

COVID19 Deaths Linked to Restrictions Stringency Lag: A G7 and Global Analysis, Implications for Public Policy

Marcella Lucchetta¹, Lois Tullo²

¹Department of Economics, University Ca' Foscari, Venice, Italy ²Schulich School of Business, York University, Toronto, Canada; Executive in Residence, Global Risk Institute, Toronto, Canada

Email address:

lucchett@unive.it (M. Lucchetta), ltullo@yorku.ca (L. Tullo), ltullo@jlt.net (L. Tullo)

To cite this article:

Marcella Lucchetta, Lois Tullo. COVID19 Deaths Linked to Restrictions Stringency Lag: A G7 and Global Analysis, Implications for Public Policy. *International Journal of Economics, Finance and Management Sciences*. Vol. x, No. x, 2021, pp. x-x. doi: 10.11648/j.XXXX.2021XXXX.XX

Received: MM DD, 2021; Accepted: MM DD, 2021; Published: MM DD, 2021

Abstract: This study focuses on the results of the G7 countries from the analysis of daily data from 184 countries of the world during the COVID19 epidemic. After an increase in restrictions, there is an increase in new COVID19 deaths. To understand the influences on number of deaths by country, the analysis reveals that per capita income is significantly positively correlated with mortality from COVID19. This suggests that the epidemic first hit rich countries the hardest through the correlation to the human development index. This finding was contrary to what was predicted by the Global Health Security Index on pre-pandemic preparedness. Within affluent countries, deaths and cases were higher among socio-economic challenged populations. This was supported by the number of deaths that are positively influenced by the GINI index that is an indicator of disparity of income and wealth. The research indicates that after an increase in restrictions, there is an increase in new COVID19 deaths and cases. This along with the finding on the stringency index, correlated with the stringency lag, point to the effectiveness of policies being negatively correlated due to a lag in implementation and partial application. Moreover, the uncertainty or the variability of the stringency index has a negative impact on mortality. The "Power Distance" by was used to understand individual's reaction to restrictions indicated by the stringency index and the stringency lag, COVID19 death numbers were also found to be positively influenced by a countries "Power Distance". These findings are key to the improve policy management of the virus. The Delta plus and Lambda variant's increased transmissibility and potential vaccine resistance increases the urgency for policy makers to understand and immediately enforce the stringency of regulations in consideration of their countries Power Balance index, and to reduce the stringency lag of their policies to increase the effectiveness in reducing the transmission of COVID19.

Keywords: COVID19, Variant, Nonfinancial Risk Management, Public Policy, Mathematics, Spread of Viral Disease, GRAFT, Finance

1. Introduction

The whole world is facing a growing number of complex and interconnected challenges. Recently, many risks of different nature are intertwining and strengthening with each other, generating a dangerous accumulation in some points of the world system. Epidemic risks are inevitably linked to economic, financial, political stability risks and many other possible risks committed as evidenced by the various reports of the World Economic Forum (WEF). The WEF 2020 report identified the potential severity of a pandemic, however, did not give much evidence to the likelihood risk of pandemics. The WEF 2021 increased the spread of viral disease to the most severe and 2^{nd} most likely, with the greatest interrelationships with increasing Social Cohesion Erosion, and Debt Crisis.

Social and financial-economic systems are embedded in a complicated (complex) and connected world. Helbing D. [9] links the five global risks though networks, Tullo [19] links the correlations of five global clusters through the Global Risk and Trends Framework (GRAFT) and Tullo [20] focuses on the interrelationship of theses risk clusters and COVID19.

In short, we can say with certainty that no phenomenon can, now more than ever, be studied alone, or without taking into account the consequences on all other variables. Political, economic, and social tensions are growing. In the areas affected by the COVID19 pandemic, fear, crime and uncertainty increases, and the economic-financial system collapses: which is only the latest result. At the root there are fears and risks, especially this one, as serious as survival, living with a contagious disease, or lingering LongCovid.

Importantly, Szymanski et al [18] documents the failure of global risk networks approach: without identification the network is unable to precisely estimate the risks. An example of this failure was the underestimation of the pandemic risk that some philosophers had already thought of, highlighting the great potential of biological research in the hands of nations with few safety protocols such as China, Turchin [21]. The difficulties in modeling all these (interconnected) risks together are due to the fact that there is uncertainty in the communications, Leduc and Liu [13] and in the procedures themselves to be used. This is natural, given the novelty of the epidemiological risks that our societies are undergoing. There is a need to broaden the data used and apply new modeling techniques.

In responding to the COVID19 epidemic, modelling is an essential tool for researchers and policy advisors to simulate the impact of various interventions or public health strategies, and to provide quantitative predictions of how interventions might affect population health in the future. In this analysis, we cannot leave out other factors such as geographical areas and different responses by region and between and within countries.

The last four years have seen the continued decline of global governance as illustrated in the loss of funding and influence of global organizations such as the World Health Organization (WHO), the United Nations (UN), and the International Monetary Fund (IMF). The spread of viral disease such as coronavirus that resulted in the COVID19 pandemic can only be addressed through global cooperation of countries by strong multilateral organizations.

The recent research is still in its infancy and several elements are missing. The present work intends to map: what are the key connections? Until recently, much weight was attached to the economic and financial system. Today, other risks are more serious and manifest: epidemics, societal, technological, and geopolitical risks. Asking the question: What are the reasons for the differences between different geographical areas?

2. Methods

2.1. Stylized Facts

Even taking into account possible difficulties in obtaining data, it is evident that rich countries were most affected by the pandemic. Schellekens and Sourrouille [28] document that despite the extensive spread of the virus, the mortality toll in 2020 were highly concentrated in high-income countries. Developed countries represent, numerically, the most of world inhabitants: 15 percent of the global population, but 79 percent of the pandemic's death toll. We find that the countries with the highest per capita incomes are the most demanding. While, within the G7, the population with the highest GDP per capita has a significant and negative coefficient with respect to deaths. Therefore: in the world, the pandemic affects rich countries more but, within them, the wealthy population is less affected.

Table 1 shows a positive and significant coefficient between new deaths per million and the log of per capita GDP of .6016365, and Table 2 shows a positive and significant coefficient between total deaths per million and the log of per capita GDP of 79.494 (data description is in the appendix). Regressions are run until the 31 January 2021, in order to avoid the vaccination effects.

	Tuble It field weath.	per minion and per	capita ODI (an	countries).		
Random-effects GLS regression	Number of obs = 57	,546				
Group variable: country	Number of groups =	= 173				
R-sq:	Obs per group:					
within = 0.0000	min = 53					
between = 0.2284	avg = 332.6					
overall = 0.0403	max = 412					
	Wald chi2(1) = 50.6	9				
corr(u_i, X) = 0 (assumed)	Prob > chi2 = 0.000	0				
new_deaths_p~n	Coef.	Std. Err.	Z	P> z	[95% Conf. In	iterval]
log_gdp_per_ca	.6016365	.0845047	7.12	0.000	.4360103	.7672626
_cons	-4.271105	.7885259	-5.42	0.000	-5.816587	-2.725622
sigma_u	1.328582					
sigma_e	3.291859					
rho	.1400734 (fraction of	f variance due to u_i)			

Table	1. New	deaths	ner	million	and i	ner c	anita	GDP	(all	countries)	
Inon	1. 1.00 W	ucums	ριι	minion	unu j		upiiu	UD1	un	countrics).	

	Table 2. Total deaths per million and per capita GDP (all countries).
Random-effects GLS regression	Number of obs = 57,547
Group variable: country	Number of groups = 173

R-sq:	Obs per group:					
within = 0.0000	min = 53					
between = 0.2000	avg = 332.6					
overall = 0.1008	max = 412					
	Wald chi2(1) = 42.79					
corr(u_i, X) = 0 (assumed)	Prob > chi2 = 0.0000					
total_deaths~n	Coef.	Std. Err.	Z	P> z	[95% Conf. In	iterval]
log_gdp_per_ca	79.4941	12.15299	6.54	0.000	55.67468	103.3135
_cons	-574.8456	113.3938	-5.07	0.000	-797.0935	-352.5977
sigma_u	192.53477					
sigma_e	219.92155					
rho	.43389225 (fraction of	variance due to u_i)				

2.2. Thesis

positive individuals but do not have many deaths.

The question that this research seeks to understand is: Why, after an increase in restrictions, was there an increase in new COVID19 cases? Board, G. P. M. reports [1], [2] Mukherjee [27] suggest that perhaps this is due to the inadequacy or uncertainty of new norms.

The research focuses on the G7 countries to understand how the restrictive regulations, summarized by the stringency index, have impacted the epidemic. The report analyses data for 184 countries in order to compare the findings.

To avoid confusing causality impacts, we have selected the end date of January 2021 for our data sample, i.e. to avoid the influence of the start of the vaccine injection schedule. We have also provided the data on excess mortality over historical averages to inform interpretation of variances between country reporting in Table 8 of the Appendix.

The analysis included several GLS regressions for panel data. As a result, stringent and time-varying policies have worsened the situation worldwide.

The following tables analyze the G7: new deaths and total deaths per million of inhabitants. The variables that exhibited multicollinearities have been dropped from the data set.

2.3. Data Description

The data are downloaded from the Oxford Martin School and Worldometers database. The frequency is daily and covers 184 countries starting from the first day of the epidemic until February 1, 2021.

In this way we get an unbalanced panel for different countries. The analyzes was performed with data that is certain for all countries: the total number of deaths and the number of new deaths per million inhabitants. In fact, the number of tests is a very variable and unreliable figure. There are countries that have conducted many tests and others that have many

3. Results

3.1. Disparity of Income and Wealth

Intuitively, the COVID19 pandemic numbers by country are not as predicted or expected. To further understand why this has happened we dig deeper into the segment of society that was most effected by the COVID19 virus in 2020. Within affluent countries, reported cases and deaths were higher among socio-economic challenged populations Finch, W. H., and Hernandez Finch, M. E [6]. This was supported by the number of deaths that are significantly positively influenced by the Gini index. The Gini index OECD [14] measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Gini index of zero represents perfect equality and 100, perfect inequality.

According to World Bank's Poverty and Shared Prosperity 2020 report [26], the Gini coefficient increases about 1.5 points in the five years following major oridomics, such as

points in the five years following major epidemics, such as H1N1 (2009), Ebola (2014), and Zika (2016). The International Monetary Fund has estimated that the GINI index has increased about 3 points at the end of Q3, 2020 as a result of the COVID19 pandemic, Cugat & Narita [4]. The Word Bank's reported that COVID19 was likely to push between 88 and 115 million people into extreme poverty. Figure 1 shows Pre-industrial inequalities: Gini coefficients, and the Inequality Possibility Frontier. The estimates are prudent because they were made before COVID19 but still capture the effects of previous epidemics as highlighted by the World Bank.

International Journal of Economics, Finance and Management Sciences 2021; X(X): XX-XX http://www.sciencepublishinggroup.com/j/ijefm doi: 10.11648/j.XXXX.2021XXXX.XX ISSN: 2326-9553 (Print); ISSN: 2326-9561 (Online)

Figure 1. Estimates of Gini's impact by country.

In Figure 2 the country GINI index for 2018, World Bank [25] compares to Figure 3, John Hopkins [12] the daily COVID19 deaths 100,000 people in 2020. The data illustrates

that in many countries Gini score are an indicator of increased risk for COVID19 exposure and potential severity.

SciencePG

Science Publishing Group

Figure 2. World map of the GINI coefficients by country (World Bank 2018).

Figure 3. COVID19 Deaths per 100,000 people.

3.2. New COVID19 Deaths Rise After Restrictions Announced

The country Gini score sets the foundation for further investigation into the question of: Why? after an increase in restrictions, was there an increase in new COVID19 deaths? The results in Tables 3 and 4 illustrate the Generalized Least Squares (GLS) regression to identify the explain ability of the COVID19 deaths based upon stringency lag of 20 days.

Random-effects GLS regression	Number of obs = 52,	090				
Group variable: country	Number of groups =	167				
R-sq:	Obs per group:					
within = 0.0094	min = 42					
between = 0.5232	avg = 311.9					
overall = 0.0918	max = 378					
	Wald chi2(15) = 677.	65				
corr(u_i, X)= 0 (assumed)	Prob > chi2 = 0.0000					
new_deaths_pe~n	Coef.	Std. Err.	Z	P> z	[95% Conf. In	terval]
reproduction_~e	4283151	.0365402	-11.72	0.000	4999326	3566977
stringency_20~g	.0145087	.0007886	18.40	0.000	.012963	.0160543
population	-6.86e-11	4.91e-10	-0.14	0.889	-1.03e-09	8.93e-10
median_age	.0185347	.0276352	0.67	0.502	0356294	.0726988
aged_65_older	0922993	.0707718	-1.30	0.192	2310094	.0464109
aged_70_older	.1997357	.0824042	2.42	0.015	.0382266	.3612449
log_gdp_per_ca	.5189546	.1326864	3.91	0.000	.258894	.7790152
cardiovasc_de~e	0000826	.0008718	-0.09	0.925	0017912	.001626
diabetes_prev~e	0151876	.0246423	-0.62	0.538	0634855	.0331104
female_smokers	.0808222	.0145485	5.56	0.000	.0523076	.1093368
male_smokers	0138554	.0056565	-2.45	0.014	0249419	002769
handwashing_f~s	.0042947	.00254	1.69	0.091	0006836	.009273
hospital_beds~d	0065051	.0465413	-0.14	0.889	0977244	.0847142
life_expectancy	.0242283	.0141512	1.71	0.087	0035075	.0519642
human_develop~x	-4.82414	1.224384	-3.94	0.000	-7.223889	-2.424391
_cons	-3.590446	1.208734	-2.97	0.003	-5.959522	-1.22137
sigma_u	.95980656					
sigma_e	3.2377239					
rho	.08078059 (fraction o	f variance due to u	_i)			

Table 4. Total deaths per million.

Random-effects GLS regression	Number of obs = 52,090
Group variable: country	Number of groups = 167
R-sq:	Obs per group:
within = 0.0524	min = 42

between = 0.4551	avg = 311.9					
overall = 0.2759	max = 378					
	Wald chi2(15) = 3016.	00				
corr(u_i, X) = 0 (assumed)	Prob > chi2 = 0.0000					
total_deaths_~n	Coef.	Std. Err.	z	P> z	[95% Conf. Inte	erval]
reproduction_~e	-90.79504	1.883012	-48.22	0.000	-94.48568	-87.10441
stringency_20~g	.8351974	.0406861	20.53	0.000	.7554542	.9149407
population	4.77e-08	6.68e-08	0.71	0.475	-8.32e-08	1.79e-07
median_age	319654	3.754007	-0.09	0.932	-7.677373	7.038065
aged_65_older	-10.66894	9.613712	-1.11	0.267	-29.51147	8.173585
aged_70_older	20.34791	11.20206	1.82	0.069	-1.607737	42.30355
log_gdp_per_ca	111.2287	18.03609	6.17	0.000	75.87857	146.5787
cardiovasc_de~e	0551732	.1183989	-0.47	0.641	2872308	.1768843
diabetes_prev~e	-6.489726	3.341425	-1.94	0.052	-13.0388	.0593462
female_smokers	8.36857	1.971421	4.24	0.000	4.504656	12.23248
male_smokers	-1.966119	.7684485	-2.56	0.011	-3.472251	4599879
handwashing_f~s	.5800273	.3451555	1.68	0.093	096465	1.25652
hospital_beds~d	-3.720021	6.311851	-0.59	0.556	-16.09102	8.650979
life_expectancy	8.861599	1.923916	4.61	0.000	5.090793	12.6324
human_develop~x	-961.9481	166.5152	-5.78	0.000	-1288.312	-635.5843
_cons	-806.1726	164.236	-4.91	0.000	-1128.069	-484.2759
sigma_u	132.55746					
sigma_e	165.78427					
rho	.38999285 (fraction of	variance due to u_i)			

3.3. Stringency Index

The next element of the research compared the implications of the stringency of restrictions implemented to the number of deaths. Which produced the finding that there is an increase in deaths after there is an increase in restrictions for all countries. Table 3 shows that *new deaths* increased with respect to the stringency index which demonstrates the significant positive correlation of 0.0145 with a standard error of 0.0007.

Table 4 compares the daily country COVID19 *Total deaths* per million people to the stringency index which demonstrates the significant positive correlation of 0.83 with a standard error of 0.04. This positive correlation is counter-intuitive, as expectations of implementing stricter restrictions would cause the number of new deaths to decline. The significant positive correlation score is a conservative estimate due to the fact that the data set does not include excess mortality deaths which would increase correlations of the COVID19 to new and total deaths to stringency index. Data and graphical illustration of excess mortality shown in Appendix Table 8: Excess mortality P-scores, all ages percent.

3.4. Stringency Lag

With this counter-intuitive result on the Stringency Index the research turned to examine the effectiveness of stringency measures. The leading indicator was found to be the stringency lag index. The stringency index correlated with the stringency lag point to the effectiveness of policies being positively correlated due to a lag in implementation and partial application. Moreover, the uncertainty or the variability of the stringency index has a negative impact on mortality. (The longer the stringency lag, the higher the number of deaths.)

Tables 5 compares the daily country COVID19 deaths per million people by stringency index to the stringency lag index which demonstrates the significant positive correlation of new and total deaths for all countries. This positive correlation is surprising, as expectations of a lag in implementing stricter restrictions have seem to have caused or encouraged behavior that has increased the probability of exposure and resulted in an increase in the number of new deaths. The two stringency index comparisons, reported in Table 7, are:

- a. G7 countries have a significant coefficient of 3.27 between stringency lags of 20 days, correlation to COVID19 total deaths by millions of people.
- b. The average world country has a coefficient of 0.369 between stringency lags of 5 days, correlation to COVID19 total deaths by millions of people.

The analysis was performed on GLS regressions for four different stringency lags: 5, 10, 15 and 20 days. Results are significant and they confirm the failure of stringency policies in decreasing the new deaths per million of inhabitants. The Stringency Policy of the G7 countries was negatively affected by the increase of the stringency lag. The results in Figure 4 of correlation coefficient lag for the G7 countries overall in days: 5, 10, 15, 20 demonstrate a decrease in effectiveness as the influence of the stringency upon total number of deaths as the number of days of lag increase. All countries showed a decrease in effectiveness of Restrictive Stringency Measures as the Stringency Lag Increased.

International Journal of Economics, Finance and Management Sciences 2021; X(X): XX-XX http://www.sciencepublishinggroup.com/j/ijefm doi: 10.11648/j.XXXX.2021XXXX.XX ISSN: 2326-9553 (Print); ISSN: 2326-9561 (Online)

Figure 4. G7 Country Correlation Coefficient for Stringency Lag and Number of COVID-19 Deaths.

Canada had the greatest decline in effectiveness of restrictions between 5-to-10 days, and 15-to-20-day stringency lag. While the UK and Italy had a consistent decline in effectiveness of restrictions between 5-to-20-day stringency lag. Many countries including Canada, the UK, and Italy have entered the third wave with the variants spreading at a faster

rate, and in some cases more serious outcomes. These findings support the epidemiologist recommendation of enforcing stringency restrictions with a minimum stringency lag.

Data in Table 5 summarized from regression analysis found in the Appendix: New deaths per million for the G7, Stringency Index 0 rules – 100 total lock-downs, Stringency.

Table 5. Correlation Coefficient for Stringency Lag and Number of COVID-19 Deaths.

Country	CC Lag 5 days	CC Lag 10 days	CC Lag 15 days	CC Lag 20 days
Canada	0.0469587	0.0330230	0.0330231	0.0268953
France	0.1191952	0.1086463	0.0912500	0.0667217
Germany	0.1735164	0.1519831	0.1234327	0.1011956
Italy	0.2153415	0.1929895	0.1695471	0.1436887
Japan	0.0149777	0.0142467	0.0122697	0.0106237
UK	0.1822433	0.1485170	0.1075094	0.0608768
US	0.0975260	0.0892139	0.0813467	0.0695305

3.5. Power Distance Index

To further understand or interpret the resultant reaction or behavior to the restrictions (stringency) and the implications in the speed of enforcement (stringency lag) in the G7 and globally, the research compared countries with similar stringency and stringency lags that have diverging COVID19 results. Countries heterogeneity is a key factor in COVID19 policy governance design as remarked Haug et al [8]. They assess how the effectiveness of Nonpharmaceutical Interventions (NPIs) depend on the local context such as timing of their adoption. This opens the way for forecasting the effectiveness of future interventions using hypothetical scenarios. In contrast to Haug et al [8], we actually tested what happened differently in relation to the various geographic areas. Our work is not "what if" but demonstrates the differences between countries with their cultures and consequential differences in legislation, habits, and mentality

of the people.

This difference among individuals within a country is studied by the "Power Distance" by Hofstede, G. [10]. Hofstede's Power distance Index (PDI) measures the extent to which the less powerful members of organizations and institutions (like the family) accept and expect that power is distributed unequally. This represents inequality (more versus less), but defined from below, not from above. It suggests that a society's level of inequality is endorsed by the followers as much as by the leaders. A higher PDI score may indicate a higher acceptance and following of restrictions due to COVID19. Figure 5 compares the daily country COVID19 deaths per million people to the PDI. In isolation, a positive influence is not totally surprising, as stricter restrictions do not seem to have been enough to encouraged behavior that would decreased the probability of exposure and in-turn have resulted in an increase in the number of new cases in countries where a government's power to impose restrictions is not accepted.

International Journal of Economics, Finance and Management Sciences 2021; X(X): XX-XX http://www.sciencepublishinggroup.com/j/ijefm doi: 10.11648/j.XXXX.2021XXXX.XX ISSN: 2326-9553 (Print); ISSN: 2326-9561 (Online)

Figure 5. Power Difference Index compared to COVID-19 Deaths per Million.

4. Discussion

4.1. Improve Policy Management

On March 13, 2020, Dr. Ryan, WHO, stated "Be fast, have no regrets. You must be the first mover. The virus will always get you if you don't move quickly." Global results have unfortunately proven Dr. Ryan correct.

These important findings seek the key to improve policy management of the virus worldwide. These findings support the urgency for policy makers to understand and enforce the stringency of regulations, weighted heavily by impact that the stringency lag will make on the effectiveness of the restriction, in relation to the willingness of inhabitants of their countries to follow the restrictions as indicative of the countries Power Distance index. Limiting the stringency lag of their policies to increase the effectiveness in reducing the transmission of COVID19 and the resulting number and severity of new cases is supported by the positive correlation of the stringency lag to the number of COVID19 deaths per million.

4.2. Example and Implications of Stringency Lag

The Stringency Lag was observed in the early days, predeclaration of the pandemic, there was a lag between symptoms of the virus, spread, declaration, and implementation of border closures, lockdowns, and travel restrictions. With the identification of the COVID19 variants the implications of a stringency lags are continuing to be identified.

4.2.1. Wuhan, Dec 2019

The initial stringency lag was witnessed even before the world realized that a pandemic was on their doorstep. In Wuhan, Dec 30, 2019, Chinese doctors warn of contagious infection, information is shared January 11, 2020 on WeChat, Dr. Zhangs uploaded the viruses sequencing to Global online library of genetic data. Not until Jan 23, 2020 did Xi Jennings seal off Wuhan. One early study projected that China could have reduced the total number of cases by 66% had officials

acted a week earlier, and 95% if actions were taken 3 week earlier, Lai, S. [29].

As we examine the trends that are related to the spread of viral disease. COVID19 was potentially made worse by the interstate conflict between the US and China, as the US pulled the last US doctors from inside the Chinese CDC in July 2019, Buckley et al [3].

4.2.2. UK, September 2020

Another example of the effect of the Stringency Lag is the COVID-19 variant B117 first identified in the UK. It was identified September 20, 2020 and by the week ending December 9, 2020, B117 accounted for 62% of the infections in London. It took until December 20th for travel restrictions to be announced. Travel restrictions were first enforced by other countries banning flights from the UK as early as December 21. However, there was a lag of flight restrictions by the UK for air travel out of the UK. By January 29, 2021, 70 countries have shown both imported and local transmission cases of the new strains of coronavirus, O'Tolle and Hill [15].

4.2.3. Canada, January 2021

The spread of the COVID19 variants makes the stringency lag finding and the call to immediate action even greater. The UK variant entered a Barrie, Ontario Long-term care home identified on January 8th, by January 20th the variant had spread to most of the 130 residents, 69 staff, and two visitors. Nineteen people had already died and six were in hospital.

Newfoundland, which had all but isolated the province, previously had almost no COVID19 cases. Previous to February 5, 2021 when the COVID19 UK variant was identified the province had only a total of 412 cases. In the next 15 days, 256 new cases have been reported, over half of the entire case load to date. The increase transmission of the new variants increases the urgency in immediately reducing the stringency lag.

4.3. Impact of Stringency and Stringency Lag

The impact of the inter-relationship between the Stringency Index, Stringency Lag, and the Power Difference index across countries can be seen not only in the number of COVID19 deaths but also on many other indicators. The stringency lag affected the increase in unemployment between 10 - 90% dependent upon industry and geography Falk et al. [5]; the overall decline by country of GDP between 2 - 10%, Jackson et al [11]; the increase in mental health cases reported by the CDC, averaging an increase of adults showing symptoms of anxiety or depression disorder from 11% to 42%, Richter [16]; and increase of disparity of income and wealth demonstrated by the share of income going to the top 1% in the past year doubling, Goldin & Maggah [24]. The International Labor Organization estimated that the restrictions on businesses and public life destroyed 8.8% of all work hours around the world last year. That is equivalent to 255 million full-time jobs – quadruple the impact of the financial crisis over a decade ago. The drop in work translates to a loss of \$3.7 trillion USD in income globally - what Ryder called an "extraordinary figure" - with women and young people taking the biggest hits by Jan 26, 2021.

These economic and societal implications are also the result of an increased stringency lag which policy makers must take into consideration by reducing the stringency lag to reduce the new deaths from COVID19 and which will in the short-term reduce the strain on hospitals, in the medium-term lead to a shorter complete lockdown periods, and a faster return to full employment and reduced mental health effects. The takeaway is, that where pandemic restrictions are concerned, it is better to rip-off the Band-Aid quickly, that is to implement quickly and completely restrictions without lag or delay.

4.4. The Heterogeneity Among Areas

This section shows the supporting results. Several GLS

regressions were run for panel data, in order to capture the most important and common results for all countries. In fact, as highlighted by international reports, Board, G. P. M. [1], [2], the management of COVID19 has lacked common and uniform policies with agreements between countries to stem the epidemic. As a result, stringent and time-varying policies have worsened the situation worldwide. The graph in Figure 6 and the supporting data in the appendix: Tab 15 shows how each macro area has significantly different results.

5. Conclusions

The primary conclusions are a) the ineffectiveness or inappropriateness of the virus containment stringency and stringency lag measures, b) The confirmation that COVID19 affected the countries with the highest per capita income was increased by the ineffectiveness of restrictions due to stringency lags.

It is important to highlight how the results are made even more robust by the problem that the data used in the estimates are the minimum number of cases, due to the underestimation of deaths due to the excess mortality reported in 2020. In the appendix, we have illustrated: Excess mortality during the COVID19 pandemic.

These findings are key to improve the future policy management of the virus and variants. The Delta plus and Lambda variant's increased transmissibility and potential vaccine resistance increases the urgency for policy makers to understand and immediately enforce the stringency of regulations in consideration of their countries Power Balance index, and to reduce the stringency lag of their policies to increase the effectiveness in reducing the transmission of COVID19. Follow-up research will further examine and compare the effects of the COVID19 variants, vaccine distribution, COVID19 deaths and public policy measures.

Figure 6. Coefficient of Total COVID19 deaths to 20-day stringency lag and GDP per Capita.

Appendix

Table 6. Description of Variables.

Variables description	
new_deaths_per_million	Daily new deaths per million of inhabitants
stringency_20lag	Stringency index: from 0 rules to 100 lockdown with 20 days of lag
total deaths per million	Total deaths per million of inhabitants
	The indicator that measures in which conditions generations are replaced.
	It is computed by establishing a ratio between the number of daughters and that of their mothers, independently from
reproduction rate	effects due to population structure. This calculation can be made by taking into account the mortality (net reproduction
· _	rate) or in the absence of mortality (crude reproduction rate). In practice this rate is usually computed for a given year
	or period, in that case it measures the conditions of the moment in terms of reproduction
population density	Measured by the number of human inhabitants per square kilometer
	Age that divides the population in two parts of equal size, that is, there are as many persons with ages above the
median_age	median as there are with ages below the median
aged 65 older	People older than 65 and less than 70
aged 70 older	People older than 70
log gdp per ca	Log of gdp per capital
cardiovasc death rate	The annual number of deaths from cardiovascular diseases per 100000 people
diabetes prevalence	The percentage of people ages 20-79 who have type 1 or type 2 diabetes
	The share of women aged 15 years and older who smoke any form of tobacco, including cigarettes, cigars, pipes or any
female_smokers	other smoked tobacco products. Data include daily and non-daily or occasional smoking.
	The share of male aged 15 years and older who smoke any form of tobacco, including cigarettes, cigars, pipes or any
male_smokers	other smoked tobacco products. Data include daily and non-daily or occasional smoking.
handwashing facilities	Population with basic handwashing facilities at home (%)
hospital beds per thousand	Hospital beds (per 1000 people) from The World Bank
life expectancy	Estimate of the average number of additional years that a person of a given age can expect to live
	The Human Development Index (HDI) is a summary measure of key dimensions of human development: a long and
human_development_index	healthy life, a good education, and having a decent standard of living

We perform GLS regressions for different lags: 5, 10, 15 and 20 days. Results are significant and they confirm the failure of stringency policies in decreasing the new deaths per million of inhabitants.

Table 7. New deaths per million for the G7.

Stringency Index 0 rules – 100 total lock down Stringency Lag number of 5 days. Canada

C <u>anada</u>						
Source	SS	df	MS	Number of o	obs = 329	
				F(1, 327) = 4	4.32	
Model	98.6815349	1	98.6815349	Prob > F = 0	.0000	
Residual	728.161958	327	2.22679498	R-squared =	0.1193	
				Adj R-squar	red = 0.1167	
Total	826.843493	328	2.52086431	Root MSE =	1.4922	
new_deaths_pe~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	terval]
stringency_5lag	.0469587	.007054	6.66	0.000	.0330817	.0608357
_cons	-1.483953	.4725702	-3.14	0.002	-2.413614	5542915
France						
Source	SS	df	MS	Number of o	obs = 352	
				F(1, 350) = 1	27.51	
Model	1901.79139	1	1901.79139	Prob > F = 0	.0000	
Residual	5220.25352	350	14.9150101	R-squared =	- 0.2670	
				Adj R-squar	red = 0.2649	
Total	7122.04491	351	20.2907262	Root MSE =	- 3.862	
new_deaths_pe~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	terval]
stringency_5lag	.1191952	.0105558	11.29	0.000	.0984345	.1399559
_cons	-3.984215	.6785171	-5.87	0.000	-5.318699	-2.649731
Germany						
Source	SS	df	MS	Number of	obs = 329	
				F(1, 327) = 2	218.13	
Model	1539.28506	1	1539.28506	Prob > F = 0	0.0000	
Residual	2307.55672	327	7.05674836	R-squared =	= 0.4001	
				Adj R-squa	red = 0.3983	
Total	3846.84177	328	11.7281761	Root MSE =	= 2.6565	
new_deaths_pe~n	Coef.	Std. Err.	t	P> t	[95% Conf. Inte	erval]
stringency_5lag	.1735164	.0117485	14.77	0.000	.1504041	.1966286

2000	0 000201	7560035	-11 75	0.000	10 26752	7 303037
_cons	-0.000201	.1500055	11.75	0.000	-10.30733	-7.595057
aly						
Source	SS	df	MS	Number of o	obs = 346	
				F(1, 344) = 6	10.93	
Model	4362.39426	1	4362.39426	Prob > F = 0	.0000	
Residual	2456.36392	344	7.1405928	R-squared =	0.6398	
				Adj R-squar	red = 0.6387	
Total	6818.75819	345	19.7645165	Root MSE =	2.6722	
new deaths pe~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	erval]
stringency 5lag	.2153415	.0087123	24.72	0.000	.1982054	.2324776
_cons	-10.17694	.6003652	-16.95	0.000	-11.35779	-8.996093
apan						
Source	SS	df	MS	Number of o	obs= 354	
				F(1, 352) =1	77.83	
Model	5.29906023	1	5.29906023	Prob > F = 0	.0000	
Residual	10.4888523	352	.029797876	R-squared =	= 0.3356	
				Adj R-squar	red = 0.3338	
Total	15.7879125	353	.044724965	Root MSE =	17262	
new_deaths_pe~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	erval]
	0149777	.0011232	13.34	0.000	.0127688	.0171866
stringency 5lag	.0117777					
stringency_5lag cons	4233705	.0423899	-9.99	0.000	5067398	3400013
stringency_5lag _cons //nited Kingdom	4233705	.0423899	-9.99	0.000	5067398	3400013
stringency_5lag _cons /nited Kingdom Source	4233705	.0423899 df	-9.99 MS	0.000 Number of o	5067398 bs = 332	3400013
stringency_5lag _cons <i>Inited Kingdom</i> Source	4233705	.0423899 df	-9.99 MS	0.000 Number of 0 F(1, 330) = 1	5067398 bs = 332 02.15	3400013
stringency_5lag _cons /nited Kingdom Source Model	4233705 SS 2469.57534	.0423899 df 1	-9.99 MS 2469.57534	0.000 Number of 0 F(1, 330) = 1 Prob > F = 0	5067398 bs = 332 02.15 .0000	3400013
stringency_5lag _cons /nited Kingdom Source Model Residual	4233705 SS 2469.57534 7978.24853	.0423899 df 1 330	-9.99 MS 2469.57534 24.1765107	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared =	5067398 bs = 332 02.15 .0000 0.2364	3400013
stringency_5lag _cons inited Kingdom Source Model Residual	4233705 SS 2469.57534 7978.24853	.0423899 df 1 330	-9.99 MS 2469.57534 24.1765107	0.000 Number of a F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar	5067398 bs = 332 02.15 .0000 0.2364 red = 0.2341	3400013
stringency_Slag _cons /nited Kingdom Source Model Residual 	4233705 SS 2469.57534 7978.24853 10447.8239	.0423899 df 1 330 331	-9.99 MS 2469.57534 24.1765107 31.5644225	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE =	5067398 bs = 332 02.15 .0000 0.2364 red = 0.2341 4.917	3400013
stringency_5lag _cons /nited Kingdom Source Model Residual 	4233705 SS 2469.57534 7978.24853 10447.8239 Coef.	.0423899 df 1 330 331 Std. Err.	-9.99 MS 2469.57534 24.1765107 31.5644225 t	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t	5067398 bbs = 332 02.15 .0000 0.2364 red = 0.2341 4.917 [95% Conf. Integration of the second secon	3400013
stringency_5lag _cons /nited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433	.0423899 df 1 330 331 Std. Err. .0180317	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000	5067398 bbs = 332 02.15 .0000 0.2364 red = 0.2341 4.917 [95% Conf. Intel .1467716	3400013 erval] .2177149
stringency_5lag _cons inited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag _cons	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728	.0423899 df 1 330 331 Std. Err. .0180317 1.259423	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000	5067398 bbs = 332 02.15 .0000 : 0.2364 red = 0.2341 : 4.917 [95% Conf. Inte .1467716 -10.19124	3400013 erval] .2177149 -5.236218
stringency_5lag cons /nited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag cons /nited States	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728	.0423899 df 1 330 331 Std. Err. .0180317 1.259423	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000	5067398 bs = 332 02.15 .0000 0.2364 red = 0.2341 4.917 [95% Conf. Inte .1467716 -10.19124	3400013 erval] .2177149 -5.236218
stringency_5lag _cons //iited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag _cons //iited States Source	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS	.0423899 df 1 330 331 Std. Err. .0180317 1.259423 df	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000 Number of ol	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 c 4.917 [95% Conf. Into .1467716 -10.19124 bs = 338	3400013 erval] .2177149 -5.236218
stringency_5lag _cons //iited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag _cons //iited States Source	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS	.0423899 df 1 330 331 Std. Err. .0180317 1.259423 df	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000 Number of ol F(1, 336) = 83	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 c 4.917 [95% Conf. Into .1467716 -10.19124 bs = 338 3.49	3400013 erval] .2177149 -5.236218
stringency_5lag cons //iited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag cons //iited States Source Model	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS 583.512663	.0423899 df 1 330 331 Std. Err. .0180317 1.259423 df 1	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS 583.512663	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000 Number of ol F(1, 336) = 83 Prob > F = 0.	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 red = 0.2341 (95% Conf. Into .1467716 -10.19124 bs = 338 3.49 0000	3400013 erval] .2177149 -5.236218
stringency_5lag _cons //iited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag _cons //iited States Source Model Residual	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS 583.512663 2348.27748	.0423899 df 1 330 331 Std. Err. .0180317 1.259423 df 1 336	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS 583.512663 6.98892109	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000 Number of ol F(1, 336) = 83 Prob > F = 0. R-squared =	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 red = 0.2341 (95% Conf. Into .1467716 -10.19124 bs = 338 3.49 0000 0.1990	3400013 erval] .2177149 -5.236218
stringency_5lag _cons //iited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag _cons //iited States Source Model Residual	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS 583.512663 2348.27748	.0423899 df 1 330 331 Std. Err. .0180317 1.259423 df 1 336	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS 583.512663 6.98892109	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000 Number of ol F(1, 336) = 83 Prob > F = 0. R-squared = Adj R-squared	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 red = 0.2341 .1467716 .1467716 .10.19124 bs = 338 3.49 0000 0.1990 cd=0.1966	3400013 erval] .2177149 -5.236218
stringency_5lag cons //iited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag cons //iited States Source Model Residual Total	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS 583.512663 2348.27748 2931.79015	.0423899 df 1 330 331 5td. Err. .0180317 1.259423 df 1 336 337	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS 583.512663 6.98892109 8.69967403	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-square Root MSE = P> t 0.000 0.000 Number of ol F(1, 336) = 83 Prob > F = 0. R-squared = Adj R-squared	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 4.917 [95% Conf. Into .1467716 -10.19124 bs = 338 3.49 0000 0.1990 ed=0.1966 2.6437	3400013 erval] .2177149 -5.236218
stringency_5lag cons /nited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag _cons /nited States Source Model Residual Total new_deaths_pe~n	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS 583.512663 2348.27748 2931.79015 Coef.	.0423899 df 1 330 331 Std. Err. .0180317 1.259423 df 1 336 337 Std. Err.	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS 583.512663 6.98892109 8.69967403 t	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-square Root MSE = P> t 0.000 0.000 Number of ol F(1, 336) = 83 Prob > F = 0. R-squared = Adj R-squared Root MSE = P> t	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 4.917 [95% Conf. Into .1467716 -10.19124 bs = 338 3.49 0000 0.1990 ed=0.1966 2.6437 [95% Conf.	3400013 erval] .2177149 -5.236218 Interval]
stringency_5lag cons /nited Kingdom Source Model Residual Total new_deaths_pe~n stringency_5lag _cons /nited States Source Model Residual 	4233705 SS 2469.57534 7978.24853 10447.8239 Coef. .1822433 -7.713728 SS 583.512663 2348.27748 2931.79015 Coef. .097526	.0423899 df 1 330 331 Std. Err. .0180317 1.259423 df 1 336 337 Std. Err. .0106733	-9.99 MS 2469.57534 24.1765107 31.5644225 t 10.11 -6.12 MS 583.512663 6.98892109 8.69967403 t 9.14	0.000 Number of o F(1, 330) = 1 Prob > F = 0 R-squared = Adj R-squar Root MSE = P> t 0.000 0.000 Number of ol F(1, 336) = 83 Prob > F = 0. R-squared = Adj R-squared Root MSE = P> t 0.000	5067398 bs = 332 02.15 .0000 c 0.2364 red = 0.2341 red = 0.19124 red = 0.2341 red = 0.2345 red = 0.2345	3400013 erval] .2177149 -5.236218 Interval] .1185209

Canada

Source	SS	df	MS	Number of	obs = 329	
				F(1, 327) = -	42.48	
Model	95.0724331	1	95.0724331	Prob > F = 0	0.0000	
Residual	731.77106	327	2.23783199	R-squared =	= 0.1150	
				Adj R-squa	red = 0.1123	
Total	826.843493	328	2.52086431	Root MSE =	= 1.4959	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	iterval]
stringency_10lag	.0385832	.0059195	6.52	0.000	.0269381	.0502283
_cons	8888085	.3927274	-2.26	0.024	-1.6614	1162175

France

Source	SS	df	MS	Number of obs = 352
				F(1, 350) = 111.93
Model	1725.69751	1	1725.69751	Prob > F = 0.0000
Residual	5396.3474	350	15.4181354	R-squared = 0.2423
				Adj R-squared = 0.2401
Total	7122.04491	351	20.2907262	Root MSE = 3.9266
new_deaths_per~n	Coef.	Std. Err.	t	P> t [95% Conf. Interval]
stringency_10lag	.1086463	.0102695	10.58	0.000 .0884487 .128844

_cons		-3.256643	.6556091 -4.97	0.000	-4.546072	-1.967214
Germany						
Source	SS	df	MS	Number of obs	= 329	
				F(1, 327) = 168	.09	
Model	1306.0365	1	1306.0365	Prob > F = 0.00	000	
Residual	2540.80527	327	7.77004671	R-squared = 0.	3395	
				Adj R-squared	= 0.3375	
Total	3846.84177	328	11.7281761	Root MSE = 2.	7875	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Inter	val]
stringency_10lag	.1519831	.0117227	12.96	0.000	.1289216	.1750446
_cons	-7.383592	.7454771	-9.90	0.000	-8.850128	-5.917055
alv						
Source	SS	df	MS	Number of obs	s = 346	
				F(1, 344) = 456	5.37	
Model	3888.04338	1	3888.04338	Prob > F = 0.00	000	
Residual	2930.7148	344	8.51951977	R-squared = 0.	.5702	
				Adj R-squared	l = 0.5689	
Total	6818.75819	345	19.7645165	Root MSE = 2.	.9188	
new deaths per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Inter	val]
stringency 10lag	.1929895	.0090339	21.36	0.000	.1752208	.2107581
_cons	-8.516139	.6169943	-13.80	0.000	-9.729695	-7.302583
apan						
Source	SS	df	MS	Number of obs	= 354	
				F(1, 352) = 164.	.44	
Model	5.02705714	1	5.02705714	Prob > F = 0.00	00	
Residual	10 7608554	352	030570612	R-squared = 0.3	3184	
Kishuuai	10.7000554	002	.030370012	Adi D squared	- 0 2165	
T ()	15 5050105	252	044704065	Auj K-squareu	- 0.5105	
lotal	15./8/9125	353	.044/24965	Root MSE =.1/	484	
new_deaths_per~n	Coet.	Std. Err.	t	P> t	[95% Conf. Inter	valj
stringency_10lag	.0142467	.001111	12.82	0.000	.0120617	.0164318
_cons3899326	.0414841	-9.40	0.000	4715204	3083448	
Inited Kingdom						
Source	SS	df	MS	Number of obs	= 332	
				F(1, 330) = 75.9	7	
Model	1955.21382	1	1955.21382	Prob > F = 0.00	000	
Residual	8492.61004	330	25.7351819	R-squared = 0.1	1871	
				Adj R-squared	= 0.1847	
Total	10447.8239	331	31.5644225	Root MSE $= 5.0$	073	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Inter	val]
stringency_10lag	.148517	.0170389	8.72	0.000	.1149983	.1820356
_cons	-5.245076	1.176611	-4.46	0.000	-7.559681	-2.930471
Inited States						
Source	SS	df	MS	Number of obs	s= 338	
				F(1, 336) = 91.8	89	
Model	629.626347	1	629.626347	Prob > F = 0.00	000	
Residual	2302.1638	336	6.85167798	R-squared = 0.	.2148	
				Adj R-squared	l = 0.2124	
Total	2931.79015	337	8.69967403	Root $MSE = 2$.	.6176	
new deaths per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Inter	val]
stringency_10lag	.0892139	.0093066	9.59	0.000	.0709075	.1075204

New deaths per million for the G7, Stringency Lag number of 15 days

C<u>anada</u> MS Number of obs = 329 Source df \mathbf{SS} F(1, 327) = 39.75 Model 89.6132458 1 89.6132458 Prob > F = 0.0000R-squared = 0.1084 Residual 737.230247 327 2.25452675 Adj R-squared = 0.1057 Total 826.843493 328 2.52086431 **Root MSE = 1.5015** Std. Err. [95% Conf. Interval] new_deaths_per~n Coef. P>|t| t

stringency_15lag	.0330231	.0052379	6.30	0.000	.0227188	.0433274
_cons	4916726	.3440802	-1.43	0.154	-1.168563	.1852174
ince						
Source	SS	df	MS	Number of a	bs = 352	
				F(1, 350) = 7	9.39	
Model	1316.74159	1	1316.74159	Prob > F = 0	.0000	
Residual	5805.30333	350	16.5865809	R-squared =	0.1849	
T-4-1	7122 04401	251	20.20072(2	Adj R-squar	red = 0.1826	
10tal	/122.04491	Std Fun	20.290/262	$\frac{ROOUNISE}{P_{1}} =$	4.0/2/	tomall
stringency 15lag	00125	0102414	L 8.01	<u>r> ı </u>	0711075	1113026
cons	-2 13575	6492931	-3 29	0.000	-3 412757	- 8587434
	2.13375	.01/2/01	5.27	0.001	5.112757	
rmany						
Source	SS	df	MS	Number of o	bs= 329	
Madal	1004 50794	1	1004 50704	F(1, 327) = 12	15.56	
Niodel	1004.50/84	1	1004.50/84	Prob > F = 0.	0000	
Kesiduai	2842.33393	327	8.09215209	K-squared =	0.2011	
Total	3846 84177	328	11 7281761	Root MSE =	2 9482	
new deaths per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	terval]
stringency 15lag	.1234327	.011482	10.75	0.000	.1008448	.1460205
_cons	-5.475697	.7208341	-7.60	0.000	-6.893754	-4.057639
Source	22	df	MS	Number of	$h_{\rm f} = 346$	
source	66	ui	1413	F(1 244) - 2	10 29	
	2202.04/2/	1	2292.94(2)	F(1, 344) = 3	019.38	
Model	3282.84626	1	3282.84626	Prob > F = 0	.0000	
Residual	3535.91192	344	10.2788137	R-squared =	0.4814	
				Adj R-squar	red = 0.4799	
Total	6818.75819	345	19.7645165	Root MSE =	3.2061	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
stringency_15lag	.1695471	.0094872	17.87	0.000	.150887	.1882073
_cons	-6.822534	.6420873	-10.63	0.000	-8.085446	-5.559623
nan						
Source	SS	df	MS	Number of o	bs = 354	
				F(1, 352) = 1	32.80	
Model	4.32471681	1	4.32471681	Prob > F = 0	.0000	
Residual	11.4631957	352	.032565897	R-squared =	0.2739	
				Adj R-squar	ed = 0.2719	
Total	15.7879125	353	.044724965	Root MSE =	.18046	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
stringency_15lag	.0122697	.0010647	11.52	0.000	.0101757	.0143638
cons	3102693	.0392658	-7.90	0.000	38/4944	2330441
iited Kingdom					<u> </u>	
Source	SS	df	MS	Number of o	bs = 332	
				F(1, 330) = 4	2.01	
Model	1179.885	1	1179.885	Prob > F = 0	.0000	
Residual	9267.93886	330	28.0846632	R-squared =	0.1129	
T-4-1	10445 0220	221	21 5(44225	Adj R-squar	red = 0.1102	
10tal	1044 / .8239	Std Free	31.3644225 t	Root MSE =	05% Conf I	torvall
stringency 151cc	1075004	0165869	6 / Q	0.000	0748802	1/01296
cons	-2.372317	1,132121	-2.10	0.037	-4,599401	- 145233
	2.3/2311	1.102121	2.10	0.007	1.577-101	.175233
nited States						
Source	SS	df	MS	Number of a	bs = 338	
	(2) (2)		(2) (2) (2)	F(1, 336) = 9	3.21	
Model	636.696992	1	636.696992	Prob > F = 0	.0000	
Residual	2295.09316	336	6.83063439	R-squared =	0.2172	
Total	2021 70015	337	8 60067402	Adj K-squar	eu = 0.2148	
new deaths nor~n	2951./9015 Coef	Std Frr	0.0990/403	P> t	[95% Conf In	tervall
new utating ptr-in	0001	Stu. 111.		1 1	17570 COII. II	

stringency_15lag	.0813467	.0084257	9.65	0.000	.064773	.0979204
_cons	-1.249924	.5577965	-2.24	0.026	-2.347137	1527108
w deaths per million for t	he G7, Stringencv La	g number of 20 days	5			
nada		g	-			
Source	SS	df	MS	Number of o	bs = 329	
				F(1, 327) = 3	1.24	
Model	72.1057043	1	72.1057043	Prob > F = 0.	.0000	
Residual	754.737789	327	2.30806663	R-squared =	0.0872	
				Adi R-squar	ed = 0.0844	
Total	826.843493	328	2.52086431	Root MSE =	1.5192	
new deaths ner~n	Coef.	Std. Err.	t	P> t	195% Conf. Int	tervall
stringency 20lag	0268953	0048119	5 59	0.000	0174291	0363615
cons	0712539	.3129128	-0.23	0.820	6868301	.5443223
ance						
Source	SS	df	MS	Number of o	bs = 352	
				F(1, 350) = 4	1.53	
Model	755.394241	1	755.394241	Prob > F = 0.	.0000	
Residual	6366.65067	350	18,1904305	R-squared =	0.1061	
				Adi R-squar	ed = 0 1035	
Total	7122 04491	351	20 2907262	Root MSE =	4 265	
new deaths nor-n	Coof	Std Fre	t		[95% Conf In	tervall
stringency 20log	0667217	0102520	6.44	0.000	0462591	0870852
sumgency_20lag	6201470	6519110	0.44	0.000	1.002100	.00/0000
cons	02014/9	.0318119	-0.93	0.342	-1.902109	.0018129
rmany	00	16		NT	220	
Source	SS	df	MS	Number of o	bs = 329	
				F(1, 327) = 82	2.40	
Model	774.231996	1	774.231996	Prob > F = 0.	.0000	
Residual	3072.60978	327	9.39636017	R-squared =	0.2013	
				Adi R-sauar	ed = 0 1988	
T ()	2046 04177	220	11 53015(1		2 0 (5 2	
lotal	3840.841//	328	11./281/61	Root MSE =	3.0053	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	terval]
stringency_20lag	.1011956	.0111482	9.08	0.000	.0792643	.1231269
_cons	-4.004547	.690616	-5.80	0.000	-5.363158	-2.645936
ah						
Sauraa	CC.	df	MC	Number of a	ha - 246	
Source	33	di	NIS	Number of 6	0s = 340	
				F(1, 344) = 2	05.48	
Model	2549.90063	1	2549.90063	Prob > F = 0.	0000	
Residual	4268.85755	344	12.4094696	R-squared =	0.3740	
				Adj R-squar	ed = 0.3721	
Total	6818.75819	345	19.7645165	Root MSE =	3.5227	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	terval]
stringency_20lag	.1436887	.0100239	14.33	0.000	.1239728	.1634046
_cons	-5.013629	.6721617	-7.46	0.000	-6.335693	-3.691565
nan						
Source	SS	df	MS	Number of a	hs = 354	
Source	66	ui	MB	E(1, 352) = 1	09 05	
M. J.I	2 721 50525	1	2 721 50525	F(1, 552) = 1	00.93	
Nidel	3./3150535	1	3./3150535	Prob > F = 0	.0000	
Kesidual	12.0564071	352	.034251157	K-squared =	0.2364	
				Adj R-squar	red = 0.2342	
Total	15.7879125	353	.044724965	Root MSE =	.18507	
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
stringency_20lag	.0106237	.0010178	10.44	0.000	.0086219	.0126255
_cons	2443886	.0370562	-6.60	0.000	317268	1715092
nited Kingdom						
Source	SS	df	MS	Number of o	obs = 332	
				F(1, 330) = 1	3.99	
Model	424.977001	1	424.977001	Prob > F = 0	.0002	
Residual	10022 8469	330	30 3722632	R-squared =	0.0407	
isosiuuai	10022.070/	550	00.0722002	Adi D source	od = 0.0379	
Total	10447 9220	331	31 5644005	Auj K-squai	5 5111	

new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]	
stringency_20lag	.0608768	.0162745	3.74	0.000	.028862	.0928917	
_cons	.7725027	1.097639	0.70	0.482	-1.38675	2.931755	
United States							
Source	SS	df	MS	Number of ob	os = 338		
				F(1, 336) = 76	.68		
Model	544.744737	1	544.744737	Prob > F = 0.0	0000		
Residual	2387.04541	336	7.10430182	R-squared =	0.1858		
				Adj R-square	d = 0.1834		
Total	2931.79015	337	8.69967403	Root MSE = 2	2.6654		
new_deaths_per~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	erval]	
stringency_20lag	.0695305	.0079403	8.76	0.000	.0539114	.0851496	
_cons	4254083	.5211071	-0.82	0.415	-1.450452	.5996351	

Excess Mortality During COVID-19: Deaths from All Causes Compared to Previous Years, All Ages

Shown in Figure 7 and Table 8 is how the number of weekly or monthly deaths in 2020–2021 differs as a percentage from

the average number of deaths in the same period over the years 2015–2019. This metric is called the P-score. The reported number of deaths might not count all deaths that occurred due to incomplete coverage and delays in death reporting.

Excess mortality is a term used in epidemiology and public health that refers to the number of deaths from all causes during a crisis above and beyond what we would have expected to see under "normal" conditions. In this case, we're interested in how deaths during the COVID19 pandemic compare to the average number of deaths over the same period in previous years. Excess mortality is a more comprehensive measure of the total impact of the pandemic on deaths than the COVID19 confirmed death count alone. In addition to confirmed deaths, excess mortality captures COVID19 deaths that have not been diagnosed and reported correctly, as well as deaths from other causes attributable to general crisis conditions. In future works, we intend to develop these points and the impact of vaccines.

Table 8.	Excess	mortalit	y F	-scores,	all	ages	percent.
----------	--------	----------	-----	----------	-----	------	----------

Start	End	Absolute Change	Relative Change	
Armenia	-6% in Jan 31	79% in Dec 31	+85 pp	+1,437%
Australia	1% in Jan 5	-5% in Nov 22	-6 pp	-456%
Austria	-11% in Jan 5	-5% in Feb 14	+6 pp	+57%
Azerbaijan	-5% in Jan 31	196% in Dec 31	+201 pp	+4,213%
Belarus	-6% in Jan 31	40% in Jun 30	+46 pp	+728%
Belgium	-6% in Jan 5	-11% in Feb 7	-5 pp	-75%
Brazil	6% in Jan 31	26% in Jan 31	+20 pp	+337%
Bulgaria	-18% in Jan 5	-2% in Feb 14	+17 pp	+92%
Canada	2% in Jan 5	9% in Nov 8	+8 pp	+480%
Chile	8% in Jan 5	28% in Feb 14	+21 pp	+275%
Costa Rica	10% in Jan 31	-5% in Jun 30	-15 pp	-148%
Croatia	-16% in Jan 5	21% in Jan 3	+38 pp	+232%
Cyprus	12% in Jan 5	-13% in Jan 10	-25 pp	-208%
Czechia	-3% in Jan 5	54% in Jan 17	+57 pp	+2,225%
Denmark	>-1% in Jan 5	-10% in Feb 21	-10 pp	-2,479%
Egypt	-3% in Jan 31	13% in Aug 31	+15 pp	+574%
England & Wales	<1% in Jan 5	29% in Feb 14	+28 pp	+6,445%
Estonia	-14% in Jan 5	1% in Jan 31	+15 pp	+109%

Start	End	Absolute Change	Relative Change	
Finland	-10% in Jan 5	-12% in Feb 7	-2 pp	-21%
France	-5% in Jan 5	3% in Feb 7	+9 pp	+161%
Georgia	-9% in Jan 5	-5% in Jun 21	+3 pp	+39%
Germany	-2% in Jan 5	<1% in Feb 14	+3 pp	+127%
Greece	-3% in Jan 5	37% in Dec 6	+40 pp	+1.460%
Hong Kong	-3% in Jan 31	8% in Dec 31	+11 pp	+371%
Hungary	-10% in Jan 5	-7% in Jan 24	+2 pp	+23%
Iceland	24% in Jan 5	-29% in Jan 3	-53 pp	-217%
Israel	8% in Jan 5	6% in Feb 7	-1 pp	-18%
Italy	-13% in Jan 5	40% in Dec 6	+53 pp	+413%
Japan	-4% in Jan 31	8% in Dec 31	+12 pp	+313%
Kvrgyzstan	1% in Jan 31	37% in Dec 31	+36 pp	+3.480%
Latvia	-6% in Jan 5	25% in Feb 7	+31 pp	+487%
Liechtenstein	-62% in Jan 5	-29% in Feb 7	+33 pp	+54%
Lithuania	-6% in Jan 5	9% in Feb 14	+16 pp	+246%
Luxembourg	-27% in Ian 5	18% in Ian 3	+45 nn	+164%
Macao	-4% in Ian 31	-4% in Dec 31	>-1 nn	-19%
Malta	-3% in Ian 5	-8% in Ian 3	-5 nn	-151%
Mauritius	7% in Ian 31	6% in Dec 31	>-1 nn	-8%
Mexico	-11% in Ian 5	68% in Jan 3	+79 pp	+696%
Moldova	-14% in Jan 31	17% in Nov 30	+31 nn	+218%
Mongolia	-3% in Jan 31	-3% in Nov 30	<1 nn	+24%
Montenegro	-43% in Ian 5	34% in Sep 27	+77 pp	+178%
Netherlands	-5% in Ian 5	8% in Feb 21	+14 pp	+251%
New Zealand	4% in Ian 5	6% in Feb 7	+2 nn	+63%
North Macedonia	-14% in Ian 31	142% in Dec 31	+156 nn	+1 114%
Northern Ireland	-14% in Jan 5	11% in Feb 21	+25 pp	+179%
Norway	-7% in Ian 5	-7% in Ian 31	>-1 nn	>-1%
Oman	2% in Jan 31	5% in Jan 31	+2 pp	+98%
Philippines	3% in Ian 31	3% in Sep 30	<1 nn	+26%
Poland	>-1% in Jan 5	2% in Feb 14	+3 pp	+440%
Portugal	-10% in Jan 5	42% in Feb 7	+53 pp	+516%
Oatar	-3% in Jan 31	5% in Dec 31	+8 nn	+289%
Romania	-11% in Jan 5	33% in Dec 27	+43 pp	+409%
Russia	-5% in Jan 31	58% in Dec 31	+63 pp	+1.299%
San Marino	-3% in Jan 31	110% in Dec 31	+114 pp	+3.382%
Scotland	-9% in Jan 5	12% in Feb 21	+21 pp	+238%
Serbia	-11% in Jan 31	6% in Jan 31	+17 pp	+152%
Singapore	17% in Jan 31	8% in Sep 30	-9 pp	-54%
Slovakia	>-1% in Jan 5	62% in Dec 27	+63 pp	+8.278%
Slovenia	-5% in Jan 5	32% in Jan 17	+37 pp	+720%
South Korea	6% in Jan 5	<1% in Jan 3	-5 pp	-88%
Spain	-12% in Jan 5	2% in Feb 14	+14 pp	+116%
Sweden	-8% in Jan 5	-5% in Feb 7	+3 pp	+35%
Switzerland	-10% in Jan 5	-10% in Feb 7	<1 pp	+8%
Taiwan	4% in Jan 5	3% in Dec 27	-1 pp	-26%
Thailand	10% in Jan 31	12% in Dec 31	+2 pp	+16%
Tunisia	3% in Jan 31	2% in Sep 30	>-1 pp	-34%
Ukraine	-6% in Jan 31	34% in Dec 31	+40 pp	+647%
United Kingdom	>-1% in Jan 5	27% in Feb 14	+27 pp	+10.089%
United States	<1% in Jan 5	28% in Jan 10	+28 pp	+277.900%
Uzbekistan	9% in Jan 31	6% in Dec 31	-3 pp	-32%

 Table 9. Power Distance Index and COVID19 response to Stringency Index by Macro Area.

Country	PDI	IDV	MAS	UAI	LTO	
Malaysia	104	26	50	36		
Guatemala	95	6	37	101		
Panama	95	11	44	86		
Philippines	94	32	64	44	19	

Country	PDI	IDV	MAS	UAI	LTO
Mexico	81	30	69	82	
Venezuela	81	12	73	76	
China	80	20	66	40	118
Egypt	80	38	52	68	
Iraq	80	38	52	68	
Kuwait	80	38	52	68	
Lebanon	80	38	52	68	
Libya	80	38	52	68	
Saudi Arabia	80	38	52	68	
United Arab					
Emirates	80	38	52	68	
Ecuador	78	8	63	67	
Indonesia	78	14	46	48	16
Gnana	11	20	40	54	10
Nigorio	77	40	30 46	40 54	16
Sierro Leone	77	20	40	54	10
Singapore	74	20	40	8	48
Brazil	69	38	49	76	65
France	68	71	43	86	05
Hong Kong	68	25	57	29	96
Poland	68	60	64	93	
Colombia	67	13	64	80	
El Salvador	66	19	40	94	
Turkey	66	37	45	85	
Belgium	65	75	54	94	
Ethiopia	64	27	41	52	25
Kenya	64	27	41	52	25
Peru	64	16	42	87	
Tanzania	64	27	41	52	25
Thailand	64	20	34	64	56
Zambia	64	27	41	52	25
Chile	63	23	28	86	
Portugal	63	27	31	104	
Uruguay	61	36	38	100	
Greece	60	35	57	112	
South Korea	60	18	39	85	75
Iran	58	41	43	59	07
laiwan	58	17	45	69	87
Czech Republic	57	58	57	/4	
Delviston	55	14	42	80 70	
Fakistali	55	14	95	0	80
Japan Italy	50	76	95 70	75	80
Argentina	49	46	56	86	
South Africa	49	65	63	49	
Hungary	46	55	88	82	
Jamaica	45	39	68	13	
United States	40	91	62	46	29
Netherlands	38	80	14	53	44
Australia	36	90	61	51	31
Costa Rica	35	15	21	86	
Germany	35	67	66	65	31
United					
Kingdom	35	89	66	35	25
Switzerland	34	68	70	58	
Finland	33	63	26	59	
Norway	31	69	8	50	20
Sweden	31	71	5	29	33
Ireland	28	70	68	35	20
New Zealand	22	79	58	49	30
Denmark	18	/4	16	23	
Israel	13	54	4/	81	
Austria	11	33	19	/0	

Table 10. Total deaths per million. Sensitivity: Different Stringency Lag Number of 20, 30 and 40 Days.

Random-effects GLS regression	Number of obs	= 49,538				
Group variable: country	Number of grou	ps = 166				
R-sq:	Obs per group:					
within = 0.0028	min = 25					
between = 0.0170	avg = 298.4					
overall = 0.0087	max = 357					
Wald chi2(1) = 140.57						
corr(u i, X) = 0 (assumed)	Prob > chi2 = 0.	0000				
total deaths ~n	Coef.	Std. Err.	z	P> z	[95% Conf. Int	erval]
stringency 20~g	.5593817	.0471806	11.86	0.000	.4669095	.651854
cons	101.5556	15.31085	6.63	0.000	71.54692	131.5643
sigma_u	193.51413					
sigma e	171.991					
rho	.55868249 (fract	ion of variance due	toui)			
Lag number of 20	`		- /			
Dandam officiate CLS regression	Number of the	- 49 575				
Random-effects GLS regression	Number of obs =	= 48,525				
Group variable: country	Number of grou	ps = 166				
R-sq:	Obs per group:					
within = 0.0052	$\min = 25$					
between = 0.0129	avg = 292.3					
overall = 0.0088	max = 352					
Wald chi2(1) 256.02						
corr(u_i, X) = 0 (assumed)	Prob > chi2 = 0.	0000				
total_deaths_~n	Coef.	Std. Err.	Z	P> z	[95% Conf. Inte	erval]
stringency_30~g	.7286156	.0455368	16.00	0.000	.6393651	.8178661
			< 0 -	0.000	63.65562	124.7199
_cons	94.18775	15.5779	6.05	0.000		
_cons sigma_u	94.18775 197.2944	15.5779	6.05	0.000		
_cons sigma_u sigma_e	94.18775 197.2944 170.6772	15.5779	6.05	0.000		
_cons sigma_u sigma_e rho	94.18775 197.2944 170.6772 .57195843 (fract	15.5779 ion of variance due	6.05 to u_i)	0.000		
_cons sigma_u sigma_e rho	94.18775 197.2944 170.6772 .57195843 (fract	15.5779	6.05 to u_i)	0.000		
_cons sigma_u sigma_e rho Lag number of 40 Random-effects GLS regression	94.18775 197.2944 170.6772 .57195843 (fract	15.5779 ion of variance due	6.05 to u_i)	0.000		
_cons sigma_u sigma_e rho Lag number of 40 Random-effects GLS regression Group variable: country	94.18775 197.2944 170.6772 .57195843 (fract Number of obs =	15.5779 ion of variance due = 47,283 ns=166	6.05 to u_i)	0.000		
_cons sigma_u sigma_e rho Lag number of 40 Random-effects GLS regression Group variable: country R-sq:	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group:	15.5779 ion of variance due = 47,283 ps=166	6.05 to u_i)	0.000		
_cons sigma_u sigma_e rho Lag number of 40 Random-effects GLS regression Group variable: country R-sq: within = 0.0054	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25	15.5779 ion of variance due = 47,283 ps=166	6.05 to u_i)	0.000		
_cons sigma_u sigma_e rho <i>Lag number of 40</i> Random-effects GLS regression Group variable: country R-sq: within = 0.0054 between = 0.0096	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8	15.5779 ion of variance due = 47,283 ps=166	6.05 to u_i)			
_cons sigma_u sigma_e rho <i>Lag number of 40</i> Random-effects GLS regression Group variable: country R-sq: within = 0.0054 between = 0.0096 overall = 0.0073	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343	15.5779 ion of variance due = 47,283 ps=166	6.05 to u_i)			
_cons sigma_u sigma_e rho Lag number of 40 Random-effects GLS regression Group variable: country R-sq: within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343	15.5779 ion of variance due = 47,283 ps=166	6.05			
_cons sigma_u sigma_e rho Lag number of 40 Random-effects GLS regression Group variable: country R-sq: within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26 corr(u_i, X) = 0 (assumed)	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343 Prob > chi2 =0.0	15.5779 ion of variance due = 47,283 ps=166	6.05 to u_i)			
_cons sigma_u sigma_e rho <u>Lag number of 40</u> Random-effects GLS regression Group variable: country R-sq: within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26 corr(u_i, X) = 0 (assumed) total_deaths_p~n	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343 Prob > chi2 =0.0 Coef.	15.5779 ion of variance due = 47,283 ps=166 0000 Std. Err.	6.05 to u_i)	0.000 P> z	[95% Conf. In	terval]
_cons sigma_u sigma_e rho <u>Lag number of 40</u> Random-effects GLS regression Group variable: country R-sq: within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26 corr(u_i, X) = 0 (assumed) total_deaths_p~n stringency_40lag	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343 Prob > chi2 =0.0 Coef. .7146716	15.5779 ion of variance due = 47,283 ps=166 0000 Std. Err. .0447313	6.05 to u_i)	0.000 P> z 0.000	[95% Conf. In .627	terval] .8023433
_cons sigma_u sigma_e rho <u>Lag number of 40</u> <u>Random-effects GLS regression</u> <u>Group variable: country</u> <u>R-sq:</u> within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26 <u>corr(u_i, X) = 0 (assumed)</u> <u>total_deaths_p~n</u> stringency_40lag cons	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343 Prob > chi2 =0.0 Coef. .7146716 98.4569	15.5779 ion of variance due = 47,283 ps=166 0000 Std. Err. .0447313 15.91409	6.05 to u_i) 	0.000 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	[95% Conf. In .627 67.26585	terval] .8023433 129.648
_cons sigma_u sigma_e rho <u>Lag number of 40</u> <u>Random-effects GLS regression</u> <u>Group variable: country</u> <u>R-sq:</u> within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26 <u>corr(u_i, X) = 0 (assumed)</u> <u>total_deaths_p~n</u> stringency_40lag _cons sigma_u	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343 Prob > chi2 =0.0 Coef. .7146716 98.4569 201.81732	15.5779 ion of variance due = 47,283 ps=166 0000 Std. Err. .0447313 15.91409	6.05 to u_i) 	P ≥ z 0.000 0.000 0.000	[95% Conf. In .627 67.26585	terval] .8023433 129.648
_cons sigma_u sigma_e rho <u>Lag number of 40</u> <u>Random-effects GLS regression</u> <u>Group variable: country</u> <u>R-sq:</u> within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26 <u>corr(u_i, X) = 0 (assumed)</u> <u>total_deaths_p~n</u> stringency_40lag _cons sigma_u sigma_e	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343 Prob > chi2 =0.0 Coef. .7146716 98.4569 201.81732 169.33417	15.5779 ion of variance due = 47,283 ps=166 0000 Std. Err. .0447313 15.91409	6.05 to u_i) 	P ≥ z 0.000 0.000 0.000	[95% Conf. In .627 67.26585	terval] .8023433 129.648
_cons sigma_u sigma_e rho <u>Lag number of 40</u> <u>Random-effects GLS regression</u> <u>Group variable: country</u> <u>R-sq:</u> within = 0.0054 between = 0.0096 overall = 0.0073 Wald chi2(1) = 255.26 <u>corr(u_i, X) = 0 (assumed)</u> <u>total_deaths_p~n</u> stringency_40lag _cons sigma_u sigma_e rho	94.18775 197.2944 170.6772 .57195843 (fract Number of obs = Number of grou Obs per group: min =25 avg =284.8 max =343 Prob > chi2 =0.0 Coef. .7146716 98.4569 201.81732 169.33417 .58685466 (fract	15.5779 ion of variance due = 47,283 ps=166 0000 Std. Err. .0447313 15.91409 ion of variance due	6.05 to u_i) z 15.98 6.19 to u_i)	0.000 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	[95% Conf. In .627 67.26585	terval] .8023433 129.648

Table 11. Total deaths per million. By selected countries.

-> country = United States SS df MS Number of obs = 339 Source F(1, 337) = 160.8712747585.5 12747585.5 Model 1 Prob > F = 0.0000 Residual 26704365.4 337 79241.4403 R-squared = 0.3231 Adj R-squared = 0.3211 39451950.8 116721.748 Total 338 **Root MSE = 281.5** total_deaths_p~n Std. Err. Coef. P>|t| [95% Conf. Interval] t 9.353206 10.80376 .7374333 12.68 0.000 7.902654 stringency_30lag -41.47281 47.55285 -0.87 0.384 -135.0106 52.06499 cons -> country = Canada Source SS df MS Number of obs = 330 F(1, 328) = 195.38

Model	1920894.58	1	1920894.58	Prob > F =).0000	
Residual	3224717.42	328	9831.45555	R-squared =	= 0.3733	
				Adj R-squa	red = 0.3714	
Total	5145612	329	15640.1581	Root MSE =	= 99.154	
total_deaths_p~n	Coef.	Std. Err.	t	P> t	[95% Conf. Inter	val]
stringency_30lag	3.791176	.2712258	13.98	0.000	3.257614	4.324737
_cons	10.4784	17.32947	0.60	0.546	-23.61253	44.56933

Table 12. New deaths per million All Countries.

Random-effects GLS regression	Number of obs	= 50651				
Group variable: country	Number of gro	ups = 182				
R-sq: within = 0.0129	Obs per group	: min = 24				
between = 0.3868	avg = 278.3					
overall = 0.0631	max = 346					
	Wald chi2(15)	= 780.92				
corr(u_i, X) = 0 (assumed)	Prob > chi2 = ().0000				
new_deaths_per_million	Coef.	Std. Err.	Z	P> z	[95% Conf. In	terval]
reproduction_rate	3449307	.0297394	-11.60	0.000	4032189	2866424
stringency_5lag	.0177845	.0007274	24.45	0.000	.0163589	.0192101
population_density	0001706	.0000892	-1.91	0.056	0003455	4.24e-06
median_age	.0100886	.0188078	0.54	0.592	0267741	.0469513
aged_65_older	0386095	.0610652	-0.63	0.527	1582951	.081076
aged_70_older	.1277235	.0726755	1.76	0.079	0147178	.2701648
log_gdp_per_ca	.4431614	.1137241	3.90	0.000	.2202662	.6660565
cardiovasc_death_rate	000236	.0007485	-0.32	0.753	001703	.001231
diabetes_prevalence	.0060938	.0193497	0.31	0.753	0318309	.0440185
female_smokers	.0502692	.0119729	4.20	0.000	.0268027	.0737357
male_smokers	0118881	.004623	-2.57	0.010	020949	0028272
handwashing_facilities	.0034953	.0021489	1.63	0.104	0007165	.0077071
hospital_beds_per_thousand	.0085024	.0404034	0.21	0.833	0706868	.0876916
life_expectancy	.0311515	.0123913	2.51	0.012	.006865	.055438
human_development_index	-4.590632	.9956138	-4.61	0.000	-6.541999	-2.639265
_cons	-3.745812	1.046093	-3.58	0.000	-5.796116	-1.695507
sigma_u	.84767062					
sigma_e	2.9428698					
rho	.07661193 (frac	tion of variance due	e to u_i)			

Table 13. Total deaths per million All countries.

Random-effects GLS regression	Number of obs	s = 50651				
Group variable: country	Number of gro	oups = 182				
R-sq: within = 0.0197	Obs per group	: min = 24				
between = 0.4518	avg = 278.3					
overall = 0.2823	max = 346					
	Wald chi2(15)	= 1161.93				
corr(u_i, X) = 0 (assumed)	Prob > chi2 =	0.0000				
total_deaths_per_million	Coef.	Std. Err.	Z	P> z	[95% Conf. In	terval]
reproduction_rate	-38.48277	1.232555	-31.22	0.000	-40.89853	-36.06701
stringency_5lag	.3693264	.030636	12.06	0.000	.3092809	.429372
population_density	0252863	.0111139	-2.28	0.023	0470692	0035034
median_age	5218229	2.348235	-0.22	0.824	-5.124278	4.080632
aged_65_older	-3.254617	7.74269	-0.42	0.674	-18.43001	11.92078
aged_70_older	12.33805	9.215409	1.34	0.181	-5.723816	30.39992
log_gdp_per_ca	93.45486	14.40793	6.49	0.000	65.21583	121.6939
cardiovasc_death_rate	0543218	.0945109	-0.57	0.565	2395597	.1309161
diabetes_prevalence	-4.148232	2.421776	-1.71	0.087	-8.894825	.5983611
female_smokers	4.130391	1.516664	2.72	0.006	1.157784	7.102999
male_smokers	-1.191603	.5851307	-2.04	0.042	-2.338438	044768
handwashing_facilities	.3463704	.2718617	1.27	0.203	1864688	.8792096
hospital_beds_per_thousand	-6.208756	5.105651	-1.22	0.224	-16.21565	3.798136
life_expectancy	8.881065	1.5698	5.66	0.000	5.804314	11.95782
human_development_index	-881.6999	125.8153	-7.01	0.000	-1128.293	-635.1065
_cons	-752.706	132.5091	-5.68	0.000	-1012.419	-492.993
sigma_u	109.55672					
sigma_e	121.34479					
rho	.44908036 (fra	ction of variance du	e to u_i)			

Table 14. Regressions for G7 changing lags.

G7: 5 days lag of Stringency index.						
Random-effects GLS regression	Number of obs =	2,282				
Group variable: country	Number of group	s = 7				
R-sq:	Obs per group:					
within = 0.3130	$\min = 317$					
between $= 1.0000$	avg = 326.0					
overall = 0.4159	max = 336	10 41				
$com(u, i, \mathbf{V}) = 0$ (consumed)	Wald $cn(2(8) = 16)$	018.41				
$corr(u_1, x) = 0$ (assumed)	$Prob > cm_2 = 0.0$	Std Err	7	D> z	[05% Conf. Int	arvoll
reproduction rate	9820385	1682688	2 5 84	1 > Z 0 000	6522378	1 311839
stringency 5lag	.1684631	.0057608	29.24	0.000	.1571722	179754
population	9.10e-09	1.84e-09	4.95	0.000	5.50e-09	1.27e-08
median_age	459043	.0719255	-6.38	0.000	6000144	3180715
aged_65_older	.463677	.3617146	1.28	0.200	2452705	1.172624
aged_70_older	.0626447	.410799	0.15	0.879	7425066	.867796
log_gdp_per_ca	-9.01679	1.156705	-7.80	0.000	-11.28389	-6.749689
cardiovasc_death_rate	.0161058	.0113453	1.42	0.156	0061307	.0383422
cons	94.0879	12.30975	7.64	0.000	69.96123	118.2146
sigma_u	0					
sigma_e	2.954466/	i restard				
Random-effects GLS regression	Number of obs =	2 282				
Group variable: country	Number of group	s = 7				
R-sa:	Obs per group:	5 /				
within $= 0.1991$	$\min = 317$					
between = 1.0000	avg = 326.0					
overall = 0.5814	max = 336					
	Wald $chi2(8) = 3$	157.41				
$corr(u_i, X) = 0$ (assumed)	Prob > chi2 = 0.0	000				
total_deaths_per_mi~n	Coef.	Std. Err.	Z	P> z	[95% Conf. Inte	erval]
reproduction_rate	-238.4194	12.03247	-19.81	0.000	-262.0026	-214.8362
stringency_stag	2/140/3 2.63e.06	.41195/5	-0.66	0.510	-1.0/8/9 2.37e.06	.5559/5
median age	-5 607394	5 143212	-1.09	0.000	-15 6879	2.886-00
aged 65 older	-165.6524	25.86528	-6.40	0.000	-216.3474	-114,9573
aged 70 older	113.1174	29.37519	3.85	0.000	55.54307	170.6917
log_gdp_per_ca	-3268.702	82.71305	-39.52	0.000	-3430.817	-3106.588
cardiovasc_death_rate	1.171426	.811275	1.44	0.149	4186439	2.761496
_cons	37080.47	880.239	42.13	0.000	35355.23	38805.71
sigma_u	0					
sigma_e	211.26637	1				
rho	0(fraction of varia	ance due to u_1)				
G7: 10 days lag of Stringency index						
Random-effects GLS regression	Number of obs =	2,282				
Group variable: country	Number of group	s = 7				
R-sq:	Obs per group:					
within = 0.2854	min = 317					
between = 1.0000	avg = 326.0					
overall = 0.3924	max = 336					
	Wald $chi2(8) = 14$	468.01				
corr(u i, X) = 0 (assumed)	Prob > chi2 = 0.0	000				
new deaths per mill~n	Coef.	Std. Err.	Z	P > z	[95% Conf. Inte	erval]
reproduction rate	1.981977	.199233	9.95	0.000	1.591487	2.372466
stringency 10lag	1682839	.0062104	27.10	0.000	1561118	180456
population	8.24e-09	1.88e-09	4.38	0.000	4.55e-09	1.19e-08
median age	- 4605611	0734848	-6.27	0.000	- 6045887	- 3165336
aged 65 older	5737018	3703565	1.55	0.121	- 1521837	1 299587
aged 70 older	- 0687287	4197393	-0.16	0.870	- 8914027	7539453
log gdp per ca	-9 04728	1 187221	-7.62	0.000	-11 37/10	-6 72037
cardiovasc death rate	0203444	0115755	1.76	0.000	- 0023431	0430310
cons	92 65/38	12 60021	7 20	0.079	0023431	117 5267
_cons sigma u	0	12.09021	7.50	0.000	07.70203	117.3207
Signa u	U					

sigma_e	3.0132724					
rho	0(fraction of variance	e due to u_i)				
Random-effects GLS regression	Number of $obs = 2,2$	282				
Group variable: country	Number of groups =	- 7				
R-sq:	Obs per group:					
within = 0.1991	$\min = 317$					
between = 1.0000	avg = 326.0					
overall = 0.5814	max = 336					
	Wald $chi2(8) = 3157$	7.47				
corr(u i, X) = 0 (assumed)	Prob > chi2 = 0.000	0				
total deaths per mi~n	Coef.	Std. Err.	7	P > z	[95% Conf. Interv	a1]
reproduction rate	-227.1187	13.96852	-16.26	0.000	-2.54.4965	-199.7409
stringency 10lag	2959683	4354185	0.68	0.497	- 5574362	1 149373
nonulation	2.60e-06	1 32e-07	19.68	0.000	2 34e-06	2.86e-06
median age	-6 772395	5 15213	-1 31	0.000	-16 87038	3 325594
aged 65 older	-159 2354	25 96626	-6.13	0.000	-210 1284	-108 3425
aged 70 older	108 9476	29.42856	3 70	0.000	51 26873	166 6266
log gdp per ca	3230 585	23.42830	38.81	0.000	3303 728	3067 442
cordiovase death rate	1 100/08	8115735	-38.81	0.000	-3393.728	2 700063
cardiovase_deatin_rate	26604.88	.8113733 880 7204	1.40	0.139	3912408	2.790003
_cons	30004.88	889.7294	41.14	0.000	54801.04	38348.72
sigma_u	0					
signia_e	211.2030/ O (fraction of varian	an due to u i)				
Hio	0 (Traction of varian	ce due to u_1)				
G7: 15 days lag of Stringency index						
Random-effects GLS regression	Number of $obs = 2,2$	282				
Group variable: country	Number of groups =	- 7				
R-sq:	Obs per group:					
within = 0.2100	$\min = 317$					
overall = 0.3339	max = 336					
0. ciu ii 0.0000	Wald $chi2(8) = 1139$	0.35				
corr(u i, X) = 0 (assumed)	Prob > chi2 = 0.000	0				
new_deaths_per_mill~n	Coef.	Std. Err.	Z	P> z	[95% Conf. Interv	al]
reproduction_rate	2.143525	.235622	9.10	0.000	1.681714	2.605335
stringency_15lag	.1471112	.0067853	21.68	0.000	.1338123	.1604101
population	8.73e-09	1.98e-09	4.41	0.000	4.85e-09	1.26e-08
median_age	4191535	.077064	-5.44	0.000	5/0196	2681109
aged 70 older	0212089	.389037 4401611	0.05	0.313	3/19882	8839087
log gdn per ca	-10.46006	1.250014	-8.37	0.000	-12.91004	-8.010077
cardiovasc death rate	.0219914	.0121261	1.81	0.070	0017754	.0457581
cons	109.3482	13.41002	8.15	0.000	83.06506	135.6314
sigma_u	0					
sigma_e	3.1550475					
rho	0 (fraction of varian	ce due to u_i)				
Random-effects GLS regression	Number of obs $= 2,2$	282				
Group variable: country	Number of groups =	/				
K-SQ.	Obe nor group:					
within $= 0.2033$	Obs per group: min = 317					
within $= 0.2033$ between $= 1.0000$	Obs per group: min = 317 avg = 326.0					
within = 0.2033 between = 1.0000 overall = 0.5836	Obs per group: min = 317 avg = 326.0 max = 336					
within = 0.2033 between = 1.0000 overall = 0.5836	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185	5.73				
within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed)	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000	5.73 0				
within = 0.2033 between = 1.0000 overall = 0.5836 $corr(u_i, X) = 0$ (assumed) total_deaths_per_mi~n	Obs per group: min = 317 avg = 326.0 max = 336 Wald $chi2(8) = 3185$ Prob > $chi2 = 0.000$ Coef.	5.73 0 Std. Err.	z	P> z	[95% Conf. Interv	al]
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303	5.73 0 Std. Err. 15.73659	z -12.12	P> z 0.000	[95% Conf. Interv -221.5734	al] -159.8871
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate stringency_15lag reproduction</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303 1.588861 2.528.06	5.73 0 Std. Err. 15.73659 .4531705 1.222.07	z -12.12 3.51	P> z 0.000 0.000	[95% Conf. Interv -221.5734 .7006628 2.266 00	al] -159.8871 2.477059 2.78= 00
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate stringency_15lag population median_age</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303 1.588861 2.52e-06 -9.457585	5.73 0 Std. Err. 15.73659 .4531705 1.32e-07 5 146003	z -12.12 3.51 19.08 -1.84	P> z 0.000 0.000 0.000 0.066	[95% Conf. Interv. -221.5734 .7006628 2.26e-06 -19.54533	al] -159.8871 2.477059 2.78e-06 6301609
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate stringency_15lag population median_age aged 65 older</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303 1.588861 2.52e-06 -9.457585 -143 5209	5.73 0 Std. Err. 15.73659 .4531705 1.32e-07 5.146903 25.98278	z -12.12 3.51 19.08 -1.84 -5.52	P> z 0.000 0.000 0.000 0.066 0.000	[95% Conf. Interv. -221.5734 .7006628 2.26e-06 -19.54533 -194 4462	al] -159.8871 2.477059 2.78e-06 .6301609 -92.59563
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate stringency_15lag population median_age aged_65_older aged 70 older</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303 1.588861 2.52e-06 -9.457585 -143.5209 98.16315	5.73 0 Std. Err. 15.73659 .4531705 1.32e-07 5.146903 25.98278 29.39723	z -12.12 3.51 19.08 -1.84 -5.52 3.34	P> z 0.000 0.000 0.000 0.066 0.000 0.001	[95% Conf. Interv. -221.5734 .7006628 2.26e-06 -19.54533 -194.4462 40.54565	al] -159.8871 2.477059 2.78e-06 .6301609 -92.59563 155.7807
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate stringency_15lag population median_age aged_65_older aged_70_older log_gdp_per_ca</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303 1.588861 2.52e-06 -9.457585 -143.5209 98.16315 -3143.701	5.73 0 Std. Err. 15.73659 .4531705 1.32e-07 5.146903 25.98278 29.39723 83.48521	z -12.12 3.51 19.08 -1.84 -5.52 3.34 -37.66	P> z 0.000 0.000 0.000 0.066 0.000 0.001 0.000	[95% Conf. Interv. -221.5734 .7006628 2.26e-06 -19.54533 -194.4462 40.54565 -3307.329	al] -159.8871 2.477059 2.78e-06 .6301609 -92.59563 155.7807 -2980.073
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate stringency_15lag population median_age aged_65_older aged_70_older log_gdp_per_ca cardiovasc_death_rate</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303 1.588861 2.52e-06 -9.457585 -143.5209 98.16315 -3143.701 1.310599	5.73 0 Std. Err. 15.73659 .4531705 1.32e-07 5.146903 25.98278 29.39723 83.48521 .8098718	z -12.12 3.51 19.08 -1.84 -5.52 3.34 -37.66 1.62	P> z 0.000 0.000 0.000 0.066 0.000 0.001 0.000 0.106	[95% Conf. Interv. -221.5734 .7006628 2.26e-06 -19.54533 -194.4462 40.54565 -3307.329 276721	al] -159.8871 2.477059 2.78e-06 .6301609 -92.59563 155.7807 -2980.073 2.897918
<pre>within = 0.2033 between = 1.0000 overall = 0.5836 corr(u_i, X) = 0 (assumed) total_deaths_per_mi~n reproduction_rate stringency_15lag population median_age aged_65_older aged_70_older log_gdp_per_ca cardiovasc_death_rate _cons</pre>	Obs per group: min = 317 avg = 326.0 max = 336 Wald chi2(8) = 3185 Prob > chi2 = 0.000 Coef. -190.7303 1.588861 2.52e-06 -9.457585 -143.5209 98.16315 -3143.701 1.310599 35502.91	5.73 0 Std. Err. 15.73659 .4531705 1.32e-07 5.146903 25.98278 29.39723 83.48521 .8098718 895.6206	z -12.12 3.51 19.08 -1.84 -5.52 3.34 -37.66 1.62 39.64	P> z 0.000 0.000 0.000 0.066 0.000 0.001 0.000 0.106 0.000	[95% Conf. Interv. -221.5734 .7006628 2.26e-06 -19.54533 -194.4462 40.54565 -3307.329 276721 33747.53	al] -159.8871 2.477059 2.78e-06 .6301609 -92.59563 155.7807 -2980.073 2.897918 37258.29

sigma e	210.71751					
rho	0 (fraction of va	riance due to u_i)				
G7: 20 days lag of Stringency index						
Random-effects GLS regression	Number of obs =	= 2,282				
Group variable: country	Number of grou	ps = 7				
R-sq:	Obs per group:	1				
within $= 0.1174$	min = 317					
between = 1.0000	avg = 326.0					
overall = 0.2495	max = 336					
	Wald $chi2(8) = 7$	755.78				
corr(u i, X) = 0 (assumed)	Prob > chi2 = 0.	0000				
new deaths per mill~n	Coef.	Std. Err.	Z	P> z	[95% Conf. Int	erval]
reproduction rate	.8433022	.2630022	3.21	0.001	.3278274	1.358777
stringency 20lag	.0900844	.0070836	12.72	0.000	.0762008	.1039681
population	1.17e-08	2.10e-09	5.57	0.000	7.60e-09	1.58e-08
median age	3009672	.0817546	-3.68	0.000	4612032	1407312
aged 65 older	2753852	.4129944	-0.67	0.505	-1.084839	.5340689
aged 70 older	.4636635	.4673455	0.99	0.321	4523168	1.379644
log gdp per ca	-14.31097	1.323376	-10.81	0.000	-16.90473	-11.7172
cardiovasc death rate	.0186673	.0128757	1.45	0.147	0065685	.0439032
cons	157.6571	14.19727	11.10	0.000	129.831	185.4832
sigma u	0					
sigma e	3.3488722					
rho	0 (fraction of va	riance due to u i)				
Random-effects GLS regression	Number of obs =	= 2,282				
Group variable: country	Number of grou	ps = 7				
R-sq:	Obs per group:	*				
within = 0.2179	min = 317					
between = 1.0000	avg = 326.0					
overall = 0.5912	max = 336					
	Wald $chi2(8) = 3$	3287.58				
$corr(u_i, X) = 0$ (assumed)	Prob > chi2 = 0.	.0000				
total deaths per mi~n	Coef.	Std. Err.	Z	P> z	[95% Conf. Int	erval]
reproduction_rate	-136.0167	16.39635	-8.30	0.000	-168.153	-103.8805
stringency_20lag	3.273042	.4416141	7.41	0.000	2.407495	4.13859
population	2.42e-06	1.31e-07	18.45	0.000	2.16e-06	2.68e-06
median_age	-12.95185	5.096828	-2.54	0.011	-22.94145	-2.962249
aged_65_older	-122.4291	25.74732	-4.76	0.000	-172.893	-71.96531
aged_70_older	83.338	29.13573	2.86	0.004	26.23301	140.443
log_gdp_per_ca	-3031.249	82.50327	-36.74	0.000	-3192.952	-2869.545
cardiovasc_death_rate	1.495636	.8027093	1.86	0.062	0776448	3.068918
cons	34063.37	885.1005	38.49	0.000	32328.6	35798.13
sigma_u	0					
sigma_e	208.77885					
rho	0 (fraction of va	riance due to u i)				

Tab 15. Macroarea Stringency Coef and Std.Err.

Source	SS	df	MS	Number of a	Number of obs = 13,804		
				F(2, 13801) =	= 620.71		
Model	4462397.3	2	2231198.65	Prob > F = 0.0000			
Residual	49609315.4	13,801	3594.61745	R-squared = 0.0825			
				Adj R-squar	red = 0.0824		
Total	54071712.7	13,803	3917.38845	Root MSE =	59.955		
total_deaths_~n	Coef.	Std. Err.	t	P> t	[95% Conf. Int	erval]	
stringency_20~g	.0087896	.0239606	0.37	0.714	0381766	.0557557	
gdp_per_capita	.0034733	.0000999	34.76	0.000	.0032774	.0036692	
_cons	7.319556	1.485048	4.93	0.000	4.40866	10.23045	
macroarea = Asia							
Source	SS	df	MS	Number of o	obs = 11,500		
				F(2, 11497) -	= 28.73		
Model	635839.029	2	317919.514	Prob > F = 0	.0000		
Residual	127215936	11,497	11065.1419	R-squared =	0.0050		
				Adj R-squar	red = 0.0048		
Total	127851775	11.499	11118.5125	Root MSE =	105.19		

total_deaths_~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
stringency_20~g	.371414	.0496451	7.48	0.000	.2741012	.4687268
gdp_per_capita	.0000692	.0000371	1.86	0.062	-3.58e-06	.000142
_cons	37.146	3.514532	10.57	0.000	30.25691	44.03508
> macroarea = Europe						
Source	SS	df	MS	Number of o	obs = 12,598	
				F(2, 12595)	= 476.53	
Model	116633365	2	58316682.5	Prob > F = 0	.0000	
Residual	1.5414e+09	12,595	122378.092	R-squared =	= 0.0703	
		,		Adj R-squar	red = 0.0702	
Total	1.6580e+09	12,597	131617.483	Root MSE =	- 349.83	
total_deaths_~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
stringency 20~g	3.753256	.1583847	23.70	0.000	3.442798	4.063714
gdp_per_capita	.0037118	.0001747	21.24	0.000	.0033693	.0040543
_cons	-47.19201	11.4543	-4.12	0.000	-69.64419	-24.73983
> macroarea = North An	nerica					
Source	SS	df	MS	Number of o	bbs = 4,974	
				F(2, 4971) =	496.41	
Model	50461663.3	2	25230831.6	Prob > F = 0	.0000	
Residual	252658991	4.971	50826.5924	R-squared =	0.1665	
		F		Adi R-squar	red = 0.1661	
Total	303120654	4.973	60953.2785	Root MSE =	= 225.45	
total deaths ~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval
stringency 20~g	.9438481	.1417317	6.66	0.000	.6659914	1.221705
gdp per capita	.0066964	.0002193	30.54	0.000	.0062665	.0071262
_cons	.1988554	10.63833	0.02	0.985	-20.65697	21.05468
> macroarea = Oceania						
Source	SS	df	MS	Number of a	bbs = 1,022	
				F(2, 1019) =	273.31	
Model	48641.4214	2	24320.7107	Prob > F = 0	.0000	
Residual	90676.9976	1,019	88.9862587	R-squared =	0.3491	
		,		Adj R-squar	red = 0.3479	
Total	139318.419	1,021	136.452908	Root MSE =	9.4333	
total deaths ~n	Coef.	Std. Err.	t	P> t	[95% Conf. In	erval
stringency 20~g	.1619389	.015238	10.63	0.000	.1320374	.1918404
gdp per capita	.0003324	.0000177	18.82	0.000	.0002977	.000367
cons	-9.223279	.8833533	-10.44	0.000	-10.95668	-7.48988
> macroarea = South An	norica					
Source	SS	df	MS	Number of o	bbs = 3,757	
				F(2, 3754) =	2.34	
Model	559895.862	2	279947.931	Prob > F = 0).0961	
Residual	448347667	3,754	119431.984	R-squared =	= 0.0012	
				Adj R-squa	red = 0.0007	
					245 50	
Total	448907563	3,756	119517.455	Root MSE =	= 345.59	
Total total deaths ~n	448907563 Coef.	3,756 Std. Err.	119517.455 t	Root MSE = P> t	<u>= 345.59</u> [95% Conf. In	terval]
Total total_deaths_~n stringency 20~g	448907563 Coef. 6106061	3,756 Std. Err. .3228851	119517.455 t -1.89	Root MSE = P > t 0.059	= 345.59 [95% Conf. In -1.243653	terval] .0224413
Total total_deaths_~n stringency_20~g gdp per capita	448907563 Coef. 6106061 0014847	3,756 Std. Err. .3228851 .0011617	119517.455 t -1.89 -1.28	Root MSE = P > t 0.059 0.201	[95% Conf. In -1.243653 0037623	terval] .0224413 .0007929

References

- [1] Board, G. P. M. (2019). A world at risk: annual report on global preparedness for health emergencies. *Geneva, Switzerland: World Health Organization.*
- [2] Board, G. P. M. (2020). A world in disorder. *Geneva, Switzerland: World Health Organization.*
- [3] Buckley, C., Kirkpatrick, D., & Hernández, J. (2021). The 25 days that changed the world, *Globe and Mail*.
- [4] Cugat, G. And Narita, F. (2020) How COVID-19 Will Increase

Inequality in Emerging Markets and Developing Economies, *International Monetary Fund Blog.*

- [5] Falk, G., Carter, J. A., Nicchitta, I. A., Nyhof, E. C, Romero, P. D. (Jan, 2021) Unemployment Rates During the COVID-19 Pandemic: In Brief, Congressional Research Service.
- [6] Finch WH and Hernández Finch ME (2020) Poverty and Covid-19: Rates of Incidence and Deaths in the United States During the First 10 Weeks of the Pandemic. *Front. Sociol.* 5: 47. doi: 10.3389/fsoc.2020.00047.
- [7] GINI index (World Bank estimate) Data: data.worldbank.org. Retrieved 2021-3-9.

- [8] Haug, N., Geyrhofer, L., Londei, A., Dervic, E., Desvars-Larrive, A., Loreto, V.,... & Klimek, P. (2020). Ranking the effectiveness of worldwide COVID-19 government interventions. *Nature human behaviour*, 1-10.
- [9] Helbing, D. (2013). Globally networked risks and how to respond. *Nature*, 497 (7447), 51.
- [10] Hofstede, G. (2009). Power Distance Index.
- [11] Jackson, J. K., Weiss, M. A, Schwarzenberg, A. B., Nelson, R. M., Sutter, K. M., Sutherland, M. D. (Feb 2021) Global Economic Effects of COVID-19, Congressional Research Service.
- [12] John Hopkins University & Medicine, (2021), Cases and Mortality by Country, https://coronavirus.jhu.edu/data/mortality last accessed March 9, 2021.
- [13] Leduc, S., & Liu, Z. (2020). The Uncertainty Channel of the Coronavirus. *Economic Letters*.
- [14] OECD, Key Indicators of the Labour Market (KILM): 2001-2002, International Labour Organisation, Geneva, 2002, page 704.
- [15] O'Toole, A. & Hill, V (2021). Rambaut Group, University of Edinborgh.
- [16] Richter, F (Jan 2021). IMPACT OF COVID-19 PANDEMIC ON MENTAL HEALTH.
- [17] Pandemic Causes Spike in Anxiety & Depression.
- [18] Szymanski, B. K., Lin, X., Asztalos, A., & Sreenivasan, S. (2015). Failure dynamics of the global risk network. *Scientific reports*, 5, 10998.
- [19] Tullo, Lois (October 2017). Global Risks and Trends Framework (GRAFT). Global Risk Institute (GRI).
- [20] Tullo, Lois (March 2020). GRAFT: Covid-19 Implications.

Global Risk Institute (GRI).

- [21] Turchin, A. V. (2010). Structure of the global catastrophe. *The* risks of dying out humanity in the XX century./AV Turchin–M.
- [22] WEF (2020). The Global Risk Report 2020, Insight Report 15th Edition In partnership with Marsh & McLennan and Zurich Insurance Group.
- [23] World Health Organization (Jan 2021), New COVID-19 variants fuelling Africa's second wave.
- [24] Goldin, I and Muggah, R., WEF (October 2020) COVID-19 is increasing multiple kinds of inequality. Here's what we can do about it? https://www.weforum.org/agenda/2020/10/covid-19is-increasing-multiple-kinds-of-inequality-here-s-what-wecan-do-about-it/
- [25] World Bank (2018), GINI index (World Bank Estimate) https://data.worldbank.org/indicator/SI.POV.GINI?view=map last accessed March 9, 2021.
- [26] World Bank. (2020). Poverty and Shared Prosperity 2020: Reversals of Fortune. The World Bank.
- [27] Mukherjee Siddhartha (February 22, 2021) Why Does the Pandemic Seem to Be Hitting Some Countries Harder Than Others? The New Yorker. Coronavirus Chronicles, March 1, 2021 Issue.
- [28] Schellekens, P., and Sourrouille, D. M. (2020). COVID-19 mortality in rich and poor countries: a tale of two pandemics?. *World Bank Policy Research Working Paper*, (9260).
- [29] Lai, S., Ruktanonchai, W., Zhou, L., Prosper, O., Luo, W., Floyd, J., Wesolowski, A., Zhang, C., Du, X., Tatem, A., Effect of non-pharmaceutical interventions for containing the COVID-19 outbreak: an observational and modelling study. medRxiv2020.03.03.20029843; doi:https://doi.org/10.1101/2020.03.03.20029843