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The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers.
Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that
are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case
study for complex networks since it undergoes dramatic structural changes over time and links among nodes
can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing
time resolution, implying that policies have to be adjusted to the time scales in order to be effective.
Moreover, drivers are often not the most highly connected ‘‘hub’’ institutions, nor the largest lenders,
contrary to the results of other studies. Our findings contribute quantitative indicators which can support
regulators in developing more effective supervision and intervention policies.

T
he recent financial crisis has shown how distress or disfunction in the banking sector eventually engender
serious repercussions in both the real economy and society at large. It has been increasingly recognized that
(a portion of) the banking sector can be regarded as a complex network1–3, and the same also holds for the

market investment network, i.e. the network of links among the financial agents playing the role of buyers/sellers,
brokers, dealers, market makers within securities, derivatives or insurance markets4. Substantial, heterogeneous
uncertainty is due to the lack of complete information about mutual financial positions. Statistical Physics allows
to focus on the structure of the mutual relationships among institutions inferred from recorded transactions.
Accordingly, Statistical Physics potentially has much to contribute to the characterization, especially at a systemic
level, of properties such as contagion, robustness and resilience. A large body of work has focused on the issue of
financial complexity5 and complex financial networks2,6–10.

The system we study is an example of a temporal network, a time ordered sequence of realizations of the same
system represented as a graph. These systems are frequently studied by collecting all nodes and edges over a time
interval Dt, and recent contributions, see11, address the issue of quantifying the consequences of this aggregation
procedure in the description of dynamical processes within the network. However, to our knowledge, the role of
Dt in defining to what extent a network’s state can be driven by means of external controllers, as well as the way
how controllability varies during the network’s evolution have yet to be studied.

Here we fill this gap by applying the new concept of network controllability to the network of interbank loans.
This network represents a building block of modern financial economies, also representing a crucial gear for the
transmission of monetary policies to the real economy. We systematically investigate its controllability over a
time span (< 10 years), which is very long with respect to the time scale of the system’s dynamics (< days), at
different levels of time aggregation. Indeed, during the time span of the data the interbank lending system
undergoes dramatic changes in its functioning. From 1999 the network shrinks steadily by 50% in size; lending
volumes increase and then, between 2007 and 2009, drop abruptly by 80% (see Fig. S1 in Supplementary
Information, Section I. A). Finally, we shed some light on the relationship between controllability and link
aggregation time-scale. A common feature of many empirical networks is indeed that interaction between nodes
occurs at discrete points in time, while the network structure is observed after aggregating these interactions into
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weighted links12 over a certain time window. Depending on the time
scale, the resulting network structure may vary greatly, and so may
our ability to control the system.

In the case of interbank deposit contracts we have ties which can
potentially propagate defaults or distress13–16. A first important
debate in financial regulation concerns how to identify and deal with
the so-called too-big-too-fail (TBTF) institutions17. This notion has
recently been extended over to a network context as a ‘‘too-central-
to-fail’’ specification2, and it deals with the propagation of potential
losses due to the exposures of any given bank to its counterparties.
However, the efficiency of the financial system and more in general
its well-functioning crucially depends on the willingness of banks to
lend to each other. This is influenced by the liquidity availability of
the lender as well as by the perceived risk that the counterpart will be
illiquid and/or insolvent at the expiry date. Both of these aspects
may be a vehicle of contagion and are sources of systemic risk.
Nevertheless, difficult access to funding for a bank can signal both
lack of liquidity in the system and enhanced counterpart risk as
perceived by lenders. As a consequence, the same bank is likely to
reduce its funding to others in the immediately following period.
Uncertainty on the future value of counterparties’ assets disrupts
trust among banks leading to a contagion of funding withdrawals
and eventually to a dry-up of credit from banks to real-economy
firms18–20. Therefore, another debate, which is currently receiving a
great deal of attention, regards the number of institutions that should
be the object of supervision and liquidity provisions from their
authorities: only a few big ones, according to some; all of them
according to others. We contribute to these concerns with an analysis
of these systems employing the tools provided to us by Statistical
Physics.

In particular, we study the time evolution of the controllability for
the interbank lending network and we put it forth as a new method to
help identify the institutions that should be supervised. Our
approach considers the interbank market as a complex network
where lending volumes flow from one node to another based on
market rules and individual incentive. We are thereby able to trans-
late the problem of ensuring the good functioning of the market onto
the problem of identifying the subset of nodes that drive the
dynamics.

In this paper we refer explicitly to the notion of network controll-
ability developed in21 building on the concept of structural controll-
ability22. This notion deals with the problem of driving a network’s
state toward a desired target by the application of external controllers
to some nodes. By network state we mean the vector of the states
(x1(t), x2(t), …, xN(t)) of all the nodes and by ’’controller‘‘ any (time-
dependent) action which modifies the state of the node to which it
applies. Without controllers, a node’s state will also vary proportion-
ally according to the influence of its neighbours. The minimal set of
nodes to control (drivers), in order to bring the network to an arbit-
rary final state, is found by solving a geometric problem: given
a maximum matching of the network’s graph, the drivers are the
nodes that remain unmatched (see Supplementary Information,
Section II. A).

Results
Trust evaporation and liquidity hoarding are major causes of grid-
locks and inefficient behaviour in interbank lending systems during
periods of financial distress. In these circumstances, liquidity funding
becomes difficult and the transmission of interest rate decisions from
central banks to the interbank network breaks.

We identify the relevant state variable xi as the level of funding
bank i provides to the others and assume that, in turn, xi depends on
the funding it gets from its neighbours. In other words, we assume
that banks influence each others through ‘‘funding contagion’’ and
that the influence of bank i on j is somewhat proportional to the

funding provided by i to j (more details in Supplementary
Information, Section II.B).

In this context, the concept of external ‘‘control’’ is implemented
by liquidity interventions of central banks in individual institutions
of the network. These actions can involve liquidity refinancing or, in
principle, dedicated credit facilities. Central banks cannot actually
enforce banks to lend, but they can provide liquidity to key-role
banks in the market on a much larger basis than they need.
Therefore, very liquid banks are de facto induced to provide liquidity
to the other players. This mechanism is effective in the eurosystem
and in the UK, where central banks often provide liquidity to large
institutions, in order to allow the rest of the system to receive liquid-
ity. Here we suggest that the effectiveness of these practices may be
enhanced by concentrating them on the network’s drivers.

We analyse the controllability of interbank money markets empir-
ically, focusing on the specific case of the Italian electronic trading
system (e-MID), which is open to European banking players, and for
which a time series of micro data is available. Following the network
evolution over time we detect the banks that are more relevant from a
control perspective. For them, we analyse the changes of the relevant
topological and financial quantities, then clarifying the role played by
drivers in this system. Finally, we address the resilience of the net-
work drivers, that is the correlation between driver sets at different
times.

Generally, daily transactions are rather volatile and, in order to
reduce the level of the fluctuations, we can aggregate them over
different time horizons, denoted by D. The resulting aggregated net-
works may well have different properties than the daily graph.
Defining an optimal scale a priori is not straightforward, but the
liquidity coverage ratio requirement, imposed by the Basel
Committee (Basel III) proposal, points to the monthly scale as a
reasonable time window: it forces banks to maintain a liquidity buffer
of high quality, liquid assets, to cope with potential liquidity outflows
during the following 30 days. For the first time we study how the
controllability properties of the network depend on the observation
time scale. We find a high degree of dependence for both the set of
controlling banks and their impact with respect to the total volume of
lending in the system.

We adopt the fraction of network drivers as an indicator of control
efficiency and robustness23,24. The first result is that the observation
of the network on a daily scale may lead to the misleading conclusion
that the system controllability is inherently low. This is because more
than half of the banks are drivers. However, our study reveals that the
fraction of drivers decays according to a power law as the aggregation
scale gets larger. Therefore, on a monthly basis the system proves to
be quite efficient from the control perspective. A similar bias is also
found when looking at the share of lending for the drivers. The latter
increased remarkably during the recent years of financial turmoil,
signalling a concentration of credit at those sites which actually con-
trol the network. We highlight that the banks that drive the lending
system are not the hubs, nor do they correspond to the top lenders as
could be expected. Finally, we show that indicators like the stability of
the drivers set over time or their closeness centrality point to the
monthly scale as the natural scale for observing the system.

At every aggregation scale D and for every available network
instance, we compute the maximum matching of the graph, and
thereby we identify the set of driver nodes (Fig. 1 (a) shows a daily
network instance, with the driver nodes highlighted). The number of
maximum matchings for directed graphs of this size can be rather
large, and enumerating all of them is an intensive numerical task.
Here we assume that a notion of cost can be attached to network
control, and that this cost is inversely proportional to the sum of
weights of the maximum matching edges. Therefore, in the following
analysis, we always select the maximum matching of maximum
weight (the weight being given by the sum of edge weights in the
matching). We don’t provide a general proof supporting our
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assumption and, certainly, different choices are possible. Never-
theless, it can be supported by heuristic arguments like those dis-
cussed in Supplementary Information, Section II.A. In particular,
from an economic point of view, we expect ‘‘funding contagion’’ to
take place mostly through channels characterized by strong credit
relations (weights).

In Fig. 1 (b) we show the evolution of the fraction nD of unmatched
vertices over the considered years at the different levels of aggrega-
tion, D. Overall, this controllability parameter is fairly stable, with
relative variations below 10%. At the daily scale, controlling nodes
always take a large fraction ranging from about 52% to 60%. This
would be interpreted as a critical point: if the central bank intervened,
more than one half of the banks should be monitored by regulators.
However, the nD values, on average, decrease monotonically as a
function of the aggregation scale and the monthly network appears
to be controlled by less than 30% of the banks. Such a value of nD

supports the possibility for the regulator to implement targeted inter-
ventions in just the driver banks, and differentiates this system from
other networks like the WWW or the Internet studied in21 where

nD . 50%. Starting in 2008 we also notice a raising trend in nD for all
values of D. Thus a qualitative correspondence exists with the credit
crisis triggered by subprime mortgages (Lehman-Brothers bank-
ruptcy). To gain deeper insight in the scaling of the driver fraction
with the aggregation scale, in Fig. 1 (c) we look at the average value
ÆnDæ for values ofD ranging from 1 day to 126 days. For the system at
hand, we find a neat power law decay with scaling exponent b 5 0.38.
This finding implies there is no characteristic time scale for the
fraction of drivers in the system. It is not possible to select an optimal
aggregation time based only on nD, and we will see in the following
section that other quantities give clearer indications in this regard.
The value we find for the scaling exponent also means that nD

decreases less than proportionally with D, so that ÆnDæ reduces
roughly from 0.25 to 0.15 when passing from D 5 1 month to
D 5 6 months. Different levels of aggregation correspond to net-
works with different connectivity, which requires different control
strategies. Different scales could serve different supervision purposes
and policy makers could adopt the instruments that are more effec-
tive for the time horizon of interest for the control.

Figure 1 | (a). A sample snapshot of the daily interbank lending network. External inputs on the yellow nodes (drivers) allow to control the state of the

whole system. (b). Time evolution of the fraction of drivers: at the monthly scale less than 40% of the banks drive the system. (c). The average fraction of

drivers decays with a neat power law scaling with the aggregation scale D.

Figure 2 | (a). Scatter plot of the mean degree of driver vertices versus the mean degree in the network. On average drivers do not correspond to hubs. (b).

Complementary of the cumulative distribution function for the out-degree of drivers nodes. Even though the network is scale free, the out-degree of

drivers decays faster than a power law.
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Power law scalings have been repeatedly observed in economics
and finance5,25–27; here it emerges as a specific aspect of the system
controllability resulting from the process of aggregating transactions
across successive time periods. Generally, we expect nD to decrease
with the average degree Ækæ, with a minimum value of 1/N for a
complete (or a strongly connected) graph, where N stands for the
number of nodes. Actually, the process of aggregation leads to denser
networks and the scaling of nD withDmay be regarded as a mechanic
effect. Nevertheless, the power-law profile of this scaling is peculiar to
the system at hand (see the relative discussion in Supplementary
Information, Section II.B).

To get a feeling for the role the drivers play in the network, in Fig. 2
(a) we plot their average degree ÆkDæ as a function of the average
degree in the network Ækæ and we find ÆkDæ , Ækæ systematically.
This evidence (discussed in21 for several biological, technological
and social networks) clarifies that in the bank network the drivers
are not the hubs, regardless of the aggregation level, and hubs are
controlled only indirectly. Therefore, every ‘‘too connected to
fail’’ strategy must be carefully considered before any bailing-out
procedure.

Usually, driver banks affect their neighbours while not being affec-
ted; correspondingly their average in-degree can be shown to
approximate zero on average. In Fig. 2 (b) we plot the complement-
ary of the empirical cumulative distribution function P.(kout,D) of
their out-degree. It is not power-law as it would be expected from
past analyses8. This finding is somewhat expected from Fig. 2 (a): for
the most part, drivers are not hubs, so the probability of them having
high degree must decay faster than for the whole set of nodes.

The control set of drivers will change over time. However, inspec-
tion of the drivers resilience (see Eq. (2) in Supplementary
Information, Section II. C) from Fig. 3 shows that the system is

characterized by long-range memory. The survival function has a very
slow, almost linear decay, and after six months nearly 60% of drivers
are still in the control set. Surprisingly, the level of the curve does not
follow a monotonic trend with D: the control configuration is
maximally stable at the monthly scale for which rD exhibits the slow-
est decay. This result supports the proposal of the Basel III
Committee to introduce a 30-day liquidity coverage ratio, and sug-
gests the monthly scale as a reasonable time window for observing
the system.

The special role of this time horizon for the observation of the
system properties is also confirmed by the drivers average closeness
represented by the red bars in Fig. 4 (a). The closeness quantifies the
centrality of drivers with respect to the lending relationships to direct
and indirect borrowers (see Supplementary Information, Section I.
C). As for the case of the resilience, we find here a non-trivial beha-
viour of the curve when varying the aggregation time scale: the close-
ness centrality is maximized at the monthly scale.

It is of major importance to investigate the ‘‘size’’ of the controlling
institutions in terms of exchanged volumes. The yellow bars in Fig. 4
(a) show the fraction vD of the aggregate lending volume which is
accounted for by the driver nodes. Even in this case, we find a crucial
dependence on the aggregation scale. On average, the drivers of the
daily network account for 70% of the total volume. This percentage
largely decreases when we look at the system across a wider time
period, and at the monthly level, the drivers of the system are
responsible for only less than 30% of the total lending.

A relevant question is whether drivers correspond to the top len-
ders of the credit network. We addressed this issue by sorting banks
in descending order of lending volume and defining the ‘‘top len-
ders’’ as the first mtop banks in the list whose lending approximates
(and is not larger than) 80% of the total lending provided in that time
period. We give the name Btop to the set of top lenders and, for all
network instances we compute the overlap nD,top 5 jD > Btopj/jBtopj;
if drivers were just the top lenders, we would expect nD,top < 1. The
time evolution of nD,top, for the different aggregation scales, is plotted
in Fig. 4 (b), showing that the extent of the overlap strongly depends
on D. More interestingly, we also found that searching for drivers
does not merely reduce down to detecting top lender banks: before
2008, at the monthly scale less than 40% of the leading banks play a
role in system control. After 2008, at all time scales, a fast rise is
observed in nD,top; we conclude that the liquidity shortening observed
during the crisis (see Supplementary Information, Section I.A)
comes with an increase of the centrality of controlling banks, as
measured by their weighted out-degree, inside the lending system.

Discussion
The recent financial crisis has been forcing central banks to imple-
ment aggressive and creative policy actions. Radically new strategies

Figure 3 | The slow decay of the driver resilience; this long-range memory
effect makes control sets rather stable with respect to the network time
change. The highest stability is achieved at the monthly scale.

Figure 4 | (a). Average closeness of drivers (red bars) and average fraction of the aggregate lending accounted for by the driver banks (yellow bars), for the

different aggregation time scales. Both values are obtained after averaging over all available network snapshots at the considered time resolution.

Maximum closeness is achieved for the monthly network. (b). The fraction of top lender banks which are also drivers of the network: not only the drivers

are not hubs, they are not even the larger banks, especially at wider aggregation scales.
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have been proposed to cope with liquidity shocks within interbank
markets. Traditionally, policies have been mainly based on liquidity
injection through open market operations, but it has been proved
that targeted intervention on individual banks could be more effective
in guaranteeing and restoring the efficient allocation of credit28. This
suggests the need for monitoring the system and keeping track of
banks that are systemically relevant from a control perspective.

When the interbank system is not operating properly, many banks
are likely to become illiquid, but not necessarily insolvent. Non-
conventional liquidity channels can allow the central banks to refi-
nance individually solvent banks not receiving credit or major
lenders not providing credit due to the loss of reciprocal trusts among
banking institutions.

Here we consider interbank systems as networks of ties among
banking institutions. Recent advancements in the science of complex
networks provide new tools to investigate their controllability.
Specifically, the Minimum Input Theorem21 allows one to infer
which nodes are essential for control purposes (drivers). By exploit-
ing these tools, our analysis contributes to the identification of sys-
temically relevant banks in a network perspective. The importance of
highly connected banks has been highlighted in connection with
spillover and contagion effects. We add a new dimension from the
point of view of the network controllability and monitoring, iden-
tifying the drivers of the banking system. This specification is not
equivalent but complementary to previously discussed measures of
centrality.

Our contribution is twofold. First we contribute to complex net-
work literature: we represent the market of interbank deposits as a
network of credit ties and, for the first time, we study the controll-
ability of a temporal network over time and systematically investigate
the relationship which exists between network controllability and the
aggregation time scale. Our work sheds new light on the debate on
interbank market control. We show that no characteristic scale exists
in the decay of the fraction of drivers with the time resolution, imply-
ing that no optimal timing for bank supervision can be selected based
only on that. Nevertheless, other network statistics, such as the per-
sistence of control configurations, indicate the monthly scale as nat-
ural for observing the system.

Secondly, a major result of our analysis is that the banks which are
more relevant to the overall state of the credit network are neither the
most connected nor the top lenders. This strongly suggests the neces-
sity to rethink the policies based exclusively on the TBTF specifica-
tion of a systemically important institution. According to recent
regulation proposals, the ECB has recognized that allowing recapi-
talization interventions directly on individual banks is necessary (see
the European Commission proposal COM(2012) 511 final, 2012/
0242(CNS)). They also highlight that the range of targets has to be
broadened to include banks other than the largest, usually TBTF,
lenders. Our findings contribute a precise indication by identifying
those target banks with the network drivers. Indeed we identify dri-
vers with the agents that are more effective in transmitting the mon-
etary policy of the central bank and preventing complete gridlocks of
the banking industry.

While studies about network controllability and resilience have
provided new insight, future work should be devoted to combining
these complementary aspects into the design of concrete intervention
policies for banking regulation.
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