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Abstract

We show how to build several data structures of central importance to string
processing, taking as input the Burrows-Wheeler transform (BWT) and using small
extra working space. Let n be the text length and σ be the alphabet size. We first
provide two algorithms that enumerate all LCP values and suffix tree intervals in
O(n log σ) time using just o(n log σ) bits of working space on top of the input BWT.
Using these algorithms as building blocks, for any parameter 0 < ǫ ≤ 1 we show
how to build the PLCP bitvector and the balanced parentheses representation of
the suffix tree topology in O

(

n(log σ + ǫ−1 · log log n)
)

time using at most n log σ ·
(ǫ + o(1)) bits of working space on top of the input BWT and the output. In
particular, this implies that we can build a compressed suffix tree from the BWT
using just succinct working space (i.e. o(n log σ) bits) and any time in Θ(n log σ) +
ω(n log log n). This improves the previous most space-efficient algorithms, which
worked in O(n) bits and O(n log n) time. We also consider the problem of merging
BWTs of string collections, and provide a solution running in O(n log σ) time and
using just o(n log σ) bits of working space. An efficient implementation of our LCP
construction and BWT merge algorithms use (in RAM) as few as n bits on top
of a packed representation of the input/output and process data as fast as 2.92
megabases per second.
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1 Introduction and Related Work

The increasingly-growing production of large string collections—especially in
domains such as biology, where new generation sequencing technologies can
nowadays generate Gigabytes of data in few hours—is lately generating much
interest towards fast and space-efficient algorithms able to index this data. The
Burrows-Wheeler Transform [9] and its extension to sets of strings [28,1] is be-
coming the gold-standard in the field: even when not compressed, its size is one
order of magnitude smaller than classic suffix arrays (while preserving many
of their indexing capabilities). This generated considerable interest towards
fast and space-efficient BWT construction algorithms [1,22,35,6,15,25,33,35].
As a result, the problem of building the BWT is well understood to date. The
fastest algorithm solving this problem operates in sublinear O(n/

√
log n) time

and O(n) bits of space on a binary text of length n by exploiting word par-
allelism [25]. The authors also provide a conditional lower bound suggesting
that this running time might be optimal. The most space-efficient algorithm
terminates in O(n logn/ log log n) time and uses just o(n log σ) bits of space
(succinct) on top of the input and output [33], where σ is the alphabet’s size. In
the average case, this running time can be improved to O(n) on constant-sized
alphabets while still operating within succinct space [35].

In some cases, a BWT alone is not sufficient to complete efficiently partic-
ular string-processing tasks. For this reason, the functionalities of the BWT
are often extended by flanking to it additional structures such as the Longest
Common Prefix (LCP) array [11] (see e.g. [36,37,18,43] for bioinformatic ap-
plications requiring this additional component). A disadvantage of the LCP
array is that it requires O(n logn) bits to be stored in plain form. To alleviate
this problem, usually the PLCP array [40]—an easier-to-compress permutation
of the LCP array—is preferred. The PLCP relies on the idea of storing LCP
values in text order instead of suffix array order. As shown by Kasai et al. [24],
this permutation is almost increasing (PLCP [i+ 1] ≥ PLCP [i]− 1) and can
thus be represented in just 2n bits in a bitvector known as the PLCP bitvector.
More advanced applications might even require full suffix tree functionality.
In such cases, compressed suffix trees [17,41] (CSTs) are the preferred choice
when the space is at a premium. A typical compressed suffix tree is formed by
a compressed suffix array (CSA), the PLCP bitvector, and a succinct represen-
tation of the suffix tree topology [41] (there exist other designs, see Ohlebusch
et al. [34] for an exhaustive survey). To date, several practical algorithms have
been developed to solve the task of building de novo such additional compo-
nents [11,19,20,8,12,2,23,44], but little work has been devoted to the task of
computing them from the BWT in little working space (internal and external).
Considering the advanced point reached by state-of-the-art BWT construction
algorithms, it is worth to explore whether such structures can be built more
efficiently starting from the BWT, rather than from the raw input text.

2



CSA As far as the CSA is concerned, this component can be easily built from
the BWT using small space as it is formed (in its simplest design) by just a
BWT with rank/select functionality enhanced with a suffix array sampling,
see also [2].

LCP We are aware of only one work building the LCP array in small space
from the BWT: Beller et al. [5] show how to build the LCP array in O(n log σ)
time and O(n) bits of working space on top of the input BWT and the output.
Other works [30,2] show how to build the LCP array directly from the text in
O(n) time and O(n logσ) bits of space (compact).

PLCP Kärkkäinen et al. [23] show that the PLCP bitvector can be built in
O(n logn) time using n bits of working space on top of the text, the suffix
array, and the output PLCP. Kasai at al.’s lemma also stands at the basis of a
more space-efficient algorithm from Välimäki et al. [44], which computes the
PLCP from a CSA in O(n logn) time using constant working space on top of
the CSA and the output. Belazzougui [2] recently presented an algorithm for
building the PLCP bitvector from the text in optimal O(n) time and compact
space (O(n logσ) bits).

Suffix tree topology The remaining component required to build a com-
pressed suffix tree (in the version described by Sadakane [41]) is the suffix tree
topology, represented either in BPS [31] (balanced parentheses) or DFUDS [7]
(depth first unary degree sequence), using 4n bits. As far as the BPS rep-
resentation is concerned, Hon et al. [21] show how to build it from a CSA
in O(n(log σ + logǫ n)) time and compact space for any constant ǫ > 0. Be-
lazzougui [2] improves this running time to the optimal O(n), still working
within compact space. Välimäki et al. [44] describe a linear-time algorithm
that improves the space to O(n) bits on top of the LCP array (which however
needs to be represented in plain form), while Ohlebusch et al. [34] show how
to build the DFUDS representation of the suffix tree topology in O(tlcp · n)
time using n + o(n) bits of working space on top of a structure supporting
access to LCP array values in O(tlcp) time.

Summing up, the situation for building compressed suffix trees from the BWT
is the following: algorithms working in optimal linear time require O(n log σ)
bits of working space. Algorithms reducing this space to O(n) (on top of a
CSA) are only able to build the suffix tree topology within O(n · tlcp) time,
which is Ω(n logǫ n) with the current best techniques, and the PLCP bitvector
in O(n logn) time. No algorithm can build all the three CST components
within o(n log σ) bits of working space on top of the input BWT and the
output. Combining the most space-efficient existing algorithms, the following
two trade-offs can therefore be achieved for building all compressed suffix tree
components from the BWT:
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• O(n logσ) bits of working space and O(n) time, or
• O(n) bits of working space and O(n logn) time.

Our contributions In this paper, we give new space-time trade-offs that
allow building the CST’s components in smaller working space (and in some
cases even faster) with respect to the existing solutions. We start by combining
Beller et al.’s algorithm [5] with the suffix-tree enumeration procedure of Be-
lazzougui [2] to obtain an algorithm that enumerates (i) all pairs (i, LCP [i]),
and (ii) all suffix tree intervals in O(n logσ) time using just o(n log σ) bits
of working space on top of the input BWT. We use this procedure to obtain
algorithms that build (working space is on top of the input BWT and the
output):

(1) The LCP array of a string collection in O(n logσ) time and o(n log σ)
bits of working space (see Section 5).

(2) the PLCP bitvector and the BPS representation of the suffix tree topology
in O (n(log σ + ǫ−1 · log logn)) time and n log σ · (ǫ+o(1)) bits of working
space, for any user-defined parameter 0 < ǫ ≤ 1 (see Section 7 and 8).

(3) The BWT of the union of two string collections of total size n inO(n log σ)
time and o(n log σ) bits of working space, given the BWTs of the two
collections as input (see Section 9).

Contribution (1) is the first showing that the LCP array can be induced from
the BWT using succinct working space for any alphabet size.

Contribution (2) can be used to build a compressed suffix tree from the
BWT using just o(n log σ) bits of working space and any time in O(n logσ) +
ω(n log logn)—for example, O(n(log σ + (log logn)1+δ)), for any δ > 0. On
small alphabets, this improves both working space and running time of exist-
ing O(n)-bits solutions.

Also contribution (3) improves the state-of-the-art, due to Belazzougui et
al. [2,3]. In those papers, the authors show how to merge the BWTs of two
texts T1, T2 and obtain the BWT of the collection {T1, T2} in O(nk) time and
n log σ(1 + 1/k) + 11n + o(n) bits of working space for any k ≥ 1 [3, Thm.
7]. When k = log σ, this running time is the same as our result (3), but the
working space is much higher on small alphabets.

We implemented and tested our algorithms (1, 3) on DNA alphabet. Our
tools use (in RAM) as few as n bits on top of a packed representation of the
input/output, and process data as fast as 2.92 megabases per second.

Contributions (1, 3) are part of a preliminary version [38] of this paper. This
paper also extends such results with the suffix tree interval enumeration pro-
cedure and with the algorithms of contribution (2) for building the PLCP
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bitvector and the BPS representation of the suffix tree topology.

2 Basic Concepts

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet of size σ with # = c1 <
c2 < . . . < cσ, where < denotes the standard lexicographic order. Given a
text T = t1t2 · · · tn ∈ Σ∗ we denote by |T | its length n. We assume that the
input text is terminated by the special symbol (terminator) #, which does
not appear elsewhere in T . We use ǫ to denote the empty string. A factor
(or substring) of T is written as T [i, j] = ti · · · tj with 1 ≤ i ≤ j ≤ n. When
declaring an array A, we use the same notation A[1, n] to indicate that the
array has n entries indexed from 1 to n. A right-maximal substring W of T
is a string for which there exist at least two distinct characters a, b such that
Wa and Wb occur in T .

The suffix array SA of a string T (see [39] for a survey) is an array containing
the permutation of the integers 1, 2, . . . , n that arranges the starting positions
of the suffixes of T into lexicographical order, i.e., for all 1 ≤ i < j ≤ n,
SA[i] < SA[j].

The inverse suffix array ISA[1, n] is the inverse permutation of SA, i.e.,
ISA[i] = j if and only if SA[j] = i.

The Burrows-Wheeler Transform of a string T is a reversible transformation
that permutates its symbols, i.e. BWT [i] = T [SA[i] − 1] if SA[i] > 1 or #
otherwise.

In some of our results we deal with string collections. There exist some nat-
ural extensions of the suffix array and the Burrows-Wheeler Transform to a
collection of strings.

Let S = {T1, . . . , Tm} be a string collection of total length n, where each
Ti is terminated by a character # (the terminator) lexicographically smaller
than all other alphabet’s characters. In particular, a collection is an ordered
multiset, and we denote S[i] = Ti.

We define lexicographic order among the strings’ suffixes in the usual way,
except that, only while sorting, each terminator # of the i-th string S[i] is
considered (implicitly) a different symbol #i, with #i < #j if and only if
i < j. Equivalently, in case of equal suffixes ties are broken by input’s order:
if Ti[k, |Ti| − 1] = Tj [k

′, |Tj| − 1], then we define Ti[k, |Ti|] < Tj[k
′, |Tj|] if and

only if i < j.

The generalized suffix array GSA[1, n] (see [42,11,26]) of S is an array of
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pairs GSA[i] = 〈j, k〉 such that S[j][k, |S[j]|] is the i-th lexicographically
smallest suffix of strings in S, where we break ties by input position (i.e.
j in the notation above). Note that, if the collection is formed by a sin-
gle string T , then the first component in GSA’s pairs is always equal to
1, and the second components form the suffix array of T . We denote by
range(W) = 〈left(W), right(W)〉, also referred to as suffix array (SA) interval
of W , or simply W -interval, the maximal pair 〈L,R〉 such that all suffixes in
GSA[L,R] are prefixed by W . We use the same notation with the suffix array
of a single string T . Note that the number of suffixes lexicographically smaller
than W in the collection is L−1. We extend this definition also to cases where
W is not present in the collection: in this case, the (empty) range is 〈L, L−1〉
and we still require that L − 1 is the number of suffixes lexicographically
smaller than W in the collection (or in the string).

The extended Burrows-Wheeler Transform BWT [1, n] [28,1] of S is the char-
acter array defined as BWT [i] = S[j][k−1 mod |S[j]|], where 〈j, k〉 = GSA[i].

To simplify notation, we indicate with “BWT” both the Burrows-Wheeler
Transform of a string and of a string collection. The used transform will be
clear from the context.

The longest common prefix (LCP) array of a string s [27] (resp. a collection S
of strings, see [11,26,12]) is an array storing the length of the longest common
prefixes between two consecutive suffixes of s (resp. S) in lexicographic order
(with LCP [1] = 0). When applied to a string collection, we take the longest
common prefix of two equal suffixes of length ℓ to be equal to ℓ− 1 (i.e. as if
their terminators were different).

Given two collections S1,S2 of total length n, the Document Array of their
union is the binary array DA[1, n] such that DA[i] = 0 if and only if the i-th
smallest suffix comes from S1. When merging suffixes of the two collections,
ties are broken by collection number (i.e. suffixes of S1 are smaller than suffixes
of S2 in case of ties).

The C-array of a string (or collection) S is an array C[1, σ] such that C[i] con-
tains the number of characters lexicographically smaller than i in S, plus one
(S will be clear from the context). Equivalently, C[c] is the starting position
of suffixes starting with c in the suffix array of the string. When S (or any of
its permutations) is represented with a balanced wavelet tree, then we do not
need to store explicitly C, and C[c] can be computed in O(logσ) time with no
space overhead on top of the wavelet tree (see [16]). Function S.rankc(i) re-
turns the number of characters equal to c in S[1, i−1]. When S is represented
by a wavelet tree, rank can be computed in O(log σ) time.

Function getIntervals(L, R, BWT), where BWT is the extended Burrows-Wheeler
transform of a string collection S and 〈L,R〉 is the suffix array interval of some
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string W appearing as a substring of some element of S, returns all suffix ar-
ray intervals of strings cW , with c 6= #, that occur in S. When BWT is
represented with a balanced wavelet tree, we can implement this function so
that it terminates in O(log σ) time per returned interval [5]. The function can
be made to return the output intervals on-the-fly, one by one (in an arbitrary
order), without the need to store them all in an auxiliary vector, with just
O(logn) bits of additional overhead in space [5] (this requires to DFS-visit
the sub-tree of the wavelet tree induced by BWT [L,R]; the visit requires only
log σ bits to store the current path in the tree).

An extension of the above function that navigates in parallel two BWTs is im-
mediate. Function getIntervals(L1, R1, L2, R2, BWT1, BWT2) takes as input two
ranges of a string W on the BWTs of two collections, and returns the pairs of
ranges on the two BWTs corresponding to all left-extensions cW ofW (c 6= #)
such that cW appears in at least one of the two collections. To implement this
function, it is sufficient to navigate in parallel the two wavelet trees as long as
at least one of the two intervals is not empty.

Let S be a string. The function S.rangeDistinct(i, j) returns the set of
distinct alphabet characters different than the terminator # in S[i, j]. Also
this function can be implemented in O(log σ) time per returned element when
S is represented with a wavelet tree (again, this requires a DFS-visit of the
sub-tree of the wavelet tree induced by S[i, j]).

BWT.bwsearch(〈L, R〉, c) is the function that, given the suffix array interval
〈L,R〉 of a stringW occurring in the collection, returns the suffix array interval
of cW by using the BWT of the collection [14]. This function requires access
to array C and rank support on BWT , and runs in O(log σ) time when BWT
is represented with a balanced wavelet tree.

To conclude, our algorithms will take as input a wavelet tree representing the
BWT. As shown in the next lemma by Claude et al., this is not a restriction:

Lemma 1 ([10]). Given a word-packed string of length n on alphabet [1, σ],
we can replace it with its wavelet matrix [10] in O(n logσ) time using n bits
of additional working space.

Wavelet matrices [10] are a particular space-efficient representation of wavelet
trees taking n log σ · (1+o(1)) bits of space and supporting all their operations
within the same running times. Since the output of all our algorithms will take
at least n bits, it will always be possible to re-use a portion of the output’s
space (before computing it) to fit the extra n bits required by Lemma 1.
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3 Belazzougui’s Enumeration Algorithm

In [2], Belazzougui showed that a BWT with rank and range distinct function-
ality (see Section 2) is sufficient to enumerate in small space a rich representa-
tion of the internal nodes of the suffix tree of a text T . For the purposes of this
article, we assume that the BWT is represented using a wavelet tree (whereas
Belazzougui’s original result is more general), and thus that all queries take
O(log σ) time.

Theorem 1 (Belazzougui [2]). Given the Burrows-Wheeler Transform of a
text T ∈ [1, σ]n represented with a wavelet tree, we can enumerate the following
information for each distinct right-maximal substring W of T : (i) |W |, and
(ii) range(Wci) for all c1 < · · · < ck such that Wci occurs in T . The process
runs in O(n logσ) time and uses O(σ2 log2 n) bits of working space on top of
the BWT.

To keep the article self-contained, in this section we describe the algorithm
at the core of the above result. Remember that explicit suffix tree nodes cor-
respond to right-maximal substrings. The first idea is to represent any sub-
string W (not necessarily right-maximal) as follows. Let charsW[1, kW] be the
alphabetically-sorted character array such that W · charsW[i] is a substring
of T for all i = 1, . . . , kW , where kW is the number of right-extensions of
W . We require charsW to be also complete: if Wc is a substring of T , then
c ∈ charsW. Let moreover firstW[1, kW + 1] be the array such that firstW[i]
is the starting position of (the range of) W · charsW[i] in the suffix array of
T for i = 1, . . . , kW , and firstW[kW + 1] is the end position of W in the suffix
array of T . The representation for W is (differently from [2], we omit charsW
from the representation and we add |W |; these modifications will turn useful
later):

repr(W) = 〈firstW, |W|〉

Note that, if W is not right-maximal nor a text suffix, then W is followed
by kW = 1 distinct characters in T and the above representation is still well-
defined. When W is right-maximal, we will also say that repr(W) is the repre-
sentation of a suffix tree explicit node (i.e. the node reached by following the
path labeled W from the root).

Weiner Link Tree Visit The enumeration algorithm works by visiting
the Weiner Link tree of T starting from the root’s representation, that is,
repr(ǫ) = 〈firstǫ, 0〉, where firstǫ = 〈C[c1], . . . , C[cσ], n〉 (see Section 2 for
a definition of the C-array) and c1, . . . , cσ are the sorted alphabet’s characters.
Since the suffix tree and the Weiner link tree share the same set of nodes, this
is sufficient to enumerate all suffix tree nodes. The visit uses a stack storing
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representations of suffix tree nodes, initialized with repr(ǫ). At each iteration,
we pop the head repr(W) from the stack and we push repr(cW) such that cW
is right-maximal in T . To keep the stack’s size under control, once computed
repr(cW) for the right-maximal left-extensions cW of W we push them on
the stack in decreasing order of range length range(cW) (i.e. the node with
the smallest range is pushed last). This guarantees that the stack will always
contain at most O(σ logn) elements [2]. Since each element takes O(σ log n)
bits to be represented, the stack’s size never exceeds O(σ2 log2 n) bits.

Computing Weiner Links We now show how to efficiently compute the
node representation repr(cW) from repr(W) for the characters c such that cW is
right-maximal in T . In [2,3] this operation is supported efficiently by first enu-
merating all distinct characters in each range BWT [firstW[i], firstW[i+ 1]]
for i = 1, . . . , kW , using function BWT.rangeDistinct(firstW [i], firstW[i+ 1])
(see Section 2). Equivalently, for each a ∈ charsW we want to list all distinct
left-extensions cWa of Wa. Note that, in this way, we may also visit implicit
suffix tree nodes (i.e. some of these left-extensions could be not right-maximal).
Stated otherwise, we are traversing all explicit and implicit Weiner links. Since
the number of such links is linear [2,4] (even including implicit Weiner links 1 ),
globally the number of distinct characters returned by rangeDistinct op-
erations is O(n). An implementation of rangeDistinct on wavelet trees is
discussed in [5] with the procedure getIntervals (this procedure actually re-
turns more information: the suffix array range of each cWa). This implementa-
tion runs in O(logσ) time per returned character. Globally, we therefore spend
O(n log σ) time using a wavelet tree. We now need to compute repr(cW) for all
left-extensions of W and keep only the right-maximal ones. Let x = repr(W)
and BWT.Weiner(x) be the function that returns the representations of such
strings (used in Line 12 of Algorithm 1). This function can be implemented
by observing that

range(cWa) = 〈 C[c] + BWT.rankc(left(Wa)),

C[c] + BWT.rankc(right(Wa) + 1)− 1 〉

where a = charsW[i] for 1 ≤ i < |firstW|, and noting that left(Wa) and
right(Wa) are available in repr(W). Note also that we do not actually need
to know the value of characters charsW[i] to compute the ranges of each

1 To see this, first note that the number of right-extensions Wa of W that have
only one left-extension cWa is at most equal to the number of right-extensions of
W ; globally, this is at most the number of suffix tree’s nodes (linear). Any other
right-extension Wa that has at least two distinct left-extensions cWa and bWa is,
by definition, left maximal and corresponds therefore to a node in the suffix tree of
the reverse of T . It follows that all left-extensions of Wa can be charged to an edge
of the suffix tree of the reverse of T (again, the number of such edges is linear).
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cW · charsW[i]; this is the reason why we can omit charsW from repr(W).
Using a wavelet tree, the above operation takes O(log σ) time. By the above
observations, the number of strings cWa such that W is right-maximal is
bounded by O(n). Overall, computing repr(cW) = 〈firstcW, |W | + 1〉 for all
left-extensions cW of all right-maximal strings W takes therefore O(n log σ)
time. Within the same running time, we can check which of those extensions
is right maximal (i.e. those such that |firstcW| ≥ 2), sort them in-place by
interval length (we always sort at most σ node representations, therefore also
sorting takes globally O(n log σ) time), and push them on the stack.

4 Beller et al.’s Algorithm

The second ingredient used in our solutions is the following result, due to Beller
et al (we slightly re-formulate their result to fit our purposes, read below for
a description of the differences):

Theorem 2 (Beller et al.[5]). Given the Burrows-Wheeler Transform of a text
T represented with a wavelet tree, we can enumerate all pairs (i, LCP [i]) in
O(n log σ) time using 5n bits of working space on top of the BWT.

Theorem 2 represents the state of the art for computing the LCP array from
the BWT. Also Beller et al.’s algorithm works by enumerating a (linear) subset
of the BWT intervals. LCP values are induced from a particular visit of those
intervals. Belazzougui’s and Beller et al.’s algorithms have, however, two key
differences which make the former more space-efficient on small alphabets,
while the latter more space-efficient on large alphabets: (i) Beller et al. use a
queue (FIFO) instead of a stack (LIFO), and (ii) they represent W -intervals
with just the pair of coordinates range(W) and the value |W |. In short, while
Beller et al.’s queue might grow up to size Θ(n), the use of intervals (instead
of the more complex representation used by Belazzougui) makes it possible
to represent it using O(1) bitvectors of length n. On the other hand, the size
of Belazzougui’s stack can be upper-bounded by O(σ log n), but its elements
take more space to be represented.

We now describe in detail Beller et al.’s result. We keep a bitvector U [1, n] such
that U [i] = 0 if and only if the pair (i, LCP [i]) has not been output yet. In their
original algorithm, Beller et al. use the LCP array itself to mark undefined LCP
entries. In our case, we don’t want to store the whole LCP array (for reasons
that will be clear in the next sections) and thus we only record which LCP
values have been output. Bitvector U accounts for the additional n bits used by
Theorem 2 with respect to the original result described in [5]. At the beginning,
U [i] = 0 for all i = 1, . . . , n. Beller et al.’s algorithm starts by inserting in the
queue the triple 〈1, n, 0〉, where the first two components are the BWT interval
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of ǫ (the empty string) and the third component is its length. From this point,
the algorithm keeps performing the following operations until the queue is
empty. We remove the first (i.e. the oldest) element 〈L,R, ℓ〉 from the queue,
which (by induction) is the interval and length of some string W : range(W) =
〈L,R〉 and |W | = ℓ. Using operation getIntervals(L, R, BWT) [5] (see Section
2) we left-extend the BWT interval 〈L,R〉 with the characters c1, . . . , ck in
BWT.rangeDistinct(L, R), obtaining the triples 〈L1, R1, ℓ+1〉, . . . , 〈Lk, Rk, ℓ+
1〉 corresponding to the strings c1W, . . . , ckW . For each such triple 〈Li, Ri, ℓ+
1〉, if Ri 6= n and U [Ri + 1] = 0 then we set U [Ri + 1] ← 1, we output the
LCP pair (Ri + 1, ℓ) and push 〈Li, Ri, ℓ+ 1〉 on the queue. Importantly, note
that we can push the intervals returned by getIntervals(L, R, BWT) in the
queue in any order; as discussed in Section 2, this step can be implemented
with just O(logn) bits of space overhead with a DFS-visit of the wavelet tree’s
sub-tree induced by BWT [L,R] (i.e. the intervals are not stored temporarily
anywhere: they are pushed as soon as they are generated).

Queue implementation To limit space usage, Beller et al. use the following
queue representations. First note that, at each time point, the queue’s triples
are partitioned into a (possibly empty) sequence with associated length (i.e.
the third element in the triples) ℓ+ 1, followed by a sequence with associated
length ℓ, for some ℓ. To simplify the description, let us assume that these
two sequences are kept as two distinct queues, indicated in the following as
Qℓ and Qℓ+1. At any stage of the algorithm, we pop from Qℓ and push into
Qℓ+1. It follows that there is no need to store strings’ lengths in the triples
themselves (i.e. the queue’s elements become just ranges), since the length of
each element in Qℓ is ℓ. When Qℓ is empty, we create a new empty queue
Qℓ+2, pop from Qℓ+1, and push into Qℓ+2 (and so on). Beller et al. represent
Qℓ as follows. While pushing elements in Qℓ, as long as its size does not exceed
n/ logn we represent it as a vector of pairs (of total size at most O(n) bits).
This representation supports push/pop operations in (amortized) constant
time and takes at most O(logn · n/ logn) = O(n) bits of space. As soon as
Qℓ’s size exceeds n/ logn, we switch to a representation that uses two packed
bitvectors of length n storing, respectively, the left- and right-most boundaries
of the ranges in the queue. Note that this representation can be safely used
since the pairs in Qℓ are suffix array ranges of strings of some fixed length
ℓ, therefore there cannot be overlapping intervals. Pushing an interval into
such a queue takes constant time (it just requires setting two bits). Popping
all the t = |Qℓ| intervals, on the other hand, can easily be implemented in
O(t+n/ logn) time by scanning the bitvectors and exploiting word-parallelism
(see [5] for all details). Since Beller et al.’s procedure visits O(n) SA intervals,
Qℓ will exceed size n/ logn for at most O(logn) values of ℓ. It follows that also
with this queue representation pop operations take amortized constant time.
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Time complexity It is easy to see that the algorithm inserts in total a linear
number of intervals in the queue since an interval 〈Li, Ri, ℓ+1〉 is inserted only
if U [Ri+1] = 0, and successively U [Ri+1] is set to 1. Clearly, this can happen
at most n times. In [5] the authors moreover show that, even when counting
the left-extensions of those intervals (computed after popping each interval
from the queue), the total number of generated intervals stays linear. Overall,
the algorithm runs therefore in O(n log σ) time (as discussed in Section 2,
getIntervals runs in O(log σ) time per returned element).

5 Enumerating LCP values

In this section we prove our first main result: how to enumerate LCP pairs
(i, LCP [i]) using succinct working space on top of a wavelet tree represent-
ing the BWT. Later we will use this procedure to build the LCP and PLCP
arrays in small space on top of a plain representation of the BWT. We give
our lemma in the general form of string collections, which will require adapt-
ing the algorithms seen in the previous sections to this more general setting.
Our first observation is that Theorem 1, extended to string collections as de-
scribed below, can be directly used to enumerate LCP pairs (i, LCP [i]) using
just O(σ2 log2 n) bits of working space on top of the input and output. We
combine this procedure with an extended version of Beller et al.’s algorithm
working on string collections in order to get small working space for all alpha-
bets. Algorithms 1 and 2 report our complete procedure; read below for an
exhaustive description. We obtain our first main result:

Lemma 2. Given a wavelet tree for the Burrows-Wheeler Transform of a col-
lection S = {T1, . . . , Tm} of total length n on alphabet [1, σ], we can enumerate
all pairs (i, LCP [i]) in O(n log σ) time using o(n log σ) bits of working space
on top of the BWT.

Proof. If σ <
√
n/ log2 n then σ2 log2 n = o(n) and our extension of Theorem

1 gives us o(n log σ) additional working space. If σ ≥ √n/ log2 n then log σ =
Θ(logn) and we can use our extension to string collections of Theorem 2,
which yields extra working space O(n) = o(n logn) = o(n log σ). Note that,
while we used the threshold σ <

√
n/ log2 n, any threshold of the form σ <√

n/ log1+ǫ n, with ǫ > 0 would work. The only constraint is that ǫ > 0, since
otherwise for ǫ = 0 the working space would become O(n log σ) for constant
σ (not good since we aim at o(n log σ)).

We now describe all the details of our extensions of Theorems 1 and 2 used in
the proof of Lemma 2. Procedure BGOS(BWT) in Line 2 of Algorithm 1 is a call
to Beller et al.’s algorithm, modified as follows. First, we enumerate the LCP
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pairs (C[c], 0) for all c ∈ Σ. Then, we push in the queue 〈range(c), 1〉 for all
c ∈ Σ and start the main algorithm. Note moreover that (see Section 2) from
now on we never left-extend ranges with #.

Recall that each string of a text collection S is ended by a terminator #
(common to all strings). Consider now the LCP and GSA arrays of S. We
divide LCP values in two types. Let GSA[i] = 〈j, k〉, with i > 1, indicate that
the i-th suffix in the lexicographic ordering of all suffixes of strings in S is
S[j][k, |S[j]|]. A LCP value LCP[i] is of node type when the i-th and (i− 1)-th
suffixes are distinct: S[j][k, |S[j]|] 6= S[j′][k′, |S[j′]|], whereGSA[i] = 〈j, k〉 and
GSA[i−1] = 〈j′, k′〉. Those two suffixes differ before the terminator is reached
in both suffixes (it might be reached in one of the two suffixes, however);
we use the name node-type because i − 1 and i are the last and first suffix
array positions of the ranges of two adjacent children of some suffix tree node,
respectively (i.e. the node corresponding to string S[j][k, k+LCP [i]−1]). Note
that it might be that one of the two suffixes, S[j][k, |S[j]|] or S[j′][k′, |S[j′]|],
is the string “#”. Similarly, a leaf-type LCP value LCP[i] is such that the i-th
and (i − 1)-th suffixes are equal: S[j][k, |S[j]|] = S[j′][k′, |S[j′]|]. We use the
name leaf-type because, in this case, it must be the case that i ∈ [L + 1, R],
where 〈L,R〉 is the suffix array range of some suffix tree leaf (it might be that
R > L since there might be repeated suffixes in the collection). Note that, in
this case, S[j][k, |S[j]|] = S[j′][k′, |S[j′]|] could coincide with #. Entry LCP [0]
escapes the above classification, so we output it separately.

Our idea is to compute first node-type and then leaf-type LCP values. We
argue that Beller et al.’s algorithm already computes the former kind of LCP
values. When this algorithm uses too much space (i.e. on small alphabets),
we show that Belazzougui’s enumeration strategy can be adapted to reach the
same goal: by the very definition of node-type LCP values, they lie between
children of some suffix tree node x, and their value corresponds to the string
depth of x. This strategy is described in Algorithm 1. Function BWT.Weiner(x)
in Line 12 takes as input the representation of a suffix tree node x and returns
all explicit nodes reached by following Weiner links from x (an implementation
of this function is described in Section 3). Leaf-type LCP values, on the other
hand, can easily be computed by enumerating intervals corresponding to suffix
tree leaves. To reach this goal, it is sufficient to enumerate ranges of suffix tree
leaves starting from range(#) and recursively left-extending with backward
search with characters different from # whenever possible. For each range
〈L,R〉 obtained in this way, we set each entry LCP [L+1, R] to the string depth
(terminator excluded) of the corresponding leaf. This strategy is described in
Algorithm 2. In order to limit space usage, we use again a stack or a queue
to store leaves and their string depth (note that each leaf takes O(logn) bits
to be represented): we use a queue when σ > n/ log3 n, and a stack otherwise.
The queue is the same used by Beller et al.[5] and described in Section 4.
This guarantees that the bit-size of the queue/stack never exceeds o(n log σ)
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bits: since leaves take just O(logn) bits to be represented and the stack’s size
never contains more than O(σ · logn) leaves, the stack’s bit-size never exceeds
O(n/ logn) = o(n) when σ ≤ n/ log3 n. Similarly, Beller et al’s queue always
takes at most O(n) bits of space, which is o(n log σ) for σ > n/ log3 n. Note
that in Lines 18-21 we can afford storing temporarily the k resulting intervals
since, in this case, the alphabet’s size is small enough.

To sum up, our full procedure works as follows: (1), we output node-type LCP
values using procedure Node-Type(BWT) described in Algorithm 1, and (2) we
output leaf-type LCP values using procedure Leaf-Type(BWT) described in
Algorithm 2.

Algorithm 1 Node-Type(BWT)

1: if σ >
√
n/ log2 n then

2: BGOS(BWT) ⊲ Run Beller et al.’s algorithm
3: else

4: P← new stack() ⊲ Initialize new stack
5: P.push(repr(ǫ)) ⊲ Push representation of ǫ
6: while not P.empty() do
7: 〈firstW, ℓ〉 ← P.pop() ⊲ Pop highest-priority element
8: t← |firstW| − 1 ⊲ Number of children of ST node
9: for i = 2, . . . , t do
10: output (firstW[i], ℓ) ⊲ Output LCP value
11: end for

12: x1, . . . , xk ← BWT.Weiner(〈firstW, ℓ〉) ⊲ Follow Weiner Links
13: x′

1, . . . , x
′

k ← sort(x1, . . . , xk) ⊲ Sort by interval length
14: for i = k . . . 1 do

15: P.push(x′

i) ⊲ Push representations
16: end for

17: end while

18: end if

The correctness, completeness, and complexity of our procedure are proved in
the following Lemma:

Lemma 3. Algorithms 1 and 2 correctly output all LCP pairs (i, LCP [i]) of
the collection in O(n log σ) time using o(n log σ) bits of working space on top
of the input BWT.

Proof. Correctness - Algorithm 1. We start by proving that Beller et al.’s
procedure in Line 2 of Algorithm 1 (procedure BGOS(BWT)) outputs all the
node-type LCP entries correctly. The proof proceeds by induction on the LCP
value ℓ and follows the original proof of [5]. At the beginning, we insert in
the queue all c-intervals, for c ∈ Σ. For each such interval 〈L,R〉 we output
LCP [R + 1] = ℓ = 0. It is easy to see that after this step all and only the
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Algorithm 2 Leaf-Type(BWT)

1: for i = left(#), . . . , right(#) do
2: output (i, 0)
3: end for

4: if σ > n/ log3 n then

5: P← new queue() ⊲ Initialize new queue
6: else

7: P← new stack() ⊲ Initialize new stack
8: end if

9: P.push(BWT.range(#), 0) ⊲ Push range of terminator and LCP value 0
10: while not P.empty() do
11: 〈〈L,R〉, ℓ〉 ← P.pop() ⊲ Pop highest-priority element
12: for i = L+ 1 . . .R do

13: output (i, ℓ) ⊲ Output LCP inside range of ST leaf
14: end for

15: if σ > n/ log3 n then

16: P.push(getIntervals(L, R, BWT), ℓ + 1) ⊲ Pairs 〈interval,ℓ+ 1〉
17: else

18: 〈Li, Ri〉i=1,...,k ← getIntervals(L, R, BWT)
19: 〈L′

i, R
′

i〉i=1,...,k ← sort(〈Li, Ri〉i=1,...,k) ⊲ Sort by interval length
20: for i = k . . . 1 do

21: P.push(〈L′

i, R
′

i〉, ℓ+ 1) ⊲ Push in order of decreasing length
22: end for

23: end if

24: end while

node-type LCP values equal to 0 have been correctly computed. Assume, by
induction, that all node-type LCP values less than or equal to ℓ have been
correctly output, and that we are about to extract from the queue the first
triple 〈L,R, ℓ+1〉 having length ℓ+1. For each extracted triple with length ℓ+1
associated to a string W , consider the triple 〈L′, R′, ℓ+2〉 associated to one of
its left-extensions cW . If LCP [R′+1] has been computed, i.e. if U [R′+1] = 1,
then we have nothing to do. However, if U [R′+1] = 0, then it must be the case
that (i) the corresponding LCP value satisfies LCP [R′ + 1] ≥ ℓ + 1, since by
induction we have already computed all node-type LCP values smaller than
or equal to ℓ, and (ii) LCP [R′ + 1] is of node-type, since otherwise the BWT
interval of cW would also include position R′+1. On the other hand, it cannot
be the case that LCP [R′ + 1] > ℓ + 1 since otherwise the cW -interval would
include position R′+1. We therefore conclude that LCP [R′+1] = ℓ+1 must
hold.

Completeness - Algorithm 1. The above argument settles correctness; to prove
completeness, assume that, at some point, U [i] = 0 and the value of LCP [i]
to be computed and output is ℓ + 1. We want to show that we will pull a
triple 〈L,R, ℓ + 1〉 from the queue corresponding to a string W (note that
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ℓ + 1 = |W | and, moreover, W could end with #) such that one of the left-
extensions aW of W satisfies range(aW) = 〈L′, i − 1〉, for some L′. This will
show that, at some point, we will output the LCP pair (i, ℓ+ 1). We proceed
by induction on |W |. Note that we separately output all LCP values equal
to 0. The base case |W | = 1 is easy: by the way we initialized the queue,
〈range(c), 1〉, for all c ∈ Σ, are the first triples we pop. Since we left-extend
these ranges with all alphabet’s characters except #, it is easy to see that
all LCP values equal to 1 have been output. From now on we can therefore
assume that we are working on LCP values equal to ℓ+ 1 > 1, i.e. W = b · V ,
for b ∈ Σ − {#} and V ∈ Σ+. Let abV be the length-(ℓ + 2) left-extension
of W = bV such that right(abV) + 1 = i. Since, by our initial hypothesis,
LCP[i] = ℓ+1, the collection contains also a suffix aU lexicographically larger
than abV and such that LCP(aU, abV) = ℓ + 1. But then, it must be the case
that LCP(right(bV) + 1) = ℓ (it cannot be smaller by the existence of U and it
cannot be larger since |bV | = ℓ+1). By inductive hypothesis, this value was set
after popping a triple 〈L′′, R′′, ℓ〉 corresponding to string V , left-extending V
with b, and pushing 〈range(bV), ℓ+1〉 in the queue. This ends the completeness
proof since we showed that 〈range(bV), ℓ+1〉 is in the queue, so at some point
we will pop it, extend it with a, and output (right(abV )+1, ℓ+1) = (i, ℓ+1).
If the queue uses too much space, then Algorithm 1 switches to a stack and
Lines 4-15 are executed instead of Line 2. Note that this pseudocode fragment
corresponds to Belazzougui’s enumeration algorithm, except that now we also
set LCP values in Line 10. By the enumeration procedure’s correctness, we
have that, in Line 10, 〈firstW[1], firstW[t+ 1]〉 is the SA-range of a right-
maximal string W with ℓ = |W |, and firstW[i] is the first position of the
SA-range of Wci, with i = 1, . . . , t, where c1, . . . , c2 are all the (sorted) right-
extensions of W . Then, clearly each LCP value in Line 10 is of node-type
and has value ℓ, since it is the LCP between two strings prefixed by W ·
charsW[i− 1] and W · charsW[i]. Similarly, completeness of the procedure
follows from the completeness of the enumeration algorithm. Let LCP [i] be
of node-type. Consider the prefix Wb of length LCP [i] + 1 of the i-th suffix
in the lexicographic ordering of all strings’ suffixes. Since LCP [i] = |W |, the
(i− 1)-th suffix is of the form Wa, with b 6= a, and W is right-maximal. But
then, at some point our enumeration algorithm will visit the representation
of W , with |W | = ℓ. Since i is the first position of the range of Wb, we have
that i = firstW[j] for some j ≥ 2, and Line 10 correctly outputs the LCP
pair (firstW [j], |W |) = (i, |W |).

Correctness and completeness - Algorithm 2. Proving correctness and com-
pleteness of this procedure is much easier. It is sufficient to note that the
while loop iterates over all ranges 〈L,R〉 of strings ending with # and not
containing # anywhere else (note that we start from the range of # and we
proceed by recursively left-extending this range with symbols different than
#). Then, for each such range we conclude that LCP [L+ 1, R] is equal to ℓ,
i.e. the string depth of the corresponding string (excluding the final character
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#). By their definition, all leaf-type LCP values are correctly computed in
this way.

Complexity - Algorithm 1. If σ >
√
n/ log2 n, then we run Beller et al’s algo-

rithm, which terminates in O(n log σ) time and uses O(n) = o(n log σ) bits
of additional working space. Otherwise, we perform a linear number of op-
erations on the stack since, as observed in Section 3, the number of Weiner
links is linear. By the same analysis of Section 3, the operation in Line 12
takes O(k log σ) amortized time on wavelet trees, and sorting in Line 13
(using any comparison-sorting algorithm sorting m integers in O(m logm)
time) takes O(k log σ) time. Note that in this sorting step we can afford
storing in temporary space nodes x1, . . . , xk since this takes additional space
O(kσ log n) = O(σ2 log n) = O(n/ log3 n) = o(n) bits. All these operations
sum up to O(n logσ) time. Since the stack always takes at most O(σ2 log2 n)
bits and σ ≤ √n/ log2 n, the stack’s size never exceeds O(n/ log2 n) = o(n)
bits.

Complexity - Algorithm 2. Note that, in the while loop, we start from the in-
terval of # and recursively left-extend with characters different than # until
this is possible. It follows that we visit the intervals of all strings of the form
W# such that # does not appear inside W . Since these intervals form a cover
of [1, n], their number (and therefore the number of iterations in the while

loop) is also bounded by n. This is also the maximum number of operations
performed on the queue/stack. Using Beller et al.’s implementation for the
queue and a simple vector for the stack, each operation takes constant amor-
tized time. Operating on the stack/queue takes therefore overall O(n) time.
For each interval 〈L,R〉 popped from the queue/stack, in Line 13 we output
R − L − 2 LCP values. As observed above, these intervals form a cover of
[1, n] and therefore Line 13 is executed no more than n times. Line 18 takes
time O(k log σ). Finally, in Line 19 we sort at most σ intervals. Using any
fast comparison-based sorting algorithm, this costs overall at most O(n log σ)
time.

As far as the space usage of Algorithm 2 is concerned, note that we always push
just pairs interval/length (O(logn) bits) in the queue/stack. If σ > n/ log3 n,
we use Beller et al.’s queue, taking at most O(n) = o(n log σ) bits of space.
Otherwise, the stack’s size never exceeds O(σ · logn) elements, with each
element taking O(logn) bits. This amounts to O(σ · log2 n) = O(n/ logn) =
o(n) bits of space usage. Moreover, in Lines 18-19 it holds σ ≤ n/ log3 n so
we can afford storing temporarily all intervals returned by getIntervals in
O(k log n) = O(σ logn) = O(n/ log2 n) = o(n) bits.

Combining Lemma 2 and Lemma 1, we obtain:

Theorem 3. Given the word-packed Burrows-Wheeler Transform of a collec-
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tion S = {T1, . . . , Tm} of total length n on alphabet [1, σ], we can build the
LCP array of the collection in O(n log σ) time using o(n log σ) bits of working
space on top of the BWT.

6 Enumerating Suffix Tree Intervals

In this section we show that the procedures described in Section 5 can be used
to enumerate all suffix tree intervals—that is, the suffix array intervals of all
right-maximal text substrings—taking as input the BWT of a text. Note that
in this section we consider just simple texts rather than string collections as
later we will use this procedure to build the compressed suffix tree of a text.

When σ ≤ √n/ log2 n, we can directly use Belazzougui’s procedure (Theorem
1), which already solves the problem. For larger alphabets, we modify Beller
et al’s procedure (Theorem 2) to also generate suffix tree’s intervals as follows.

When σ >
√
n/ log2 n, we modify Beller et al.’s procedure to enumerate suf-

fix tree intervals using O(n) = o(n log σ) bits of working space, as follows.
We recall that (see Section 4), Beller et al’s procedure can be conveniently de-
scribed using two separate queues: Qℓ and Qℓ+1. At each step, we pop from Qℓ

an element 〈〈L,R〉, |W |〉 with 〈L,R〉 = range(W) and |W | = ℓ for some string
W , left-extend the range with all a ∈ BWT.rangeDistinct(L, R), obtaining the
ranges range(aW) = 〈La, Ra〉 and, only if U [Ra + 1] = 0, set U [Ra + 1] ← 1,
output the LCP pair (Ra + 1, |W |), and push 〈〈La, Ra〉, |W | + 1〉 into Qℓ+1.
Note that, since LCP [Ra + 1] = |W | we have that the Ra-th and (Ra + 1)-th
smallest suffixes start, respectively, with aXc and aXd for some c < d ∈ Σ,
where W = Xc. This implies that aX is right-maximal. It is also clear that,
from the completeness of Beller et al.’s procedure, all right-maximal text sub-
strings are visited by the procedure, since otherwise the LCP values equal to
ℓ = |aX| inside range(aX) would not be generated. It follows that, in order
to generate all suffix tree intervals once, we need two extra ingredients: (i)
whenever we pop from Qℓ an element 〈〈L,R〉, |W |〉 corresponding to a string
W = Xc, we also need the range of X , and (ii) we need to quickly check if a
given range range(aX) of a right-maximal substring aX has already been out-
put. Point (ii) is necessary since, using only the above procedure (augmented
with point (i)), range(aX) will be output for each of its right-extensions (ex-
cept the lexicographically largest, which does not cause the generation of an
LCP pair).

Remember that, in order to keep space usage under control (i.e. O(n) bits),
we represent Qℓ as a standard queue of pairs 〈range(W), |W |〉 if and only if
|Qℓ| < n/ logn. For now, let us assume that the queue size does not exceed this
quantity (the other case will be considered later). In this case, to implement
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point (i) we simply augment queue pairs as 〈range(W), range(X), |W |〉, where
W = Xc for some c ∈ Σ. When left-extending W with a character a, we also
left-extend X with a, obtaining range(aX). Let range(aW) = 〈La, Ra〉. At this
point, if U [Ra + 1] = 0 we do the following:

(1) we set U [Ra + 1]← 1,
(2) we push 〈range(aW), range(aX), |W |+ 1〉 in Qℓ+1, and
(3) if range(aX) has not already been generated, we output range(aX).

Note that steps (1) and (2) correspond to Beller et al.’s procedure. The test in
step (3) (that is, point (ii) above) can be implemented as follows. Note that a
suffix array range range(aX) = 〈L,R〉 can be identified unambiguously by the
two integers L and |aX| = ℓ. Note also that we generate suffix tree intervals
in increasing order of string depth (i.e. when popping elements from Qℓ, we
output suffix array intervals of string depth ℓ). It follows that we can keep a
bitvector GENℓ of length n recording in GENℓ[i] whether or not the suffix
array interval of the string of length ℓ whose first coordinate is i has already
been output. Each time we change the value of a bit GENℓ[i] from 0 to 1, we
also push i into a stack SETℓ. Let us assume for now that also SETℓ’s size does
not exceed n/ log n (later we will consider a different representation for the
other case). Then, also the bit-size of SETℓ will never exceed O(n) bits. After
Qℓ has been emptied, for each i ∈ SETℓ we set GENℓ[i] ← 0. This makes all
GENℓ’s entries equal to 0, and we can thus re-use its space for GENℓ+1 at
the next stage (i.e. when popping elements from Qℓ+1).

Now, let us consider the case |Qℓ| ≥ n/ logn. The key observation is that Qℓ

exceeds this value for at most O(logn) values of ℓ, therefore we can afford
spending extra O(n/ logn) time to process each of these queues. As seen in
Section 4, whenever Qℓ’s size exceeds n/ logn (while pushing elements in it) we
switch to a different queue representation using packed bitvectors. Point (i) can
be solved by storing two additional bitvectors as follows. Suppose we are about
to push the triple 〈range(W), range(X), |W |〉 inQℓ, whereW = Xc for some c ∈
Σ. The solution seen in Section 4 consisted in marking, in two packed bitvectors
open[1, n] and close[1, n], the start and end points of range(W). Now, we just
use two additional packed bitvectors open[1, n] and close[1, n] to also mark the
start and end points of range(X). As seen in Section 4, intervals are extracted
from Qℓ by scanning open[1, n] and close[1, n] in O(n/ logn + |Qℓ|) time
(exploiting word-parallelism). Note that W is a right-extension of X , therefore
range(W) is contained in range(X). It follows that we can scan in parallel the
bitvectors open[1, n], close[1, n], open[1, n], and close[1, n] and retrieve, for
each range(W) extracted from the former two bitvectors, the (unique in the
queue) interval range(X) enclosing range(W) (using the latter two bitvectors).
More formally, whenever finding a bit set at open[i], we search close[i, n]
to find the next bit set. Let us call j the position containing such bit set.
Then, we similarly scan open[i, j] and close[i, j] to generate all intervals
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〈l, r〉 enclosed by 〈i, j〉, and for each of them generate the triple 〈〈l, r〉, 〈i, j〉, ℓ〉.
Again, exploiting word-parallelism the process takes O(n/ logn + |Qℓ|) time
to extract all triples 〈range(W), range(X), |W |〉 from Qℓ.

A similar solution can be used to solve point (ii) for large SETℓ. Whenever
SETℓ exceeds size n/ logn, we simply empty it and just use bitvector GENℓ.
This time, however, this bitvector is packed in O(n/ logn) words. It can there-
fore be erased (i.e. setting all its entries to 0) in O(n/ logn) time, and we do
not need to use the stack SETℓ at all. Since (a) we insert an element in some
SETℓ only when outputting a suffix tree range and (b) in total we output
O(n) such ranges, SETℓ can exceed size n/ log n for at most O(logn) values
of ℓ. We conclude that also the cost of creating and processing all GENℓ and
SETℓ amortizes to O(n).

To sum up, the overall procedure runs in O(n log σ) time and uses O(n) bits
of space. By combining it with Belazzougui’s procedure as seen above (i.e.
choosing the right procedure according to the alphabet’s size), we obtain:

Lemma 4. Given a wavelet tree representing the Burrows-Wheeler transform
of a text T of length n on alphabet [1, σ], in O(n log σ) time and o(n log σ) bits
of working space we can enumerate the suffix array intervals corresponding to
all right maximal text’s substrings.

7 Building the PLCP Bitvector

The PLCP array is defined as PLCP [i] = LCP [ISA[i]], and can thus be used
to retrieve LCP values as LCP [i] = PLCP [SA[i]] (note that this requires
accessing the suffix array). Kasai et al. showed in [24] that PLCP is almost
increasing: PLCP [i+ 1] ≥ PLCP [i]− 1. This allows representing it in small
space as follows. Let plcp[1, 2n] denote the bitvector having a bit set at each
position PLCP [i] + 2i, for i = 1, . . . , n (and 0 in all other positions). Since
PLCP [i+ 1] ≥ PLCP [i]− 1, the quantity PLCP [i] + 2i is different for each
i. By definition, PLCP [i] can be written as j − 2i, where j is the position of
the i-th bit set in plcp; this shows that each PLCP entry can be retrieved in
constant time using the bitvector plcp, augmented to support constant-time
select queries.

We now show how to build the plcp bitvector in small space using the LCP
enumeration procedure of Section 5. Our procedure relies on the concept of
irreducible LCP values :

Definition 1. LCP [i] is said to be irreducible if and only if either i = 0 or
BWT [i] 6= BWT [i− 1] hold.
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We call reducible a non-irreducible LCP value. We extend the above definition
to PLCP values, saying that PLCP [i] is irreducible if and only if LCP [ISA[i]]
is irreducible. The following Lemma, shown in [29], is easy to prove (see also
[23, Lem. 4]):

Lemma 5 ([29], Lem. 1). If PLCP [i] is reducible, then PLCP [i] = PLCP [i−
1]− 1.

We also make use of the following Theorem from Kärkkäinen et al. [23]:

Theorem 4 ([23], Thm. 1). The sum of all irreducible lcp values is at most
2n logn.

Our strategy is as follows. We divide BWT [1, n] in ⌈n/B⌉ blocks BWT [(i−
1) · B + 1, i · B], i = 1, . . . , ⌈n/B⌉ of size B (assume for simplicity that B
divides n). For each block i = 1, . . . , ⌈n/B⌉, we use Lemma 2 to enumerate
all pairs (j, LCP [j]). Whenever we generate a pair (j, LCP [j]) such that (i) j
falls in the current block’s range [(i − 1) · B + 1, i · B], (ii) LCP [j] > log3 n,
and (iii) LCP [j] is irreducible (this can be checked easily using Definition
1), we store (j, LCP [j]) in a temporary array LARGE LCP (note: each such pair
requires O(logn) bits to be stored). By Theorem 4, there cannot be more than
2n/ log2 n irreducible LCP values being larger than log3 n, that is, LARGE LCP

will never contain more than 2n/ log2 n values and its bit-size will never exceed
O(n/ logn) = o(n) bits. We also mark all such relative positions j− (i−1) ·B
in a bitvector of length B with rank support and radix-sort LARGE LCP in O(B)
time to guarantee constant-time access to LCP [j] whenever conditions (i-iii)
hold true for index j. On the other hand, if (i) j falls in the current block’s
range [(i−1) ·B+1, i ·B], (ii) LCP [j] ≤ log3 n, and (iii) LCP [j] is irreducible
then we can store LCP [j] in another temporary vector SMALL LCP[1, B] as
follows: SMALL LCP[j − (i− 1) · B]← LCP [j] (at the beginning, the vector is
initialized with undefined values). By condition (ii), SMALL LCP can be stored in
O(B log logn) bits. Using LARGE LCP and SMALL LCP, we can access in constant
time all irreducible values LCP [j] whenever j falls in the current block [(i−
1) ·B + 1, i ·B]. At this point, we enumerate all pairs (i, ISA[i]) in text order
(i.e. for i = 1, . . . , n) using the FL function on the BWT. Whenever one of
those pairs (i, ISA[i]) = (i, j) is such that (i) j falls in the current block’s range
[(i−1)·B+1, i·B] and (ii) LCP [j] is irreducible, we retrieve LCP [j] in constant
time as seen above and we set plcp[2i + LCP[j]] ← 1; the correctness of this
assignment follows from the fact that j = ISA[i], thus LCP [j] = PLCP [i].
Using Lemma 5, we can moreover compute the reducible PLCP values that
follow PLCP [i] in text order (up to the next irreducible value), and set the
corresponding bits in plcp. After repeating the above procedure for all blocks
BWT [(i − 1) · B + 1, i · B], i = 1, . . . , ⌈n/B⌉, we terminate the computation
of bitvector plcp. For each block, we spend O(n log σ) time (one application
of Lemma 2 and one BWT navigation to generate all pairs (i, ISA[i])). We
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also spend O(n/ log2 n) time to allocate the instances of LARGE LCP across
all blocks. Overall, we spend O((n2/B) log σ + n log σ) time across all blocks.
The space used is o(n) +O(B · log logn) bits on top of the BWT. By setting
B = (ǫ · n log σ)/ log log n we obtain our result:

Lemma 6. Given a wavelet tree for the Burrows-Wheeler transform of a text
T of length n on alphabet [1, σ], for any parameter 0 < ǫ ≤ 1 we can build the
PLCP bitvector in O(n(log σ+ ǫ−1 log log n)) time and ǫ ·n log σ+ o(n) bits of
working space on top of the input BWT and the optput.

8 Building the Suffix Tree Topology

In order to build the suffix tree topology we use a strategy analogous to the one
proposed by Belazzougui [2]. The main observation is that, given a procedure
that enumerates suffix tree intervals, for each interval [l, r] we can increment
a counter Open[l] and a counter Close[r], where Open and Close are integer
vectors of length n. Then, the BPS representation of the suffix tree topology
can be built by scanning left-to right the two arrays and, for each i = 1, . . . , n,
append Open[i] open parentheses followed by Close[i] close parentheses to
the BPS representation. The main drawback of this solution is that it takes
too much space: 2n log n bits to store the two arrays. Belazzougui solves this
problem by noticing that the sum of all the values in the two arrays is the
length of the final BPS representation, that is, at most 4n. This makes it
possible to represent the arrays in just O(n) bits of space by representing (the
few) large counters in plain form and (the many) small counters using delta
encoding (while still supporting updates in constant time).

Our goal in this section is to reduce the working space from O(n) to a (small)
fraction of n log σ. A first idea could be to iterate Belazzougui’s strategy on
chunks of the interval [1, n]. Unfortunately, this does not immediately give the
correct solution as a chunk could still account for up to Θ(n) parentheses,
no matter what the length of the chunk is; as a result, Belazzougui’s repre-
sentation could still take O(n) bits of space for a chunk (when using large
enough chunks to keep the running time under control as seen in the previous
section). We use a solution analogous to the one discussed in the previous
section. This solution corresponds to the first part of Belazzougui’s strategy
(in particular, we will store small counters in plain form instead of using delta
encoding). We divide BWT [1, n] in ⌈n/B⌉ blocks BWT [(i− 1) ·B + 1, i ·B],
i = 1, . . . , ⌈n/B⌉ of size B (assume for simplicity that B divides n). For
each block i = 1, . . . , ⌈n/B⌉, we use Lemma 4 to enumerate all suffix tree
intervals [l, r]. We keep two arrays Open[1, B] and Close[1, B] storing inte-
gers of 2 log log n bits each. Whenever the beginning l of a suffix tree in-
terval [l, r] falls inside the current block [(i − 1) · B + 1, i · B], we incre-
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ment Open[l− (i− 1) · B] (the description is analogous for index r and ar-
ray Close). If Open[l− (i− 1) · B] reaches the maximum value 22 log logn−1,
we no longer increment it. Adopting Belazzougui’s terminology, we call such a
bucket “saturated”. After having generated all suffix tree intervals, let k be the
number of saturated counters. We allocate a vector LARGE COUNTERS storing
k integers of logn + 2 bits each (enough to store the value 4n, i.e. an upper-
bound to the value that a counter can reach). We also allocate a bitvector
of length B marking saturated counters, and process it to support constant-
time rank queries. This allows us to obtain in constant time the location in
LARGE COUNTERS corresponding to any saturated counter in the block. We gen-
erate all suffix tree intervals for a second time using again Lemma 4, this time
incrementing (in LARGE COUNTERS) only locations corresponding to saturated
counters. Since the BPS sequence has length at most 4n and a counter sat-
urates when it reaches value Θ(log2 n), we have that k = O(n/ log2 n) and
thus LARGE COUNTERS takes at most O(n/ logn) = o(n) bits to be stored. The
rest of the analysis is identical to the algorithm described in the previous sec-
tion. For each block, we spend O(n logσ) time (two applications of Lemma 4).
We also spend O(n/ log2 n) time to allocate the instances of LARGE COUNTERS

across all blocks. Overall, we spend O((n2/B) log σ + n log σ) time across all
blocks. The space used is o(n) + O(B · log logn) bits on top of the BWT. By
setting B = (ǫ · n log σ)/ log log n we obtain:

Lemma 7. Given a wavelet tree for the Burrows-Wheeler transform of a text
T of length n on alphabet [1, σ], for any parameter 0 < ǫ ≤ 1 we can build
the BPS representation of the suffix tree topology in O(n(log σ+ ǫ−1 log log n))
time and ǫ · n log σ+ o(n) bits of working space on top of the input BWT and
the optput.

To conclude, we note that our procedures can be immediately used to build
space-efficiently the compressed suffix tree described by Sadakane [41] starting
from the BWT. The only missing ingredients are (i) to augment the BWT
with a suffix array sample in order to turn it into a CSA, and (ii) to pre-
process the PLCP and BPS sequences to support fast queries (select on the
PLCP and navigational queries on the BPS). Step (i) can be easily performed
in O(n log σ) time and n+ o(n) bits of working space with a folklore solution
that iteratively applies function LF to navigate all BWT’s positions and collect
one suffix array sample every O(log1+δ n/ log σ) text positions, for any fixed
δ > 0 (using a succinct bitvector to mark sampled positions). The resulting
CSA takes n log σ + o(n log σ) bits of space and allows computing any SA[i]
in O(log1+δ n) time. Step (ii) can be performed in O(n) time and o(n) bits
of working space using textbook solutions (see [32]). Combining this with
Lemmas 1, 6, and 5, we obtain:

Theorem 5. Given the word-packed BWT of a text T of length n on alpha-
bet [1, σ], for any parameter 0 < ǫ ≤ 1 we can replace it in O(n(log σ +
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ǫ−1 log log n)) time and ǫ · n log σ + o(n) bits of working space with a com-
pressed suffix tree taking n log σ+ 6n+ o(n log σ) bits of space and supporting
all operations in O(polylog n) time.

9 Merging BWTs in Small Space

In this section we use our space-efficient BWT-navigation strategies to tackle
an additional problem: to merge the BWTs of two string collections. In [2,3],
Belazzougui et al. show that Theorem 1 can be adapted to merge the BWTs of
two texts T1, T2 and obtain the BWT of the collection {T1, T2} in O(nk) time
and n log σ(1+1/k)+11n+ o(n) bits of working space for any k ≥ 1 [3, Thm.
7]. We show that our strategy enables a more space-efficient algorithm for the
task of merging BWTs of collections. The following theorem, whose proof is
reported later in this section, merges two BWTs by computing the binary
DA of their union. After that, the merged BWT can be streamed to external
memory (the DA tells how to interleave characters from the input BWTs) and
does not take additional space in internal memory. Similarly to what we did
in the proof of Theorem 3, this time we re-use the space of the Document
Array to accommodate the extra n bits needed to replace the BWTs of the
two collections with their wavelet matrices. This is the main result of this
section:

Theorem 6. Given the Burrows-Wheeler Transforms of two collections S1
and S2 of total length n on alphabet [1, σ], we can compute the Document
Array of S1 ∪ S2 in O(n logσ) time using o(n log σ) bits of working space on
top of the input BWTs and the output DA.

We also briefly discuss how to extend Theorem 6 to build the LCP array
of the merged collection. In Section 10 we present an implementation of our
algorithms and an experimental comparison with eGap [13], the state-of-the-
art tool designed for the same task of merging BWTs while inducing the LCP
of their union.

The procedure of Algorithm 2 can be extended to merge BWTs of two collec-
tions S1, S2 using o(n log σ) bits of working space on top of the input BWTs
and output Document Array (here, n is the cumulative length of the two
BWTs). The idea is to simulate a navigation of the leaves of the generalized
suffix tree of S1∪S2 (note: for us, a collection is an ordered multi-set of strings).
Our procedure differs from that described in [3, Thm. 7] in two ways. First,
they navigate a subset of the suffix tree nodes (so-called impure nodes, i.e. the
roots of subtrees containing suffixes from distinct strings), whereas we navigate
leaves. Second, their visit is implemented by following Weiner links. This forces
them to represent the nodes with the “heavy” representation repr of Section
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3, which is not efficient on large alphabets. On the contrary, leaves can be
represented simply as ranges and allow for a more space-efficient queue/stack
representation.

We represent each leaf by a pair of intervals, respectively on BWT (S1) and
BWT (S2), of strings of the form W#. Note that: (i) the suffix array of S1∪S2
is covered by the non-overlapping intervals of strings of the form W#, and
(ii) for each such string W#, the interval range(W#) = 〈L,R〉 in GSA(S1 ∪
S2) can be partitioned as 〈L,M〉 · 〈M + 1, R〉, where 〈L,M〉 contains only
suffixes from S1 and 〈M + 1, R〉 contains only suffixes from S2 (one of these
two intervals could be empty). It follows that we can navigate in parallel
the leaves of the suffix trees of S1 and S2 (using again a stack or a queue
containing pairs of intervals on the two BWTs), and fill the Document Array
DA[1, n], an array that will tell us whether the i-th entry of BWT (S1 ∪ S2)
comes from BWT (S1) (DA[i] = 0) or BWT (S2) (DA[i] = 1). To do this,
let 〈L1, R1〉 and 〈L2, R2〉 be the ranges on the suffix arrays of S1 and S2,
respectively, of a suffix W# of some string in the collections. Note that one
of the two intervals could be empty: Rj < Lj. In this case, we still require
that Lj − 1 is the number of suffixes in Sj that are smaller than W#. Then,
in the collection S1 ∪ S2 there are L1 + L2 − 2 suffixes smaller than W#,
and R1 + R2 suffixes smaller than or equal to W#. It follows that the range
of W# in the suffix array of S1 ∪ S2 is 〈L1 + L2 − 1, R1 + R2〉, where the
first R1−L1+1 entries correspond to suffixes of strings from S1. Then, we set
DA[L1+L2−1, L2+R1−1]← 0 andDA[L2+R1, R1+R2]← 1. The procedure
starts from the pair of intervals corresponding to the ranges of the string “#”
in the two BWTs, and proceeds recursively by left-extending the current pair
of ranges 〈L1, R1〉, 〈L2, R2〉 with the symbols in BWT1.rangeDistinct(L1, R1)∪
BWT2.rangeDistinct(L2, R2). The detailed procedure is reported in Algorithm
3. The leaf visit is implemented, again, using a stack or a queue; this time
however, these containers are filled with pairs of intervals 〈L1, R1〉, 〈L2, R2〉.
We implement the stack simply as a vector of quadruples 〈L1, R1, L2, R2〉. As
far as the queue is concerned, some care needs to be taken when representing
the pairs of ranges using bitvectors as seen in Section 4 with Beller et al.’s
representation. Recall that, at any time, the queue can be partitioned in two
sub-sequences associated with LCP values ℓ and ℓ+1 (we pop from the former,
and push in the latter). This time, we represent each of these two subsequences
as a vector of quadruples (pairs of ranges on the two BWTs) as long as the
number of quadruples in the sequence does not exceed n/ logn. When there are
more quadruples than this threshold, we switch to a bitvector representation
defined as follows. Let |BWT (S1)| = n1, |BWT (S2)| = n2, and |BWT (S1 ∪
S2)| = n = n1 + n2. We keep two bitvectors Open[1, n] and Close[1, n] storing
opening and closing parentheses of intervals in BWT (S1 ∪ S2). We moreover
keep two bitvectors NonEmpty1[1, n] and NonEmpty2[1, n] keeping track, for each
i such that Open[i] = 1, of whether the interval starting in BWT (S1 ∪ S2)[i]
contains suffixes of reads coming from S1 and S2, respectively. Finally, we
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keep four bitvectors Openj[1, nj] and Closej[1, nj], for j = 1, 2, storing non-
empty intervals on BWT (S1) and BWT (S2), respectively. To insert a pair
of intervals 〈L1, R1〉, 〈L2, R2〉 in the queue, let 〈L,R〉 = 〈L1 + L2 − 1, R1 +
R2〉. We set Open[L] ← 1 and Close[R] ← 1. Then, for j = 1, 2, we set
NonEmptyj[L]← 1, Openj[Lj]← 1 and Closej[Rj]← 1 if and only if Rj ≥ Lj .
This queue representation takes O(n) bits. By construction, for each bit set
in Open at position i, there is a corresponding bit set in Openj if and only if
NonEmptyj[i] = 1 (moreover, corresponding bits set appear in the same order
in Open and Openj). It follows that a left-to-right scan of these bitvectors is
sufficient to identify corresponding intervals on BWT (S1∪S2), BWT (S1), and
BWT (S2). By packing the bits of the bitvectors in words of Θ(logn) bits, the
t pairs of intervals contained in the queue can be extracted in O(t+ n/ log n)
time (as described in [5]) by scanning in parallel the bitvectors forming the
queue. Particular care needs to be taken only when we find the beginning of
an interval Open[L] = 1 with NonEmpty1[L] = 0 (the case NonEmpty2[L] = 0 is
symmetric). Let L2 be the beginning of the corresponding non-empty interval
on BWT (S2). Even though we are not storing L1 (because we only store
nonempty intervals), we can retrieve this value as L1 = L−L2 +1. Then, the
empty interval on BWT (S1) is 〈L1, L1 − 1〉.

The same arguments used in the previous section show that the algorithm
runs in O(n logσ) time and uses o(n log σ) bits of space on top of the input
BWTs and output Document Array. This proves Theorem 6. To conclude, we
note that the algorithm can be easily extended to compute the LCP array
of the merged collection while merging the BWTs. This requires adapting
Algorithm 1 to work on pairs of suffix tree nodes (as we did in Algorithm 3
with pairs of leaves). Results on an implementation of the extended algorithm
are discussed in the next section. From the practical point of view, note that
it is more advantageous to induce the LCP of the merged collection while
merging the BWTs (rather than first merging and then inducing the LCP
using the algorithm of the previous section), since leaf-type LCP values can
be induced directly while computing the document array.

Note that Algorithm 3 is similar to Algorithm 2, except that now we manipu-
late pairs of intervals. In Line 27, we sort quadruples according to the length
Ri

1 +Ri
2 − (Li

1 + Li
2) + 2 of the combined interval on BWT (S1 ∪ S2). Finally,

note that Backward search can be performed correctly also when the input
interval is empty: BWTj.bwsearch(〈Lj, Lj − 1〉, c), where Lj − 1 is the number
of suffixes in Sj smaller than some string W , correctly returns the pair 〈L′, R′〉
such that L′ is the number of suffixes in Sj smaller than cW : this is true when
implementing backward search with a rankc operation on position Lj ; then,
if the original interval is empty we just set R′ = L′ − 1 to keep the invariant
that R′ − L′ + 1 is the interval’s length.
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Algorithm 3 Merge(BWT1, BWT2, DA)

1: if σ > n/ log3 n then

2: P← new queue() ⊲ Initialize new queue of interval pairs
3: else

4: P← new stack() ⊲ Initialize new stack of interval pairs
5: end if

6: P.push(BWT1.range(#), BWT2.range(#)) ⊲ Push SA-ranges of terminator
7: while not P.empty() do
8: 〈L1, R1, L2, R2〉 ← P.pop() ⊲ Pop highest-priority element
9: for i = L1 + L2 − 1 . . . L2 +R1 − 1 do

10: DA[i]← 0 ⊲ Suffixes from S1
11: end for

12: for i = L2 +R1 . . . R1 +R2 do

13: DA[i]← 1 ⊲ Suffixes from S2
14: end for

15: if σ > n/ log3 n then

16: P.push(getIntervals(L1 , R1, L2, R2, BWT1, BWT2)) ⊲ New intervals
17: else

18: c11, . . . , c
1
k1
← BWT1.rangeDistinct(L1, R1)

19: c21, . . . , c
2
k2
← BWT2.rangeDistinct(L2, R2)

20: {c1 . . . ck} ← {c11, . . . , c1k1} ∪ {c21, . . . , c2k2}
21: for i = 1 . . . k do

22: 〈Li
1, R

i
1〉 ← BWT1.bwsearch(〈L1, R1〉, ci) ⊲ Backward search step

23: end for

24: for i = 1 . . . k do

25: 〈Li
2, R

i
2〉 ← BWT2.bwsearch(〈L2, R2〉, ci) ⊲ Backward search step

26: end for

27: 〈L̂i
1, R̂

i
1, L̂

i
2, R̂

i
2, 〉i=1,...,k ← sort(〈Li

1, R
i
1, L

i
2, R

i
2, 〉i=1,...,k)

28: for i = k . . . 1 do

29: P.push(L̂i
1, R̂

i
1, L̂

i
2, R̂

i
2) ⊲ Push in order of decreasing length

30: end for

31: end if

32: end while

10 Implementation and Experimental Evaluation

We implemented our LCP construction and BWT merge algorithms on DNA
alphabet in https://github.com/nicolaprezza/bwt2lcp using the language
C++. Due to the small alphabet size, it was actually sufficient to implement
our extension of Belazzougui’s enumeration algorithm (and not the strat-
egy of Beller et al., which becomes competitive only on large alphabets).
The repository features a new packed string on DNA alphabet ΣDNA =
{A,C,G, T,#} using 4 bits per character and able to compute the quintu-
ple 〈BWT.rankc(i)〉i∈ΣDNA

with just one cache miss. This is crucial for our
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algorithms, since at each step we need to left-extend ranges by all characters.
This structure divides the text in blocks of 128 characters. Each block is stored
using 512 cache-aligned bits (the typical size of a cache line), divided as fol-
lows. The first 128 bits store four 32-bits counters with the partial ranks of A,
C, G, and T before the block (if the string is longer than 232 characters, we
further break it into superblocks of 232 characters; on reasonably-large inputs,
the extra rank table fits in cache and does not cause additional cache misses).
The following three blocks of 128 bits store the first, second, and third bits,
respectively, of the characters’ binary encodings (each character is packed in
3 bits). Using this layout, the rank of each character in the block can be com-
puted with at most three masks, a bitwise AND (actually less, since we always
compute the rank of all five characters and we re-use partial results whenever
possible), and a popcount operation. We also implemented a packed string on
the augmented alphabet Σ+

DNA = {A,C,G,N, T,#} using 4.38 bits per char-
acter and offering the same cache-efficiency guarantees. In this case, a 512-bits
block stores 117 characters, packed as follows. As seen above, the first 128 bits
store four 32-bits counters with the partial ranks of A, C, G, and T before
the block. Each of the following three blocks of 128 bits is divided in a first
part of 117 bits and a second part of 11 bits. The first parts store the first,
second, and third bits, respectively, of the characters’ binary encodings. The
three parts of 11 bits, concatenated together, store the rank of N’s before the
block. This layout minimizes the number of bitwise operations (in particular,
shifts and masks) needed to compute a parallel rank.

Several heuristics have been implemented to reduce the number of cache misses
in practice. In particular, we note that in Algorithm 2 we can avoid backtrack-
ing when the range size becomes equal to one; the same optimization can be
implemented in Algorithm 3 when also computing the LCP array, since leaves
of size one can be identified during navigation of internal suffix tree nodes.
Overall, we observed (using a memory profiler) that in practice the combi-
nation of Algorithms 1-2 generates at most 1.5n cache misses, n being the
total collection’s size. The extension of Algorithm 3 that computes also LCP
values generates twice this number of cache misses (this is expected, since the
algorithm navigates two BWTs).

We now report some preliminary experiments on our algorithms: bwt2lcp
(Algorithms 1-2) and merge (Algorithm 3, extended to compute also the LCP
array). All tests were done on a DELL PowerEdge R630 machine, used in non
exclusive mode. Our platform is a 24-core machine with Intel(R) Xeon(R)
CPU E5-2620 v3 at 2.40 GHz, with 128 GiB of shared memory and 1TB of
SSD. The system is Ubuntu 14.04.2 LTS. The code was compiled using gcc
8.1.0 with flags -Ofast -fstrict-aliasing.
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Name Size σ N. of Max read Bytes for

GiB reads length lcp values

NA12891.8 8.16 5 85,899,345 100 1

shortreads 8.0 6 85,899,345 100 1

pacbio 8.0 6 942,248 71,561 4

pacbio.1000 8.0 6 8,589,934 1000 2

NA12891.24 23.75 6 250,000,000 100 1

NA12878.24 23.75 6 250,000,000 100 1

Table 1
Datasets used in our experiments. Size accounts only for the alphabet’s characters.
The alphabet’s size σ includes the terminator.

Preprocessing eGap merge

Name Wall Clock RAM Wall Clock RAM Wall Clock RAM

(h:mm:ss) (GiB) (h:mm:ss) (GiB) (h:mm:ss) (GiB)

NA12891.8 1:15:57 2.84
10:15:07 18.09 (-m 32000) 3:16:40 26.52

NA12891.8.RC 1:17:55 2.84

shortreads 1:14:51 2.84
11:03:10 16.24 (-m 29000) 3:36:21 26.75

shortreads.RC 1:19:30 2.84

pacbio.1000 2:08:56 31.28
5:03:01 21.23 (-m 45000) 4:03:07 42.75

pacbio.1000.RC 2:15:08 31.28

pacbio 2:27:08 31.25
2:56:31 33.40 (-m 80000) 4:38:27 74.76

pacbio.RC 2:19:27 31.25

NA12878.24 4:24:27 7.69
31:12:28 47.50 (-m 84000) 6:41:35 73.48

NA12891.24 4:02:42 7.69

Table 2
In this experiment, we merge pairs of BWTs and induce the LCP of their union
using eGap and merge. We also show the resources used by the pre-processing step
(building the BWTs) for comparison. Wall clock is the elapsed time from start to
completion of the instance, while RAM (in GiB) is the peak Resident Set Size (RSS).
All values were taken using the /usr/bin/time command. During the preprocess-
ing step on the collections pacBio.1000 and pacBio, the available memory in MB
(parameter m) of eGap was set to 32000 MB. In the merge step this parameter was
set to about to the memory used by merge. eGap and merge take as input the same
BWT file.

Table 1 summarizes the datasets used in our experiments. “NA12891.8” 2 con-
tains Human DNA reads on the alphabet ΣDNA where we have removed reads
containing the nucleotide N . “shortreads” contains Human DNA short reads
on the extended alphabet Σ+

DNA. “pacbio” contains PacBio RS II reads from
the species Triticum aestivum (wheat). “pacbio.1000” are the strings from
“pacbio” trimmed to length 1,000. All the above datasets except the first have
been download from https://github.com/felipelouza/egap/tree/master/dataset.
To conclude, we added two collections, “NA12891.24” and “NA12878.24” ob-

2
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12891/sequence_read/SRR622458_1.filt.fastq.gz
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Preprocessing bwt2lcp

Name Wall Clock RAM Wall Clock RAM

(h:mm:ss) GiB (h:mm:ss) (GiB)

NA12891.8 ∪ NA12891.8.RC (BCR) 2:43:02 5.67 1:40:01 24.48

shortread ∪ shortread.RC (BCR) 2:47:07 5.67 2:14:41 24.75

pacbio.1000 ∪ pacbio.1000.RC (eGap-m 32000) 7:07:46 31.28 1:54:56 40.75

pacbio ∪ pacbio.RC (eGap-m 80000) 6:02:37 78.125 2:14:37 72.76

NA12878.24 ∪ NA12891.24 (BCR) 8:26:34 16.63 6:41:35 73.48

Table 3
In this experiment, we induced the LCP array from the BWT of a collection (each
collection is the union of two collections from Table 2). We also show pre-processing
requirements (i.e. building the BWT) of the better performing tool between BCR
and eGap.

tained by taking the first 250, 000, 000 reads from individuals NA12878 3 and
NA12891. All datasets except “NA12891.8” are on the alphabet Σ+

DNA. In
Tables 2 and 3, the suffix “.RC” added to a dataset’s name indicates the
reverse-complemented dataset.

We compare our algorithms with eGap 4 and BCR 5 , two tools designed to
build the BWT and LCP of a set of DNA reads. Since no tools for inducing the
LCP from the BWT of a set of strings are available in the literature, in Table
3 we simply compare the resources used by bwt2lcp with the time and space
requirements of eGap and BCR when building the BWT. In [12], experimental
results show that BCR works better on short reads and collections with a large
average LCP, while eGap works better when the datasets contain long reads
and relatively small average LCP. For this reason, in the preprocessing step
we have used BCR for the collections containing short reads and eGap for the
other collections. eGap, in addition, is capable of merging two or more BWTs
while inducing the LCP of their union. In this case, we can therefore directly
compare the performance of eGap with our tool merge; results are reported in
Table 2. Since the available RAM is greater than the size of the input, we have
used the semi-external strategy of eGap. Notice that an entirely like-for-like
comparison between our tools and eGap is not completely feasible, being eGap

a semi-external memory tool (our tools, instead, use internal memory only).
While in our tables we report RAM usage only, it is worth to notice that eGap
uses a considerable amount of disk working space. For example, the tool uses
56GiB of disk working space when run on a 8GiB input (in general, the disk
usage is of 7n bytes).

Our tools exhibit a dataset-independent linear time complexity, whereas eGap’s
running time depends on the average LCP. Table 3 shows that our tool

3
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/SRR622457_1.filt.fastq.gz

4
https://github.com/felipelouza/egap

5
https://github.com/giovannarosone/BCR_LCP_GSA
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bwt2lcp induces the LCP from the BWT faster than building the BWT itself.
When ’N’s are not present in the dataset, bwt2lcp processes data at a rate of
2.92 megabases per second and uses 0.5 Bytes per base in RAM in addition to
the LCP. When ’N’s are present, the throughput decreases to 2.12 megabases
per second and the tool uses 0.55 Bytes per base in addition to the LCP. As
shown in Table 2, our tool merge is from 1.25 to 4.5 times faster than eGap on
inputs with large average LCP, but 1.6 times slower when the average LCP
is small (dataset “pacbio”). When ’N’s are not present in the dataset, merge
processes data at a rate of 1.48 megabases per second and uses 0.625 Bytes per
base in addition to the LCP. When ’N’s are present, the throughput ranges
from 1.03 to 1.32 megabases per second and the tool uses 0.673 Bytes per base
in addition to the LCP. When only computing the merged BWT (results not
shown here for space reasons), merge uses in total 0.625/0.673 Bytes per base
in RAM (without/with ’N’s) and is about 1.2 times faster than the version
computing also the LCP.
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