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Abstract

CT Log is a CT scanner used in an industrial process at vergpégd in order to optimize the production of wood boards and
other wood products. The scanner can reach 160 m/min, the typezd at which wood logs are sawn in the sawmills. After
the logs pass though the scanner, the images are reconstructed arskgriocesler to allow the automatic optimization of the
cutting pattern according to the constraints set by wood defects and thefuhkieliferent products.

Building a a buffer between the scanner and the sawing line é&nsixe and often not possible because of constraints on the
plant layout The time available for the entire processing is thereforeskiery;, because it must be completed before the log
reaches the breakdown equipment. In this paper, we present therstoiche scanner and the way we implemented the different
stages of processing in order maximize the speed of the elaborati
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1 Introduction

The process of extracting wood products from logs is orteedfltiest tasks performed by men, ibig still a complex procedure
due to the natural variation of wood. Every log contains a higtbauof characteristics that can become a defect after sawing.
Knots, resin pockets, pith, compression wood and many other featurdegrade the quality of a board or a veneer and it is
usually impossible to detect them before cutting the log. A real optiovizatt the sawing process requires necessasbanner
able to detect in advance all the internal characteristics. Many studies were donertstidgenthe possibility of detecting the
features 6a log with a CT scanner since the ‘80s [1], but the feasibility and the cost of a scanner working at the eshjspeed
deemed this approach as not applicable to the industry.

In 2008 Microtec, an industry leader in scanners for the sawmill indlistgan a project with the goal of building a CT scanner
with the characteristics required for the industrial process and the abdipyitoize the sawing process of each single log based
on its internal features [2]. One of the aims was a system that coulst&iéeth just before a sawing line in order to optimize the
cut of the logs at a typical speed of 160m/nhinthis paper we will report the solutions we adopted at every step pfdbess

in order to obtain a fully automated optimization systbat works even positioning the scanner at small distance from the
sawing line.

2. Thescanner: material and methods

The speed of a big sawmill for softwood can often reach 160wdnmd most of the logs are smaller than 70cm in diameter, but
sometimes they are not straight so the tunnel of transportation mugétbdigger. For these reasons the main geometrical
constraints required for this kind of scanner are a field of wie®90cm and a transportation speed of 160 m/min.

To achieve this speed we have realized a cylindrical array of semislotength of 752mm and width of 1670mm. One advantage
of the application is the relatively low resolution needed, especiallgilotigitudinal direction. Most of the internal features of
a log are, in fact, built along its longitudinal axis, meaning that a leigblution in that direction is not strictly needed. Our
design goal was to build an array of sensors with a pitci2air.in transversal direction and 16mm in longitudinal direction.
The solution was found in building single modules with 32xgensors each with lead collimators mounted. Every module of
32 X-ray sensors is made of a crystal scintillator array for xadight conversion, a photodiodes array for light to current
conversion an@4-bit ADCs for the digitalization of the analogue signals. The maxirsampling frequency is 3000 Hz. The
digital data are collected by a two-levels hierarchy of electronic boards and trathidmittecontactless data transmission link
to the stationary part. The sensor boards and collector boards wereettipgelvin house. The sensor matrix is constituted of
1081 modules with 32 sensors each. The sensors are mourgeghotry rotating at 240rpm.
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Scan speed

60-160 m/minute (1-2.7 m/sec)

Operating times

2417

Maximal scan diameter of the log

70cm(depending on wood density)

X-ray tube voltage and current

200kV 14mA

Field of view 90cm
Transversal resolution 1 mm
Longitudinal resolution lcm
Cone beam angle 25°
Centrifugal force at the x-ray tube 649
Maximal rpm of the gantry 240

Table 1: technical specification of CT Log.

Tomographic reconstruction

The data is sent to a computer, which applies to the projections the aedanihg compensation, adaptive filters to reduce the
noise when needed and the reconstruction algorithm. The beaenimgrd@¢ompensation is easier when scanning wood with
respect to other applications thanks to the fact that wood is mainly ma@dgbon and water, which have a very similar
absorption spectrum in the used range of energies.

Due to the high amount of data, a compression schema was requiréeritoaope with the limited bandwidth of the contactless
data link. The control board firmware does the dark compensatidmeaattenuation signal, computes the logarithm and then
send the value encoded as 12 bit floating point number. This simplétfaig achieves a compression factor of 40% without
any visible artifact on the reconstructed image.

Since the main requirement was the implementation of a reconstruction algarffluiestly accurate and fast, the Katsevich
algorithm [3] has been chosen for tHis the specific case it is not possible to expect a perfect s@jattiory of the scanner,
the first reason is that the speed of the conveyor can not be assumendt¢dostto, for example, log accumulation in the final
part of the production line), while the speed of the gantry canrastgehquickly due to the inertia. A second reason is that
sometimes the logs are not sufficiently stable on the conveyor and gidewaments are possible during the scan.

For this reasons we chose to implement the version proposgd]jmhere different trajectories of the scanner can be applied.
In particular, the trajectory can be modeled as a standard spiral mavaoeea rigid body motion with 6 degrees of freedom.
The computational complexity of the reconstruction is very similargdstiandard helix if the rigid body motion is limited to 4
degrees of freedom, assuming that the only possible rotations agettedaaxis of the scanner. Since this is the typical situation
for a wood log moving on a belt conveyor, we implemented a streation algorithm considering only translation in the 3
possible directions and rotation along one axis.

Usually a CT scanner acquires all the data of a scan and does the wetionstf the whole volume when all the daga
available. In order to reduce the space needed between the scahtier seawing line this was not an optimal solution because
it required to wait for the whole log to pass through the scannerebgtfanting the reconstruction. In our implementation we
preferred to create a continuous reconstruction scheme where the projectésra the system, are filtered and back-projected.
As soon as a new slice of reconstructed volume is ready (i.e. doesedoamy more back-projections), it is passed to the next
stage of the system for the elaboration. In this way, we haveiawoums stream of projections that are received from the sensors
and a continuous stream of reconstructed slices that is sent to the nmaagsimg stage. In such a way, logs can be continuously
processed even if they only have a small gap between themdartheyor

The filtration and back-projection of each new projection requires thesl&dge of the past and future trajectories of the
scanner/object system. In a simple helical trajectory, this can be akasrkeown but in the general case the filtration of one
projection cannot start until the acquisition of the future positionergptete. The amount of rotation needed is between half

revolution and a full revolution: more precisely the minimal rotaisan+ 2 - asin (%) where r is the radius of the field of view
and R is the distance between the source and the axis of rotationic®wnéwlume is complete when all the needed projections
are backprojected, i.e. all the voxels with a certain z coordinate tdaraject any more in the Tam-Daniellson window (we
assume the z axis parallel to the axis of rotation). This requires digaythan one revolution from the moment when the voxels
had the same z coordinate of the source. Therefore we can thes Akvayre that one slice of reconstructed volume is ready
after 2 revolutions of the gantry from the moment when the slicegalss center of the gantry.

We implemented the algorithm on a computer with 3 Nvidia GTXXBBUs in order to do the filtered back-projection at 1600
projections per second. At the translational speed of 160m/min tidnal speed of 240rpm the helical pitch is 666mm, which
means that each slice of the volume is reconstructed about 1.3 m &dieseis phe center of the scanner, equivalent to 0.5sec.
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Figure 1 - Internal view of the scanner, with the sensors mountdtedilack bars in the gantry (left); one of the sensor modules dedelop
by Microtec (center); one of the sawmill installations of the scanner (right).

I mage processing

Typically a sawmill process about 10 logs per minute: it is therefore impossible for an opdaatmalyze manually the CT
images and decide the best solution. For this reason, algorivhitinge fautomatic detection of the main features of a log where
developed by exploiting statd-the art approaches [4,5,6,7] and by customizing manyeor tih strict collaboration with the
authors themselves.

Most of the structure of a log is built around the pith, the centdreofear ring. For example, the knots and most of the cracks
start from the pith and are oriented in radial direction, while the year, thgysing shakes, and the resin pockets are oriented
along circles around the pith. The detection of the pith position is bp@pplying a Hough transform on each slice (see Figure
2). Additional regularization filters forcing the continuity along &xéal direction of the log are applied in order to consider that

the pith is usually a regular curve with the exception of specifittpahere the top of the tree was broken [12].

Figure 2- Example of Hough transform used to estimate the position of theJpitthe original image (left), the gradient is calculated around
each pixel. Along the direction of the gradient, a line is plaitethe map with an intensity proportional to the magnitude of théemtad he
accumulation of all the lines creates the map on the right, wheréhhgopition is easily detectable.

The most important feature in each log is the knots detection, localizaibestimationThe knots can be roughly described as
cones with the top on the pith extending radially toward the outéacgiof the log. In the central part of the log (heartwood),
the density of the knots is higher than the sound wood. lexteenal part of the log (sapwood), the density of knots amaldso
wood is very similar but the texture of the image is often different.

We divide the knots detection in two steps. The first step createstooserfaces around the pith [7]: in the concentric surface
extracted from the heartwood, the knots appear as white circles. By detectiognaecting the intersection of the knots with
the concentric surfaces, we define a starting point and a main directiscfoknot.

For the second step of detection, we extract a volume around edabf kime 128x64x8 pixels, where the third dimension is
parallel to the axis of the log and the second dimension is orthogotied axis of the knot. The pixel size is Imm in the first
two dimensions and 10mm in the third. The images are processed @ihvolutional neural network (CNN) (e.g. JLihat
have the advantage of being suitable for parallel implementation. By iteratbrelglving the input image with different learned
filters and i rescaling the feature maps (i.e. result of each convolutiemetivork produces an output with the same size as the
input, with the scaled probability indicating the presence of adswalue
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In order to train the CNN, more than 5000 knots (and their respeciivees) were manually marked on available CT images
The scaled probability volumes from the CNN are processed in trdextract the parameters describing each knot, using a
parametrization similar to [5]. In Figus we show an example of images of knots with the knot manually definad bxpetr

and the automatic detection of the CNN.

Figure 3. Eight layers of the image of a knot with superimposedrklidue the manual ground truth and in light blue the thresholdigait
of the neural network.

The processing of a log of 6m length in a computer with one BRllres about 25 seconds, during which the log would cover
almost 70 meters. To reduce the required time of at least a factotloé Aigorithm had to be parallelized on multiple computers.
It is not possible to divide the log in ten pieces and processiedependently because many features (like long knots or cracks)
can cover a long part of the log and having the possibility tyamalach feature completely is important to obtain a good result.
For this reason we pass the whole log to 10 computers in parallel,reachloulate the pith position and identifies all the knots
(step 1), which is a fast computation. For the volume extractiomparsneters computation (step 2), each computer analyze
only a predefined set of knots and the results are merged. Titimaaldcomputers are devoted to the detection of the other
minor features (sapwood border, resin pockets, cracks, ring widéhstain, metal inclusions and bark). With this solution, it is
possible to process a log 6 meters long in about 2.3 seconds.

Cutting pattern optimization

The fact that all the logs have different characteristics is usuallybéeprpbut can also be used as an advantage as long as the
different wood products also have different quality standard requirenfremtexample, boards with big knots do not have good
static properties if used as construction timber, but a board with greobind knot can be sold at the maximal price in the
flooring market . The problem is that different markets require diffsizatof the boards: for example if a board for construction
timber is sawn with a dimension of 2”’x4”, it is then not possible to sell that board for flooring since that dimension is not required.

With the optimization software developed for the scanner issiple to define the quality, dimension and price of the different
products of the market. The software proposes a high numbliffesEnt combinations of boards and intersects their position
with the outer shape of the log and the model of all the internal featirasted with the image processing steps. This process
creates 3Dfvirtual boards”, i.e. models of boards with all the features that appear on their surfaeespiimizer software can
apply the quality rules to each virtual board, calculating its potentigbied. For each log, many thousand of virtual boards
have to be simulated and evaluated in order to verify the differesibf@sutting pattern and choose the best one.

A first step of the optimization identifies the combination of boards thatcan@atible with the outer shape of the log, a second
step calculates the value of the boards of the different combinations.

The parallelization of this process is easy since the main commatatiost is the evaluation of the grade and value of each
board. In the current solution 84 parallel threads are distribute?l Gomputers with an Intel i7 processor in order to optimize a
log in 1 second, processing about 10,000 virtual boards.

With such processing, value of the production can increase by28% {8,9].

Figure 4- Example of CT reconstruction (left) feature extraction (center) and arexdtigrtual boards (right)
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3. Conclusions

We have described our implementation of a CT scanner able to ptbeedata and to optimize the production at the speed of
160 m/min. Table 2 records the times needed by the different stegssylstem. The first step considers the maximal length of
the log, typically 6m, because we calculated the space from the moimene the whole log has passed the center of the gcanne

Step Time (s) Space (m)
Passage of the log with maximal length 2.25 6
Tomographic reconstruction 0.5 1.33
Image processing 2.3 6.13
Cutting pattern optimization 1 2.66

Total 6.05 16.1

Table 2: time and space needed between the scanner dim&ltloptimization of a log at 160m/min.

Within the timespan of 3.8 seconds the system is talyleconstruct, process and optimize logs in an industrial pro€his.
means that it is possible to install the sawing line at 16.1 metergieoenter of the scanner.

Five installations of CT Log are already installed and working. @we installationbased in the framework presented in this
paper, will be started in Sweden during January 2018.
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