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Summary In this paper we propose an efficient Markov chain Monte Carlo (MCMC)
algorithm to estimate stochastic volatility models with jumps and affine structure. Our idea
relies on the use of adaptive methods that aim at reducing the asymptotic variance of the
estimates. We focus on the Delayed Rejection algorithm in order to find accurate proposals and
to efficiently simulate the volatility path. Furthermore, Bayesian model selection is addressed
through the use of reduced runs of the MCMC together with an auxiliary particle filter necessary
to evaluate the likelihood function. An empirical application based on the study of the Dow
Jones Composite 65 and of the FTSE 100 financial indexes is presented to study some empirical
properties of the algorithm implemented.
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1. INTRODUCTION

Stochastic volatility modelling represents an important topic for financial applications (Ghysels
et al. 1996 for a general treatment). A generalization for these dynamics is represented by the
introduction of jumps, as it seems natural to add this component to account for extreme and rare
events that happen in the markets. Empirical evidence shows that the use of jumps and stochastic
volatility leads to an improved fit of the data, both in relation to their descriptive power (Eraker
et al. 2003) as well as for the pricing of derivatives (Bakshi et al. 1997; Pan, 2002; Eraker, 2004).
A jump diffusion model for the state vector X t adapted to the filtration {Ft }t≥0 can be described
in general terms1

dXt = µ (Xt ) dt + Σ (Xt ) dW t + dJ t , (1)

where W t is a multi-dimensional Brownian motion, the vector µ(X t ) is the drift, Σ(Xt ) is a
squared matrix and J t is a multi-variate marked point process with intensity λ(X t ). A recent
survey on jump diffusion models for financial applications can be found in Scott (1997) and in
Runggaldier (2003).

1The vector X t includes the dynamics of the prices and of the volatilities for example.
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The aim of this paper is to propose and implement an efficient Markov chain Monte Carlo
(MCMC) procedure in order to estimate the affine jump diffusion models recently introduced
in Duffie et al. (2000). We also aim at assessing some empirical properties of our algorithm
by comparing it with other solutions proposed in the literature. Furthermore, we implement a
sequential Monte Carlo strategy based on the framework introduced in Johannes et al. (2002) to
evaluate the Bayes factor.

The remainder of the paper is organized as follows. The Duffie et al. (2000) framework is
described in Section 3. Our inferential solution for that class of models is outlined in Section 3.
Finally some empirical results based on the study of financial indexes are illustrated in Section 4.

2. AFFINE JUMP DIFFUSION MODELS

Affine jump diffusion models can be described by equation (1) in which the functions
µ(Xt ),Σ(Xt )Σ′(Xt ) and λ(X t ) are linear with respect to the state X t . Duffie et al. (2000) show
that, in the affine jump diffusion framework, a general version of the Fourier transform for X t

conditional on the σ -algebra Ft is

F(u, Xt , t, T ) = E

[
exp

(
−

∫ T

t
R(Xs) ds

)
eu′ XT

∣∣∣Ft

]
= eα(t)+β(t)Xt , (2)

where α(t) and β(t) are solutions to suitable ordinary differential equations and u ∈ C
n . The

process R(X s) is the discount factor that is also affine. In general, α(t) and β(t) can be computed
numerically even though in many cases it is possible to derive an analytical expression for them.

An interesting application of the affine jump diffusion theory is the following stochastic
volatility model in which log-prices Yt and volatilities Vt are described by

dYt =
(

µ − 1

2
Vt

)
dt +

√
Vt dW1,t + H y

t dN y
t , (3)

dVt = κ(θ − Vt ) dt + σv

√
Vt dW2,t + H v

t dN v
t , (4)

where (W 1,t , W 2,t ) is a bivariate Brownian motion with correlated components. The correlation
parameter ρ is often interpreted as the leverage effect and induces a relationship between
volatilities and returns. For an extensive study of this topic see Yu (2005). The parameter µ

is the drift of the log prices. The parameters κ , θ and σ v are, respectively, the mean reversion, the
long run mean and the standard error of the volatility process. The jumps are modelled by marked
point processes H i

t dN i
t , i = y, v. A marked point process is a random sum Jt = ∑Nt

j=1 Hi
j in which

Nt represents the number of arrivals of a Poisson process in the interval (0, t] whereas H i
j is the

random size, or mark, corresponding to each arrival. In this paper the intensities λi are constant
over time. In order to avoid problems with the negativity of the volatilities, common practice is
to consider the logarithmic transform log(Vt) = Zt. A general version of the Itô’s formula gives

dZt =
[
κ(θe−Zt − 1) − 1

2
σ 2

v e−Zt

]
dt + σve− 1

2 Zt dW2,t + log
(
1 + H v

t eZt−
)

dN v
t , (5)

in which Z t− is the left limit of a trajectory. The model in (3) and (4) can incorporate various types
of jumps. As an example, in models with independent jumps both of the equations are allowed to
jump but the two jump processes and their sizes are independent. The process N v

t has intensity λv
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and jump size H v
t ∼ exp(µv) while N y

t with intensity λy has jump size given by H y
t ∼ N(µy, σ

2
y ).

By imposing λv = 0 the model proposed in Bates (1996) is defined. Alternatively, the model
can exhibit contemporaneous jumps, i.e. there exists one jump component in the model and one
intensity parameter, but the sizes are different and correlated. In this version H v

t ∼ exp(µv) and
H y

t |H v
t ∼ N(µy + ρ j H v

t , σ 2
y ). Closed form solutions to the characteristic function are available

for all the stochastic volatility models described above. In this way, the price of an European
derivative can be computed through numerical integration methods.

3. INFERENCE

In this section we develop an efficient MCMC procedure for estimating the stochastic volatility
dynamics introduced before. From a statistical point of view, inference for continuous time
models is a challenging task for mainly two reasons. First, the trajectories of the processes are
continuous. Second, there are some non-observable factors that affect the likelihood function.
The main difficulty in deriving inferences for continuous time stochastic processes discretely
sampled consists in the evaluation of the transition probability p(X t+1|X t ), which in general
is not available in closed form. However, various computational intensive methods have been
proposed to approximate it. Some of these rely on the Efficient Method of Moments of Gallant and
Tauchen (1996), others on the Implied-State GMM of Pan (2002). Estimation through maximum
likelihood has been carried out in Aı̈t-Sahalia (2002) by approximating analytically the transition
density through Hermite polynomials. Recently, many methods based on simulation techniques
have been implemented in order to approximate the likelihood. These procedures are based on
adding some latent data in-between each pair of observations. These auxiliary points are then
integrated out through Monte Carlo simulations. Simulated maximum likelihood methods have
been proposed in Brandt and Santa-Clara (2002) and in Durham and Gallant (2002) among others
whereas filtering techniques to evaluate the likelihood have been implemented in Johannes et al.
(2002) and in Pitt (2002).

We focus on MCMC methods that have been introduced for discrete stochastic volatility
models in Jacquier et al. (1994) and in Kim et al. (1998). An application to models with jumps
has been implemented in Chib et al. (2002) and in Eraker et al. (2003). Furthermore, MCMC
methods for inference on continuous time models have been proposed in Eraker (2001) and in
Elerian et al. (2001).

The starting point of our inferential procedure involves an Euler discretization. The model is
thus evaluated on a set of discrete times {τ i : i = 1, . . . N} such that τ i+1 − τ i = �. Johannes
et al. (2002) and Eraker et al. (2003) assert that in practice the use of daily intervals leads to a
small bias with respect to the continuous model. In this paper, we got similar findings through
some Monte Carlo experiments. Daily intervals imply that � = τ i+1 − τ i = (t + 1) − t = 1.
We get

Yt+1 − Yt =
(

µ − 1

2
Vt

)
+

√
Vtε

y
t+1 + H y

t+1 J y
t+1, (6)

Vt+1 − Vt = κ(θ − Vt ) + σv

√
Vtε

v
t+1 + H v

t+1 J v
t+1, (7)

in which (ε y
t+1, εv

t+1) is a bivariate Normal with correlation ρ and J t+1 is Binomial Bi(1, λ).
It is important to note that this approximation is appropriate if both sizes and intensities

are independent of returns and volatilities. However, if we consider the model in terms of
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log-volatilities as in equation (5), more general procedures are needed. We apply a version of
the method proposed in Glasserman and Merener (2004) that gives

Yt+1 = µ − 1

2
eZt + e

1
2 Zt ε

y
t+1 + H y

t+1 Jt+1, (8)

Zt+1− = Zt + κ(θe−Zt − 1) − 1

2
σ 2

v e−Zt + σve− 1
2 Zt εv

t+1, (9)

Zt+1 = Zt+1− + log
(
1 + H v

t+1eZt+1− )
Jt+1. (10)

In this paper, equations (6) and (7) have been used to carry out MCMC inference. The
approximation given in (8)–(10) is convenient to evaluate the likelihood function through the
particle filter. To clarify the notation used for the rest of the paper, we define Y = {Y 1, . . . , YT}
as the complete vector, Y t = {Y 1, . . . , Yt} indicates the observations up to time t whereas Y −t =
{Y 1, . . . , Y t−1, Y t+1, . . . YT} comprises all of Y except Yt.

Since volatilities and jumps are not observed, they are treated as missing data in the MCMC
setting where the target distribution isπ (θ, V , J, H y , Hv|Y). The vector V represents the stochastic
volatilities, J is the jump process with jump sizes H y and Hv while θ are the parameters. MCMC
aims at estimating the distribution p(θ|Y) simply by recursively simulating the latent processes
and the parameters from their full conditional distributions (see Robert and Casella, 1999 chap.
6–7). Estimates of the latent factors are given by averaging over the realization of the chain, i.e.
V̂t = n−1 ∑n

j=1 V j
t and P̂r (Jt = 1) = n−1 ∑n

j=1 J j
t , respectively.

The priors for the parameters2 areµ ∼ N(0, 25), κ ∼ N(0, 1), κθ ∼ N(0, 1), σ 2
v ∼ U(0,1), ρ ∼

U(−1,1), λ ∼ Beta(2, 40), ρ j ∼ N(0, 4), µv ∼ IG(20, 10), σ 2
y ∼ IG(5, 20), µy ∼ N(0, 100). This

choice leads to a closed form for the full conditionals for each but two parameters. The only
exceptions are for ρ and σ 2

v . To update them we apply an adaptive Metropolis–Hastings algorithm
(ARMS). It is easy to show that the full conditional distributions of the jump sizes H y and H v

are Gaussian. Finally, the jump times Jt are a sequence of i.i.d. Bernoulli random variables. The
conditional posterior is still Bernoulli with probability of success given by

Pc(Jt = 1) = P
(
Jt = 1|θ, Y, V, Hv, H y, J−t

)
∑1

j=0 P
(
Jt = j |θ, Y, V, Hv, H y, J−t

) , (11)

and in which P(Jt = j |θ, Y, V , Hv , H y , J−t ), j = 0, 1 is known up to a proportionality term. The
main problem with this approach is to efficiently update the volatilities since it is not possible to
simulate directly from their full conditional distributions. Solutions based on a basic Metropolis–
Hastings algorithm seem to be not reliable and are also inefficient. For these reasons, we propose
and investigate the behaviour of an adaptive procedure in order to select a precise proposal and
to update the latent process.

3.1. Adaptive MCMC strategies

The aim of MCMC is to generate a Markov chain with given invariant distribution π (x) and
estimating Eπ [g(X )] � gn by averaging over the trajectories obtained. A useful criterion to

2 The symbol IG(α, β) indicates an Inverse Gamma random variable.
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evaluate the goodness of an estimator is based on its asymptotic variance

V (g, P) = lim
n→∞ nvarπ [gn] = varπ [g(X0)] + 2

∞∑
n=1

covπ [g(X0, Xn)]. (12)

Suppose that the realization of the chain is approximately an AR(1) process with autocorrelation
ρ. Then the asymptotic variance of gn is N−1σ 2(1 + ρ)/(1 − ρ), where σ 2 is the variance of
g(X) under π (x). A small ρ leads to an improved estimate in terms of its efficiency. A number
of techniques, known as adaptive, have been proposed in literature to reduce ρ in the MCMC
setting. One possible way to do adaptation consists in exploiting the entire history of the chain (see
Gilks et al. 1998; Gåsemir 2003, for example). Unfortunately, these solutions relax the Markovian
assumption and make it difficult to assess the conditions required for the convergence. A possible
improvement to the random walk algorithm can be obtained by locally adapting the proposal
densities to the target distribution. This can be done for example through the Metropolis Adjusted
Langevin Approximation of Besag (1994). A different solution exploits the information given
by previous rejections. An example is the Adaptive Rejection Metropolis Sampling (Gilks et al.
1995, ARMS) where the rejected candidates are used to build an accurate envelope function for
the conditional distribution of interest. The main drawback in ARMS is that it is computationally
demanding since the conditional distribution has to be evaluated at many points on the domain
at each sweep of the algorithm. In the following we focus on the Delayed Rejection algorithm
proposed in Tierney and Mira (1999).

3.2. Delayed rejection algorithm

A general notion of efficiency with respect to (12) is the well-known Peskun optimality (Peskun
1973; Tierney 1998). Given two Markov chains P and Q with the same invariant distribution π (·),
we say that P dominate Q in the Peskun sense if

P(x, A) ≥ Q(x, A), x /∈ A, ∀A ∈ F . (13)

This condition states that the kernel generated by P dominates the transition defined by Q off the
diagonal, i.e., the probability to stay at the same position at the next iteration is lower with P for
each x. In the Metropolis–Hastings framework, this means that P allows less rejections than Q for
every set A given the present state x. Following this intuition, Tierney and Mira (1999) propose
the Delayed Rejection (DR) algorithm. The aim of the DR is to increase the rate of acceptance
at each sweep of the algorithm.3 In case we observe a rejection, the idea is to sample a new
candidate for the chain from a different proposal, taking into account the information given by
the previous rejections. In practice, if during the run of the chain a candidate y for Xt is rejected,
a further Metropolis–Hastings step according to a new proposal is appended. To be more precise,
the proposal at the ith step depends on the former rejections y1, . . . , yi−1, i.e. qi(x , y1, y2, . . . , yi).
It is worth pointing out that this method allows for a lot of flexibility, since there are no constraints
for the choice of the proposal. Furthermore, the Markov property of the process is met by
construction. In the general framework, Tierney and Mira (1999) and Mira (2001) prove that for

3Note that taking into account just the number of rejection at each sweep of the algorithm can be misleading. See Roberts
et al. (1997) for a study on the optimal scaling.
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each sub-step of the MH algorithm the acceptance probability α i (x , y1, . . . , yi) that guarantees
the reversibility of the Markov chain is

αi (x, y1, . . . , yi ) = min

{
π (yi )q1(yi , yi−1)q2(yi , yi−1, yi−2) . . . qi (yi , yi−1, . . . , x)

π (x)q1(x, y1)q2(x, y1, y2) . . . qi (x, y1, yi )
×

[1 − α1(yi , yi−1)][1 − α2(yi , yi−1, yi−2)] . . . [1 − αi−1(yi , . . . , y1)]

[1 − α1(x, y1)][1 − α2(x, y1, y2)] . . . [1 − αi−1(x, y1, yi−1)]
, 1

}
. (14)

Unfortunately the probability α i is not increasing in i. For this reason a maximum number of
rejections has to be defined. The algorithm can be summarized as follows.

Delayed Rejection algorithm

1. If y ∼ p1(x , y) is rejected in MH.
2. For i = 2, . . . , k.
3. Sample yi from qi(x , y, y1, . . . yi).
4. Accept yi with probability α i (x , y1, . . . , yi) given by (14).
5. If rejection and i < k, then i = i + 1 otherwise X t+1 = yi.
6. End for.
7. X t+1 = yi or X t+1 = Xt.

The convergence of the chain is guaranteed by checking the sufficient conditions at each
Metropolis–Hastings sub-step. These conditions basically state that the proposals have to be
strictly positive for each x in which π (x) > 0. Some of these conditions are stated in Tierney
(1994) and in Mengersen and Tweedie (1996).

It is also interesting to assess in some way the speed of convergence of the algorithm. Up
to now, it is not clear whether the DR provides an improvement with respect to other sampling
schemes. However, following Mira (2001) there are some special cases in which DR cannot be
worse than the independence algorithm. In general, the speed of convergence depends on the
choice of the proposal distribution. A practical solution for improving the convergence is to
choose a proposal scheme with good asymptotic properties until the chain converges and then
eventually to append a DR step once the convergence to the invariant distribution is reached in
order to reduce the asymptotic variance.

In this paper, we propose a DR algorithm based on three stages in order to update the volatility
process. In our empirical analysis, it seems that the algorithm mixes properly.4 At the same time,
our choice guarantees a good computational speed. In our setting, at the first step the proposal
distribution does not depend on the current state of the chain (independence proposal). We exploit
the idea suggested in Eraker (2001) based on the concept of Brownian bridge5 through V t−1 and
V t+1. It is easy to prove that a good approximation to the conditional posterior, or at least to the
diffusive part of it, can be obtained by shrinking the length of �. The proposal q(x , y) is then

q(Vt |Vt−1, Vt+1,θ) ∼ N
(
µt , σ

2
t

)
, (15)

4We say that a chain is mixing well if the autocorrelation in the chain is low. In general, this is a good indicator of
efficiency of the algorithm.

5Different random walk proposals based on the Langevin approximation of the full conditionals have also been taken
into account. However they seemed to perform poorly with respect to the one described above.
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where µt = (V t+1 + V t−1)/2 and σ 2
t = σ 2

v(1 − ρ2)V t−1/2. At the second step we consider a
random walk proposal, that is, y = x + ε where ε is Gaussian with the same variance than before
and given the current state x. Finally, at the third step we add another random walk step. We would
like to stress that the acceptance probabilities between the second and the third step are different
due to the adaptive nature of the algorithm.

The combination of the random walk and the independence proposals allows us to exploit the
advantages of both. In fact, if the independence proposal is a good approximation of π (x) then
the number of rejections will be small. But in case of a rejection, that is a poor approximation of
the target distribution, a random walk proposal gives a control on this bad behaviour.

3.3. Model ranking and Bayes factor calculations

In Bayesian statistics it is a common practice to use the marginal likelihood as an indicator for
the goodness-of-fit. This quantity is defined as

m(Y|Mi ) =
∫

p(Y|Mi ,θi )π (θi |Mi ) dθi , (16)

where (Mi ,θi ) indicate the ith model and its parameters. The functions p(Y|Mi ,θi ) and
π (θi |Mi ) are, respectively, the likelihood and the prior distributions. The Bayes factor is evaluated
as the ratio Bi j = m(Y|Mi )/m(Y|M j ).

It is often difficult to evaluate the marginal likelihood, and many techniques have been proposed
in the literature.6 In many cases, it is useful to recur to the following decomposition

m(Y|Mi ) = p(Y|Mi ,θi )π (θi |Mi )

π (θi |Y,Mi )
, ∀ θi ∈ supp(θi ). (17)

In order to evaluate this ratio, it is necessary to estimate π (θi |Y,Mi ) and p(Y|Mi ,θi ) at a fixed
point. π (θi |Y,Mi ) is computed by using the algorithm of Chib and Jeliazkov (2001). Nicholls
and Mira (2004) noticed that this is a special case of the bridge sampling setup of Meng and Wong
(1996). The method consists in dividing the parameters vector θ i = (θ 1, . . . , θ K ) in blocks, and
at each step of the algorithm associate with the ith block, a given value θ∗

i . In this way, we split
the vector into two parts, say ψ∗

i = (θ∗
1, . . . , θ∗

i−1) and ψi = (θ i+1, . . . , θ K ). The estimate of the
posterior at θ∗ is then given by

π̂ (θi |Y,Mi ) =
K∏

i=1

π̂ (θ∗
i |Y, θ∗

1 , . . . , θ∗
i−1), (18)

where

π̂ (θ∗
i |Y, θ∗

1 , . . . , θ∗
i−1) = Ê1

[
α(θi , θ

∗
i |Y,ψ∗

i ,ψ
i )q(θi , θ

∗
i |Y,ψ∗

i ,ψ
i )
]

Ê2
[
α(θ∗

i , θi |Y,ψ∗
i ,ψ

i )
] . (19)

Here the numerator is the expected value taken with respect toπ (θ i ,ψi |Y ,ψ∗
i ) and the denominator

with respect to π (ψi |Y , ψ∗
i )q(θ∗

i , θ i |Y , ψ∗
i , ψi ). Finally the quantities q(θ i , θ∗

i |Y , ψ∗
i , ψi ) and

α(θ∗
i , θ i |Y , ψ∗

i , ψi ) are, respectively, the proposal and the acceptance probability for the MH

6A review on some Monte Carlo alternatives is given in Han and Carlin (2001).
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algorithm. It is then possible to exploit the output of the reduced MH procedure to estimate these
expected values, using the reduced full conditional distributions described on the right-hand side
of equation (18).

3.4. Particle filtering and likelihood evaluation

In many applications, the likelihood p(Y|Mi ,θi ) is known, so that the Bayes factor can be
evaluated once the posterior is estimated. Unfortunately, in models with latent factors, the non-
observable variables X have to be integrated out. Chib et al. (2002) propose a particle filter to
evaluate the likelihood for a basic stochastic volatility model with jumps. In this paper we adopt
a version of the auxiliary particle filter proposed in Johannes et al. (2002).

Particle filters aim at estimating the latent processes through sequential Monte Carlo
simulations. Important recent works on this topic include Gordon et al. (1993) and Kita-gawa
(1996) whereas a useful introduction is given in Arulampalam et al. (2002). To run the filter, it
is required to have the knowledge of p(X 0), the transition distribution p(X t+1|Xt), t ≥ 0 and the
measurement distribution p(Yt|Xt), t ≥ 1. The key idea is to approximate the filtering density
p(X t+1|Y t+1) by a discrete cloud of points, {X j

t+1: j = 1, . . . M}, called particles. This density
is estimated as

p̂(Xt+1|Y t+1) =
M∑

j=1

ω
j
t+1δ

(
Xt+1 − X j

t+1

)
, (20)

where ω
j
t+1 are suitable weights and δ(·) is an indicator function. Obtaining a sample from (20)

is easy if we recur to the importance sampling method in which the proposal q(X t+1|Y t+1) can
be set to p(X t+1|Xt) with weights ω

j
t+1 ∝ ω

j
t p(Y t+1|X j

t+1).
In many practical applications, the plain particle filter described above is really sensible to

outliers. The introduction of auxiliary variables (Pitt and Shephard 1999) improves the choice of
the new particles by reducing the variability of the importance weights ω t . In many cases, this
kind of generalizations allow to select particles that are more concentrated around the true state. A
systematic description of the auxiliary particle filter method can be found in Doucet et al. (2001)
[chap. 7] and in Arulampalam et al. (2002).

We apply the auxiliary particle filter to the affine jump diffusion model for the log-volatilities
as in equations (8)–(10). This choice solves the problems related to the sampling of negative
particles.

In the following, we will adopt the notation introduced in Johannes et al. (2002) in which the
state vector is Xt = (Z t−1, Jt, H y

t , H v
t ). We also take into account the leverage effect between

processes. The introduction of ρ induces a dependence between the state vector X t+1 and the
observation Yt. This is called feedback effect, in which the transition distribution depends on
Yt, i.e. p(X t+1|Xt, Yt). This complication can be accounted for by decomposing the covariance
matrix through its Cholesky decomposition. In practice, it is possible to prove that it does not
affect the filtering procedure.

Once the states are filtered, it is easy to evaluate the likelihood function by p(YT |θ) =∏T
t=1 p̂(Yt |Y t−1) where p(Yt |Y t−1) = ∫

p(Yt |Xt ,θ)p(Xt |Y t−1) d Xt is estimated simulating the
state Xt from p(Xt|Xi

t−1), i = 1, . . . , M and in which Xi
t−1 is the output of the filter at time t − 1.

We carried out a Monte Carlo experiment in order to check whether the introduction of the
auxiliary variables improves the efficiency of the filter. We found some evidence that the auxiliary
particle filter outperforms the plain Sampling Importance Resampling filter (SIR). We performed
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100 Monte Carlo experiments-on simulated series of size 500. For the auxiliary particle filter we
set M = 10,000 resampled R = 20,000 times at each step. For the SIR filter we used 20,000
particles in order to maintain the same computational burden between the two algorithms. For the
Heston’s stochastic volatility model, for example, the Root Mean Square Error (RMSE) is 0.035
for the auxiliary filter whereas it is 0.078 for the SIR. If we perform the same computations for
the complete model, we noticed that there is a systematic improvement when we use the auxiliary
particle filter even though the difference is not so remarkable than before.

We also performed a Monte Carlo experiment to check the sensitivity of the discretization
bias to the introduction of auxiliary points in-between each pair of observations. We found that
there is just a slight improvement if we add 4–10 data points to daily observations. Furthermore,
the RMSE remains basically unchanged with respect to the case with � = 1 and no missing point
inserted. These findings are consistent with the Monte Carlo results presented in Johannes et al.
(2002).

4. EMPIRICAL RESULTS

Our empirical application is based on the study of financial indexes, that is, the Dow Jones 65
Composite index and FTSE 100 observed on a daily basis during the last 15 years from July 1988
to July 2003. The data set has been downloaded from Datastream. All the calculations made in
this paper are based on software written using the Ox C©3.0 language of Doornik (2001). By letting
Yt be the observed log-prices, the returns are defined as 100 × [Yt − Y t−1].

4.1. Posterior analysis

Inference has been performed for the general model of Duffie et al. (2000, SVCJ) described in
equations (6) and (7). Nested specifications proposed in Bates (1996, SVJ) and in Heston (1993,
SV) have been estimated as well. The analysis is implemented through MCMC, running the DR
algorithm for 250,000 iterations and discarding the first 50,000. In our experience this choice
for the burn-in is more than adequate, even though our aim is to completely remove the effect
of the initial values. The Monte Carlo standard error (MCSE) has been computed through the
use of a kernel estimator to take into account the dependencies due to the Markov nature of the
algorithm. Since draws from the posterior distributions are not independent, the reported MCSEs
estimate 2π times the spectral density matrix at frequency zero computed by standard time series
method. In particular, the estimator is based on a VAR(1) prewhitening, than 2π times the spectral
density matrix at frequency zero of VAR residuals is estimated by smoothing methods using the
Parzen kernel and automatic bandwidth selection. Recolouring provides an estimate of 2π times
the spectral density matrix at frequency zero of interest.

We first analyze the behaviour of the Delayed Rejection algorithm for these models. We
compare the procedures based on three steps (Independence proposal plus two random walk
steps) with the random walk algorithm proposed in Eraker et al. (2003). The adaptive procedure
reduces dramatically the rejection rate that drop from 30 to 40% to about 5%. This finding has
been noticed through an extensive simulation study for real and simulated data. This reduction of
the rejection rate improve the mixing properties of the chains. In fact we can observe a sensible
reduction of the autocorrelation among the draws of the volatility process. In general we notice
that the introduction of the DR steps reduces the autocorrelations for all the parameters of the
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Figure 1. Dow Jones Composite 65 – Sample autocorrelation functions for each parameter and the averaged
volatility. Random walk (dotted line) versus Delayed Rejection (solid line).

model. The plot of the autocorrelations for the SVCJ model for the Dow Jones series is shown in
Figure 1.

It is interesting to note that the mixing for the volatilities shown in the last box is definitely
improved. In order to obtain a similar autocorrelation function with the random walk algorithm, it
is in general necessary to record just one on five draws. Furthermore, the improvement obtained
for the volatilities induces some benefits on the mixing of the other parameters. The reduction
is in fact systematic for each parameter as shown in Figure 1. We are now interested on the
speed of convergence of the Delayed Rejection with respect to the Random walk. Of course, it
is impossible to assess convergence properties of an MCMC algorithm through the study of just
few realization of the chains. However a common practice is to check for the convergence of
the empirical averages of the draws (see Robert and Casella 1999, chap. 8 for a survey on this
topic. We can say that a chain converges rapidly if evolution of its empirical averages stabilizes
after a few iterations. The results for the Dow Jones series are plotted in Figure 2.7 In the last
box of Figure 2 we plot the evolution of the averages for T −1 ∑T

t=1 Vt . It is quite evident that the
running averages for the DR algorithm for this variable stabilize sooner than the corresponding
plot for the random walk. This evidence can be interpreted as an empirical proof for the speed
of convergence. In our experience, it seems that the random walk algorithm needs about 50,000
more iteration to converge to its correct expected value.

7The plots obtained for other real and simulated time series are quite similar and are available upon request.
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Figure 2. Dow Jones Composite 65 – Evolution of the empirical averages for each parameter and for the
expected volatility updated at each iteration of the MCMC algorithm. Random Walk (dotted line) versus
Delayed Rejection (solid line).

In general we observe that both algorithms converge to the same expected value. However,
apart for the average volatilities discussed before, it is not clear whether the adaptive method
proposed allows for a systematic improvement of the speed of convergence for the other
parameters.

The results for the Dow Jones series are reported in Table 1. We show the mean of the posterior
and the Monte Carlo standard errors for the SV, the SVJ and the SVCJ models. As a benchmark,
in the last column we report the output of the random walk algorithm. We also report at the bottom
the marginal likelihoods useful to compare the fitting of the three models studied.

For the basic stochastic volatility model in column 2, the annualized spot volatility is√
260 × θ . Its estimate is 15.17, that has to be compared with the sample volatility8 15.09.

We observe that the estimated expected volatility and its sample counterpart are really close.
The parameter κ = 0.023 is known as mean reversion, that is the time needed for the process to
return to its expected level. The leverage effect is described by ρ and is negative, even though it
is different in magnitude with respect to the results usually stylized in literature (see Eraker et al.
2003). The difference we found is explained by the choice of the drift for the returns, that in this
paper includes the volatility. σ v , that is 0.1251, determine the variance of the volatilities defined
as σ 2

vVt.

8Annualized volatilities has been computed by multiplying the sample standard error by
√

260.
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Table 1. Dow Jones Composite 65 – Parameter estimates.

SVDR SVJDR SVCJDR SVCJRW

µ 0.3268 (0.0002) 0.2979 (0.0004) 0.3097 (0.0003) 0.3095 (0.0005)

κ 0.0234 (0.0002) 0.0177 (0.0001) 0.0372 (0.0005) 0.0362 (0.0005)

θ 0.8857 (0.0017) 0.7969 (0.0018) 0.6067 (0.0031) 0.6177 (0.0041)

σ v 0.1251 (0.0005) 0.1012 (0.0002) 0.1181 (0.0004) 0.1182 (0.0005)

ρ −0.1788 (0.0020) −0.2361 (0.0035) −0.2264 (0.0031) −0.2401 (0.0045)

λ 0.0274 (0.0004) 0.0145 (0.0002) 0.0140 (0.0002)

ρ j −2.1556 (0.1141) −2.3188 (0.1131)

µv 0.4661 (0.0040) 0.4710 (0.0042)

µy 0.3317 (0.0103) 1.1519 (0.0575) 1.2469 (0.0581)

σ y 2.2389 (0.0128) 2.4809 (0.0251) 2.4892 (0.0251)

Marg. Lik. −5533.9 −5530.4 −5497.1 –

The Monte Carlo standard Errors are presented in brackets.

If the first jump component is taken into account as in column 3, the annualized volatility
decreases to 14.39. Furthermore we observed a similar behaviour for the parameter σ v . This
reduction is due to the introduction of the jumps on the returns. In fact, this factor explains part
of the volatility that in the previous model has been described just by the diffusive process. In
a neighbourhood of a jump, it is in fact intuitive to understand that a diffusive process tends to
overestimate the volatility because of the continuity of its trajectories. The intensity of the jump
process λ, that represents the frequency of the jump events, is 0.027. The model then expects about
seven jumps per year. The annualized spot volatility in this model becomes

√
260(θ + µvλ)/κ

and reduces from the 15.17 of the SV model to the 14.39. Furthermore, the annualized total
volatility, the mean square error of the returns 15.61 percent. This quantity9 is computed noticing
that the conditional expected value of the squared returns is Vt + λ E[H y2] where E[H y2] = µ2

y +
2µyµvρ j + ρ2

jµ
2
v+ σ 2

y . In percentage terms, the average effect of the jump component on the
total volatility is approximately 15%. Finally, we analyze the model with two jump factors. The
introduction of the second jump component increases the parameter κ , so that the mean reversion
phenomenon sensibly speeds up. The parameter λ halves.

The general model expects just 3.6 jumps per year. The annualized spot volatility sensibly
decreases with respect to the other two parametrizations and it drops at the 13.4 percent. On the
other side, the total volatility moves to 14.2 and then the impact of the jumps on the returns is
about the 17.3%. There is then evidence of a reduction of the expected volatility with respect to
the SVJ model. In fact, the second jump factor explicitly describes a shift on the volatility process
from

√
Vt− to

√
Vt− + H v

t . However, this effect is milder than some empirical findings described
in Eraker et al. (2003) and in this work is estimated approximately at the 4%. These differences
are likely explained by the different sample interval considered for our empirical analysis. Eraker
et al. (2003) include the date of October 19, 1987 on which date a huge crash in the markets was
observed. Likely, that single observation heavily influence all the estimates.

9Eraker et al. (2003) derive other conditional moments for these models.
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Table 2. FTSE – Parameter estimates.

SVDR SVJDR SVCJDR SVCJRW

µ 0.3763 (0.0003) 0.3456 (0.0006) 0.3560 (0.0004) 0.3563 (0.0007)

κ 0.0159 (0.0001) 0.0165 (0.0001) 0.0276 (0.0003) 0.0265 (0.0003)

θ 1.0279 (0.0015) 0.9609 (0.0016) 0.7642 (0.0036) 0.7842 (0.0043)

σ v 0.1053 (0.0003) 0.1038 (0.0002) 0.1110 (0.0002) 0.1115 (0.0003)

ρ −0.1041 (0.0022) −0.0970 (0.0025) −0.1386 (0.0038) −0.1384 (0.0053)

λ 0.0234 (0.0004) 0.0115 (0.0002) 0.0106 (0.0002)

ρ j −0.8266 (0.0715) −0.8722 (0.0832)

µv 0.5299 (0.0053) 0.5262 (0.0053)

µy 1.1230 (0.0252) 2.1477 (0.0581) 2.4716 (0.0699)

σ y 1.8250 (0.0118) 1.9692 (0.0195) 1.9097 (0.0183)

Marg. Lik. −5333.7 −5321.6 −5316.7 –

The Monte Carlo standard Errors are presented in brackets.

Finally, in Table 2 we report the results for the FTSE index.
These results are in line with the ones observed for the Dow Jones series. The introduction

of the jump process reduces the expected volatility due to the diffusive part of the model. As
usual this is shown by the parameters θ and σ v and by the computation of the total and of the
spot annualized volatilities. As before, the introduction of the jumps sensibly increases the mean
reversion κ and reduces the expected volatility θ . In general, for all the three models the annualized
spot volatility is close to 16% whereas the sampling spot volatility is 16.6%. The parameter λ

sensibly reduces when the two models with jumps are chosen and the estimate is 0.023 for the
SVJ model and is 0.011 fot the SVCJ. On the other side, the expected size of the jumps in the
returns increases from 1.12 in the SVJ to 1.70 in the SVCJ model. In practice, the SVCJ model
detects less jumps per year but with higher impact. However, for the SVJ model the jumps on the
returns explain about the 10% of the total volatility while for the SVCJ model the impact is 7.8%.
Finally the contribution of the second jump component, i.e. J t H v

t on explaining the volatility is
the 3.8 percent.

Estimates of the marginal likelihoods are reported at the bottom of Tables 1 and 2. According
to the thresholds defined in Kass and Raftery (1995), in general the complete model is strongly
preferred to the others. For the Dow Jones series, there is strong evidence that the complete model
SVCJ is preferred to the SVJ. Furthermore, the SVJ model gives a better fit to the data with respect
to the SV model even though the log-Bayes factor are close to 3. For the FTSE series, the ordering
among the three models is remarkable. The logarithm of the Bayes factors is always larger than
4 and then there is no uncertainty about the ranking. In general,we can state that there is a natural
ordering among models.

5. CONCLUSION

In this paper we propose an efficient MCMC method to estimate the adaptive stochastic volatility
model with jumps. First, empirical results evidence a sensible improvement of the DR algorithm
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with respect to the random walk. It is evident that the mixing (low autocorrelation) of the chain
based on the DR is better than the one obtained by the use of the simple random walk approach.
Furthermore, there is evidence suggesting an improved speed of convergence for the volatilities to
their invariant distributions. However there are not strong theoretical results assessing the speed
of convergence of this algorithm so far. Therefore further research is needed in this respect.

Second, the particle-filtering approach provides a reliable and fast method to compute the
likelihood and to estimate the latent processes. Some Monte Carlo experiments suggest that the
auxiliary particle filter improves the plain SIR. This finding is systematic for all the models
considered. The introduction of missing data to reduce the approximation bias of the discretized
model does not seem to be very useful with daily data. However more research is needed to
provide more conclusive evidence regarding this point.

Finally, from the point of view of the modelling, an interesting extension of the results obtained
in this work includes the study of models for the pricing of derivatives based on more general
stochastic dynamics. For this purpose, the use of sequential Monte Carlo methods for estimating
both states and parameters seems to be appropriate and faster with respect to MCMC to carry out
inference mainly if we aim at estimating the risk neutral parameters.
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