionally to biomass; at higher densities, however,
competition for space and resources could decelerate metabolic
processes (McIntire and Phinney 1965; Roman and Sabater 1999;
DeLong et al. 2014; Jäger and Borchardt 2018). The respiration of
autotrophs and heterotrophs could also show similar density
dependence effects at increasing biomass densities. Moreover, eco-
system metabolism and biomass dynamics are tightly coupled
because positive net ecosystem production (NEP = GPP − ER) is
stored, at least temporarily, in the form of biomass. Therefore,
inter- and intra-annual patterns of stream metabolism possibly
carry a signature of the underlying dynamics ofmicrobial biomass.

Despite the natural link between ecosystem metabolism and
microbial biomass, these two components have often been stud-
ied separately. Biomass dynamics is typically investigated in the
context of riverine ecosystem models. Such classes of models
range from complex setups, which seek to parameterize most of
the processes deemed relevant to describe the major fluxes of
energy and materials (e.g., McIntire 1973; McIntire and Colby
1978; Billen et al. 1994; Flipo et al. 2007), to more simple and
parsimonious approaches (e.g., Uehlinger et al. 1996; Wootton
et al. 1996; Uehlinger and Naegeli 1998; Acuña et al. 2008) that
typically rely on direct measurements of biomass to evaluate
their performances and/or estimate parameters. However, such
measurements are costly and time consuming, especially if high-
frequency (e.g., weekly) time-series are desired.

The goal of this article is to bridge the gap between metabo-
lism and ecosystem models by proposing an approach that esti-
mates metabolic fluxes based on high-frequency DO
measurements by coupling oxygen dynamics with two addi-
tional nonobserved state variables describing the temporal evolu-
tion of autotrophic and heterotrophic benthic biomass.
Specifically, the proposed model does not directly estimate daily
GPP and ER based on DO data as traditionally done in open-
water methods (but see Song et al. 2018, discussed also later).
Rather, it infers critical ecosystem parameters controlling the
underlying dynamics of autotrophic and heterotrophic biomass
that would result in the observed long-term (e.g., annual), high-
frequency (subdaily) time-series of DO concentration. The
underlying assumption is that the interdaily variability of meta-
bolic fluxes that is not explained by changes in light, tempera-
ture, and resources, can be, at least partially, explained by
changes in biomass. We acknowledge, however, that specific
(i.e., per unit biomass) metabolic rates can vary due to other fac-
tors, for example, community composition, disturbance, or sim-
ply a nonstationary behavior of the intrinsic rates. Such factors
are currently not accounted for in our formulation which instead
focuses on biomass as a first-order driver. Moreover, as a positive
NEP implies an increase, at least temporarily, of biomass, an
additional goal of the model is to track the fate of such biomass:
that is, to estimate a seasonal pattern of biomass which is consis-
tent with the observed DO (and thus metabolic) time series.

When short-term (i.e., from days to weeks and months)
observations of DO are available, open-water methods still
represent a most suitable tool to estimate ecosystem metabo-
lism. However, recent developments in sensor technology
have greatly increased the availability of long-term, high-
resolution stream monitoring (Appling et al. 2018b; Bernhardt
et al. 2018). In this scenario, we propose the framework devel-
oped herein as a complementary tool to trace a broader pic-
ture of the set of ecosystem processes driving seasonal
variations of stream metabolism. This, however, comes at the
cost of further assumptions which restrain the applicability
and introduce limitations that will be carefully discussed.

While the general formulation of the proposed model can
be applied to a spatially explicit framework of stream networks,
the aim of this study is to develop the model at reach scale and
to test it using existing data on ecosystem metabolism from a
subalpine stream network (Ybbs river, Austria) (Ulseth et al.
2018). Particular attention has been given to the selection of an
appropriate model structure to ensure the identifiability of
parameters while providing a sufficient complexity to include
the key processes controlling metabolism at reach scale.

This article is organized as follows. First, we describe the general
model formulation. Then, we introduce our case study and detail
the case-specific assumptions employed for the simulation of the
tested reaches. The selected functional forms of the ecosystem
fluxes are then illustrated followed by a description of the parame-
ter estimation procedure. The last part of the article focuses on
results, discussion, limitations, and possible future developments.

Theoretical approach
The proposed model assumes that the temporal dynamics of

the ecosystem metabolism at reach scale is dominated by autotro-
phic and heterotrophic biomass not advected by the water flow
that is biofilms attached to benthic and hyporheic sediments
(Battin et al. 2016). The model is zero-dimensional as it assumes
perfect mixing conditions and thus neglects spatial gradients
within the control volume. The structural model describes the
temporal dynamics of three state variables: autotrophic biomass
BA, heterotrophic biomass BH (both expressed in mass units of
carbon), and water volume V. In addition, a measurement model
relates the state variables to the DO mass (and concentration) for
which observations are available (see model conceptualization in
Fig. 1). Mathematically, the model translates into four ordinary
differential equations:

dV
dt

=Qup +QL−Q 1að Þ
dBA

dt
=P BA, �ð Þ−RA BA, �ð Þ−LA BA, �ð Þ−SA BA, �ð Þ 1bð Þ

dBH

dt
=U BH, �ð Þ−RH BH, �ð Þ−LH BH, �ð Þ−SH BH, �ð Þ 1cð Þ

dDO
dt

=ϕup +ϕL−ϕ+ γPP BA, �ð Þ−γARA BA, �ð Þ−γHRH BH, �ð Þ+Re 1dð Þ

8>>>>>>>>>><
>>>>>>>>>>:
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where the dependence on the state variables BA and BH has
been highlighted to stress the coupling between oxygen and
biomass dynamics (see list of symbols and units in Table C1

in Appendix C). Water volume V (Eq. 1a) in the reach results
from the balance among the input discharge from upstream
Qup, the lateral contribution QL, which lumps all hydrological

Fig. 1. Illustration of the theoretical approach. Left panel (partially adapted from Carraro et al. 2019) depicts the volumetric (blue) and mass (orange)
fluxes contributing, respectively, to the reach scale water and DO balances (Eqs. 1a, 1d). Right panel focuses on the reach-scale ecosystem model and
the bio-physical processes considered for the biomass evolution (Eqs. 1b, 1c). Beside the water volume, state variables, represented with colored boxes,
are DO, autotrophic (BA) and heterotrophic (BH) biomass, respectively. Photosynthesis P, respiration R, uptake U, loss L, scouring S, and reaeration Re rep-
resent the fluxes from pool to pool. Gray shaded variables, that is, dissolved organic carbon (DOC) and particulate organic carbon (POC), are not cur-
rently included in the model formulation but they are here proposed as the next model improvement to allow a spatially explicit, network-scale
description of the process (see “Discussion” section).

Fig. 2. The Ybbs river and its fluvial network extracted from a digital elevation model (catchment color displays elevation in m.a.s.l.). Black circles indi-
cate the study site locations, numbered in ascending order according to their elevation, while the red dot locates the Lunz meteorological station.
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fluxes, such as snowmelt, surface and subsurface runoff,
groundwater inflow, or recharge of the portion of the catch-
ment directly drained by the focus reach, and the outflow dis-
charge Q. Modeling the variations of water volume, and the
underlying variations of channel geometry, allows us to
explicitly account for the effects of hydrological fluctuations
on DO concentration, reareation, and biofilm disturbance.

Autotrophic biomass BA (Eq. 1b) increases because of the
net photosynthetic flux (P), representing the rate at which
CO2 is fixed into biomass. Biomass is lost through respiration
(RA), which is the carbon spent to subsidize all the mainte-
nance processes using photosynthesis products, scouring (SA),
a flow induced process, as well as by a loss term (LA), encapsu-
lating mortality, detachment, grazing, and exudation, for
instance. Heterotrophic biomass is conceptualized similarly
(Eq. 1c), with the exception of the net influx, which is repre-
sented by carbon uptake (U).

The balance of DO is formulated in Eq. 1d. The first three
terms at the right-hand side represent the hydrological advec-
tive fluxes of DO related to upstream (ϕup), lateral (ϕL), and
outflowing (ϕ) discharges. As the model assumes well-mixed
conditions (zero-dimensional assumption), the latter flux can
be straightforwardly related to the other state variables as:

ϕ tð Þ=Q tð ÞDO tð Þ
V tð Þ =Q tð Þ DO½ � tð Þ ð2Þ

where [DO](t) represents DO concentration [M L–3] (square
brackets are used to indicate elemental concentration through-
out the article). The introduction of the γ weight conversion
coefficients [M/M] from carbon to oxygen mass units allows for
the direct coupling of the oxygen balance Eq. 1d with the pho-
tosynthetic and respiratory rates introduced in Eqs. 1b, 1c. Spe-
cifically, γP represents the photosynthetic quotient, which is the
ratio between the mass of oxygen produced per unit mass of car-
bon fixed in the Calvin-cycle, whereas γA and γH are referred to
the respiratory processes of autotrophs and heterotrophs, respec-
tively. Such coefficients have been assumed constant and equal
to γP = γA = γH = 32/12 (g O2 g C–1) (Bott et al. 1978; Burris 1981;
Demars et al. 2016). The impact of this assumption and its relax-
ation are discussed later. Finally, the last term of Eq. 1d considers
the gas exchange of DO across the air–water interface (Re).
Reaeration is driven by the difference between saturated and
actual DO concentration, and by the oxygen transfer coefficient,
which depends on hydraulic and hydrological conditions
(Raymond et al. 2012; Palmeri et al. 2013).

Traditional open-water metabolism methods, for example,
the single-station model (Wilcock et al. 1998), focus on Eq. 1d
at a daily timescale and directly estimate GPP (in this formula-
tion, GPP = γPP(BA, �)) and ER (ER = γARA(BA, �) + γHRH(BH, �)) so
that simulated oxygen concentration matches observed diel
fluctuations. A notable exception is the work by Song et al.
(2018) where the authors do not directly estimate GPP and ER
but rather the parameters of functional forms that relate

metabolic fluxes to light and temperature. Also in this case,
however, the authors allow for a different parameter set for
each individual day of analysis to account for the potential
day-to-day variation of the relation between metabolic fluxes
and environmental variables. The aim of our model is to
explain such day-to-day variability focusing on biomass as a
first-order control. Therefore, the proposed model relates pro-
duction and consumption of oxygen (i.e., GPP and ER) to the
ecosystem fluxes described in the structural model. The focus
therefore switches to the estimation of the parameters control-
ling such fluxes so that the model simulation matches long-
term (i.e., without applying the model separately to each day)
high-frequency time series of observed DO concentration. We
therefore hypothesize that such time series, together with
ancillary information about environmental variables, such as
temperature, discharge, and light, contain sufficient informa-
tion to characterize the simple ecosystem model introduced
herein. Moreover, as autotrophic and heterotrophic processes
have different drivers, we hypothesize that it is potentially
possible to infer the temporal dynamics of their biomass and
to resolve their contribution to ER.

The specific functional form of the single terms of Eqs. 1b, 1c
should be carefully considered depending on the case study and
on the environmental data available, possibly selecting among
different model formulations based on information criteria.
Model formulations for carbon fluxes like photosynthesis,
uptake, respiration, and loss processes generally involve the
product between biomass and a specific rate. The latter is typi-
cally affected by temperature and other limiting factors
(e.g., light, nutrient availability) and can depend on biomass
through density dependent effects. The goal is to maintain a rel-
atively simple formulation. Considering the two endpoints of
the complexity spectrum of possible approaches to model stream
ecosystem processes and metabolism, ranging from a compre-
hensive ecosystem model (e.g., McIntire and Colby 1978; Flipo
et al. 2004), to the single-station method (e.g., Wilcock et al.
1998), our approach should be seen as a step starting from the
latter toward the former, rather than vice-versa.

Study site
The Ybbs River network shown in Fig. 2 drains a 256 km2

subalpine catchment in Austria (47�48022.900N, 14�57000.800E),
with elevations ranging from 532 to 1831 m above sea level
(m.a.s.l.). Calcareous dolomitic limestone is prominent
throughout the catchment (see, e.g., Ceola et al. 2014; Ulseth
et al. 2018). In this article, we focus on four study sites (Fig. 2,
black circles). For each reach, high-frequency (5 min time
step) measurements of DO concentration ([DO]), water tem-
perature (T), and photosynthetically active radiation (PAR) are
available for the period of January 2013–May 2014 (Ulseth
et al. 2018). Barometric pressure (p) for each site was obtained
from the measurements at the Lunz meteorological station
(see Fig. 2) by correcting for elevation difference. Discharge
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was measured at the outlet at an hourly time step and down-
scaled to the four study reaches by assuming local discharge
proportional to contributing area. In addition, monthly grab
samples of benthic chlorophyll a (Chl a) and ash-free dry mass
(AFDM) were collected.

Dissolved organic carbon (DOC) concentration is not available
for all the study sites and periods. However, Fasching et al. (2016)
studied DOC dynamics in the Ybbs catchment and reported
strong hydrological controls over patterns in concentration.

Accordingly, [DOC] can be approximated by a power law relation-
ship of the type: DOC½ � tð Þ= αQ + βQ Q tð Þð ÞγQ . Other site geometry
information collected through previous studies (Ceola et al.
2014; Ulseth et al. 2018) are summarized in Table 1.

Model application
Similar to the single-station model, we assumed that eco-

system processes in the focal reach are representative of the
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Fig. 3. Measurement model output. Plot of simulated DO series (expressed as relative to 100% saturation, blue solid line) against DO observations (red
dotted line). Shaded red dots refer to data points excluded from the parameter estimation because either measurements of forcings were unavailable or
DO sensor was being maintained. Baseline of 100% represents saturation conditions. Discharge measurements are also reported for the simulation
period. Results refer to site 2. Larger figures for all four sites are reported in “Results” section Supporting Information.

Table 1. Study reaches geometry information.

Feature Symbol Units

Site

1 2 3 4

Elevation h m.a.s.l. 530 587 614 658

Width w m 25 10 5 10

Slope s ‰ 3.2 3.2 3.2 6.3

Roughness coefficient Ks m1/3s–1 15 14 25 14

Drainage area a km2 203.8 34.6 46.4 16.2

Autotrophic density dependency KD,A/A g C m−2 20 70 7 15

Heterotrophic density dependency KD,H/A g C m−2 200 200 200 200
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dynamics of a sufficiently long stream segment so that
upstream DO concentration is comparable to that in the study
reach. Moreover, as the study reaches have a sufficiently large
drainage area (see Table 1), it can be assumed that lateral flow
is negligible compared to the upstream contribution
(QL � Qup and ϕL � ϕup). The reach cross-section geometry is
approximated with rectangular shape of constant width w.
Water depth z(t) is estimated assuming uniform flow condi-

tion via the Manning’s equation: Q tð Þ=wz tð ÞKs r tð Þ2=3 ffiffi
s

p
,

where r indicates the hydraulic radius, that is, the ratio of the
cross-sectional area to the wet perimeter, which for rectangu-
lar cross-sections reads r = w � z/(w+2z). See other parameters
in Table 1.

We tested several different model formulations for the sin-
gle terms of Eqs. 1a–1d. In particular, as experiments have
shown evidence of density dependent effects, that is, photo-
synthesis and related processes diminish with increasing bio-
mass (see, e.g., McIntire and Phinney 1965; Roman and
Sabater 1999; DeLong et al. 2014), we focused on testing
model formulations with different combinations of density
dependent effects applied to photosynthesis, carbon uptake,
respiration, and death (see “Methods” section in Supporting
Information). Model selection was performed via Akaike’s
information criterion (AIC, Burnham and Anderson 2003,
see also “Methods” section in Supporting Information).

Table 2 provides a synthetic summary of all model assump-
tions and the formulation of the most informative model,
which is further detailed in what follows. For a complete
overview of the other formulations tested, see “Methods”
section in Supporting Information.

Photosynthesis
Net carbon fixation rate, P(t), is modeled as a function

P(t) = f(PAR(t), T(t), BA(t)), accordingly to the following
equation:

P tð Þ= μP,20f T,L tð ÞBA tð Þ 1−
BA tð Þ
KD,A

� �
ð3aÞ

f T,L tð Þ= θT tð Þ−20
A

PAR tð Þ
PAR tð Þ+KPAR

ð3bÞ

where μP,20 (T–1) represents the specific photosynthetic rate at
standard temperature conditions (T = 20�C) without light lim-
itation; fT,L quantifies the effect of temperature and light. The
former is modeled trough the classical exponential Arrhenius
model (Jørgensen and Bendoricchio 2001). Light dependence
typically shows a saturation effect, if photoinhibition is
neglected (see, e.g., Jassby and Platt 1976), and it is here
modeled through a Michaelis–Menten curve where KPAR [J L–2]
represents the local half saturation concentration (Uehlinger
et al. 1996). A density dependent term (1 − BA(t)/KD,A) linearly
decreases the photosynthetic rate as biomass BA increases
according to the parameter KD,A [M]. We acknowledge the rel-
evance of nutrients for ecosystem metabolism. However, the
lack of highly resolved measurements of nutrients prevents
their explicit inclusion in the model.

Carbon uptake
Model formulation for heterotrophic carbon uptake follows

the same rationale as for autotrophic carbon fixation rate as
shown in the following equation:

U tð Þ= μU,20f T,DOC tð ÞBH tð Þ 1−
BH tð Þ
KD,H

� �
ð4aÞ

f T,DOC tð Þ= θT tð Þ−20
H

DOC½ � tð Þ
DOC½ �max

= θT tð Þ−20
H

δQ +QγQ

δQ +Q
γQ
max

ð4bÞ

where μU,20 [T–1] represents the reference uptake rate at stan-
dard temperature and maximum DOC concentration. The
density-dependent term models the slowdown of the maxi-
mum uptake rate (e.g., as a result of resource competition) as
biomass increases. Temperature dependence is again exponen-
tial of θH [−] parameter. The other main factor controlling the
uptake rate is DOC concentration, which is assumed to line-
arly control the uptake rate as shown in Eq. 4b, thus reflecting
the simple assumption that the higher the food availability
the higher the uptake rate. More complex interactions could
have been considered (e.g., a saturation function, a linear/

Table 2. Model assumptions. Numbers in brackets refer to the
number of parameters the specific flux introduces to the model
formulation.

Model assumptions

General model assumptions:

• Benthic and hyporheic biofilms dominate ecosystem metabolism

• Zero-dimensional model/perfect mixing

• γP = γA = γH = 32/12 g O2 g C–1

Specific case study model assumptions:

• Rectangular cross-section of constant width

• Uniform flow conditions

• Q / a

• QL � Qup

• ϕL � ϕup

• ϕup = Qup[DO]up ’ Qup[DO]

• [DOC] = f(Q)

Functional dependencies of the selected model:

• P: density-dependent and limited by PAR and T [3]

• U: density-dependent and limited by [DOC] and T [2]

• RH and RH: density-dependent and limited by T [2]

• LA and LH: linear with biomass [2]

• SA and SH: linear with biomass and quadratic function of τ [2]

• Re: KDO calculated according to eq. 1 in table 1 of Raymond et al.

(2012)

Total number of parameters 11
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saturation function coupled with an explicit intracellular car-
bon storage modeling). However, due to the limited range of
observed DOC fluctuations as well as the high heterogeneity
of organisms and DOC composition at reach scale, we resort
to the simplest linearized formulation to avoid over-
parameterization of such a process. High DOC concentrations
do not lead to an unconstrained uptake rate because of the
density-dependent term, and therefore we assumed an indirect
saturating effect. We estimated DOC at the reach scale relying
on the empirical relationship found by Fasching et al. (2016)
for the study catchment, that is, [DOC](t) / Q(t) or
DOC½ � tð Þ= αQ + βQQ

γQ tð Þ. Such a relationship implies that max-
imum DOC concentration is reached at maximum discharge.
We defined δQ = αQ/βQ and according to Fasching et al. (2016),
we posed δQ and γQ, respectively, equal to 4.7 and 0.4, assum-
ing an average DOC-Q relationship during the rising and fall-
ing limb of the hydrograph.

Respiration
Respiration for both autotrophs (RA) and heterotrophs (RH)

is modeled as a density-dependent, temperature-driven,
dynamic process:

RA tð Þ= μR,A,20θT tð Þ−20
A BA tð Þ 1−

BA tð Þ
KD,A

� �
ð5aÞ

RH tð Þ= μR,H,20θ
T tð Þ−20
H BH tð Þ 1−

BH tð Þ
KD,H

� �
ð5bÞ

where, for model parsimony, temperature- and density-
dependent parameters (θ and KD) regulating respiration are
assumed to be equal to those controlling photosynthesis and
uptake for autotrophs and heterotrophs, respectively.

Note also that the current model formulation correctly
reproduces the feature that net growth rate, defined as

photosynthesis (or carbon uptake for heterotrophs) minus res-
piration, is not strictly positive. For instance, during night fL = 0
and thus RA > P, implying that autotrophs loose biomass
because of maintenance metabolism. Similarly, for very low
DOC concentration, RH > U, implying that energy sources for
heterotrophs may switch to the internal carbon storage.

Loss and scouring
Biomass is assumed to leave the system by means of loss

processes and detachment induced by scouring. Loss is
modeled through a simple linear dependence:

LA tð Þ= μL,ABA tð Þ ð6aÞ
LH tð Þ= μL,HBH tð Þ ð6bÞ

where μL,A and μL,H represent the specific biomass loss rates for
autotrophs and heterotrophs, respectively, including all pro-
cesses not directly linked to stormflow, such as mortality,
detachment, predation, exudation, or viral lysis. Streamwater
temperature can induce loss through microbial cell mortality.
However, such effects become apparent at very high or low
temperatures only and we therefore assumed a constant loss
rate for the sake of simplicity. Density-dependent effects on
loss rates have not been retained during model selection (see
“Methods” section in Supporting Information). After model
selection, therefore, the formulation that best explains the
data assumes that photosynthesis, uptake, and respiration
slow as density increases according to parameters KD,A and
KD,H. Notice that these parameters do not represent the carry-
ing capacities of the system because the equilibrium biomass
is reached for values B < KD at which gross production bal-
ances respiration and loss (see detailed calculation in Appen-
dix A).

Hydrological disturbance quantified by bottom shear stress
τ [M L–1 T–2] is a major factor limiting biomass accrual (see,
e.g., Uehlinger et al. 1996; Acuña and Tockner 2010; Bellmore
et al. 2014) and has therefore been explicitly modeled. Under
the assumption of uniform flow conditions, τ is equal to the
product between the hydraulic radius r [L], the specific weight
of water γw [M L–2 T–2], and the channel slope s [−] (Eq. 7d).
The scoured biomass per unit time (SA and SH) is expressed as
a function of the excess of shear stress from the minimum
necessary to initiate the process, as illustrated in Eqs. 7a–7d:

SA tð Þ= μSf S tð ÞBA tð Þ ð7aÞ
SH tð Þ= μSf S tð ÞBH tð Þ ð7bÞ

f S tð Þ= τ tð Þ−τ0
τmax−τ0

� �2

τ tð Þ ≥ τ0 ð7cÞ

τ tð Þ= γwr tð Þs ð7dÞ

where μS [T
–1] is the specific sloughing rate, modulated by the

fS term which is a quadratic function of the ratio between the

Table 3. Setup of the Monte Carlo calibration*.

Parameter Symbol L.B. U.B.

A. Temperature dependence factor θA 1 2

H. Temperature dependence factor θH 1 2

Light half saturation concentration KPAR 103 105

Photosynthetic rate μP,20 0 5

A. Respiration rate μR,A,20
μP,20 f L,max

10−3 0.6

A. Loss rate μL,A
μP,20 f L,max −μR,A,20ð Þf T ,max

10−3 0.5

Uptake rate μU,20 0 10

H. Respiration rate μR,H,20
μU,20

10−2 0.9

H. Loss rate μL,H
μU,20 −μR,H,20ð Þf T ,max

10−3 0.5

Scouring rate μS 0 250

Min shear stress to initiate scouring τ0 0 150

L.B., lower bound; U.B., upper bound.
*A: Autotrophic; H: Heterotrophic; Names refer to the target parameter.
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actual excess of shear stress (τ − τ0) from the minimum force
needed to activate the process (τ0) to the maximum excess
experienced (τmax − τ0). Even though heterotrophs dominate
the hyporheic zone whereas autotrophs are confined to the
benthic zone, at ecosystem scale, scouring and bed movement
are here assumed to occur at the same rate (μS) for both BA

and BH.

Reaeration
The reaeration flux Re(t) [M T–1] was modeled, considering

the low solubility of oxygen and its high abundance in the
atmosphere (i.e., its atmospheric partial pressure is almost
constant and can be substituted with its saturation concentra-
tion in water [DOsat]), as follows:

Re tð Þ=KDO tð Þ DO½ �sat tð Þ− DO½ � tð Þ� �
V tð Þ ð8Þ

where KDO [T–1] represents the oxygen transfer coefficient
(Palmeri et al. 2013). KDO is computed accordingly to eq. 1 in
table 1 of Raymond et al. (2012) and validated by the night-
time regression approach (“Methods” section in Supporting
Information). A compendium of the formulae adopted for
[DO]sat and KDO is reported in the “Methods” section in
Supporting Information.

Parameter estimation
The model (1a–1d) is solved numerically using a forward

Euler scheme. Parameter estimation is done for each site sepa-
rately. The time resolution of Δt = 15 min was chosen to
ensure the stability and accuracy (compared to higher order
schemes) of the numerical scheme in a reasonable computa-
tional time while exploiting the potential of the high-
frequency measurements.

Model parameters were set a priori when available from
field surveys or previous work (Fasching et al. 2014; Schelker
et al. 2016; Ulseth et al. 2018) and are summarized in Table 1.
The remaining 11 free parameters (Table 3) were estimated in
a Bayesian framework. Specifically, we used the DREAMZS (Ter
Braak and Vrugt 2008; Vrugt et al. 2009) implementation of
the Markov Chain Monte Carlo (MCMC) algorithm. Parameter
estimation was performed against relative oxygen concentra-
tion (DO%(t) = 100 � [DO](t)/[DO]sat(t)) assuming independent
and identically distributed (IID) Gaussian errors. As not all
parameter combinations lead to physically or biologically
meaningful model trajectories, we specified some parameters
as combination of other parameters or variables (Table 3).
Such a choice (detailed in Appendix A) allows setting biologi-
cally meaningful ranges for the uniform prior distributions. To
avoid the estimation of the initial conditions, we ran a 3-yr
long model spin-up period forced with synthetic data
obtained by replicating, on an annual basis, the observed
environmental variables (i.e., discharge, light, water tempera-
ture, barometric pressure). For each site, we ran 2.5 × 106 itera-
tions of the MCMC and estimated the parameter posterior

distribution after the burn-in phase (around 3 × 105 iterations
to reach chain convergence).

During preliminary tests, we found that the density-
dependent parameters KD were correlated with the rate parame-
ters μ (e.g., for autotrophs, KD,A correlated with μP,20, μR,A,

20, μL,A). Indeed, such a correlation is expected given the struc-
ture of the model and the fact that DO is the only observed vari-
able in the system (see detailed analysis in Appendix B).
Simplifying the issue, KD parameters set the order of magnitude
of the respective biomass. If one doubles KD and halves the
rates for instance, the biomass approximately doubles but the
carbon fluxes, which in turn control the dynamics of DO,
remain approximately constant as they depend on the product
of biomass and the specific rates. To avoid such over-parameter-
ization, we decided to set KD,A and KD,H to realistic values and
focus the analysis on the relative biomass (i.e., B* = B/KD). We
estimated KD,A from site specific measurements of AFDM (see
“Methods” section Supporting Information), while a reference
value KD,H was estimated based on potential surface area, fol-
lowing the procedure described in Battin et al. (2016)
(“Methods” section Supporting Information). It is worth noting
that uncertainty in the estimation of KD parameters would limit
the possibility of estimating the absolute value of biomass from
measurements of only DO. However, the estimation of meta-
bolic processes and related carbon fluxes—the focus of our
study—depends on the product between biomass and specific
rates, and is not impaired.

Single-station comparison
To assess the plausibility of model results, we compared

daily GPP and ER derived from our model with those esti-
mated through the single-station method:

d DO½ � tð Þ
dt

=
1

z tð Þ GPPd
PAR tð Þ
PARd

−ERd

� �
+KDO DO½ �sat tð Þ− DO½ � tð Þ� �

ð9Þ

This formulation (see, e.g., Van de Bogert et al. 2007;
Hotchkiss and Hall 2014; Hall et al. 2015) assumes daily GPP
(GPPd, [ML–2 T–1]) linearly varying with PAR (scaled by the
averaged light intensity for day d and termed PARd [J L

2]), and
daily ecosystem respiration (ERd, [ML–2 T–1]) constant thro-
ughout the day. Normalization by water depth (z) gives the
required volumetric fluxes balancing the oxygen reaeration
rate. Equation 9 was applied using the same water depth, satu-
ration concentration, reaeration coefficient, time step, and
numerical scheme used in our model. Estimation was per-
formed assuming Gaussian IDD errors.

Results
Parameter estimation

The model reproduced fairly well seasonal and subdaily fea-
tures of the observed high-resolution dynamics of DO
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concentration (Fig. 3 for site 2, other cases are reported in
“Results” section in Supporting Information). Particularly, the
model is able to capture DO variations coinciding with
streamflow peaks and attributable to an increase in reaeration
or to a decrease in biomass owing to streambed scouring.
Model performance, measured as the root mean square error
(RMSE), reached on average, for best parameter sets, 1.58%

(Table 4). The MCMC algorithm converged to a posterior dis-
tribution which spans a parameter region much narrower than
that of the uniform prior (Fig. 4 and Table 4). Comparisons of
between chains and within chains variances for each parame-
ter were also checked using the diagnostic test of the Rc statis-
tic of Gelman and Rubin (1992). All study sites reached
Rc < 1.2, implying that convergence has been achieved.

( )

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

Fig. 4. Posterior distributions of model parameters and MCMC algorithm evolution. Light blue histograms show the marginal distributions sampled after
the burn-in phase; red crosses highlight the parameter set with the highest likelihood. Inset plots illustrate for each parameter the whole evolution of the
Markov Chain triplets and their region of convergence. Results refer to site 2. Larger figures for all four sites are reported in “Results” section in
Supporting Information.
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Moreover, multiple DREAMZS runs were launched in parallel
to check reproducibility of the results. The parameter posterior
distribution converged to the same region in all cases.

Biomass dynamics and ecosystem metabolism
While Fig. 3 focuses on the performance of the measure-

ment model, Figs. 5, 6 highlight the information that can be
extracted from the structural model. Chief among them are
the dynamics of autotrophic and heterotrophic biomass along
with the corresponding time-series of daily GPP, ER, par-
titioned into its autotrophic and heterotrophic components,
and NEP for all four study sites.

Although it is not possible to assess whether the predicted
temporal dynamics of the biomass matches the real evolution
due to the absence of direct observations, it is nonetheless
interesting to analyze how, according to the model formula-
tion and assumptions, autotrophic and heterotrophic biomass
should evolve in order to reproduce the observed patterns of
DO. Although the temporal dynamics of biomass presents
characteristics specific to each site, it also broadly exhibits sim-
ilar seasonal patterns. As autotrophic growth is driven by PAR
and temperature, the most favorable conditions were met in
late spring and early summer. Similarly, temperature plays a
key role for the heterotrophic dynamics, whose temporal pat-
tern is also primarily modulated by DOC availability, which in
turn depends on discharge as we used Q as proxy for the DOC
concentration. Consequently, in spring, increasing tempera-
ture and more frequent high-discharge events—increasing
terrestrial deliveries of DOC according to our model
assumptions—enhanced the development of heterotrophic
biomass. In fall, however, lower temperatures and prolonged
baseflow conditions lowered the equilibrium biomass that the
ecosystem was able to sustain with its resources (see Appendix
B). Biomass removal by scouring could locally perturb this

seasonal pattern, but with different sensitivities for each reach
(see, e.g., January 2013 flood event, Figs. 5, 6).

A site comparison of the annual cumulative values of GPP,
ER, and NEP, expressed as g O2 m–2, is given in Table 5. Site
1 was most productive in terms of GPP (1216 g O2 m–2) and
ER (977 g O2 m–2). Site 2 and 3 were seasonally more reactive
with metabolism peaking in late spring and beginning of sum-
mer; however, their metabolic dynamics were substantially
different. While site 2 saw an increase in both autotrophic
production and heterotrophic respiration, with GPP~ER in
spring, site 3 was characterized by lower autotrophic biomass
(KD,A = 7 g C m–2 and μP,20 = 0.914 d–1), whose C fixation was
outperformed by heterotrophic growth, and, as a result, by
heterotrophic respiration (NEP < 0, KD,H = 200 g C m–2 and
μU,20 = 0.251 d–1). Site 4, the highest in elevation, was weakly
heterotrophic ecosystem (NEP < 0), respiring, over the entire
simulation period, more than 800 g O2 m–2 and producing
almost the same amount.

Comparison with single-station model estimates
The overall magnitude and seasonal patterns of the simu-

lated daily ecosystem metabolism is in approximate agreement
with the single-station estimates (Figs. 5c, 6c, Table 4). Over
the entire period, an averaged correlation coefficient of 0.75
(based on NEP covariance analysis) was obtained (RNEP,
Table 5). Discrepancies were mainly attributable to different
dynamics estimated during high discharge. However, we argue
that under such conditions, our model can possibly provide a
more reliable estimate (see “Discussion” section). Another pos-
sible source of short-term deviations between the two
approaches can be attributed to external variables that are not
accounted for in model. This is the case, for instance, of the
peak in GPP in spring 2014 in study site 1, estimated using
the single-station approach but not reproduced by the model

Table 4. Summary of the MCMC parameter estimation procedure*.

Site 1 Site 2 Site 3 Site 4

θA − 1.036 (� 0.003) 1.192 (� 0.002) 1.121 (� 0.003) 1.076 (� 0.002)

KPAR lx 7549 (� 160) 8868 (� 146) 1245 (� 56) 4399 (� 59)

μP,20 d−1 1.82 (� 0.07) 2.39 (� 0.04) 0.91 (� 0.04) 2.53 (� 0.06)

μR,A,20 d−1 0.142 (� 0.006) 0.209 (� 0.006) 0.0010 (� 9.4 × 10−4) 0.0034 (� 1.2 × 10−4)

μL,A d−1 0.0832 (� 9.1 × 10−4) 0.0052 (� 5.3 × 10−4) 0.0334 (� 4.2 × 10−4) 0.0785 (� 4.9 × 10−4)

θH − 1.091 (� 0.004) 1.374 (� 0.004) 1.092 (� 0.001) 1.015 (� 0.001)

μU,20 d−1 0.437 (� 0.020) 5.173 (� 0.200) 0.251 (� 0.004) 0.515 (� 0.020)

μR,H,20 d−1 0.045 (� 0.001) 0.56 (� 0.02) 0.0344 (� 1.5 × 10−4) 0.0420 (� 9.1 × 10−4)

μL,H d−1 0.042 (� 0.003) 0.0110 (� 2.4 × 10−4) 0.0313 (� 7.1 × 10−4) 0.1954 (� 7.9 × 10−4)

μS d−1 13.5 (� 22.2) 16.2 (� 4.8) 0.7 (� 64.3) 0.51 (� 0.02)

τ0 Pa 116.7 (� 2.2) 72.5 (� 0.9) 49.1 (� 1.7) 10.4 (� 1.1)

RMSEDO%
† % 2.8226 1.6187 0.8575 1.0163

RMSEDO - SS%
† % 1.62486 1.2142 0.4565 1.0018

*Values refer to maximum a posteriori parameter sets, while standard deviations are reported between parenthesis.
†Root mean square errors of the proposed model (Eq. 1d) and the single-station model application (Eq. 9), respectively.
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(Fig. 5c). A detailed study of the metabolic regime in this
catchment attributed this peak to a flush of nutrients related
to snowmelt (Ulseth et al. 2018). Obviously the model cannot
reproduce such features as it does not account, at the
moment, for nutrients dynamics.

Autotrophic and heterotrophic respiration
The proposed model is potentially able to resolve the auto-

trophic and heterotrophic contributions to ER. These two con-
tributions have been clearly identified for study sites 1 and

2 (Fig. 5c). However, the predicted autotrophic respiration for
study sites 3 and 4 was close to zero as the estimation proce-
dure identified a parameter set which was able to explain DO
concentrations relying only on heterotrophic respiration (see
“Discussion” section for a detailed analysis).

Carbon fluxes
Although the present work primarily focuses on metabolic

fluxes, a side asset of the structural model that accounts also
for biomass dynamics is the possibility to track a richer set of
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carbon fluxes. Even though fluxes that do not have a direct
impact on oxygen (i.e., uptake, loss, scouring) are more uncer-
tain because of the lack of direct biomass observations, it is
worth analyzing the carbon fluxes that simulate the biomass
dynamics, which in turn explain, according the model
assumptions, metabolic patterns. Figure 7 shows the estimated
ecosystem carbon fluxes derived from tracking the fate of the
carbon fixed into biomass (through either uptake or photosyn-
thesis) and how it is partitioned in the output fluxes through-
out the simulation window (January 2013–May 2014).
Heterotrophy dominated ecosystem metabolism in all study
reaches. Indeed, between 73% and 95% (left column for each
site, orange bar) of the total carbon was fixed into biomass by
heterotrophic microorganisms. The remaining fraction (left

columns, red bar) was photosynthesized CO2. The respiration
flux (green and light orange bars) was lower than the sum of
the loss (light blue and blue bars) and scouring (magenta and
purple bars) terms. Disentangling the latter flux, loss rather
than scouring was the dominant corridor for biomass removal.
Indeed, scouring was acting, in most of the simulated sites,
during extreme discharge events that were rather rare during
the observation period.

Discussion
The framework developed in this article aims at modeling,

estimating, and predicting stream metabolism. We do this by
coupling metabolic fluxes with state variables describing the
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temporal dynamics of benthic and hyporheic microbial bio-
mass (both autotrophic and heterotrophic). Within this con-
text, GPP and ER are functions, among other environmental
variables, of the corresponding biomass. In turn, such meta-
bolic fluxes drive, together with the fluxes of carbon uptake,
loss, and scouring, the temporal evolution of microbial bio-
mass. Even though the presented case study lacks direct obser-
vation on biomass, using biomass as latent variables allowed
reproducing fairly well the annual variability of stream metab-
olism with few parameters, as highlighted by the comparison
between our estimates and those obtained with the standard
single-station model (Figs. 5, 6).

Studying reaches within the Ybbs River network has shown
that, among the variety of different models tested (see
“Methods” section in Supporting Information), density-
dependent biomass growth (i.e., photosynthesis in Eq. 3a,
uptake in Eq. 4a, and respiration in Eqs. 5a, 5b) coupled with
a linear loss term, explained the observed patterns of
streamwater DO concentration reasonably well (Table 4). This
suggests that resource competition and acclimation of mature
biofilms play a crucial role for ecosystem metabolism. More-
over, the selected model assumes that specific heterotrophic
uptake is modulated by DOC concentration (see Eq. 4a) and
respiration is simply proportional to biomass. Such a model
formulation implies that pulses of DOC, related to increases in
discharge, for instance, rapidly promote a faster carbon uptake
and thus an increase in biomass, which induces, in turn, an
increase in the respiration rate. The recent field study by
Demars (2019) reports a similar feature.

In all stream reaches, the product between the maximum het-
erotrophic uptake rate and the density dependence parameter was
larger than the autotrophic counterpart (μU ,20KDH > μP,20KDA,
Table 4). This implies that for the same external conditions
and reference biomass, heterotrophs grew faster than auto-
trophs. The interplay between the simulated biomass (BA, BH)
and the value of the environmental constrains (T, p, Q, PAR)
at time t discriminates between an instantaneous carbon sink
(NEP(t) > 0) and source (NEP(t) < 0). Moreover, estimating
parameters on the basis of a DO time-series with multiple
flood events allowed us to isolate, in all the reaches, the effect
of peak-flow events on the simulated biomass and, in turn, on
metabolic rates (Table 4). The estimation of the parameters
governing the loss via scouring is generally challenging
because the causes of the damping of the DO signal during a
flood event are multiple. They can range from the pure dilu-
tion to the increase in the reaeration flux, from the bottom
shear stress causing biomass sloughing, to the downturn of
biological processes induced by a likewise decrease of other
variables such as temperature and/or light, which generally
decline during storms. The resulting scouring in study reaches
1, 2, and 3 has a threshold dynamics, with large events acti-
vated only during peak discharges (high μS and τ0, Table 4),
while site 4 experienced a more continuous removal (low μS
and τ0).

By comparing outputs from the single-station approach
with those from our model (Figs. 5c, 6c), we have shown that
both the temporal dynamics and the magnitude of the simu-
lated fluxes are in approximate agreement. During baseflow
and for the same estimate of the reaeration rate, the single-
station model could provide a more accurate computation of
the GPP and ER for a particular day. Indeed, such a model has
2 free parameters (GPPd and ERd, Eq. 9) for each day, and thus
can potentially follow DO fluctuations more closely. Con-
versely, GPP and ER estimated by the proposed model for any
particular day depend on the underlying interdaily dynamics
of biomass, which is controlled by 11 parameters for the 486 d
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Fig. 7. Repartition of the modeled C fluxes throughout the entire simula-
tion period (January 2013–May 2014). The total amount of carbon fixed
into biomass throughout the simulation is reported on top of the bars.
Left column for each site represents the proportion between the carbon
photosynthesized and fixed through uptake by living organisms (positive
terms in Eqs. 1b, 1c); right column shows how the fixed carbon is lost via
respiration, loss processes, and scouring (negative terms in Eqs. 1b, 1c).

Table 5. Annual ecosystem metabolism.

Site 1 2 3 4

GPP g O2 m–2 1216.0 492.7 121.9 812.1

ER g O2 m–2 976.9 492.3 471.6 837.4

NEP g O2 m–2 239.05 0.36 −349.7 −25.4
RNEP − 0.70 0.81 0.86 0.62
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simulation period in this case study. From an information
content point of view, the single-station model has
2 × 486 = 972 free parameters in this application. Therefore,
accounting for the underlying dynamics of microbial biomass
and integrating information regarding environmental vari-
ables (i.e., discharge, temperature, and light) enables a remark-
able reduction in model complexity while obtaining
comparable estimates of metabolic metrics when sufficiently
long time series are considered.

On the other hand, during peak-flow conditions or days
with rapidly changing discharge, the estimates of metabolic
processes provided by the proposed model could potentially
be more reliable than those obtained using the single-station
approach. Indeed, estimates of the reaeration rate during high
flows are more uncertain because they are extrapolated from
field experiments (or from empirical laws based on such exper-
iments, see, e.g., Raymond et al. 2012) usually performed
under low/mid-flow conditions. Using the single-station
model, an error in the reaeration rate directly translates into
an error in the estimated GPP and ER for that particular day.
Reaeration rates could alternatively be estimated through
inverse modeling (Appling et al. 2018a). However, during rap-
idly changing flow conditions, the assumption of stationarity
(i.e., equal input and output DO concentration for the focus
reach) used to derive Eq. 9 could be problematic. For any spe-
cific day instead, metabolism estimates in our approach
depend on the microbial biomass and rate parameters esti-
mated using the whole simulation period, and not on the
actual reaeration rate. Obviously, errors in the estimation of
the reaeration process affect the estimation procedure; how-
ever, periods with high flow represent a small fraction of the
hydrologic regime and therefore the bulk of the parameter
estimation is performed under mid-/low-flow conditions
where reaeration estimates and oxygen balance are more
reliable.

Using the single-station model, one can estimate GPP and
ER only when DO data are available. To extrapolate such esti-
mates to periods with missing data, one needs further assump-
tions. An approach typically followed is to perform a
statistical regression relating daily metabolic fluxes to other
environmental variables available throughout the analyzed
period (see, e.g., Bernhardt et al. 2018). On the other hand,
the proposed model offers a straightforward way to extrapo-
late results to periods when measurements of DO are
unavailable, but those of the environmental variables are.
Indeed, the model estimates the expected dynamics of DO,
and thus the ensuing GPP and ER, given the estimated param-
eters controlling the underlying temporal dynamics of bio-
mass. The approach is therefore particularly suitable for the
calculation of cumulative GPP and ER from high-frequency
DO measurements (Table 5), which often contain, even in the
best experimental setup, no-data periods.

The proposed model and the single-station method should
not be seen as alternatives, but rather as complementary

approaches. The model developed here is very data demand-
ing as it needs at least a year-long time series of DO and ancil-
lary variables like light, water temperature, and discharge.
Whereas the single-station model can work, in its simplest for-
mulation, with just a single day of DO observation. It is advis-
able to apply both tools in parallel, as done in this article, to
compare and assess model results. An asset of the proposed
model is that it provides a link between environmental vari-
ables and ecosystem processes and it thus suitable to under-
stand long-term (e.g., seasonal) ecosystem functioning and to
possibly predict how changes in environmental variables
could impact ecosystem dynamics. For example, it could be
possible to estimate the effects of changes in streamwater tem-
perature (e.g., due to climate change or river management),
light conditions (e.g., due to riparian clearing), or of the
hydrologic regime, characterized for instance by fewer but
larger streamflow events—a future evolution predicted by
some climatic models. We thus believe that efforts in this
direction are crucial to advance our understanding of the
response of stream ecosystems to global changes.

Our proposed framework is not exempt from limitations.
As stated up front, this model focuses on temporal changes in
microbial biomass to explain the variability of metabolic rates
that is not explained by changes in light, temperature, and
resources; and therefore neglects other possible factors poten-
tially affecting the specific (per unit biomass) metabolic rates.
One such a factor could be microbial community composition
shifting at the inter- and/or intra-annual timescales. A multi-
annual time series of observations could allow investigating
the former by estimating model parameters separately for each
year and analyze if long-term trend are detectable. Commu-
nity composition shifting within the yearly cycle instead can-
not be straightforwardly accounted for in the current model
formulation. To that end, one could think of introducing
functional forms describing the temporal evolution of some
critical parameters or, alternatively, explicitly modeling differ-
ent microbial functional groups and their interactions. Even
in the absence of community composition shifts, it is possible
that the intrinsic rates μ and the parameters defining limita-
tion factors are nonstationary in time. In all cases, the net
result is the emergence of different metabolic fluxes for the
same values of biomass and environmental conditions. In the
current model formulation, however, this feature is not per-
mitted and it would likely be reproduced as a biomass varia-
tion. Besides the particular problem at hand, the
quantification of the variability of metabolic fluxes under the
same conditions is a relevant problem for advancing the
understanding of stream ecosystem functioning, and one that
could likely be addressed via controlled flume experiments.
Our results, as well as evidence from direct field observations
(see, e.g., Uehlinger et al. 1996) point to more than a 10-fold
variation in biomass over a yearly cycle. If the variability dis-
cussed above were of the same order of magnitude, the appli-
cation of this framework could be problematic. The same
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rationale suggests that stream reaches where low biomass vari-
ability is expected (e.g., those with a stable hydrological and
thermal regimes) are not particularly suitable to be investi-
gated through the proposed framework in its current
formulation.

As illustrated in the “Parameter estimation” section and in
Appendix B, whenever biomass is close to equilibrium
(Eqs. 11a, 11b), the rate parameters μ and the density depen-
dencies KD are correlated and equifinal in terms of reproducing
the DO signal. This implies that, from measurements of
streamwater DO concentration only, it is difficult to infer the
actual value of biomass and the rates controlling the carbon
fluxes independently. Using longer time series for parameter
estimation with longer periods when biomass is far from equi-
librium (e.g., scouring events) could allow overcoming such
limitation. Moreover, any independent information on biomass
or rates could enhance the estimation. Indeed, in this study, we
set KD to realistic values and estimated the rate parameters. As
detailed in Appendix B, we stress that, as long as one is not
interested in inferring the actual biomass value, the estimation
of metabolic processes and carbon fluxes is not impaired by the
equifinality issue or by uncertainties in the estimation of KD

values, because such fluxes always depend on the product
between biomass and the corresponding rates. Such indepen-
dent information on biomass or rates could be included in the
form of informative prior parameter distributions. Alternatively,
if high frequency biomass data (e.g., benthic samples of AFDM
and Chl a) were available, one could think of estimating param-
eters including both DO and biomass in the likelihood
formulation.

Model formulation enables the estimation of critical carbon
fluxes (Fig. 7). Particularly, we have shown how ER can be sep-
arated into its autotrophic and heterotrophic components.
The estimated fraction of cumulative GPP respired by photo-
autotrophs (i.e., RA/GPP) was 0.25 and 0.35 for streams 1 and
2, respectively. These ratios are comparable with the findings
of Hall and Beaulieu (2013) who estimated the proportion of
primary production respired by autotrophs and closely associ-
ated heterotrophs at 44%. We argue, as explained below, that
our estimate is closer to the autotrophic physiological values
and thus on average lower than 0.44 (see, e.g., Graham et al.
1985; Geider and Osborne 1989). Indeed, in our approach, RA

includes only the autotrophic respiration and not the hetero-
trophic respiration of photosynthetically produced DOC,
which is accounted for when applying the 0.9 quantile regres-
sion of ER vs. GPP proposed by Hall and Beaulieu (2013).
However, we do acknowledge that our partitioning of the
modeled carbon fluxes contains caveats and care should be
taken therefore when interpreting these outputs. In particular,
it is not trivial to separate ER into its autotrophic and hetero-
trophic components as highlighted by the model outcome
from reaches 3 and 4. In the case of reach 3, we argue that
such limitations arise because ER overwhelmed photosynthe-
sis (Figs. 6c, 7). Therefore, the autotrophic respiration, which

is a constrained fraction of GPP (Del Giorgio and Williams
2005; Hall and Beaulieu 2013), is almost negligible compared
to total ER. As a result, variations of parameters controlling RA

have almost no effect on improving the fitting of the time
series of streamwater DO concentration, thus the emergent
problem of identifiability. The model estimated an RA close to
zero also for reach 4, and this is very likely an underestima-
tion. In this case, the origin of the issue might be related to
the resemblance of the predicted seasonal dynamics of the
autotrophic and heterotrophic biomass. Indeed, the model
ability to separate these two components relies on the fact
that their dynamics are driven by different environmental var-
iables (i.e., light and temperature for BA, temperature and
DOC for BH). However, light and temperature could be highly
correlated at seasonal time scales, especially for shallow
streams with limited canopy cover, thus producing highly cor-
related BA and BH. In such scenario, the effect of RA and RH on
the total respiration is almost interchangeable and therefore
difficult to resolve.

Our attempt to partition the carbon fluxes highlights the
relevance of potential carbon losses other than respiration. For
autotrophs, we argue that, besides death and detachment, this
flux includes the exudation of photosynthetic carbon, a major
loss term in phototrophic biofilms. This is in agreement with
empirical observations on the relevance of algal exudates for
the carbon cycling within phototrophic biofilms (Haack and
McFeters 1982). In the case of heterotrophs, causes of loss
other than death may be attributable to grazing by ciliates and
other meiofauna that can be highly abundant and diverse in
these biofilms (Bengtsson et al. 2018; Weitere et al. 2018). The
model estimation of the shear-induced loss of autotrophic bio-
mass may be promising as this may constitute a potentially
important source of labile particulate organic carbon (POC) to
downstream ER.

It is worth stressing that, as the model is calibrated on oxygen
data, carbon fluxes and the related biomass dynamics depend of
the photosynthetic and respiratory quotients (RQ) (Eq. 1d) that
convert carbon fluxes to oxygen ones. To assess the sensitivity
to these parameters, we re-estimated parameters assuming car-
bon to oxygen RQ (see Bott 2011) equal to 0.8 and 1.2 (mol C/
mol O2) (instead of 1) for site 2, as a test case (Supporting Infor-
mation Figs. S15, S16). In all three cases (RQ = 0.8, 1, 1.2,
i.e., γA = γH = 32/(12 � RQ)), parameters converged to a region
such that DO data are well reproduced; and thus they exhibit
very similar metabolic fluxes in terms of oxygen (Supporting
Information Fig. S15). This implies that for RQ equal to 0.8 (1.2),
the corresponding respiration carbon flux is lower (larger)
(Supporting Information Fig. S16). However, other carbon fluxes,
in particular the loss term, readjust so that all three cases show
almost the same biomass temporal pattern (Supporting Informa-
tion Fig. S15). This result suggests that, in order to reproduce this
particular DO time-series, the annual trajectory of biomass is
well constrained. Although this test does not represent a com-
prehensive sensitivity analysis, it suggests that results are not
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particularly sensitive to the value assumed for the γ parameters.
A possible development worth exploring is the estimation of
such parameters jointly with all the others.

Model performance could be possibly increased if nutrients
measurements are added to the library of external forcings.
This would be a further control on biomass, which would be
instrumental for modeling for instance the effect of snowmelt
(see, e.g., the peak productivity observed in reach 1 during
April 2014, Fig. 5 and DO simulation in “Results” section in
Supporting Information), but also of other seasonal effects
where temperature and PAR were weak predictors. Such an
addition could also allow the overcoming of the above-
mentioned limitations of the structural model. An alternative
could be to couple an explicit flow routing scheme, enabling
the direct estimation of QL and thus to consider the ground-
water inflow (especially for low order reaches) and/or the
snowmelt impact on biomass productivity (e.g., linking such
flow to nutrients concentration similarly to what done for
DOC concentration). In this case study, we have linked DOC
concentration to discharge thus implicitly assuming that tem-
poral variability of DOC is mainly driven by allochthonous
inputs. While this assumption could be a reasonable approxi-
mation for the case at hand, as detailed in a previous study
(Fasching et al. 2016), it may be unsuitable in cases where
autochthonous carbon production could significantly contrib-
ute to the temporal variability of resources. From a modeling
standpoint, this process can be included by accounting for a
flux of carbon from the autotrophic to the heterotrophic mass
balance, thus effectively coupling the temporal evolution of
the autotrophic and heterotrophic biomass.

Another area where improvements are likely possible regards
the probabilistic description of the error term. In this first appli-
cation, we resorted to a simple formulation where all sources of
error are encapsulated into a single, additive, IID, Gaussian
term. However, it could be possible to formulate more complex
structures where different error sources (e.g., process, measure-
ment, estimation of reaeration, etc.) are identified, in line with
recent advances in metabolism estimation with open-water
methods (Appling et al. 2018a). Moreover, the estimation of
parameters could benefit from the inclusion of more literature
knowledge and physiological constraints via the use of infor-
mative prior distributions of parameters (e.g., for the carbon
use efficiency [CUE], the photosynthetic and RQ, and the auto-
trophic respiration fraction, Hall and Beaulieu 2013).

In this study, we presented a novel modeling framework for
stream ecosystem metabolism and associated carbon fluxes,
and discussed its limitations. We shed light on reach-scale
drivers and controls of stream metabolism and moved a step
toward a more complete description of ecosystem carbon rou-
ting by explicitly modeling critical biological processes. We per-
ceive this research as a basic building block for the
development of an integrated, spatially explicit, network-scale
model. Indeed, a primary driver of metabolic rates and size of
carbon stocks (effectively synthesized in the streammetabolism

concept) is the ecosystem size and position along the stream
network. The river continuum concept encapsulates this
notion, describing how the biological processes and communi-
ties are regulated by changes in the physical constraints, from
headwaters to the river mouth (Vannote et al. 1980). From this
and other conceptual frameworks (Ward and Stanford 1983;
Junk et al. 1989; Thorp and Delong 1994; Tockner et al. 2000),
it emerges that lateral and vertical fluxes must be investigated
at the river network scale. The following step that we deem
within reach is the development of a model at the network
scale that accounts for the spatial interactions among reaches
including geomorphological heterogeneities, external organic
carbon supplies, and both hydrological and thermal
stochasticity, in the view of the meta-ecosystem theory (Loreau
et al. 2003), for instance. Further developments could focus on
explicitly simulating DOC and POC stocks (see Fig. 1). To that
end, other carbon fluxes (e.g., photodegradation, lysis) should
be considered. In our view, such a framework is the next step
forward to better understand the metabolism of river networks.

APPENDIX A
The final equations for the selected model in the Ybbs case

study read:

dBA

dt
= μP,20f L−μR,A,20
� �

f TBA 1−
BA

KD,A

� �
−μL,ABA−μSf SBA ð10aÞ

dBH

dt
= μU,20f DOC−μR,H,20

� �
f TBH 1−

BH

KD,H

� �
−μL,HBH−μSf SBH

ð10bÞ
dDO
dt

=Qup DO½ �−Q DO½ �+ γPμP,20f L−γRμR,A,20
� �

f TBA 1−
BA

KD,A

� �

−γHμR,H,20f TBH 1−
BH

KD,H

� �
+KDO DO½ �sat− DO½ �� �

V

ð10cÞ

To set biologically meaningful parameter ranges for the
prior distribution, we focus on the equilibrium biomass, that
is, the non-null equilibrium value such variable would attain
for constant external forcings:

�BA = 1−
μL,A + μSf S

μP,20f T,L−μR,A,20f T

 !
KD,A ð11aÞ

�BH = 1−
μL,H + μSf S

μU,20f T,DOC−μR,H,20f T

 !
KD,H ð11bÞ

where the notation �B refers to biomass at equilibrium condi-
tions. In particular, for the most favorable growth conditions
(i.e., maximum light, temperature and DOC, and no scour-
ing), a non-negative equilibrium must exist (�B ≥0Þ. Moreover,
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�B≤KD to ensure non-negative carbon fixation and respiration
rates. It follows that the terms between parentheses in
Eqs. 11a, 11b have to be bounded in [0, 1]. The following con-
straints are therefore derived:

0 ≤
μR,A,20

μP,20f L,max
≤1 ð12aÞ

0 ≤
μR,H,20

μU ,20f DOC,max
≤1 ð12bÞ

0≤
μL,A

μP,20f L,max−μR,A,20
	 


f T,max

≤1 ð12cÞ

0≤
μL,H

μU,20f DOC,max−μR,H,20

	 

f T,max

≤1 ð12dÞ

where the subscript max refers to the function computed for
the maximum value of the environmental variable. Equa-
tions 12a, 12b imply the non-negativity of the growth rate at
the most favorable conditions.

Introducing the definition of CUE, that is, the ratio of
growth over carbon uptake or fixation, a narrower range can
be deduced for Eqs. 12a, 12b.

CUEA tð Þ= P tð Þ−RA tð Þ
P tð Þ =1−

μR,A,20
μP,20f L tð Þ ≤1 ð13aÞ

CUEH tð Þ= U tð Þ−RH tð Þ
U tð Þ =1−

μR,H,20

μU,20f DOC tð Þ ≤1 ð13bÞ

According to Eqs. 13a, 13b, CUE ∈ [0, 1] and CUE is maxi-
mum whenever fL ! fL,max and fDOC ! fDOC,max. Following
Hall and Beaulieu (2013), we assume that the maximum
autotrophic CUE has to be greater than 40%, that is, at least
40% of the fixed carbon goes into biomass and is not used
as energy source for other biological processes, an upper
bound of 0.6 can be imposed for the inequality (12a). The
same rationale is less straightforward for the heterotrophic
processes given the different anabolic pattern and this is
why a more conservative minimum CUE of 10% at the most
favorable conditions has been imposed (Del Giorgio and
Cole 1998), that is, an upper bound of 0.9 can be set for
Eq. 12b. Finally, for the last two constraints, 12c and 12d, it
is reasonable to assume that loss rate at best external condi-
tions, is lower than the growth rate. Preliminary tests have
shown that the Markov chains never reach values greater
than 50%, which has therefore been used as upper bound. A

nonzero lower bound of 10−3 has been set for numerical
reasons.

APPENDIX B
To investigate possible parameter equifinality, we first

approximate the model by assuming that both biomass vari-
ables (BA and BH) are in equilibrium with the daily averaged
forgings (i.e., separation of fast and slow dynamics). Under
such hypothesis, we can substitute the expressions for the
equilibrium biomass (Eqs. 11a, 11b) into the measurement
model (Eq. 1d), thus obtaining:
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Fig. B1 Comparison between model results for site 2 obtained using the
estimated parameters reported in Table 4 (case ϵ = 1) and those obtained
by halving the density dependencies (KD) and doubling the specific meta-
bolic rates (μ), (case ϵ = 2).
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dDO tð Þ
dt

= �f T γPKD,AμP,20�f L−γAKD,AμR,A,20
� �

×
μL,A + μS�f S

μP,20�f T,L−μR,A,20�f T

 !
1−

μL,A + μS�f S
μP,20�f T,L−μR,A,20�f T

 !
+

−�f TγHKD,HμR,H,20

×
μL,H + μS�f S

μU ,20
�f T,DOC−μR,H,20

�f T

 !
1−

μL,H + μS�f S
μU ,20

�f T,DOC−μR,H,20
�f T

 !
+

+KDO tð Þ DOsat tð Þ−DO tð Þð Þ

ð14Þ

where the symbol �f refers to the corresponding functions
computed using daily averaged environmental variables. Let
us now consider different model simulations with parameters
[KD,A; μP,20; μR,A,20; μL,A; μS] = [x1/ϵ; x2ϵ; x3ϵ; x4ϵ; x5ϵ] obtained
changing ϵ>0 for a fix, yet arbitrary, [x1,…, x5]. We limit the
analysis to autotrophic parameters for brevity, but the same
reasoning applies to heterotrophic ones. From Eq. 14, it is
straightforward to see that different values of ϵ produce
identical trajectories for DO—the only observed variable.
Therefore, density-dependent parameters and ecosystem
rates are equifinal. This holds exactly under the equilibrium
assumption stated above. While such assumption is reason-
able for the processes of photosynthesis, carbon uptake, res-
piration, and loss, which have a time scale shorter than the
seasonal fluctuations of the light and temperature regime;
variations of discharge (and the ensuing bottom shear stress
and scouring process) occur at a much faster time scale and
can thus temporarily push biomass out of equilibrium con-
ditions. However, such events seldom occur in our case
study (see “Results” section) and therefore, for the majority
of the parameter estimation period, density-dependent and
ecosystem-rate parameters are approximately equifinal and
this leads to the correlation observed in the preliminary
tests.

To further illustrate this equifinality, we perform an
experiment using site 2 and modifying the estimated param-
eters (Table 4) setting ϵ = 2, that is, halving the density
dependencies and doubling all specific metabolic rates for
both autotrophs and heterotrophs, while keeping the
remaining parameters fixed (Fig. B1). Biomass temporal
dynamics result very similar when close to equilibrium,
slightly deviate during winter (when productivity is low
compared to loss) and after the major scouring event in
January 2013 (strong out-of-equilibrium conditions), while
producing very similar DO trajectories (RMSEDO% = 1.630%).
As detailed above, biological fluxes, and in particular GPP
and ER, are not affected by the choice of the density depen-
dence parameters (Fig. B1).

APPENDIX C

Table C1 Mathematical symbols used in the text and their
definition.

Symbol Definition Unit adopted

State variables

V Control volume m3

BA Autotrophic biomass g C

BH Heterotrophic biomass g C

DO Dissolved mass of oxygen g O2

Forcing variables

T Water temperature �C
PAR Photosynthetically active radiation lx

p Barometric pressure atm

Q Discharge exiting the local node m3 d–1

Site geometry and hydraulic variables

z Reach water depth m

A Reach bed area m2

τ Bottom shear stress Pa

τ0 Minimum shear stress needed to activate

scouring

Pa

Hydrological fluxes

Q Discharge exiting the control volume m3 d–1

QL Incoming/outgoing lateral discharge m3 d–1

Qup Incoming discharge from upstream m3 d−1

ϕ DO mass flux exiting the control volume g O2 d–1

ϕL Incoming/outgoing lateral DO mass flux g O2 d–1

ϕup DO mass flux entering the reach from

upstream

g O2 d–1

Bio-physical fluxes

P Photosynthetic rate g C d–1

RA Autotrophic respiration rate g C d–1

LA Autotrophic loss rate g C d–1

SA Scouring rate of autotrophic biomass g C d–1

U Uptake rate g C d–1

RH Heterotrophic respiration rate g C d–1

LH Heterotrophic loss rate g C d–1

SH Scouring rate of heterotrophic biomass g C d–1

Re DO reaeration rate g O2 d–1

GPP Gross primary production (daily, per unit

area)

g O2 m–2 d–1

ER Ecosystem respiration (daily, per unit

area)

g O2 m–2 d–1

NEP Net ecosystem production (daily, per

unit area)

g O2 m–2 d–1

Bio-physical parameters and rates

γP Mass of DO photosynthesized per unit

mass of C fixed

g O2 g C–1

(Continues)
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