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Abstract 

The development of highly innovative techniques and technologies to enhance performance and technical sus-
tainability of materials used in the field of cultural heritage conservation is providing conservators with innovative 
nanocomposites materials, including protective coatings, by merging the performances of engineered nanoparticles 
(NPs) with conventional chemicals. However, the human health and environmental risks that may potentially arise 
from these new materials are still largely unknown, requiring an adequate assessment and management along their 
entire life cycle. Concerns could emerge due to the leaching of the material containing NPs or of the NPs alone, 
especially during their use (exposure of the treated object to, e.g., heavy or acid rain) and disposal (when the wasted 
product is processed in, e.g., waste water treatment plants). To date, no standard leaching test methods have been 
specifically developed for nano-enabled products, with the consequent lack of data on the NPs potential exposure 
also in the field of cultural heritage. Therefore, an extensive review over the last 10 years by querying to the Scopus 
database “nanoparticles”, “leaching” and “coatings” has been herein reported to clearly highlight (i) the standard test 
methods used or adapted to estimate the NPs leaching from nano-based coatings; (ii) the available studies in which 
the NPs leaching from nano-based coatings was estimated without following any specific standard test method; (iii) 
the works focusing on other nanocomposite materials performances than leaching, in which standard test methods 
were applied, potentially useful to indirectly estimate NPs leaching. All the information gathered by this bibliographic 
search have been used to identify the most promising leaching tests for NPs estimation to be applied in the field of 
cultural heritage, especially for both large, e.g., building façades, and small, e.g., bronze works of art, surface areas from 
which the leaching of nano-based materials could be significant in terms of human health and ecological risks, based 
also on the (eco)toxicity of the leachate. The derived information can thus ultimately support effective risk manage-
ment of innovative nano-enabled products, including the implementation of Safe by Design approaches.
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Background
Regardless of their nature, movable and immovable cul-
tural heritage assets, especially those located outdoors, 
are irremediably exposed to several degradation agents 

such as temperature, humidity, light, microorganisms and 
air pollutants, all accounting for the natural aging of art 
materials [1, 2]. In recent years, engineered nanoparticles 
(NPs), consisting of particles deliberately designed with 
all the three dimensions in size between 1 and 100 nm, 
are emerging as a successful solution for the preservation 
of cultural heritage because of their capability in enhanc-
ing performances, e.g., by improving transparency, resist-
ance, cleaning and anti-microbial properties, ensuring 

Open Access

*Correspondence:  elena.badetti@unive.it
1 DAIS‑Department of Environmental Sciences, Informatics and Statistics, 
University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3984-7829
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-021-00493-z&domain=pdf


Page 2 of 19Brunelli et al. Environ Sci Eur           (2021) 33:48 

greater durability of art materials [3]. Because of the vari-
ety and complexity of artistic and historical substrates, 
conservation science has explored different routes, 
developing several technical approaches for solving con-
servation issues. In the field of stone conservation, col-
loidal Ca(OH)2 is one of the most promising products 
for stone’s consolidation because it is easily converted 
into calcium carbonate (CaCO3) as result of carbonation 
when exposed to atmospheric CO2 under moist condi-
tions [4]. Another example is provided by coatings incor-
porating SiO2 NPs for improving abrasion resistance and 
for adding hydrophobic properties to the stone surface [5, 
6]. Both hydrophilic and hydrophobic silica are used in 
solvent-borne coatings to enhance the anti-settling addi-
tives for pigments [7]. The addition of Ag NPs to paints 
for outdoor applications on building façades, instead, 
determines an antimicrobial effect derived from the 
activity of silver [8], while photoactive TiO2 NPs are used 
to optimize the mechanical properties of the products 
and to give the paint self-cleaning properties through 
photocatalytic and hydrophilic properties [9]. The addi-
tion of zirconia NPs to coatings for metal substrates 
showed to remarkably improve their properties, such as 
strength and fracture toughness, wear resistance, hard-
ness, chemical and corrosion resistance [10]. Recently, 
further innovative nano-based products for the conser-
vation of movable and immovable property have been 
developed within H2020 projects such as NANORE-
START (Grant agreement no: 646063) and NanoCathe-
dral (Grant agreement no: 646178). Some examples from 
the NANORESTART project are nano-based fluids for 
undesired graffiti removal [11, 12], alkaline NP disper-
sions for restoration of alum-treated archaeological wood 
[13], layered double hydroxide nanocarriers in protecting 
bronze artworks [14] or nanocellulose-based materials 
for canvas consolidation [15, 16]. In addition, nanocom-
posite materials have been specifically developed in the 
field of stone protection within the NanoCathedral pro-
ject [17, 18].

However, similarly to other market sectors benefit-
ting from nanotechnology innovation, the design and 
use of nano-enabled products in the conservation field 
raise issues concerning human health and environmental 
risks that could emerge from exposure to NPs embed-
ded in conservation products and into innovative mate-
rials used in the construction field and that need to be 
carefully assessed to satisfy current European regula-
tory provisions. According to the revision of Annexes of 
the EU REACH regulation with regards to nanomateri-
als, effective from the 1st of January 2020 [19], manu-
facturers and importers must register a nanomaterial 
if the total amount per year (including both nanoforms 
and potential bulk form) is above one tonne and submit 

a complete Chemical Safety Assessment (CSA) report if 
this quantity exceeds 10 tonnes. The CSA shall identify 
and describe the risks associated with the bulk form and 
the nanoform(s) along the life cycle of the substance and 
document that these risks are adequately controlled. 
Therefore, human and ecological exposure assessment 
requires the investigation of possible release scenarios 
of NPs along the life cycle of nano-enabled products, 
including: (1) release during NPs production; (2) release 
from the manufacturing processes of products containing 
NPs; (3) release into the environment during use (includ-
ing release from the objects treated with such products), 
re-use and recycling of nano-enabled products, and (4) 
indirect release at the end-of-life stage as consequence 
of processes within wastewater treatment plants or waste 
incineration plants, to different environmental compart-
ments (i.e. surface water, soil, air, and groundwater) [20]. 
In parallel, (eco)toxicological testing should also be car-
ried out at each of the different stages of the life cycle, to 
provide information useful of real exposure scenarios.

On this regard, a recent review by Reyes-Estebanez 
et  al. [21] collected numerous studies dealing with the 
impacts of the most used and widespread NPs in cultural 
heritage on biota at both the biochemical and organism 
levels for different environmental compartments.

Such data and information would also support the 
development of “green” or “Safe by Design” approaches, 
which are still in their infancy in the field of cultural 
heritage conservation [22, 23]. In particular, Semenzin 
et  al. [23] recently proposed a sustainability framework 
implementing the Safe by Design concept to support 
product’s developers in the early steps of product devel-
opment, with the aim to provide safer nano-formulations 
for conservation, while retaining their functionality. Such 
framework takes into account the current EU legislative 
context (i.e. CLP and REACH regulations) as well as the 
specific features of the innovation process in the cultural 
heritage conservation field, which demands a high inter-
action between the product developers and the restorers 
[24]. In detail, starting from the development of a nano-
based formulation (step 1), the following main steps of 
the framework are the: screening hazard assessment (step 
2); advanced hazard assessment (step 3); safety assess-
ment (step 4) and, finally, sustainability assessment (step 
5). While the hazard assessment in step 1 is mainly based 
on the EU CLP self-classification approach for health 
and environmental hazards of the mixture, step 2 can 
include computational (e.g., in silico models) as well as 
experimental [e.g., in  vitro and in  vivo (eco)toxicologi-
cal tests] approaches according to an Integrated Testing 
Strategy (ITS), where information about relevant expo-
sure scenarios for both human health (i.e. occupational 
and public health) and the environment (i.e. technical 
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compartments such as waste systems and environmental 
compartments such as soil and water systems) along the 
life cycle of the innovative products should also be col-
lected or generated. More specifically, in order to allow 
safety assessment (i.e. integration of risk assessment and 
risk control as required by the EU REACH regulation; 
(step 3), data/information on product degradation and/
or release throughout their life cycle should be collected, 
to evaluate medium and long-term behaviour of nano-
based products [9].

Indeed, NPs that reach the environment may be com-
pletely different from the materials originally produced 
by industry because of aging processes that may cause 
transformations [25, 26], making the monitoring and 
quantification of the NPs release highly challenging, 
especially when they are present at trace levels in envi-
ronmental compartments (e.g., freshwater, soil) [27]. In 
this context, leaching tests could provide a valuable sup-
port to exposure assessment, particularly in the post-
application phase of nano-enabled products, i.e. when 
the treated work of art is exposed to outdoor conditions 
(e.g., heavy rain) or the wasted product is processed 
in waste systems, and therefore NPs can reach the sur-
rounding environment.

To the best of our knowledge, only recently the 
release of hazardous substances from nano-based 
products has been studied in depth. Froggett et al. [28] 
reviewed the literature on releases from solid, non-
food commercial nanocomposites during use, disposal, 
or recycling, claiming that there is a paucity of data 
on release of NPs from solid nanocomposites under 
the five scenarios considered: machining, weather-
ing, washing, contact and incineration. Among the 54 
nanorelease studies identified, most of them detected 
only the particles from the matrix alone, followed by 
matrix debris embedding NPs. Far less frequently the 
added NPs entirely dissociated from the matrix were 
determined, and even more rarely dissolved ionic forms 
of the added NPs. Besides this review, Koivisto et  al. 
[29] provided a library for nano-based products, calcu-
lating the quantitative NPs release from the literature. 
Following the approach suggested by Froggett et  al. 
[28], the 96 peer-reviewed scientific publications iden-
tified by Koivisto and et  al. [29] were divided into six 
groups: (1) thermosets; (2) thermoplastics; (3) coated 
surfaces; (4) sprays; (5) textiles; (6) other articles. The 
quantitative release was defined as “the amount of mass 
released from a nano-application under experimental 
setups (scenarios) that intend to simulate situations that 
result in the liberation of material, calculating it from 
the measured average concentration levels and volumes 
of immersion fluid or dilution air”. The authors under-
lined the lack of general available guidance to measure 

quantitative release under various release scenarios and 
called for developing systematic experimental methods 
to support hazard and exposure assessment of nano-
based products.

In this context, the overarching objective of this 
review was to provide an analysis of the available leach-
ing standard test methods already used for different 
nano-enabled products to support the environmental 
exposure assessment of NPs from innovative prod-
ucts employed for surface protection in cultural herit-
age conservation. In addition to standardized leaching 
test, non-standardized leaching procedures, as well as 
standard tests used to evaluate technical performances 
of nano-enabled products, have been collected and 
investigated, with the aim to provide all the procedures 
that can be suitable in the field of cultural heritage, 
where more sensitive substrates could require less inva-
sive testing. This work can therefore contribute to the 
assessment of human health and ecological risks as well 
as to the implementation of Safe by Design approaches 
for effective risk management of innovative nano-
enabled products, especially taking into account their 
use (application and post-application phases, includ-
ing exposure of the treated object to heavy or acid rain 
or other weather conditions) and disposal (when the 
wasted product is processed, e.g., in waste water treat-
ment plants).

Materials and methods—literature search 
approach
The leaching of hazardous substances from a material 
is often investigated under the broader topic of materi-
als’ performances (e.g., assessment of hardness/flexibil-
ity, resistance to abrasion, resistance to a falling weight, 
adhesion, artificial weathering, release). The system-
atic search herein reported was performed by query-
ing the Scopus database, from 2010 to present, using 
three broad search terms: nanoparticles, leaching, and 
coatings.

This analysis identified 930 documents, among which 
53 relevant studies focus on NPs leaching from different 
nanocomposite materials, including nano-based paints 
and preservatives materials, nanoscale fillers as well as 
photocatalytic coatings, nanopigments and antibacterial 
nano-based products. The studies selected were divided 
into: (i) leaching tests of nano-enabled products in which 
standard methods (e.g., ISO and ASTM standards) have 
been applied or adapted; (ii) leaching tests from nano-
enabled products without any standardized test methods; 
(iii) assessment of performances other than the direct 
assessment of leaching, useful to indirectly estimate the 
NPs leaching from nano-enabled products.
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Results and discussion
The bibliographic search performed highlighted that 
no specific standard leaching test methods properly 
designed to estimate the NPs leaching from nano-ena-
bled products are present in the literature. Nevertheless, 
all the outcomes potentially linked to this aim have been 
considered and discussed. The results of this literature 
analysis were divided into three tables: Table 1 includes 
seven studies in which four different standard leaching 
test methods were used, i.e. two for nano-based paints 
and coatings and two for nano-based wood preservatives; 
Table  2 lists 35 studies for evaluating leaching of NPs 
from products by using only standard preparation test 
methods but without any specific standard leaching test; 
Table 3 summarizes additional ten works, in which eight 
more standards for evaluating other nano-based materi-
als’ performances than leaching have been applied and 
could be adapted for developing useful leaching tests in 
the field of cultural heritage. A schematic representation 
of the available methods is reported in Fig. 1.

Besides the standards already mentioned, other two 
standard leaching test methods for the determination of 
the release of dangerous substances from non-nano coat-
ings and construction products have been considered 
and discussed.

Lastly, specific information from the studies listed 
in Table 1 on the estimated amount of species detected 
in the leachate has been collected in Additional file  1: 
Table S1.

Standardized testing to estimate NPs leaching 
from nanocomposite materials
Nano‑based paints
The leaching of NPs from nano-based paints was assessed 
by following two standard tests, i.e. ISO 2812-2:2007 [30] 
on paints and varnishes, focusing on the determination 
of resistance to liquids by water immersion method and 
12457-3:2002 [31], related to leaching of granular waste 
materials and sludges. The first standard leaching test was 
employed by Zuin et al. [9], Zhang et al. [26] and Lopez-
Ortega et al. [32] while Zuin et al. [7] estimated the nano-
based paint debris leaching according to the second one. 
In detail, both Zuin et al. [9] and Zhang et al. [26] inves-
tigated the leaching of TiO2, SiO2 and Ag NPs embed-
ded in paints applied on fibre cement panels. Zuin et al. 
[9] adapted this standard method, collecting leachates 
after UV exposure (according to ISO 11507:2007 [33], 
currently revised by ISO 16474-1:2013 [34]) and Taber 
Abraser test (using ISO 7784-2:2006 [35]), by immersing 
¾ of the length of the panels and with a surface/volume 
ratio equal to 2. Leachates were collected after 4, 8, 24, 
120 h and analysed by inductively coupled plasma-optical 

emission spectroscopy (ICP-OES). After the water 
immersion test, a small amount of acetic acid was added 
to the leaching solution to simulate acid rain effect on 
coated panels. Surface degradation was investigated by 
transmission electron microscopy (TEM), energy disper-
sive X-ray analysis (EDX) and X-ray fluorescence (XRF). 
The results highlighted that only very little Si migration 
from SiO2 NPs-based paints occurred in these acceler-
ated tests. With regard to TiO2 NPs-based paint and its 
reference based on bulk TiO2 pigment, it was observed 
that both paints released only very low amounts of Ti 
into the leachates during the immersion test, without any 
increase of Ti concentration over time and no TiO2 parti-
cles were identified in the leachate by TEM. As far as the 
Ag NPs-based paint, the Ag concentration from Ag NPs-
based paint in leachates was below the detection limit of 
the ICP-OES (0.1 µg/l).

Zhang et  al. [26] also applied ISO 2812-2:2007 stand-
ard [30] for determining the resistance of single-layer or 
multi-layer systems of coating materials to the effects 
of water by partial or full immersion, analysing the lea-
chates after 100, 150, 200, 250, 300, 350, 400 and 500 h 
of weathering chamber. The role of pH on the releases 
was also investigated by varying the pH from 3 to 10. As 
far as weathering before obtaining leachates, EN 1062-
11:2002 standard [36] was used for conditioning the sam-
ples before testing and ISO 11507:2007 standard [33] was 
followed for UV weathering. Particles size distribution 
of the leached NPs was evaluated by means of Dynamic 
Light Scattering (DLS) technique, the NPs’ release by 
inductively coupled plasma-mass spectrometry (ICP-
MS), while scanning electron microscopy (SEM) and 
TEM were employed to identify size and shape of NPs in 
the matrix before and after leaching. The results obtained 
showed that the duration of weathering test and rainfall 
are more important in controlling the NPs’ release than 
the variation of pH.

The evaluation of SiO2 NPs leaching from paint debris 
was carried out by Zuin et al. [7], following 12457-3:2002 
[31]. Polyvinyl chloride panels were coated with differ-
ent paints containing the same amount of SiO2 NPs, but 
different pigment volume concentrations and different 
amount and type of binder and pigment. After 24  h of 
drying in indoor environment, paints were taken off from 
panels and mechanically milled until a fine powder in the 
range of approx. 100 μm to a few mm was obtained. The 
leaching test involved approx. 300 g d.w. of paint debris 
added into a high-density polyethylene bottle. Deionized 
water (DW) was used to obtain a liquid-to-solid (L/S) 
ratio of 2:1 and of 8:1 (cumulative L/S of 10:1). The mix-
ture at L/S of 2:1 was shaken by end-over-end rotation 
at 10 rotation per minute (rpm) for 6  h, while the mix-
ture at L/S of 8:1 was agitated for 18 h. The supernatant 
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was collected for analysis after 24 h of agitation, filtered 
at 0.45 μm under vacuum on a standard cellulose nitrate 
filter and acidified (1% v/v) to determine the “dissolved” 
SiO2 by ICP-MS according to ISO 17294-2:2003 stand-
ard [37]. Total Si was also quantified via acidification with 
nitric acid of unfiltered samples. Following the procedure 
of the standards method 2540C of the American Public 
Health Association, both total dissolved solids and total 
suspended solids were also determined. The NPs detec-
tion was carried out by TEM–EDX. The main outcomes 
of this study were that: (i) the Si leached out was 1.8% 
with respect to the initial amount of Si in paint; (ii) some 
agglomerates of SiO2 NPs were detected in some lea-
chates; (iii) the pigment volume concentration is a crucial 
factor for SiO2 NPs leaching, and (iv) by balancing the 
binder to pigment ratio, it would be possible to reduce 
the SiO2 NPs leaching.

Within the field of antifouling paints for offshore struc-
tures, Lopez-Ortega et al. [32] compared the water resist-
ance of an aluminium layer treated with Carboguard® 
epoxy mastic coating with one coated with a product 
functionalized by NPs. The evaluation of water resist-
ance was assessed according to several standards, such 
as ISO 6270-2:2018 [38] on water condensation test, ISO 
9227:2017 [39] on salt-fog test and ISO 4628 1-5:2016 
[40] on the evaluation of degradation of coatings, includ-
ing the ISO 2812-2:2007 [30] on leaching test. In detail, 
an organic topcoat paint was functionalized with a SiO2 

NPs dispersion to enhance hydrophobicity and with 
three different biocides, including Cu2O NPs. Briefly, the 
panels were immersed in 1  l of synthetic seawater and 
stirred over 28 days. Unlike the first two studies, here the 
NPs leaching was assessed only indirectly by determining 
the release rate of copper and other main elements pre-
sent in the painted samples by ICP-OES every 24 h. After 
this step, a set of new samples was tested under the same 
experimental conditions, till reaching the plateau of cop-
per maximum release. The leaching results highlighted 
the presence of Si and negligible Cu release for both orig-
inal and nano-based topcoat paints, with the silicon con-
tent in the modified paint decreasing with time to lower 
values than those of the original paint at the end of the 
test. Following the marine algal growth inhibition test 
(ISO 10253 [41]), in accordance with the OECD Guid-
ance Document no: 23 [42], the ecotoxicity assessment 
with the algae Phaeodactylum tricornutum showed a tox-
icity level of the leachate which fulfilled the legislation 
requirements for modified nano-based paint and lower 
than that of the bulk material.

Wood preservatives
Two different standard test methods for NPs leaching 
investigation from wood were applied in three studies. 
The AWPA E11-97 standard method [43] for acceler-
ated laboratory evaluation of the leachability of water-
borne wood preservatives was employed by Ding et  al. 

Fig. 1  Schematic representation of the available test methods to investigate the leaching of NPs, divided by: standard leaching tests, non-standard 
leaching tests and other standards used to investigate the performances of materials that could be useful for the NPs’ leaching evaluation
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[44]. The nano-based wood preservatives tested included 
(i) CuO NPs with an average particle size of 10 or 50 nm 
(CuO-10 and CuO-50) and (ii) CuO NPs stabilized by 
weakly acidic or weakly basic polymer-stabilizers, i.e. 
[(2-hydroxy-3-trimethylammonium)propyl] chitosan 
chloride (HTCC-CuO-10 and HTCC-CuO-50) and 
Poly(vinylpyrrolidone) (PVP-CuO-10). The description 
of the leaching method applied clearly states that the 
data collected are not intended to, nor shall it be used to 
predict environmental impacts of treated wood. The test 
involved the leachate collection over 500 h, followed on 
one side by TEM–EDS analysis, revealing the presence of 
NPs, and, on the other side, by heating at 80  °C and by 
acid digestion to dissolve solid NPs and determine Cu2+ 
via Atomic Absorption Spectrophotometry (AAS). Ding 
et al. [44] concluded that the size was the most significant 
factor affecting leaching, showing the highest Cu2+ con-
centration derived from the smallest NPs tested. Moreo-
ver, the authors found that the polymer stabilizers used 
enhanced leaching with respect to the unstabilized CuO 
NPs, hypothesizing that aggregation of bare CuO NPs 
prevents the leaching.

The other standard test method for the NPs leaching 
assessment was EN 84:1997 [45], employed in Pantano 
et  al. [46] by comparing nano-enabled and molecu-
lar copper-based formulations for wood preservative. 
The test was conducted at 4  kPa vacuum-atmospheric 
pressure cycle in DW, by maintaining the wood blocks 
(DW:wood 5:1 v/v) for 14 days with nine water changes 
at 20  °C and 65% of relative humidity. The leachate was 
analysed by ICP-MS for the total copper content deter-
mination and by single particle ICP-MS (spICP-MS) to 
detect any NPs. The results indicated that the highest Cu 
leaching rate was about 3 orders of magnitude higher for 
molecular Cu-based formulations than for nano-based 
preservatives. Furthermore, NPs leaching was assessed 
by a combination of analytical methods, i.e. filtration-
ICP-MS, TEM–EDX and spICP-MS, allowing to con-
clude that the nano-enabled micronized Cu formulation 
released only ionic Cu, with a rate nearly identical to the 
conventional no-nano formulation.

The same leaching test standard method used by Pan-
tano et al. [46], was applied in Bak and Németh [47] by 
employing ZnO NPs, Zn-borate NPs, Ag NPs, Cu NPs 
and Cu-borate NPs dispersions to beech and pine planks. 
However, the authors investigated the NPs leaching only 
by indirectly measuring the weight variations before and 
after NPs suspensions impregnation. By comparing the 
weight variations, they supposed that zinc-oxide, copper 
and silver NPs showed much higher resistance to leach-
ing with respect to zinc- and copper-borate dispersions.

NPs’ leaching estimation
For the studies listed in Table  1, information on both 
qualitative and quantitative estimation of NPs’ leach-
ing from nano-enabled products by applying a standard 
leaching test method has been included in Additional 
file 1: Table S1. When specified, the data provided about 
NPs’ leaching were quite scattered in terms of the metric 
used for the species detected in the leachate, providing 
the results as mg/m2 or as a percentage of a species of 
interest. The studies in Additional file  1: Table  S1 high-
lighted that the experimental conditions (e.g., immer-
sion cycles, weathering time, duration) and the matrix in 
which NPs were embedded are key parameters in driving 
the amount of NPs leaching from nano-enabled products.

Non‑standardized procedures to estimate NPs leaching 
from nanocomposites materials
Among the 34 studies listed in Table 2 in which no spe-
cific standard leaching test was used, a wide set of type 
and size of treated substrates have been considered, 
assessing NPs leaching in several aqueous-based solu-
tions, ranging from deionized water, to simulated and 
natural rain, saline solutions, synthetic and natural sea-
water, as well as phosphate buffer saline and biologi-
cal media. The only standard test methods followed by 
the authors mentioned in Table  2 were related to UV 
weathering before performing any leaching experiment. 
By analysing the similarities and the differences among 
these studies, they can be further divided into four dif-
ferent sub-groups. The largest group (22 studies) includes 
works where different sample immersion test procedures 
were employed, estimating the leaching of targeted com-
pounds at different time points: most of the authors ana-
lysed the leachate after the typical exposure time points 
of bacterial growth (till 96 h), up to days (maximum 10) 
or weeks (maximum 4), while only in Künninger et  al. 
[48] and Azimzada et  al. [49] the leaching test was car-
ried out under natural weather conditions. Within this 
first sub-group, besides determining the concentration of 
the targeted elements, only Olabarrieta et al. [50], Al-Kat-
tan et al. [51], Künninger et al. [48], Neubauer et al. [52], 
Ruggiero et al. [53], Wohlleben et al. [54] and Azimzada 
et  al. [49] directly focused on the NPs detection in the 
leachate, by using electron microscopy techniques (SEM 
or TEM–EDX), spectroscopy or spectrometry techniques 
(UV–Vis, or spICP-MS) or centrifugation techniques 
(AUC). The other three sub-groups consist of: 5 studies 
where water spray or/and outdoor runoff methods were 
used, including Kaegi et  al. [8], Shandyla et  al. [55] and 
Jimenez-Relinque et  al. [56] that directly assessed the 
amount of NPs after leaching experiments by electron 
microscopy techniques; 3 studies investigating leaching 
from milled paint/aged particles in contact with a liquid, 
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providing an estimation of the NPs in the leachate only 
in the works by Al-Kattan et al. [5, 57] again by electron 
microscopy techniques; other 5 studies focused on the 
leachate from nanocomposite materials when in contact 
with a water-based liquid by flushing, dripping or spread-
ing it, investigating the presence of NPs after leaching 
test only in Agnihotri et  al. [58], Sassoni et  al. [59] and 
Nam et al. [60] by employing either electron microscopy 
or spectroscopy (surface enhanced Raman spectroscopy, 
SERS) techniques.

Standard test methods for evaluating nanocomposite 
performances potentially useful for NPs leaching 
estimations
The leaching of NPs from coatings and materials can be 
heavily influenced by their mechanical performances 
(e.g., permeability, wettability, durability, thermal sta-
bility, and resistance to abrasion and corrosion), thus 
standardized test methods investigating them can give 
very useful information to indirectly estimate NPs leach-
ing under different conditions. Considering for example 
a nano-based material with high abrasion or corrosion 
resistance that is also chemically and biologically inert, 
good leaching resistance could also be assumed. There-
fore, besides the information reported in Tables 1 and 2, 
10 additional studies investigating other performances 
of nanocomposite materials are listed in Table 3. Among 
all the standard methods included within these works, 
the most suitable ones for obtaining indirect informa-
tion on a potential NPs leaching were: (a) ASTM B117-
19 [61] and ASTM G154-16 [62] for artificial weathering; 
(b) ASTM standards D6037 [63], D4060 [64], D968 [65] 
and the ISO 2409:2007 [66] for resistance to abrasion; 
(c) ASTM D638 [67] and ISO 14125:1998 [68] for ten-
sile and flexural properties. Moreover, the resistance of 
coated materials to water by partial or full immersion 
test described in ISO 2812-2:2007 [30], followed by Zuin 
et al. [9], Zhang et al. [26] and Lopez-Ortega et al. [32] (as 
reported in Table  1), has also been used by Luangtrira-
tana et  al. [69] (Table  3), but only for determining the 
weight loss of coated samples instead of analysing the 
potential presence of NPs in the leachate. Most of the 
studies included in Table 3 tested these performances on 
SiO2 NPs-based materials.

General remarks and conclusions
In the field of cultural heritage conservation, nano-ena-
bled products that are thermally stable, biologically and 
chemically non- or little-reactive, are effective to prevent 
and/or mitigate the effect of weathering (e.g., rainfall, 
relative humidity, temperature, wind, sunlight, micro-
organisms and air pollution) [70]. However, safety and 
sustainability assessment of nano-enabled materials and 

products have not kept pace with their rapid commer-
cialization [71], calling for further efforts in assessing the 
potential release of NPs by leaching to support the com-
prehensive investigation of potential risks along their life 
cycle.

The new technical data requirements for NMs, as clari-
fied in the revised Annexes of REACH regulation in force 
since 1st of January 2020 (and corresponding guidance 
manuals), include a comprehensive set of information on 
physico-chemical properties of NMs (e.g., particle size 
distribution, shape, crystallinity, surface area, solubility/
dissolution rate), as well as knowledge on environmental 
fate and toxicity. In particular, 20 additional nano-spe-
cific information requirements must be satisfied in order 
to register substances as nanoforms in REACH [72]. If 
for some information requirements standard methods 
are available or under development (see [72] for a criti-
cal appraisal), current technical guidance entail no assis-
tance on how to measure and report transformations that 
nanoforms and related nano-enabled products can expe-
rience when considering all stages of the life cycle and 
with regard to their environmental behaviour and fate 
[73]. Therefore, especially in the case when a Chemical 
Safety Assessment would be required, methods to iden-
tify and investigate relevant exposure scenarios (includ-
ing the justification of “no exposure” or “low exposure” 
evaluations) are needed. In this context, this review cov-
ers experimental methods that can effectively support the 
overall exposure assessment by identifying and, where 
possible, quantifying the releases from nano-enabled 
products especially during the use and end-of-life stages. 
Moreover, the identification of a variety of approaches 
and some difficulties in comparing the results revealed 
the need to move towards agreed and standardized 
methodologies to provide risk assessors with quantita-
tive, comparable results, easy to interpret and to be inte-
grated with hazard data.

Summarizing all the information gathered throughout 
the studies reviewed, to date, the standard leaching test 
methods used to assess the NPs leaching from nano-
enabled products are ISO 2812-2:2007 [30] (nowadays 
replaced by ISO 2812:2018 [74]) and ISO 12457-3:2004 
[31], applied to nano-based paints and paints debris, 
respectively. As far as nano-based wood preservatives, 
AWPA E11-97 [43] and EN 84-1997 [45] have been 
employed.

In addition to these standards, two further stand-
ard leaching test methods could contribute to NPs 
leaching investigation. The first one is EN 16105:2011 
[75], a standard method for the determination of the 
leaching of substances from coatings, validated by 
Schoknecht et  al. [76], by carrying out an interlabora-
tory comparison with eight EU participants. Panels of 
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extruded polystyrene were coated with different coat-
ings and exposed in intermittent contact with water 
over 1 h, to simulate the alternation of rain events and 
dry seasons. Analysis of leached substances were con-
ducted by applying high-performance liquid chroma-
tography (HPLC) combined with UV detection, liquid 
chromatography-mass spectrometry (LC/MS) and LC/
MS/MS. Results revealed that the procedure described 
by this standard leaching test method was suitable to 
investigate the potential released substances with good 
reproducibility.

Furthermore, the Technical Committee CEN/TC 351 
“Construction products: assessment of release of dan-
gerous substances”, developed some technical specifi-
cations concerning the release of hazardous materials 
under Construction Products Regulation. Among these 
specifications, as mentioned in Bandow et al. [77], CEN/
TS 16637-1:2018 [78] allows identifying suitable leaching 
tests for the release of dangerous substances from con-
struction products into soil, surface water and ground-
water. Bandow et  al. [77] stated that, since lab-scale 
experiments usually employed artificial conditions (e.g., 
deionized water, which has no buffering capacity and it 
is prone to changes of the pH value if products with high 
alkaline or acidic potential are investigated), standardized 
leaching test conditions have not to be considered as a 
simulation of reality but rather as inputs for data model-
ling. Moreover, they underlined that, due to the matrix 
complexity, a complete release assessment of hazardous 
substances from construction products should combine 
chemical analytical methods with standardized ecotoxic-
ity tests, referring to the CEN/TR 17105:2017 guidance 
[79].

Since all these standards involve a partial or full immer-
sion of test samples to obtain a leachate to be analysed, 
their applicability to cultural heritage could be limited 
to specific mock-up samples, such as treated build-
ing façades or artworks that need artificial specimens 
opportunely prepared which reproduce the original ones. 
Moreover, some other standard test methods evaluat-
ing, e.g., abrasion and corrosion resistance or tensile and 
flexural properties on mock-up samples could also be 
potentially useful to indirectly provide insights on NPs 
leaching, becoming potential alternatives to standard 
leaching test methods. In general, all these standard test 
methods show applicability limitations related to the size 
of the treated sample (especially for immovable artworks) 
and to their artistic value.

In addition to standard methods, non-standard pro-
cedures reported in Table 2 could be a valuable support 
to NPs’ leaching evaluation. In particular, besides non-
standardized immersion methods used, which represent 
a worst-case scenario, other weathering conditions such 

as water spray or outdoor runoff have been tested, which 
constitute an alternative exposure scenario.

Moreover, according to some studies performed by the 
National Institute of Standards and Technology (NIST), 
as reported in Jacobs et al. [80], NPs’ leaching as a func-
tion of UV dose exposure, combined with simulated 
washings of rainwater by applying a water spray protocol 
described in Sung et  al. [81], could be another alterna-
tive for estimating NPs’ leaching at more realistic envi-
ronmental conditions. This approach could provide the 
advantage of simulating further exposure scenarios by 
testing several UV irradiations (W/m2) and wavelengths 
as well as relative humidity ranges, representative of dif-
ferent real environmental conditions. However, one of 
the main limitations of this approach could be related 
to the complexity of the experimental design, also con-
sidering the costs of the equipment needed (e.g., climate 
chamber, UV lamps).

To advance the environmental exposure assessment of 
NPs from nano-enabled products, not necessarily lim-
ited to the field of cultural heritage, taking into account 
the complexity and the variety of the nano-based prod-
ucts available on the market, besides all the conventional 
parameters of a standard leaching test (e.g., the size of 
the sample under testing, the chemistry of the leaching 
solution or the duration of the test), the main informa-
tion of a study designed for an NPs’ leaching evaluation 
should include: (i) the initial amount of NPs present 
in the product; (ii) the amount of nano-based product 
applied; (iii) the area of the surface treated; (iv) the time 
considered for the leaching test; (v) the cumulative loss 
of targeted species in the leachate (as for example mg/m2 
or %/m2), vi) the form of the released substances in the 
leachate (i.e., ionic form, free NPs or matrix fragments 
containing NPs). A good starting point could be the 
review by Koivisto et  al. [29], in which the NPs release 
was expressed by mg/m2 and, similar also to Froggett 
et al. [28], there was a clear distinction of release among 
ionic forms, matrix containing NPs, NPs alone and 
matrix alone. Lastly, as suggested by Bandow et al. [77], 
a standardized leaching test, by describing the analytical 
methods used to detect any NPs, alone or embedded in 
their matrix, should also give indications on performing 
standardized ecotoxicological tests to allow a comparison 
of the results.

Moreover, if we consider analytical issues, a tiered 
multi-method approach could be proposed to estimate 
the NPs’ leaching, suitable to balance the degree of detail 
in leachate characterization and operational costs. For 
example, a preliminary assessment to qualitatively verify 
the presence of NPs in the leachate could be performed 
by employing simple-to-use and fast techniques, such as 
ICP-OES or UV–Vis, following the procedure reported 
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by Lopez-Ortega et al. [32] and Regiel et al. [82]. A more 
comprehensive NPs’ leaching evaluation could instead be 
achieved by the combination of spICP-MS with TEM/
SEM + EDX techniques (such as described, e.g., by Pan-
tano et  al. [46] or Neubauer et  al. [52]), to clearly dis-
tinguish the form potentially present in the leachate, i.e. 
ions, free NPs and the matrix containing NPs.

From the information collected through this literature 
review we might argue that, within the boundaries of the 
tested experimental conditions, the presence of free NPs 
detected in the leachate is very limited and does not pro-
vide evidence for expected significant concentrations in 
environmental media. Nevertheless, case-by-case con-
clusions based on a deep knowledge of tested materi-
als/products and specific environmental conditions and 
proved through robust experimental methods are needed 
to effectively inform risk assessment and management.

The information extracted and elaborated from lit-
erature together with the recommendations provided in 
this work, concerning the methodological approach for 
leaching testing as well as possible analytical solutions, 
could provide useful inputs to guide the assessment of 
human health and ecological exposure due to releases 
from nano-enabled products. This review focused on 
nanotechnology applications for cultural heritage conser-
vation but possible benefits to wider fields are foreseen 
(including the potential release of nano and microplas-
tics from commercial thermoplastic products), with the 
appropriate adaptations based on the types and applica-
tions of nano-enabled products, potential environmen-
tal conditions and aging and weathering processes of 
interest, different exposure targets. Once release mecha-
nisms and exposure scenarios are better characterized, 
this information could contribute to the development of 
innovative, safe and sustainable nano-enabled products, 
within a Safe by Design perspective to ensure an effective 
risk management of nanocomposite materials.
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