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Dynamically induced magnetism in KTaO3
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Dynamical multiferroicity features entangled dynamic orders: fluctuating electric dipoles induce magnetiza-
tion. Hence, the material with paraelectric fluctuations can develop magnetic signatures if dynamically driven.
We identify the paraelectric KTaO3 (KTO) as a prime candidate for the observation of the dynamical multiferroic-
ity. We show that when a KTO sample is exposed to a circularly polarized laser pulse, the dynamically induced
ionic magnetic moments are of the order of 5% of the nuclear magneton per unit cell. We determine the phonon
spectrum using ab initio methods, and we identify T1u as relevant phonon modes that couple to the external field
and induce magnetic polarization. We also predict a corresponding electron effect for the dynamically induced
magnetic moment, which is enhanced by several orders of magnitude due to the significant mass difference
between electron and ionic nucleus.
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Introduction. Dynamical multiferroicity [1], the phe-
nomenon where fluctuating electrical dipoles induce mag-
netization, represents the dynamical counterpart of the
Dzyaloshinskii-Moriya mechanism [2]. The origin of this ef-
fect lies in the duality between the electric and magnetic
properties [3]. Quite generally, the effect features entangled
quantum orders. Most notably, displacive paraelectrics (PE)
exhibiting a ferroelectric (FE) phase transition [4–11] can dis-
play an elevated magnetic response induced by either quantum
[12] or thermal fluctuations [13] close to the critical point. On
the other hand, the dynamical magnetization can be induced
by externally driving the material, e.g., by applying the light
or a lattice strain [1]. Dynamic multiferroicity is an example
of the nonlinear phononics phenomenology [14], where a two-
phonon process induces magnetization. From the perspective
of the materials where dynamical multiferroicity can be re-
alized, the prime candidate to search for the effect is SrTiO3

(STO), the paradigmatic quantum critical paraelectric where
ferroelectricity is induced by displacive fluctuations. It has
been recently predicted that the magnetization dynamically
induced both by external means and intrinsically, close to
the FE QCP in this material, may be in a measurable range
[12,13].

In contrast to STO, KTaO3 (KTO) is a quantum disordered
paraelectric at low temperatures with a significantly gapped
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transverse optical mode [5]. At zero stress, KTO retains its
cubic structure down to helium temperatures [15]. The transi-
tion into a ferroelectric phase in KTO can be induced as well,
e.g., by impurities [16,17] or strain [18]. It is assumed that the
ground state of KTO is a quantum disordered phase and sig-
nificantly away from quantum critical fluctuations. Since KTO
behaves as a regular quantum paraelectric, quantum critical
modes are gapped. Furthermore, on the paraelectric side of the
quantum critical point, the fluctuations of the polarization are
expected to be stronger and might give rise to a more dominant
signal of a dynamically induced magnetic moment. So far,
no prediction regarding the effect of dynamically induced
magnetization has been made for KTO, and this is precisely
the aim of the current paper.

Following the formalism of dynamical multiferroicity
[1,12,13], we investigate the induction of magnetic moments
by applying circularly polarized terahertz radiation resonant
with the phonon frequency that yields fluctuating local electric
dipoles, according to

M = αP × ∂

∂t
P = γ u × m

∂

∂t
u. (1)

Here, M denotes the local magnetic moment, P the electric
polarization, u the atomic displacement (associated with the
relevant phonon mode in our analysis), m the particle mass,
while α and the gyromagnetic ratio γ are the respective cou-
pling constants. By performing an ab initio analysis of the
phonon spectrum (see Fig. 1), we single out T1u IR active
phonon modes as relevant for the dynamical multiferroicity.
As we show, using both single-mode approximation and the
full dynamical matrix approach, when the system is subjected
to a resonant circularly polarized laser pulse (Fig. 2), one
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FIG. 1. (a) Unit cell of KTaO3. (b) Calculated phonon spectrum
and phonon density of states.

obtains a measurable magnetic signal. Taking a realistic value
of the damping for the mode, we find that the induced mag-
netic moment per unit cell can reach values of ∼0.05μN ,
where μN is the nuclear magneton. We also predict an en-
hancement of the effect due to the coupling of the ion
dynamics with the electronic one, which should be detectable
experimentally.

Phonon spectrum: First-principles calculation. KTO crys-
tallizes in a cubic lattice with space group Pm3m [Fig. 1(a)].
We chose the experimental lattice constants as determined
by Zhurova et al. [19], with a unit-cell volume of 63.44 Å3.
The phonon spectrum was calculated using PHONOPY [20].
The related force matrix was obtained from a 2 × 2 × 2 su-
percell with automatically generated displacements, where
forces were calculated using the Vienna ab initio simulation
package VASP [21]. The exchange correlation functional was
approximated by the PBE functional [22]. We chose 8 × 8 × 8
points for the Brillouin zone integration, which corresponds to
a k-mesh density of ≈1050 k-points/Å−3. We used a cutoff
energy of 700 eV. Additionally, we calculated the Hessian
matrix for the energy landscape using density functional per-
turbation theory. This approach also provides a force matrix
and phonon frequencies at the � point, which we used to
estimate the dynamically induced magnetization, as explained
below.

The KTO unit cell contains five inequivalent sites, result-
ing in 15 phonon modes. We studied the symmetry of the
phonon modes using GTPACK [23,24]. Constructing a five-
dimensional permutation representation �p for the point group
Oh and the five unit-cell sites and computing the direct product
with the vector representation �v = T1u, we obtain �p ⊗ �v �
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FIG. 2. Dynamically induced total moment per unit cell for
a laser pulse with driving frequencies 3.05 THz (left panel) and
6.17 THz (right panel).

TABLE I. Calculated Born effective charges in units of the ele-
mentary charge e.

Z∗
xx Z∗

yy Z∗
zz

K 1.14 1.14 1.14
O −6.64 −1.68 −1.68
O −1.68 −6.64 −1.68
O −1.68 −1.68 −6.64
Ta 8.86 8.86 8.86

4T1u ⊕ T2u corresponding to the expected modes at the �-
point in the Brillouin zone [24]. Using PHONOPY, we verify
four T1u modes at frequencies 0.0, 3.02, 6.16, and 16.38 THz,
as well as one T2u mode at 7.94 THz. The former modes being
IR active but finite-frequency modes are instrumental for the
dynamical multiferroicity, as shown below. The full phonon
spectrum showing 3 acoustic and 12 optical modes is plotted
in Fig. 1(b). The values are in good agreement with previous
experiments on KTO [25]. These frequencies change slightly
when calculated using the density functional perturbation the-
ory, giving 0.0, 3.05, 6.17, 7.98, and 16.41 THz. We notice
that, in contrast to STO, KTO does not give rise to negative
energy modes in the phonon spectrum for the cubic phase,
indicating the absence of a structural phase transition at low
temperatures. After identifying the T1u phonon modes, we
analyze the magnetic signal resulting from the exposure of
the KTO system to an externally applied circularly polarized
laser pulse.

Dynamical multiferroicity. The polarization contains an
ionic and an electronic contribution and can be written as

Piα = Z∗
iαβuiβ + ε0(εαβ − δαβ )Eβ. (2)

Here uiα denotes a displacement of atom i along the Cartesian
coordinate α. The Born effective charge Z∗

iαβ describes the
response of the macroscopic polarization per unit cell to the
displacement of atom i, Z∗

iαβ = 	
∂Pβ

∂uiα
|
E=0

, with 	 the unit-cell
volume [26]. The calculated Born effective charges for KTO
are given in Table I. The electronic response of the polariza-
tion to the electric field is approximated in terms of the static
dielectric tensor εi j . Due to the cubic symmetry of the unit
cell, the dielectric tensor is diagonal and we obtain

εxx = εyy = εzz = 5.4. (3)

This value is sensitive to the chosen computational pa-
rameters, but consistent with other references [27]. ε0 ≈
5.52 e2 keV−1 Å−1 is the vacuum permittivity.

We calculate atomic displacements ui at the site i using
classical equations of motion,

üiα (t ) + η u̇iα (t ) +
∑

jβ

Kiα jβu jβ (t ) = Ziα

mi
E∗

α (t ). (4)

Here, Ziα = Z0
i + ∑

β Z∗
iαβuiβ , with Z0

i being the bare charge
of the ion (see Table II). mi is the mass of atom i, η is a
damping factor, and K is the dynamical matrix. The electric
field within the medium E∗ is related to the vacuum electric
field E by

E∗ = ε−1E. (5)
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TABLE II. Site parameters. Charge values according to DFT
calculations performed in this study.

K Ta O

charge [e ≈1, 602 × 10−19 C] 0.867 4.954 −1.940
mass [u ≈1, 66 × 10−27 kg] 39.1 180, 95 16.0

In experiments, an additional loss in the field strength has
to be taken into account due the polarization process. In our
approach, the electric field induces a collective displacement
of the ionic positions by coupling to the charge. Note that
we do not include higher-order corrections to the dielectric
screening [28].

We continue by discussing the size of the dynamically in-
duced magnetic moment using a simplified analytical model.
The full set of coupled differential equations is solved nu-
merically afterward. We start by solving Eq. (4) within a
single-mode approximation by considering one relevant mode
ωi = 2π fi, corresponding to one relevant site,

üα (t ) + η u̇α (t ) + ω2
i uα (t ) = q

m
E∗

α (t ). (6)

We choose circularly polarized light, i.e., E∗(t ) =
E∗

0 ( sin(ωt ), cos(ωt ), 0). In a coarse approximation, from
(6), we notice that the displacement scales linearly with the
applied field, u ≈ qE∗

mω2 . For a harmonic displacement, we can
estimate the corresponding time derivative as u̇ ≈ ωu. Using
Eq. (1) and replacing the gyromagnetic ratio by γ = q

2m , we
can estimate the asymptotic behavior for the dynamically
induced magnetic moment by

Mz ∼ q3E∗2

m2ω3
. (7)

Hence, the effect increases quadratically in the field strength,
but decreases with ω−3 in the driving frequency. The corre-
sponding values for the charge q and the mass m for KTO
are given in Table II. The charges calculated using DFT are
close to the chemistry picture of an ionic crystal, with integer
oxidation states O−2, K+1, and Ta+5.

Equation (6) can be solved exactly. As we are solely inter-
ested in the contribution to the atomic displacement emerging
due to exposure to an external laser field, we only keep the
inhomogeneous part of the solution of Eq. (4) that can be
written as

u(t ) = 1


4
ω + 4η2ω2

(

2

ω −2ηω

2ηω 
2
ω

)
q

m
E∗, (8)

with 
2
ω = ω2

i − ω2. Evaluating the polarization as P = q
V u,

the ω-dependent part of Eq. (8) can be interpreted as the
susceptibility χ by transforming it into the well-known ex-
pression P = χε0E. Hence, we obtain for the magnetization

Mz = q3ωE∗2

2m2
(
η2ω2 + 
4

ω

) . (9)

In the limit ω � ωi, we obtain 
4
ω ≈ ω4. Neglecting the

damping term η2ω2 	 ω4 gives a similar expression to
Eq. (7).

System driven with a terahertz pulse. Next, we consider
a more realistic terahertz pulse and solve Eq. (4) numerically.
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FIG. 3. Site-resolved dynamically induced moments within the
unit cell. We used the same pulse as in Fig. 2, a driving frequency of
3.05 THz and a damping of η = 0.05 THz.

Such terahertz pulses are currently available [29] and allow for
large peak electric field to drive phonons, but with an average
deposited energy that is not enough to melt the sample. We
set uα (0) = u̇α (0) = 0. The pulse is modeled by a Gaussian
embedding as follows:

E(t ) = E0 e− (t−t0 )2

2σ

⎛
⎝sin(ωt )

cos(ωt )
0

⎞
⎠. (10)

The considered driving frequencies are 3.05 and 6.17 THz, be-
ing resonant with the phonon modes. We choose a total width
of 2 ps with a peak at 2 ps and obtain the solution for a window
up to 16 ps. The dynamically induced magnetic moments are
shown in Fig. 2 for various values of the damping parameter
(η = 0.05, 0.10, and 0.15 THz). Depending on the damping
factor, we observe a slow decay of the dynamically induced
magnetic moment. The maximal total dynamically induced
magnetic moment is ≈0.7μN for small damping of η < 0.1
THz. The dynamically induced magnetic moment decreases
by about one order of magnitude for a driving frequency in
resonance with the T1u mode at 6.17 THz. Due to the opposite
local charges of the ions, the induced moments have oppo-
site strength for O compared to Ta and K. The site-resolved
dynamically induced moments due to local displacements are
shown in Fig. 3. We observe that the main contributions to the
total induced magnetization per unit cell come from Ta and O,
being of the order of 0.2μN and −0.1μN for a small value of
the damping parameter, η = 0.05 THz.

Conclusion and outlook. We showed that KTO is a
prominent candidate for the observation of dynamical mul-
tiferroicity. We suggest an experimental setup where the KTO
sample is exposed to a circularly polarized laser field in the
terahertz range to excite phonons resonantly. Using ab initio
calculations, we identify the T1u phonon modes that couple
to the laser pulse. The dynamically induced magnetization
due to locally oscillating dipoles could be measured by the
time-resolved Faraday effect using a femtosecond laser pulse
in the visible range. The estimated scale of the effect for an
experimentally feasible setup is in the order of 10−2μN per
unit cell, with μN being the nuclear magneton. In Eq. (7) we
show that in an asymptotic limit, the induced moment scales
quadratically with the electric field strength and to the third
power in the charge. It also scales inversely with the third
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power in driving frequency and the mass squared. In particular
the latter feature could be of interest.

Here we discussed the ionic movement as a driver for the
induced magnetism. We now point out an interesting possi-
bility of induced electron motion that also would produce the
magnetic moment. We expect the angular momentum transfer
from the moving ions to the electronic charge cloud in the
solid. While the exact microscopic details need to be worked
out, the qualitative argument goes as follows. To estimate the
gyromagnetic ratio for the coupling, we follow Refs. [13,30]
in a modified form. The position of a charged ion is denoted by
u+, and the average displacement of the electron cloud is u−.
The respective masses are m+ and m−. We introduce average
and relative coordinates U = (m+u− + m−u+)/(m+ + m−)
and u = u+ − u−. We focus on the relative coordinate, hav-
ing the momentum p = μu̇ with μ = m+m−/(m+ + m−). It
follows for the angular momentum of the relative coordinate

L = u × p = m+m−
m+ + m−

u × u̇. (11)

Setting m−u+ = m+u−, we obtain for the dynamically in-
duced moment according to Eq. (1)

M = m+ + m− = q

2

m+ − m−
m+ + m−

u × u̇. (12)

Taking M = γ L, we obtain for the gyromagnetic ratio

γ = q

2

(
1

m−
− 1

m+

)
. (13)

For nonequal charges, this equation generalizes to

γ = m+
m−

q+
m+ + m−

− m−
m+

q−
m+ + m−

. (14)

Hence, from Eqs. (13) and (14) it becomes apparent that the
total gyromagnetic ratio of ion and electron is dominated
by the electron mass (mi/me ∼ 103–105). Here we need to
distinguish between a direct coupling of the electron to the
external field ∼ε0(εαβ − δαβ )Eβ as well as an induced motion
of the electrons due to the ionic movement. While the former
contribution to the total magnetization should vanish with
vanishing electric field, the latter should be present as long
as the ionic movement persists. More precise analysis will be
a topic of a separate publication.

We propose KTO as a prominent candidate for the observa-
tion of dynamical multiferroicity. Our findings open up a route
for the experimental detection of entangled dynamical orders.
They should also motivate further studies of the candidate
materials for the realization of the effect.
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