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Abstract

The development of highly innovative techniques and technologies to enhance performance and technical sus-
tainability of materials used in the field of cultural heritage conservation is providing conservators with innovative
nanocomposites materials, including protective coatings, by merging the performances of engineered nanoparticles
(NPs) with conventional chemicals. However, the human health and environmental risks that may potentially arise
from these new materials are still largely unknown, requiring an adequate assessment and management along their
entire life cycle. Concerns could emerge due to the leaching of the material containing NPs or of the NPs alone,
especially during their use (exposure of the treated object to, e.g., heavy or acid rain) and disposal (when the wasted
product is processed in, e.g., waste water treatment plants). To date, no standard leaching test methods have been
specifically developed for nano-enabled products, with the consequent lack of data on the NPs potential exposure
also in the field of cultural heritage. Therefore, an extensive review over the last 10 years by querying to the Scopus
database "nanoparticles’, “leaching” and “coatings” has been herein reported to clearly highlight (i) the standard test
methods used or adapted to estimate the NPs leaching from nano-based coatings; (ii) the available studies in which
the NPs leaching from nano-based coatings was estimated without following any specific standard test method; (iii)
the works focusing on other nanocomposite materials performances than leaching, in which standard test methods
were applied, potentially useful to indirectly estimate NPs leaching. All the information gathered by this bibliographic
search have been used to identify the most promising leaching tests for NPs estimation to be applied in the field of
cultural heritage, especially for both large, e.g., building facades, and small, e.g., bronze works of art, surface areas from
which the leaching of nano-based materials could be significant in terms of human health and ecological risks, based
also on the (eco)toxicity of the leachate. The derived information can thus ultimately support effective risk manage-
ment of innovative nano-enabled products, including the implementation of Safe by Design approaches.
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Background

Regardless of their nature, movable and immovable cul-
tural heritage assets, especially those located outdoors,
are irremediably exposed to several degradation agents
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such as temperature, humidity, light, microorganisms and
air pollutants, all accounting for the natural aging of art
materials [1, 2]. In recent years, engineered nanoparticles
(NPs), consisting of particles deliberately designed with
all the three dimensions in size between 1 and 100 nm,
are emerging as a successful solution for the preservation
of cultural heritage because of their capability in enhanc-
ing performances, e.g., by improving transparency, resist-
ance, cleaning and anti-microbial properties, ensuring
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greater durability of art materials [3]. Because of the vari-
ety and complexity of artistic and historical substrates,
conservation science has explored different routes,
developing several technical approaches for solving con-
servation issues. In the field of stone conservation, col-
loidal Ca(OH), is one of the most promising products
for stone’s consolidation because it is easily converted
into calcium carbonate (CaCO,) as result of carbonation
when exposed to atmospheric CO, under moist condi-
tions [4]. Another example is provided by coatings incor-
porating SiO, NPs for improving abrasion resistance and
for adding hydrophobic properties to the stone surface [5,
6]. Both hydrophilic and hydrophobic silica are used in
solvent-borne coatings to enhance the anti-settling addi-
tives for pigments [7]. The addition of Ag NPs to paints
for outdoor applications on building facades, instead,
determines an antimicrobial effect derived from the
activity of silver [8], while photoactive TiO, NPs are used
to optimize the mechanical properties of the products
and to give the paint self-cleaning properties through
photocatalytic and hydrophilic properties [9]. The addi-
tion of zirconia NPs to coatings for metal substrates
showed to remarkably improve their properties, such as
strength and fracture toughness, wear resistance, hard-
ness, chemical and corrosion resistance [10]. Recently,
further innovative nano-based products for the conser-
vation of movable and immovable property have been
developed within H2020 projects such as NANORE-
START (Grant agreement no: 646063) and NanoCathe-
dral (Grant agreement no: 646178). Some examples from
the NANORESTART project are nano-based fluids for
undesired graffiti removal [11, 12], alkaline NP disper-
sions for restoration of alum-treated archaeological wood
[13], layered double hydroxide nanocarriers in protecting
bronze artworks [14] or nanocellulose-based materials
for canvas consolidation [15, 16]. In addition, nanocom-
posite materials have been specifically developed in the
field of stone protection within the NanoCathedral pro-
ject [17, 18].

However, similarly to other market sectors benefit-
ting from nanotechnology innovation, the design and
use of nano-enabled products in the conservation field
raise issues concerning human health and environmental
risks that could emerge from exposure to NPs embed-
ded in conservation products and into innovative mate-
rials used in the construction field and that need to be
carefully assessed to satisfy current European regula-
tory provisions. According to the revision of Annexes of
the EU REACH regulation with regards to nanomateri-
als, effective from the 1st of January 2020 [19], manu-
facturers and importers must register a nanomaterial
if the total amount per year (including both nanoforms
and potential bulk form) is above one tonne and submit
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a complete Chemical Safety Assessment (CSA) report if
this quantity exceeds 10 tonnes. The CSA shall identify
and describe the risks associated with the bulk form and
the nanoform(s) along the life cycle of the substance and
document that these risks are adequately controlled.
Therefore, human and ecological exposure assessment
requires the investigation of possible release scenarios
of NPs along the life cycle of nano-enabled products,
including: (1) release during NPs production; (2) release
from the manufacturing processes of products containing
NPs; (3) release into the environment during use (includ-
ing release from the objects treated with such products),
re-use and recycling of nano-enabled products, and (4)
indirect release at the end-of-life stage as consequence
of processes within wastewater treatment plants or waste
incineration plants, to different environmental compart-
ments (i.e. surface water, soil, air, and groundwater) [20].
In parallel, (eco)toxicological testing should also be car-
ried out at each of the different stages of the life cycle, to
provide information useful of real exposure scenarios.

On this regard, a recent review by Reyes-Estebanez
et al. [21] collected numerous studies dealing with the
impacts of the most used and widespread NPs in cultural
heritage on biota at both the biochemical and organism
levels for different environmental compartments.

Such data and information would also support the
development of “green” or “Safe by Design” approaches,
which are still in their infancy in the field of cultural
heritage conservation [22, 23]. In particular, Semenzin
et al. [23] recently proposed a sustainability framework
implementing the Safe by Design concept to support
product’s developers in the early steps of product devel-
opment, with the aim to provide safer nano-formulations
for conservation, while retaining their functionality. Such
framework takes into account the current EU legislative
context (i.e. CLP and REACH regulations) as well as the
specific features of the innovation process in the cultural
heritage conservation field, which demands a high inter-
action between the product developers and the restorers
[24]. In detalil, starting from the development of a nano-
based formulation (step 1), the following main steps of
the framework are the: screening hazard assessment (step
2); advanced hazard assessment (step 3); safety assess-
ment (step 4) and, finally, sustainability assessment (step
5). While the hazard assessment in step 1 is mainly based
on the EU CLP self-classification approach for health
and environmental hazards of the mixture, step 2 can
include computational (e.g., in silico models) as well as
experimental [e.g., in vitro and in vivo (eco)toxicologi-
cal tests] approaches according to an Integrated Testing
Strategy (ITS), where information about relevant expo-
sure scenarios for both human health (i.e. occupational
and public health) and the environment (i.e. technical
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compartments such as waste systems and environmental
compartments such as soil and water systems) along the
life cycle of the innovative products should also be col-
lected or generated. More specifically, in order to allow
safety assessment (i.e. integration of risk assessment and
risk control as required by the EU REACH regulation;
(step 3), data/information on product degradation and/
or release throughout their life cycle should be collected,
to evaluate medium and long-term behaviour of nano-
based products [9].

Indeed, NPs that reach the environment may be com-
pletely different from the materials originally produced
by industry because of aging processes that may cause
transformations [25, 26], making the monitoring and
quantification of the NPs release highly challenging,
especially when they are present at trace levels in envi-
ronmental compartments (e.g., freshwater, soil) [27]. In
this context, leaching tests could provide a valuable sup-
port to exposure assessment, particularly in the post-
application phase of nano-enabled products, i.e. when
the treated work of art is exposed to outdoor conditions
(e.g., heavy rain) or the wasted product is processed
in waste systems, and therefore NPs can reach the sur-
rounding environment.

To the best of our knowledge, only recently the
release of hazardous substances from nano-based
products has been studied in depth. Froggett et al. [28]
reviewed the literature on releases from solid, non-
food commercial nanocomposites during use, disposal,
or recycling, claiming that there is a paucity of data
on release of NPs from solid nanocomposites under
the five scenarios considered: machining, weather-
ing, washing, contact and incineration. Among the 54
nanorelease studies identified, most of them detected
only the particles from the matrix alone, followed by
matrix debris embedding NPs. Far less frequently the
added NPs entirely dissociated from the matrix were
determined, and even more rarely dissolved ionic forms
of the added NPs. Besides this review, Koivisto et al.
[29] provided a library for nano-based products, calcu-
lating the quantitative NPs release from the literature.
Following the approach suggested by Froggett et al.
[28], the 96 peer-reviewed scientific publications iden-
tified by Koivisto and et al. [29] were divided into six
groups: (1) thermosets; (2) thermoplastics; (3) coated
surfaces; (4) sprays; (5) textiles; (6) other articles. The
quantitative release was defined as “the amount of mass
released from a nano-application under experimental
setups (scenarios) that intend to simulate situations that
result in the liberation of material, calculating it from
the measured average concentration levels and volumes
of immersion fluid or dilution air” The authors under-
lined the lack of general available guidance to measure
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quantitative release under various release scenarios and
called for developing systematic experimental methods
to support hazard and exposure assessment of nano-
based products.

In this context, the overarching objective of this
review was to provide an analysis of the available leach-
ing standard test methods already used for different
nano-enabled products to support the environmental
exposure assessment of NPs from innovative prod-
ucts employed for surface protection in cultural herit-
age conservation. In addition to standardized leaching
test, non-standardized leaching procedures, as well as
standard tests used to evaluate technical performances
of nano-enabled products, have been collected and
investigated, with the aim to provide all the procedures
that can be suitable in the field of cultural heritage,
where more sensitive substrates could require less inva-
sive testing. This work can therefore contribute to the
assessment of human health and ecological risks as well
as to the implementation of Safe by Design approaches
for effective risk management of innovative nano-
enabled products, especially taking into account their
use (application and post-application phases, includ-
ing exposure of the treated object to heavy or acid rain
or other weather conditions) and disposal (when the
wasted product is processed, e.g., in waste water treat-
ment plants).

Materials and methods—literature search
approach

The leaching of hazardous substances from a material
is often investigated under the broader topic of materi-
als’ performances (e.g., assessment of hardness/flexibil-
ity, resistance to abrasion, resistance to a falling weight,
adhesion, artificial weathering, release). The system-
atic search herein reported was performed by query-
ing the Scopus database, from 2010 to present, using
three broad search terms: nanoparticles, leaching, and
coatings.

This analysis identified 930 documents, among which
53 relevant studies focus on NPs leaching from different
nanocomposite materials, including nano-based paints
and preservatives materials, nanoscale fillers as well as
photocatalytic coatings, nanopigments and antibacterial
nano-based products. The studies selected were divided
into: (i) leaching tests of nano-enabled products in which
standard methods (e.g., ISO and ASTM standards) have
been applied or adapted; (ii) leaching tests from nano-
enabled products without any standardized test methods;
(iii) assessment of performances other than the direct
assessment of leaching, useful to indirectly estimate the
NPs leaching from nano-enabled products.
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Results and discussion

The bibliographic search performed highlighted that
no specific standard leaching test methods properly
designed to estimate the NPs leaching from nano-ena-
bled products are present in the literature. Nevertheless,
all the outcomes potentially linked to this aim have been
considered and discussed. The results of this literature
analysis were divided into three tables: Table 1 includes
seven studies in which four different standard leaching
test methods were used, i.e. two for nano-based paints
and coatings and two for nano-based wood preservatives;
Table 2 lists 35 studies for evaluating leaching of NPs
from products by using only standard preparation test
methods but without any specific standard leaching test;
Table 3 summarizes additional ten works, in which eight
more standards for evaluating other nano-based materi-
als’ performances than leaching have been applied and
could be adapted for developing useful leaching tests in
the field of cultural heritage. A schematic representation
of the available methods is reported in Fig. 1.

Besides the standards already mentioned, other two
standard leaching test methods for the determination of
the release of dangerous substances from non-nano coat-
ings and construction products have been considered
and discussed.

Lastly, specific information from the studies listed
in Table 1 on the estimated amount of species detected
in the leachate has been collected in Additional file 1:
Table S1.

Standardized testing to estimate NPs leaching

from nanocomposite materials

Nano-based paints

The leaching of NPs from nano-based paints was assessed
by following two standard tests, i.e. ISO 2812-2:2007 [30]
on paints and varnishes, focusing on the determination
of resistance to liquids by water immersion method and
12457-3:2002 [31], related to leaching of granular waste
materials and sludges. The first standard leaching test was
employed by Zuin et al. [9], Zhang et al. [26] and Lopez-
Ortega et al. [32] while Zuin et al. [7] estimated the nano-
based paint debris leaching according to the second one.
In detail, both Zuin et al. [9] and Zhang et al. [26] inves-
tigated the leaching of TiO,, SiO, and Ag NPs embed-
ded in paints applied on fibre cement panels. Zuin et al.
[9] adapted this standard method, collecting leachates
after UV exposure (according to ISO 11507:2007 [33],
currently revised by ISO 16474-1:2013 [34]) and Taber
Abraser test (using ISO 7784-2:2006 [35]), by immersing
% of the length of the panels and with a surface/volume
ratio equal to 2. Leachates were collected after 4, 8, 24,
120 h and analysed by inductively coupled plasma-optical
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emission spectroscopy (ICP-OES). After the water
immersion test, a small amount of acetic acid was added
to the leaching solution to simulate acid rain effect on
coated panels. Surface degradation was investigated by
transmission electron microscopy (TEM), energy disper-
sive X-ray analysis (EDX) and X-ray fluorescence (XREF).
The results highlighted that only very little Si migration
from SiO, NPs-based paints occurred in these acceler-
ated tests. With regard to TiO, NPs-based paint and its
reference based on bulk TiO, pigment, it was observed
that both paints released only very low amounts of Ti
into the leachates during the immersion test, without any
increase of Ti concentration over time and no TiO, parti-
cles were identified in the leachate by TEM. As far as the
Ag NPs-based paint, the Ag concentration from Ag NPs-
based paint in leachates was below the detection limit of
the ICP-OES (0.1 pg/l).

Zhang et al. [26] also applied ISO 2812-2:2007 stand-
ard [30] for determining the resistance of single-layer or
multi-layer systems of coating materials to the effects
of water by partial or full immersion, analysing the lea-
chates after 100, 150, 200, 250, 300, 350, 400 and 500 h
of weathering chamber. The role of pH on the releases
was also investigated by varying the pH from 3 to 10. As
far as weathering before obtaining leachates, EN 1062-
11:2002 standard [36] was used for conditioning the sam-
ples before testing and ISO 11507:2007 standard [33] was
followed for UV weathering. Particles size distribution
of the leached NPs was evaluated by means of Dynamic
Light Scattering (DLS) technique, the NPs’ release by
inductively coupled plasma-mass spectrometry (ICP-
MS), while scanning electron microscopy (SEM) and
TEM were employed to identify size and shape of NPs in
the matrix before and after leaching. The results obtained
showed that the duration of weathering test and rainfall
are more important in controlling the NPs’ release than
the variation of pH.

The evaluation of SiO, NPs leaching from paint debris
was carried out by Zuin et al. [7], following 12457-3:2002
[31]. Polyvinyl chloride panels were coated with differ-
ent paints containing the same amount of SiO, NPs, but
different pigment volume concentrations and different
amount and type of binder and pigment. After 24 h of
drying in indoor environment, paints were taken off from
panels and mechanically milled until a fine powder in the
range of approx. 100 pm to a few mm was obtained. The
leaching test involved approx. 300 g d.w. of paint debris
added into a high-density polyethylene bottle. Deionized
water (DW) was used to obtain a liquid-to-solid (L/S)
ratio of 2:1 and of 8:1 (cumulative L/S of 10:1). The mix-
ture at L/S of 2:1 was shaken by end-over-end rotation
at 10 rotation per minute (rpm) for 6 h, while the mix-
ture at L/S of 8:1 was agitated for 18 h. The supernatant
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STANDARD LEACHING TESTS NON-STANDARD LEACHING TESTS OTHER USEFUL STANDARDS
From nano-enabled products: Immersion Abrasion resistance Gloss
+ ENISO 2812:2018 @ ; . <~
« EN ISO 12457-3:2004 <@m11 @9
S~ QLT
From nano-based wood preservatives: Spray/Runoff Artificial weathering

* AWPAE11-97

. EN 84-1997 % e%e%e
IMMERSION Milled particlesin

contact with a liquid

(thermal, UV and relative humidity)

5

o000

Mechanical
resistance

Corrosion
resistance

In contact with water-

based liquid

2

Fig. 1 Schematic representation of the available test methods to investigate the leaching of NPs, divided by: standard leaching tests, non-standard
leaching tests and other standards used to investigate the performances of materials that could be useful for the NPs'leaching evaluation

= 6 ¢

was collected for analysis after 24 h of agitation, filtered
at 0.45 pm under vacuum on a standard cellulose nitrate
filter and acidified (1% v/v) to determine the “dissolved”
SiO, by ICP-MS according to ISO 17294-2:2003 stand-
ard [37]. Total Si was also quantified via acidification with
nitric acid of unfiltered samples. Following the procedure
of the standards method 2540C of the American Public
Health Association, both total dissolved solids and total
suspended solids were also determined. The NPs detec-
tion was carried out by TEM—-EDX. The main outcomes
of this study were that: (i) the Si leached out was 1.8%
with respect to the initial amount of Si in paint; (ii) some
agglomerates of SiO, NPs were detected in some lea-
chates; (iii) the pigment volume concentration is a crucial
factor for SiO, NPs leaching, and (iv) by balancing the
binder to pigment ratio, it would be possible to reduce
the SiO, NPs leaching.

Within the field of antifouling paints for offshore struc-
tures, Lopez-Ortega et al. [32] compared the water resist-
ance of an aluminium layer treated with Carboguard®
epoxy mastic coating with one coated with a product
functionalized by NPs. The evaluation of water resist-
ance was assessed according to several standards, such
as ISO 6270-2:2018 [38] on water condensation test, ISO
9227:2017 [39] on salt-fog test and ISO 4628 1-5:2016
[40] on the evaluation of degradation of coatings, includ-
ing the ISO 2812-2:2007 [30] on leaching test. In detail,
an organic topcoat paint was functionalized with a SiO,

NPs dispersion to enhance hydrophobicity and with
three different biocides, including Cu,O NPs. Briefly, the
panels were immersed in 1 1 of synthetic seawater and
stirred over 28 days. Unlike the first two studies, here the
NPs leaching was assessed only indirectly by determining
the release rate of copper and other main elements pre-
sent in the painted samples by ICP-OES every 24 h. After
this step, a set of new samples was tested under the same
experimental conditions, till reaching the plateau of cop-
per maximum release. The leaching results highlighted
the presence of Si and negligible Cu release for both orig-
inal and nano-based topcoat paints, with the silicon con-
tent in the modified paint decreasing with time to lower
values than those of the original paint at the end of the
test. Following the marine algal growth inhibition test
(ISO 10253 [41]), in accordance with the OECD Guid-
ance Document no: 23 [42], the ecotoxicity assessment
with the algae Phaeodactylum tricornutum showed a tox-
icity level of the leachate which fulfilled the legislation
requirements for modified nano-based paint and lower
than that of the bulk material.

Wood preservatives

Two different standard test methods for NPs leaching
investigation from wood were applied in three studies.
The AWPA E11-97 standard method [43] for acceler-
ated laboratory evaluation of the leachability of water-
borne wood preservatives was employed by Ding et al.
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[44]. The nano-based wood preservatives tested included
(i) CuO NPs with an average particle size of 10 or 50 nm
(CuO-10 and CuO-50) and (ii) CuO NPs stabilized by
weakly acidic or weakly basic polymer-stabilizers, i.e.
[(2-hydroxy-3-trimethylammonium)propyl] chitosan
chloride (HTCC-CuO-10 and HTCC-CuO-50) and
Poly(vinylpyrrolidone) (PVP-CuO-10). The description
of the leaching method applied clearly states that the
data collected are not intended to, nor shall it be used to
predict environmental impacts of treated wood. The test
involved the leachate collection over 500 h, followed on
one side by TEM-EDS analysis, revealing the presence of
NPs, and, on the other side, by heating at 80 °C and by
acid digestion to dissolve solid NPs and determine Cu*"
via Atomic Absorption Spectrophotometry (AAS). Ding
et al. [44] concluded that the size was the most significant
factor affecting leaching, showing the highest Cu*" con-
centration derived from the smallest NPs tested. Moreo-
ver, the authors found that the polymer stabilizers used
enhanced leaching with respect to the unstabilized CuO
NPs, hypothesizing that aggregation of bare CuO NPs
prevents the leaching.

The other standard test method for the NPs leaching
assessment was EN 84:1997 [45], employed in Pantano
et al. [46] by comparing nano-enabled and molecu-
lar copper-based formulations for wood preservative.
The test was conducted at 4 kPa vacuum-atmospheric
pressure cycle in DW, by maintaining the wood blocks
(DW:wood 5:1 v/v) for 14 days with nine water changes
at 20 °C and 65% of relative humidity. The leachate was
analysed by ICP-MS for the total copper content deter-
mination and by single particle ICP-MS (spICP-MS) to
detect any NPs. The results indicated that the highest Cu
leaching rate was about 3 orders of magnitude higher for
molecular Cu-based formulations than for nano-based
preservatives. Furthermore, NPs leaching was assessed
by a combination of analytical methods, i.e. filtration-
ICP-MS, TEM-EDX and spICP-MS, allowing to con-
clude that the nano-enabled micronized Cu formulation
released only ionic Cu, with a rate nearly identical to the
conventional no-nano formulation.

The same leaching test standard method used by Pan-
tano et al. [46], was applied in Bak and Németh [47] by
employing ZnO NPs, Zn-borate NPs, Ag NPs, Cu NPs
and Cu-borate NPs dispersions to beech and pine planks.
However, the authors investigated the NPs leaching only
by indirectly measuring the weight variations before and
after NPs suspensions impregnation. By comparing the
weight variations, they supposed that zinc-oxide, copper
and silver NPs showed much higher resistance to leach-
ing with respect to zinc- and copper-borate dispersions.
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NPs’ leaching estimation

For the studies listed in Table 1, information on both
qualitative and quantitative estimation of NPs’ leach-
ing from nano-enabled products by applying a standard
leaching test method has been included in Additional
file 1: Table S1. When specified, the data provided about
NPs’ leaching were quite scattered in terms of the metric
used for the species detected in the leachate, providing
the results as mg/m? or as a percentage of a species of
interest. The studies in Additional file 1: Table S1 high-
lighted that the experimental conditions (e.g., immer-
sion cycles, weathering time, duration) and the matrix in
which NPs were embedded are key parameters in driving
the amount of NPs leaching from nano-enabled products.

Non-standardized procedures to estimate NPs leaching
from nanocomposites materials

Among the 34 studies listed in Table 2 in which no spe-
cific standard leaching test was used, a wide set of type
and size of treated substrates have been considered,
assessing NPs leaching in several aqueous-based solu-
tions, ranging from deionized water, to simulated and
natural rain, saline solutions, synthetic and natural sea-
water, as well as phosphate buffer saline and biologi-
cal media. The only standard test methods followed by
the authors mentioned in Table 2 were related to UV
weathering before performing any leaching experiment.
By analysing the similarities and the differences among
these studies, they can be further divided into four dif-
ferent sub-groups. The largest group (22 studies) includes
works where different sample immersion test procedures
were employed, estimating the leaching of targeted com-
pounds at different time points: most of the authors ana-
lysed the leachate after the typical exposure time points
of bacterial growth (till 96 h), up to days (maximum 10)
or weeks (maximum 4), while only in Kiinninger et al.
[48] and Azimzada et al. [49] the leaching test was car-
ried out under natural weather conditions. Within this
first sub-group, besides determining the concentration of
the targeted elements, only Olabarrieta et al. [50], Al-Kat-
tan et al. [51], Kiinninger et al. [48], Neubauer et al. [52],
Ruggiero et al. [53], Wohlleben et al. [54] and Azimzada
et al. [49] directly focused on the NPs detection in the
leachate, by using electron microscopy techniques (SEM
or TEM-EDX), spectroscopy or spectrometry techniques
(UV-Vis, or spICP-MS) or centrifugation techniques
(AUC). The other three sub-groups consist of: 5 studies
where water spray or/and outdoor runoff methods were
used, including Kaegi et al. [8], Shandyla et al. [55] and
Jimenez-Relinque et al. [56] that directly assessed the
amount of NPs after leaching experiments by electron
microscopy techniques; 3 studies investigating leaching
from milled paint/aged particles in contact with a liquid,
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providing an estimation of the NPs in the leachate only
in the works by Al-Kattan et al. [5, 57] again by electron
microscopy techniques; other 5 studies focused on the
leachate from nanocomposite materials when in contact
with a water-based liquid by flushing, dripping or spread-
ing it, investigating the presence of NPs after leaching
test only in Agnihotri et al. [58], Sassoni et al. [59] and
Nam et al. [60] by employing either electron microscopy
or spectroscopy (surface enhanced Raman spectroscopy,
SERS) techniques.

Standard test methods for evaluating nanocomposite
performances potentially useful for NPs leaching
estimations

The leaching of NPs from coatings and materials can be
heavily influenced by their mechanical performances
(e.g., permeability, wettability, durability, thermal sta-
bility, and resistance to abrasion and corrosion), thus
standardized test methods investigating them can give
very useful information to indirectly estimate NPs leach-
ing under different conditions. Considering for example
a nano-based material with high abrasion or corrosion
resistance that is also chemically and biologically inert,
good leaching resistance could also be assumed. There-
fore, besides the information reported in Tables 1 and 2,
10 additional studies investigating other performances
of nanocomposite materials are listed in Table 3. Among
all the standard methods included within these works,
the most suitable ones for obtaining indirect informa-
tion on a potential NPs leaching were: (a) ASTM B117-
19 [61] and ASTM G154-16 [62] for artificial weathering;
(b) ASTM standards D6037 [63], D4060 [64], D968 [65]
and the ISO 2409:2007 [66] for resistance to abrasion;
(c) ASTM D638 [67] and ISO 14125:1998 [68] for ten-
sile and flexural properties. Moreover, the resistance of
coated materials to water by partial or full immersion
test described in ISO 2812-2:2007 [30], followed by Zuin
et al. [9], Zhang et al. [26] and Lopez-Ortega et al. [32] (as
reported in Table 1), has also been used by Luangtrira-
tana et al. [69] (Table 3), but only for determining the
weight loss of coated samples instead of analysing the
potential presence of NPs in the leachate. Most of the
studies included in Table 3 tested these performances on
SiO, NPs-based materials.

General remarks and conclusions

In the field of cultural heritage conservation, nano-ena-
bled products that are thermally stable, biologically and
chemically non- or little-reactive, are effective to prevent
and/or mitigate the effect of weathering (e.g., rainfall,
relative humidity, temperature, wind, sunlight, micro-
organisms and air pollution) [70]. However, safety and
sustainability assessment of nano-enabled materials and
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products have not kept pace with their rapid commer-
cialization [71], calling for further efforts in assessing the
potential release of NPs by leaching to support the com-
prehensive investigation of potential risks along their life
cycle.

The new technical data requirements for NMs, as clari-
fied in the revised Annexes of REACH regulation in force
since 1st of January 2020 (and corresponding guidance
manuals), include a comprehensive set of information on
physico-chemical properties of NMs (e.g., particle size
distribution, shape, crystallinity, surface area, solubility/
dissolution rate), as well as knowledge on environmental
fate and toxicity. In particular, 20 additional nano-spe-
cific information requirements must be satisfied in order
to register substances as nanoforms in REACH [72]. If
for some information requirements standard methods
are available or under development (see [72] for a criti-
cal appraisal), current technical guidance entail no assis-
tance on how to measure and report transformations that
nanoforms and related nano-enabled products can expe-
rience when considering all stages of the life cycle and
with regard to their environmental behaviour and fate
[73]. Therefore, especially in the case when a Chemical
Safety Assessment would be required, methods to iden-
tify and investigate relevant exposure scenarios (includ-
ing the justification of “no exposure” or “low exposure”
evaluations) are needed. In this context, this review cov-
ers experimental methods that can effectively support the
overall exposure assessment by identifying and, where
possible, quantifying the releases from nano-enabled
products especially during the use and end-of-life stages.
Moreover, the identification of a variety of approaches
and some difficulties in comparing the results revealed
the need to move towards agreed and standardized
methodologies to provide risk assessors with quantita-
tive, comparable results, easy to interpret and to be inte-
grated with hazard data.

Summarizing all the information gathered throughout
the studies reviewed, to date, the standard leaching test
methods used to assess the NPs leaching from nano-
enabled products are ISO 2812-2:2007 [30] (nowadays
replaced by ISO 2812:2018 [74]) and ISO 12457-3:2004
[31], applied to nano-based paints and paints debris,
respectively. As far as nano-based wood preservatives,
AWPA E11-97 [43] and EN 84-1997 [45] have been
employed.

In addition to these standards, two further stand-
ard leaching test methods could contribute to NPs
leaching investigation. The first one is EN 16105:2011
[75], a standard method for the determination of the
leaching of substances from coatings, validated by
Schoknecht et al. [76], by carrying out an interlabora-
tory comparison with eight EU participants. Panels of
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extruded polystyrene were coated with different coat-
ings and exposed in intermittent contact with water
over 1 h, to simulate the alternation of rain events and
dry seasons. Analysis of leached substances were con-
ducted by applying high-performance liquid chroma-
tography (HPLC) combined with UV detection, liquid
chromatography-mass spectrometry (LC/MS) and LC/
MS/MS. Results revealed that the procedure described
by this standard leaching test method was suitable to
investigate the potential released substances with good
reproducibility.

Furthermore, the Technical Committee CEN/TC 351
“Construction products: assessment of release of dan-
gerous substances’, developed some technical specifi-
cations concerning the release of hazardous materials
under Construction Products Regulation. Among these
specifications, as mentioned in Bandow et al. [77], CEN/
TS 16637-1:2018 [78] allows identifying suitable leaching
tests for the release of dangerous substances from con-
struction products into soil, surface water and ground-
water. Bandow et al. [77] stated that, since lab-scale
experiments usually employed artificial conditions (e.g.,
deionized water, which has no buffering capacity and it
is prone to changes of the pH value if products with high
alkaline or acidic potential are investigated), standardized
leaching test conditions have not to be considered as a
simulation of reality but rather as inputs for data model-
ling. Moreover, they underlined that, due to the matrix
complexity, a complete release assessment of hazardous
substances from construction products should combine
chemical analytical methods with standardized ecotoxic-
ity tests, referring to the CEN/TR 17105:2017 guidance
[79].

Since all these standards involve a partial or full immer-
sion of test samples to obtain a leachate to be analysed,
their applicability to cultural heritage could be limited
to specific mock-up samples, such as treated build-
ing facades or artworks that need artificial specimens
opportunely prepared which reproduce the original ones.
Moreover, some other standard test methods evaluat-
ing, e.g., abrasion and corrosion resistance or tensile and
flexural properties on mock-up samples could also be
potentially useful to indirectly provide insights on NPs
leaching, becoming potential alternatives to standard
leaching test methods. In general, all these standard test
methods show applicability limitations related to the size
of the treated sample (especially for immovable artworks)
and to their artistic value.

In addition to standard methods, non-standard pro-
cedures reported in Table 2 could be a valuable support
to NPs’ leaching evaluation. In particular, besides non-
standardized immersion methods used, which represent
a worst-case scenario, other weathering conditions such
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as water spray or outdoor runoff have been tested, which
constitute an alternative exposure scenario.

Moreover, according to some studies performed by the
National Institute of Standards and Technology (NIST),
as reported in Jacobs et al. [80], NPs’ leaching as a func-
tion of UV dose exposure, combined with simulated
washings of rainwater by applying a water spray protocol
described in Sung et al. [81], could be another alterna-
tive for estimating NPs’ leaching at more realistic envi-
ronmental conditions. This approach could provide the
advantage of simulating further exposure scenarios by
testing several UV irradiations (W/m?) and wavelengths
as well as relative humidity ranges, representative of dif-
ferent real environmental conditions. However, one of
the main limitations of this approach could be related
to the complexity of the experimental design, also con-
sidering the costs of the equipment needed (e.g., climate
chamber, UV lamps).

To advance the environmental exposure assessment of
NPs from nano-enabled products, not necessarily lim-
ited to the field of cultural heritage, taking into account
the complexity and the variety of the nano-based prod-
ucts available on the market, besides all the conventional
parameters of a standard leaching test (e.g., the size of
the sample under testing, the chemistry of the leaching
solution or the duration of the test), the main informa-
tion of a study designed for an NPs’ leaching evaluation
should include: (i) the initial amount of NPs present
in the product; (ii) the amount of nano-based product
applied; (iii) the area of the surface treated; (iv) the time
considered for the leaching test; (v) the cumulative loss
of targeted species in the leachate (as for example mg/m?
or %/m?), vi) the form of the released substances in the
leachate (i.e., ionic form, free NPs or matrix fragments
containing NPs). A good starting point could be the
review by Koivisto et al. [29], in which the NPs release
was expressed by mg/m? and, similar also to Froggett
et al. [28], there was a clear distinction of release among
ionic forms, matrix containing NPs, NPs alone and
matrix alone. Lastly, as suggested by Bandow et al. [77],
a standardized leaching test, by describing the analytical
methods used to detect any NPs, alone or embedded in
their matrix, should also give indications on performing
standardized ecotoxicological tests to allow a comparison
of the results.

Moreover, if we consider analytical issues, a tiered
multi-method approach could be proposed to estimate
the NPs’ leaching, suitable to balance the degree of detail
in leachate characterization and operational costs. For
example, a preliminary assessment to qualitatively verify
the presence of NPs in the leachate could be performed
by employing simple-to-use and fast techniques, such as
ICP-OES or UV-Vis, following the procedure reported
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by Lopez-Ortega et al. [32] and Regiel et al. [82]. A more
comprehensive NPs’ leaching evaluation could instead be
achieved by the combination of spICP-MS with TEM/
SEM +EDX techniques (such as described, e.g., by Pan-
tano et al. [46] or Neubauer et al. [52]), to clearly dis-
tinguish the form potentially present in the leachate, i.e.
ions, free NPs and the matrix containing NPs.

From the information collected through this literature
review we might argue that, within the boundaries of the
tested experimental conditions, the presence of free NPs
detected in the leachate is very limited and does not pro-
vide evidence for expected significant concentrations in
environmental media. Nevertheless, case-by-case con-
clusions based on a deep knowledge of tested materi-
als/products and specific environmental conditions and
proved through robust experimental methods are needed
to effectively inform risk assessment and management.

The information extracted and elaborated from lit-
erature together with the recommendations provided in
this work, concerning the methodological approach for
leaching testing as well as possible analytical solutions,
could provide useful inputs to guide the assessment of
human health and ecological exposure due to releases
from nano-enabled products. This review focused on
nanotechnology applications for cultural heritage conser-
vation but possible benefits to wider fields are foreseen
(including the potential release of nano and microplas-
tics from commercial thermoplastic products), with the
appropriate adaptations based on the types and applica-
tions of nano-enabled products, potential environmen-
tal conditions and aging and weathering processes of
interest, different exposure targets. Once release mecha-
nisms and exposure scenarios are better characterized,
this information could contribute to the development of
innovative, safe and sustainable nano-enabled products,
within a Safe by Design perspective to ensure an effective
risk management of nanocomposite materials.
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