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Automatic Color Inspection for Colored Wires
in Electric Cables

Stefano Ghidoni, Member, IEEE, Matteo Finotto, and Emanuele Menegatti, Member, IEEE

Abstract—In this paper, an automatic optical inspection system
for checking the sequence of colored wires in electric cable
is presented. The system is able to inspect cables with flat
connectors differing in the type and number of wires. This
variability is managed in an automatic way by means of a self-
learning subsystem and does not require manual input from the
operator or loading new data to the machine. The system is
coupled to a connector crimping machine and once the model
of a correct cable is learned, it can automatically inspect each
cable assembled by the machine. The main contributions of this
paper are: (i) the self-learning system; (ii) a robust segmentation
algorithm for extracting wires from images even if they are
strongly bent and partially overlapped; (iii) a color recognition
algorithm able to cope with highlights and different finishing
of the wire insulation. We report the system evaluation over a
period of several months during the actual production of large
batches of different cables; tests demonstrated a high level of
accuracy and the absence of false negatives, which is a key point
in order to guarantee defect-free productions.

Note to Practitioners
This work is motivated by the need of performing an accurate

quality control on cable production: an automated inspection
method is necessary for effectively assuring a quality check
on 100% of the produced parts. The vision system exploits a
compact acquisition hardware enabling the system to be easily
integrated in existing cable crimping machines. The software
system is composed by two main modules: the first one localizes
the wires, while the second performs color measurements. The
paper explains how it is possible to segment wires also when
they are bent in many different ways; moreover, a reliable
method for identifying colors, which is robust to wire markings
and highlights, is described. The proposed system is able to
automatically adjust tolerances in color measurement depending
on the colors of the wires to be checked. This represents a strong
point of the system, and it can be applied also in other contexts
where color analysis on noisy data needs to be performed.

Index Terms—Visual inspection, wire color measurement, wire
color sequence, wire detection, cable crimping.

I. INTRODUCTION

Automatic visual inspection represents a strong advance in
the field of quality control for industry, and is exploited since
decades [1], [2], [3]. Computer vision algorithms applied to the
industrial production environment can be considered as a mean
for achieving better quality and lower costs in production.
Automatic inspection systems can be effectively employed for
performing complex quality controls and, most importantly, to
check 100% of produced items instead of few samples along
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the production batch. For instance, this is extremely important
in semiconductor production, where visual inspection is widely
used [4], [5]. Since automatic visual inspection is not invasive,
does not involve dangerous processes, and is essentially clean,
it can be successfully employed in any industrial process,
ranging from heavy industry [6] to food processing [7]. A wide
range of sensors can be exploited in automatic visual inspec-
tion, like near infrared cameras [8], far infrared cameras [9],
[10], X-ray cameras [11] or even ultrasound imaging [12].

In this paper, a system for inspecting assembly of electric
connectors is presented. The system was integrated in an
existing cable crimping machine, which could not be modified,
as shown in figure 1. The crimping machine loads an empty
connector and waits for a human operator to insert, in the
connector holes, one wire after the other. Each time a wire
is inserted, it is crimped to the connector. When a connector
is completed, another one is loaded, without any stop or gap
between the connectors.

This inspection system is not checking the crimping process.
For the sake of this application, the crimping process can be
considered error-free, since the quality of the connectors, wires
and the machine itself is so high to ensure very limited errors,
which, in case, can be detected by the crimping system.

The whole process can be considered affected only by one
source of error, namely the human operator inserting the wires
in the wrong color order. Since wires have to satisfy a specific
color coding, which has an electric meaning, crimping wires
in the wrong order can lead to damages or malfunctions in the
final products, and should be carefully avoided.

In order to verify if a cable has been correctly assembled,
the system needs to be able to reliably locate the wires of each
single cable and accurately identify their color. Even if the
image acquisition is performed under controlled diffused light,
highlights on PVC insulation and discontinuities in the wire
color caused by cable markings is unavoidable. To cope with
this, a reliable segmentation algorithm has been developed,
based on the careful analysis of the scene framed by the
camera. High accuracy in color recognition has been achieved
by means of the proposed color extraction algorithm, which
is able to robustly assess the color and detect the type of
insulation of each wire.

The method presented in this paper is able to recover the
wire color even under severe noise affecting more than 50%
of the pixels belonging to the wire. This result would have
been impossible to achieve using color histogram-based algo-
rithms [25] or any other general purpose color segmentation
technique, which does not rely on a model of the process being
inspected and of the noise factors.
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(a) (b)

Fig. 1. The box containing the acquisition and lighting system (a), and the crimping machine during the crimping process after the installation of the visual
inspection system (b).

Another important feature of the system is the verifica-
tion of the correct sequencing of the wires. As we said,
since the connectors appear without discontinuities in the
images, the wires should be identified as belonging to different
cables without knowing where the connectors are located.
The solution proposed here is to analyze the wire sequence
in a continuous production rather then considering cables
singularly observed one after the other.

On this machine quality control was formerly performed
on samples randomly extracted from produced items. This
technique cannot guarantee 100% error-free production. Ad-
ditionally, in this machine errors are due to sporadic human
negligence, thus checks based on random sampling are even
less effective, because errors cannot be modeled with an error
distribution slowly deviating from the correct values, but rather
as a Dirac delta distribution. From the above discussion, it is
clear that a check of all produced items is desirable in order
to provide a 100% error free production. A system capable
of effectively performing visual inspection for this production
must meet strong criteria, namely: (i) provide a method for
checking all different types of produced items; (ii) do not slow
down the production, i.e. the analysis should take shorter time
than what is needed for producing a connector; (iii) represent
a cost-effective solution. Our system successfully met all the
three criteria.

The paper is organized as follows: in Section II related
works are revised and relevant algorithms and systems are
analyzed to understand similarities and differences with our
system. In Section III the proposed system is described, in-
cluding hardware setup, design principles and user interface. In
Section IV the image analysis algorithms proposed for solving
the discussed visual inspection problem are described in detail;
this includes wire identification, color indexing and connec-
tor sequencing. In Section V experiments run for assessing
the system performance in terms of detection accuracy, true
positive rate and computational load are discussed, and their
outcomes are reported. Finally, in Section VI a summary of

the work done is reported, together with some final remarks.

II. RELATED WORK

Visual inspection for industrial production is a very active
field, that spans across several sectors, ranging from food
production [13], [7] and medical production [14], to fabric
production, exploiting also quite complex computer vision
techniques derived from other fields, as it is the case of [15].
Quality check systems based on visual inspection can be
very sophisticated, and capable of interfacing with CAD
models [16].

The exploitation of computer vision techniques in the
industrial environment can lead to very successful results,
but requires special care in the selection of the hardware
components and setup [17]. Another strong constraint that
visual inspection systems must meet is represented by the
capability of being real-time, i.e. they should be able to
check the production without affecting the production process
speed [18]. From this point of view, visual inspection systems
are similar to robotic vision systems, that must be able to
extract data from the environment in real time so that the
robot can take proper actions in time.

Several works in the literature have focused on metal
parts [19] and electric connections: in [20], a system for in-
specting metal connectors is presented, particularly focused on
checking dimensional constraints; a similar type of inspection
is also described in [21]. A number of works face the topic
of wire bonding also at the microscopic scale, like it happens
in the field of integrated circuit production [22].

Analysis of color information is a widely explored field
in computer vision for any kind of applications, including
visual inspection [23], [24]. Color indexing is often tackled
by means of histograms [25], that are a convenient way for
managing color information and creating clusters of similar
colors. More sophisticated techniques for handling color in-
formation also exist in the literature: in [26] moments of
color distributions are considered, while color signature based
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on bag of colors are presented in [27]; color itself can be
described in a number of different color spaces, that can
ease the task of discriminating one from another [28]. The
techniques mentioned above were mainly developed to work
on real-world scenes, as it often happens in robotics and
computer vision applications like video surveillance or object
recognition. They can deal with objects that have non-uniform
color, and with scenes that undergo illumination changes, but
do not aim at an accurate color measurement. On the contrary,
such effects do not exist in an industrial context, because
it is often possible to control illumination and the imaging
process; however, in industrial visual inspection a much higher
accuracy in color measurement is needed. This is the case of
the work presented here: illumination is obtained by means of
a LED illuminator, and external light is shielded. This makes
our case rather different, since we have a strong knowledge of
the phenomenon that is observed e.g. the cylindrical shape of
the wire that causes a gradient that is repeated on all wires. The
histogram-based approach is not suitable in our case, because
it loses the spatial information: all colors are organized based
on their values, while we need to discriminate between them
based on geometrical considerations, e.g. the peculiar shape
of the wires. It should be noted that the specific approach
developed in our case relies on the a priori knowledge of
the problem, while histogram-based methods are employed
when such knowledge is not available. Our choice was to
exploit the knowledge about the imaging process to eliminate
noise exploiting geometrical information rather than working
on histograms. Illumination is another critical issue when
dealing with color, as different illuminations can sensibly
affect histograms or any other indicator based on colors [29].

Color analysis is seen from a different perspective in this
work: instead of exploiting techniques that are very robust to
e.g. illumination changes, the focus here is to obtain a very
accurate measure in a controlled environment. Differently from
mobile robotics applications, the color measurement in a visual
inspection system needs to be much more accurate, as wires of
very similar colors should be distinguished, and the material of
the insulation should be also detected – distinguishing between
reflective and matte materials, that show a rather different
color signature on the wire. The system deals with some noise
factors that are accurately modeled, as they are part of a well-
known manufacturing process.

Overall, it can be said that the color analysis algorithm
presented here needs to provide very accurate results, based
on images taken in a controlled environment. The industrial
context also affects the relationship between segmentation
and color measurement: for example, in [30] segmentation is
driven by color analysis, while in this work the opposite path is
exploited: segmentation is achieved by means of background
subtraction, and its result drives the analysis of wire color.
This approach provides better results, as segmentation is easy
to perform and provides accurate results thanks to the a priori
knowledge of the scene being observed. Color analysis is
made complex by its dependency on a number of factors
sensibly higher than shape analysis, namely surface roughness,
material, and insulation.

This work builds on the preliminary system presented

in [31], which has been expanded and thoroughly tested,
and is described in detail in this paper. Even though the
system presented here relies on some state-of-the-art computer
vision techniques, it faces a number of issues that are peculiar
to cable crimping visual inspection, like an accurate color
measurement in presence of strong noise factors, and the
capability of dealing with bent and overlapped wires. To the
best of our knowledge, this is the first time a system addressing
this task is presented.

III. SYSTEM DESCRIPTION

The cable inspection system described in this paper is
designed to be interfaced to a crimping machine by Inarca
SpA, Italy. However, its working principle is independent of
the specific crimping machine or on the specific crimping
process, so it can be applied to any situation in which the
sequence of colored wires has to be checked. One of the
project requirements was that the crimping machine should
not be modified, therefore the visual inspection system had
to be installed in the empty space inside the machine itself,
as shown in figure 1. While designing the visual inspection
system, a set of constraints were imposed in order to integrate
the inspection system into the crimping machine, which caused
severe limitations on the system geometry.

Visual inspection needs to be performed just after connec-
tors are crimped, while they are being guided out of the
machine by means of a metal track. However, such track
occludes the connectors, thus the quality inspection needs to
be based on the observation of wires only, without relying on
the identification of the connectors.

A. System requirements
The goal of the inspection system is to check whether wires

are crimped to the connector in the right color order. The check
should be performed on all produced items, and the inspection
system should be able to keep up with the takt time: for this
reason, the computer vision algorithm should run in a time
slot shorter than the cycle time, that is about 2-4 seconds per
cable for an experienced operator, depending on the number
of wires.

The inspection system should be able to handle a number of
different situations: the crimping machine can work on several
connector types, that differ in the number and size of the wires
that can be crimped. Moreover, wires can present insulations
of different materials, but with the same color, that have to be
distinguished.

The inspection system must be able to deal with any kind
of cables, considering that:
• connectors might have different length, but they cannot

be directly observed, since they are occluded by a track
inside the machine that guides them sideways;

• the number of wires in the connector is variable and
depends on the specific production lot;

• no assumptions can be made on the color sequence to be
inspected;

• wires can have different insulations, some of which
generate specular reflections; wires having the same color,
but different insulation materials should be distinguished;
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• wires may have markings on them, that can appear in any
position;

• wires are often bent by the dragging system that pushes
connectors along the track, and they can occasionally
overlap;

• wires are of one color, except for the ground wires that
present the well-known yellow-green color code;

• some connector configurations include missing wires at
certain positions: this absence should be checked.

The need to deal with all these features led to a very general
solution which could be effectively exploited also in other
application scenarios.

B. Vision system
The vision system is composed by a camera, a LED bar, and

a case enclosing them, as shown in figure 1(a). It is installed
inside the crimping machine, as it can be seen in figure 1(b).
The case is meant to shield from ambient light, thanks to the
shadow projected on the rail: this is the reason for keeping
the case very close to the analyzed area. The case also holds
all the components of the acquisition system while preserving
them from dust and other elements – recall that the system
is designed to work in an industrial environment. For this
reason, there is just one aperture, that lets the camera observe
connectors while they are going along the track.

In industrial visual inspection light control is very common,
and lighting is therefore part of the system itself [32], [33].
Choices made at this stage strongly influence the image quality
and thus the system performance, and should be made in order
to minimize the noise sources. In our case, the main source of
image degradation is represented by reflections of the light on
the wire insulation, because this reduces the area of the wire
on which color can be measured. This effect can be reduced by
employing diffused light and properly placing the illumination
system with respect to the camera.

In the final setup the lighting system is fixed on the front
face of the box, at a height of 120 mm to the working
plane of the crimping machine, and points perpendicularly
to the ground. The LED bar has an illumination area of
82×16 mm, and emits white light, to let the system provide
best performance in measuring wire colors. A light diffuser
has been placed in front of the LED light source in order to
generate diffused light and to avoid reflections from glossy
wires. The camera is fixed on top of the box, at a height
of 268 mm, and is placed behind the lighting bar, to avoid
occlusions.

The camera acquires color images at a resolution of
1600×1200, with a 1/3” sensor. The scene framed by the
camera includes the track along which connectors are moved,
which is illuminated by the LED bar, and the inner part of
the enclosure containing the acquisition system, which is not
illuminated. Since the automatic gain control of the image
sensor would find a setpoint providing a balance between these
two regions, it was disabled and the gain was manually tuned
in order to enhance image quality on the illuminated area,
where connectors are seen.

One last component of the acquisition system is a tape
that has been placed over the metallic working plane of

the crimping machine, that would cause a high amount of
reflections, therefore saturating the sensor. Such tape has been
chosen in an orange color shade not present in the electric wire
color coding, and thus works as a contrasting background. In
figure 5(a) a sample of acquired image can be seen.

C. Self-learning system

Due to the large variety of configurations to be inspected, a
solution in which the operator would have to fully specify the
number of the wires, their color sequence, and the presence
and/or absence of empty slots in the connector is going to
be error prone and tedious to initialize. Even the approach of
loading cable specifications from CAD models is not reliable
because in the used CAD model the color description is
very vague (e.g. red cable) and does not follow any color
specification standard.

A self-learning mechanism has therefore been developed:
the human operator is asked to correctly crimp a first sample
connector, and shows it to the system: this will be considered
as the reference, and the system will check that all produced
parts have the same color configuration.

Beside the sample connector, during this phase the system
analyzes also the color of the background tape, in order to
be able to work on backgrounds of any color and pattern.
Even though the background is static, this can slightly change
during time because of dust or wear, or the tape itself can be
changed: background self-learning is then exploited to make
the system immune from these aspects. The learning phase is
essentially the observation of a single connector that is taken
as a model.

During the learning phase, tolerances in color definition
are tuned. Learning starts using two sets of threshold triplets,
{ThL} and {ThH}, to be applied on the R, G and B values of
wire color. The former set represents a strong constraint, and is
employed to verify whether two colors are the same with high
confidence: {R1, G1, B1} and {R2, G2, B2} are considered to
be equal if:

{|R1 −R2| < ThL,R and |G1 −G2| < ThL,G and

|B1 −B2| < ThL,B} . (1)

This way a low tolerance is obtained, i.e. two colors are
considered to be equal only if the differences in their R, G and
B values are very small. The second set of thresholds leads to a
higher tolerance. When the colors of two wires are compared,
they are automatically considered the same color if their
difference satisfies (1), and they are automatically considered
as different colors if such difference exceeds {ThH}, that is:

{|R1 −R2| > ThH,R and |G1 −G2| > ThH,G and

|B1 −B2| > ThH,B} . (2)

When the color comparison does not satisfy (1) nor (2), the
operator is asked if the two colors should be considered the
same or not. This check is performed only once observing
the connector model: in other words, the system prompts
the user if some wire couples show colors that are similar,
but do not look exactly the same. This feature is important
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when insulations are not perfectly uniform between different
wires of the same lot. At the end of the learning phase,
color thresholds are further adjusted. The inspection system
assumes that the color set does not change along a cable
production lot, i.e. it is impossible that colors other than those
observed during the learning phase appear during production.
Following this assumption, the final thresholds to be employed
during production are set to be very restrictive if colors
observed during the learning phase are similar, or more relaxed
if different colors are strongly different. The final set of
thresholds {ThR,ThG,ThB} is chosen to be half of the
shortest distance between two different colors in the red, green
and blue channels, respectively.

The self-learning stage is the only chance the system has to
observe one single connector alone, since during production
all connectors are side by side and occluded by the track,
therefore it is not possible to detect boundaries between them.
Thus, this stage is exploited to measure a number of physical
parameters, namely:
• width of a single plastic connector,
• number of wires (and possible holes in the wire se-

quence), and its location with respect to the connector,
• minimum width of a wire,
• distance between any wire pair.
These are all parameters needed in order to understand

which is the color sequence that the quality inspection system
will assess in the following production lot.

D. User Interface

Our system provides a graphical user interface (GUI), shown
in figure 2, carefully designed to ease the communication with
the human operator through a touch screen. At the beginning
of a new production, the GUI starts in the learning mode,
and prompts the operator in order to check that all wires are
correctly recognized and labeled. After that, the GUI switches
to the inspection mode, and shows connectors being checked.
When a component fails the check, the GUI notifies the user
with a clear message and a large red icon, see fig. 2. Moreover,
the software stops the crimping machine by issuing a signal
on a dedicated data line and superimposes the information on
the detected defect to the image of the inspected connector,
highlighting which part of the component is different from
the model; this can be seen in figure 2 in the box labeled
“Inspected”.

IV. VISUAL INSPECTION ALGORITHM

The core algorithm of the visual inspection system is
composed of two main steps. In the first one, wires are detected
and located, so that it is possible to understand if wires are
present, and in which positions. Once wires are correctly
recognized, the second step, wire color analysis, is triggered.

As previously said, connectors are crimped one at a time
by a human operator. After a connector has been crimped,
it is pushed by the machine along a track: this causes a
sudden motion of all connectors previously produced. The
visual inspection system will therefore observe a static scene
that sometimes undergoes sudden changes. This is exploited

Fig. 2. The appearance of the graphical user interface of the inspection
system when a defect is detected.

by the system in order to trigger the visual inspection; a frame
differencing algorithm similar to that exploited in [34] is used
for detecting changes, and understanding when movements
are over, in order to trigger a new analysis. This automatic
detection of the time instant at which a new connector is ready
to be inspected saves the complexity of coupling our software
to the electronics of the crimping machine. This also has the
advantage of fully decoupling the inspection system from the
hardware of the specific crimping machine.

All the software for visual inspection has been developed
in C++ and is based on the OpenCV library1 [35] for data
structures and classes, color conversion and image processing
algorithms. The software modules described in the following
have been written by the authors from scratch using OpenCV
low-level image processing functions. In figure 3 an overview
of the whole inspection system is provided; all the modules
will be described in detail in the following.

A. Background learning

Before any connector is inserted into the crimping ma-
chine, the inspection system acquires an image in which the
background is fully visible. Such image will be exploited for
performing background subtraction in the wire identification
algorithm.

A background equalization process also takes place. Equal-
ization has a number of different meanings in the litera-
ture [36]; in our case, it refers to an algorithm that has
been developed for correcting uneven illumination in the area
framed by the visual inspection machine. In order to reduce
noise, a mean shift operator is applied to the background
image. The filtered image is then transformed into the HSV
(Hue Saturation Value) color space, and the average values
for the saturation and value channels are calculated. For each
background pixel the S and V channels are compared to the
average, in order to understand whether it is lighter or darker.
The difference calculated for each pixel is used to obtain an
equalized image before the actual inspection process takes
place, see figure 5(b).

Information gathered at this stage will be used to correct
pixel by pixel each acquired image before the actual inspection

1Available at http://www.opencv.org.
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Fig. 3. Overview of the cable inspection algorithm. The loop between color equalization and sequence verification (in the blue box) is triggered when new
connectors are pushed along the production line.

Fig. 4. Input image acquired by the system during the production phase.
Note that all cables appear side by side, and the wires are bent.

process takes place.

B. Wire identification

Wires are detected as the foreground by a background
subtraction algorithm that evaluates the difference between
the acquired image, similar to figure 4, with the background
acquired before starting the production.

Wire detection is performed considering a ROI (Region Of
Interest) in the acquired images, that is placed very close to
the connectors (in yellow in figure 5(a)), so that effects due to
bending or overlapping are reduced; at the same time, it does
not include any part of the connector: this way it is easier to
segment wires since they belong to non-connected blobs.

As explained before, an even illumination is desirable; how-
ever, mechanical constraints limit the illumination system to be
smaller than the observed area, leading to uneven illumination.
To compensate for this, information on background illumi-
nation, that was measured during the self-learning phase, is
exploited to correct foreground pixels. As for the background,
this is done by converting the input image to the HSV color
space, and correcting the S and V channels by the deviations
measured on the background. In figure 5(b) the result of the
equalization process is shown: while in the center of the ROI
differences with the original image are negligible, the effects
are sensibly stronger towards the borders, where illumination
is weaker.

In simple cases wires could be located finding connected
components in the foreground. This approach is not always
working though, since wires can overlap or can appear to be
split into two separated regions by highlights. To compensate
for these effects, knowledge about wire width acquired in
the self-learning phase is exploited, to understand whether
connected regions contain single wires or not. The width of
each region is evaluated, and compared with the expected

(a)

(b)

(c)

Fig. 5. Wire identification at various steps: (a) the ROI exploited for wire
segmentation, (b) the effect of the equalization process, and (c) the output of
the segmentation algorithm.

value: if they match, a wire has been found. If they do not
match, the system runs further investigations.

In case of wire overlap, two possible situations can be
observed, as shown in figure 6: wires appear overlapped in
the whole region of interest (case A), or they are separated
in the upper part of the ROI and then overlap (case B). If
it is possible to determine where the overlap starts, the ROI
is shrunk in order to include only the area where they can be
distinguished. On the other hand, if they appear fused together
in the whole ROI, the region is segmented based on the wire
width observed in the self-learning phase: the labeled region
is divided into smaller regions whose width is equal to the
wire width observed in the training phase.

In some cases, strong highlights on the wires are misclassi-
fied as background, and the wire is separated into two halves.
This results in connected regions whose width is smaller
than the one observed in the self-learning phase. When this
happens, the system will look for another small connected
region at either side, and merge the two together. The wire
identification process is summarized in Algorithm 1, where
the “cv::” namespace identifier is exploited to indicate that the
function is taken from the OpenCV library. Functions without
such identifier were specifically developed for this work.
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Algorithm 1 Wire identification
Output: Set of areas containing the single wires.

img diff ← cv::image difference(img, background)
contours ← cv::find contours(img diff)
for i = 0 to contour number-1 do

if contour[i] has dimension of single wire then
detect single wire in contour[i]

else
if contour[i] has Y shape then

num wires ← Y shape analysis on contour[i]
sub region ← Y shape segmentation on contour[i]
for j = 0 to num wires-1 do

segment single wire on sub region[j]
end for

else
segment wire group on contour[i]

end if
end if

end for

C. Color inspection

Once wires have been detected, color analysis is triggered
after equalizing the image in the HSV domain. Noise factors
at this step are highlights and markings on the wires, while
shadows do not cause problems thanks to the diffusing shield
on the lighting system.

1) Two color wires: Wires are supposed to be of one
color, except for ground wires, that are green and yellow.
The system determines wire color by applying smoothing
filters, as it will be described in the following. However, if
this would be applied to a ground wire, its two colors would
mix together: to avoid this, the inspection system first checks
whether the labelled region contains a ground wire. This check
is based on pixel color clustering: since green and yellow have
the same (low) blue component and the same (high) green
component, and they differ only in the red component, then
pixels of the analyzed region are divided into three clusters,
G, Y,O (standing for Green, Yellow, Others), using two static
thresholds Gth and Bth, and a dynamic one, Rth, defined
as Rth = (Rmin + Rmax)/2, where Rmin and Rmax are
the minimum and maximum values for the red channel in
the considered region. These thresholds were experimentally
calculated considering the different production lots for a total
of 10000 parts. As a result, a single threshold Rth was enough
to detect ground wires; however, in different scenarios using
two thresholds could also be an option. The generic pixel pi
is then classified following the rule:

pi ∈

 G if R < Rth, G > Gth, B < Bth,
Y if R > Rth, G > Gth, B < Bth,
O otherwise.

(3)

Given the number of pixels for each cluster, NG, NY and
NO, the wire being analyzed is a ground wire if both NG

and NY are above a threshold depending on its area. In this
case, the analysis ends, since the wire is already classified;
otherwise, it is considered a single-color wire, and it undergoes
further processing aimed at detecting its color.

Fig. 6. Example of complex situations handled by the system: in case A
(on the left) two wires appear overlapped for their whole length, while case
B shows two wires only partially overlapped.

(a)

(b)

Fig. 7. The subdivision into longitudinal bins is shown here: segmented
wires shown in (a) are divided into bins, as shown in (b): each color indicates
a different bin, that goes along the whole wire segment.

2) Color extraction: Wire color measurement needs to be
robust to two main noise factors: highlights, that are located
at the center of the wire, and markings, that are more difficult
to be detected since they can appear anywhere on the wire.
These two noise factors are very strong: they can affect a high
number of the pixels composing a wire; if the two effects are
combined, the number of noisy pixels can be higher than 50%
of the total area of the wire. To cope with such high noise
levels it is necessary to develop an algorithm that is specific
to the problem of wire color detection, i.e. that is based on
a simple model of the wire and of the noise factors. In the
case presented in this paper, one can observe that both noise
factors develop longitudinally. We exploited this observation
to create an algorithm for removing such noise factors and
obtain an accurate measurement of the wire color even when
the color covers less than one half of the observed region. Our
solution is that each wire is not analyzed as a whole, but it
is divided into longitudinal slices (or bins): this restricts the
effect of noise to a small portion of the analyzed region. The
number of slices is high: ideally, if a wire has the same width
for each row in the ROI, a bin is one pixel width; the number
of bins is limited by the minimum width of the wire in the
inspection area. In figure 7 an example of wires divided into
bins is shown, with each bin represented by a different color.

For each bin, whose spatial domain is Di, it is possible to
understand whether it is affected by markings or not using the
index:

U = max
(x,y)∈Di

Ig(x, y)− min
(x,y)∈Di

Ig(x, y) , (4)

where Ig(x, y) is the pixel value in the grayscale image. The
U index lets the system understand if pixels in the bin have
uniform color or not, and is evaluated in the grayscale image
because this eases comparison of contrasting colors which are
used for marking the wires. Bins having a U index above a
threshold are discarded in further processing, and the same
happens to central bins, that are affected by highlights when
reflective wire insulations are being inspected. This means the
area for color measurement is sensibly smaller than the whole
segmented region; however, it is enough to ensure a robust
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color classification.
To calculate the final color of a wire, defined by the triplet

{Rw, Gw, Bw}, bins are first separately processed by taking
the median Ĩ of each RGB channel. For the generic bin i the
channel R is evaluated as:

Ri = ĨR(x, y) for (x, y) ∈ Di . (5)

Finally, the red value for the whole wire, Rw, is evaluated as
the median R̃i of the Ri:

Rw = R̃i for i = 0, . . . , nbins − 1. (6)

The green and blue values, respectively Gw and Bw are
calculated in the same way.

It is important to note that the use of the median operator
instead of the mean has shown to provide better performance,
because it is very robust to color fluctuations at the ends of
the histogram: this means that variations in the lightest or
darkest parts of the wire, that are often affected by a high
noise level, do not impact on the final color measurement. The
pseudo-code of the color measurement module is reported in
Algorithm 2.

Algorithm 2 Color measurement
Output: The color of a given wire.

detect clusters
if size of green cluster > ThG and size of yellow cluster
> ThY then

return ground cable
else

n bins ← evaluate wire bins
for i = 0 to n bins-1 do

U ← evaluate U index on bin[i]
if U < ThU then

consider Y value in the median evaluation
end if

end for
end if

3) Color comparison: Once wire colors have been ex-
tracted, they should be compared with those observed in the
model. Instead of using the static threshold sets {ThL} and
{ThH}, the comparison exploits dynamic thresholds chosen
during the self-learning phase, and related to the difference
between wire colors found in the connector type to be in-
spected: four threshold are defined, ThR, ThG, ThB, and
ThRGB, related to the three RGB channels, and their sum.
Two colors A and B, are assumed to be equivalent if their
components satisfy the following criterion:

A ≡ B iff (∆R < ThR and ∆G < ThG and ∆B < ThB)

or (∆R + ∆G + ∆B < ThRGB) ,
(7)

where ∆R is the absolute value of the difference between the
red channel of the colors A and B: ∆R = |RA − RB |, and
∆G and ∆B are analogously defined. The fourth condition,
applied to the sum of the three ∆, is exploited for leaving one
single channel go out of the boundaries if the two other are

very similar: for example, if the threshold is 10 for the single
channels and ThRGB=20, the two colors are considered the
same even though the difference on one channel is e.g. 15,
given that the two other channels together have a difference
that is not higher than 5. This was experimentally found to
perform better than using higher values for ThR, ThG and
ThB .

D. Connectors sequencing

The image processing described so far lets the system
inspect single connectors. However, in the production phase
connectors are pushed together by the crimping machine. In
this situation, there is no way of understanding where each
connector starts and ends, because connectors are occluded
by the metal rail that guides them to the end of the production
line, as described in Section III. The inspection system can
rely only on the color sequence in order to assess where a
single connector starts.

Wire inspection is triggered when the number of segmented
wires in the ROI is at least equal to the number of wires of
a single connector. When this happens, the rail is partially
empty, and the system compares the pattern detected in the
image with the model, starting from the the first wire, that is
recognizable.

In a generic image acquired during the production phase
it is not possible to make any assumption on the connector
position, therefore the leftmost wire in the image is not likely
to be the first wire of a connector sequence. To cope with this
problem a connector sequencing algorithm was developed. The
standard solution of doing a wire tracking would be hard, due
to the brisk movements of the connectors along the production
line, and it would be computationally very expensive. The
connector sequencing algorithm solves the problem of finding
a pattern in a given sequence. Every time a connector is
produced and pushed along the rail, the whole sequence moves
of a length that is not predictable, and the inspection system
needs to synchronize again the observed sequence with the
model: the sequencing algorithm operates when the scene
changes. Sequencing is performed by considering the wires
of the model, and matching them in the sequence observed
in the analyzed image. Let for example the model M have
four wires, labeled as: M = {a, b, c, d}, while the wires
segmented in the image are 10: I = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
The sequencer will set a reference to the first wire of the
image; the first wire of the model, a, is then compared with
the reference, 0: if they match, the comparison continues
considering the following wires in both model and images,
that is: b will be compared to 1; otherwise, the reference
is moved, and the comparison is restarted with the set of
couples {a, 1} {b, 2} . . . The algorithm terminates when either
the whole model has been successfully compared (that means,
a sequence was found), or the reference is moved by a number
of positions that is greater than the sequence length, meaning
that the observed sequence contains an error. The sequencing
algorithm is summarized in Algorithm 3.
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Algorithm 3 Connector sequencing
Output: Color sequence, if found.
Input: wires[] {vector of wire colors of the analyzed connec-

tor}
Input: model[] {vector of wire colors of the model}
Input: model length {number of colors for each connector}

i ← 0
candidate ← 0
while i < model length and candidate + i < model length
do

if wires[candidate+i] == model[i] then
i ← i+1;

else
candidate ← candidate + 1
i = 0

end if
end while
if candidate + i == model length then

return wrong sequence
else

return sequence found starting at candidate
end if

V. EXPERIMENTAL RESULTS

The quality inspection system, installed inside a crimping
machine, has been tested during real connector production.
Tests involved several different connectors types, having a
number of wires ranging from 4 to 12, with wire diameter
ranging from 1.2 mm to 2.0 mm. Cables used for experiments
were taken from 254 production lots, each one composed
by 367 parts in average, with a maximum of 1961. Lots
exploited for experiments were manufactured by different
human operators. Overall, 90266 parts were produced while
testing the system, over a period of six months.

A. System performance

To describe system performance, let TP and TN be the true
positive and negative, respectively, while FP and FN are the
false positive and negative. A true positive (TP) is defined as a
sample that is correctly built and that is classified as correctly
built by the system; a true negative (TN) is a sample that has
a defect, and is correctly classified as a failure by the system.
Errors made by the visual inspection system are measured by
means of false positives (FP) and false negatives (FN). The
former represent the situations in which the system finds a
defect in an item that is correctly built; the latter case happens
when the inspection system does not recognize a defect and
classifies the part as good while a defect is actually present.

Indicators exploited to assess the system performance are
accuracy (ACC) and sensitivity or true positive rate (TPR),
calculated as:

ACC =
TP + TN

TP + TN + FP + FN
, (8)

TPR =
TP

TP + FN
. (9)

The system has been tuned to adapt to the requirements
of this kind of industrial production, for which it is of great
importance that no wrongly assembled part is shipped to the
customer: to avoid this situation, the system sensitivity should
be as high as possible. On the other hand, each false positive
causes a warning to be issued to the human operator, who
has to manually inspect the part. False positives result in
production slowdown, but they do not affect the quality of
the produced lot, and are not so critical as false negatives,
even if above a certain level can result in the human operator
not trusting the system anymore. System tuning affects the
thresholds discussed in Section IV that have an impact on
how selective the system becomes when comparing wire
colors. Modifying such thresholds has an impact on the values
of TP, TN, FP, FN: by choosing appropriate value it is
possible to maximize the true positive rate by keeping the
false negatives low. Since the acquisition conditions (mainly
depending on the lighting conditions) are constant, as it is
often the case for an industrial system, the parameter tuning
does not need to be changed while switching production lot
from one to another. All parameters that should be changed
are automatically determined in the self-learning stage.

Test results have been divided into two groups, depending
on the presence or absence of a ground wire in the observed
configuration: this is meant to assess the processing of ground
wires, that is based on a technique that is different from the
one used for other colors. Experiments were run on 45520
configurations with a ground wire and 44746 without.

For thoroughly testing the visual inspection system a very
large set of cables was automatically analyzed and also
checked by a human operator at the end of the production line.
This is the only way for measuring false negatives, while false
positives were easily measured by manually checking all the
connectors in which the machine found a defect. To assess the
capability of the system of correctly detecting errors, 60 cables
were wrongly assembled on purpose in a random way during
different production lots; this was made necessary observing
that the number of errors that a skilled operator causes was
limited to few samples.

Results obtained during the testing phase in terms of false
positives and false negatives are summarized in table I, while
in table II the values of accuracy and sensitivity are reported.
As it can be seen, the system successfully achieves the goal of
zero false negatives, leading to a sensitivity of 100%, that is
the main feature required for an inspection system working in
production. At the same time, the false positive rate is rather
low (about 1%), and the level of accuracy reached causes a
very small production slowdown. An important result is the
correct behavior with ground wires, whose presence has a
negligible impact on system performance, as shown in table II.

B. Working examples

Some examples of correct classification in difficult sit-
uations can be seen in figure 8: in (a) a production in
which brown wires made of different materials are employed
is depicted: the system considers the two brown colors as
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TABLE I
ERRORS IN TERMS OF FALSE POSITIVES (FP) AND FALSE NEGATIVES (FN)

OVER THE TOTAL NUMBER OF ANALYZED CONNECTORS.

FP FN total
Ground 599 (1.316%) 0 45520

No ground 459 (1.026%) 0 44746

TABLE II
SYSTEM PERFORMANCE MEASURED BY ACCURACY (ACC) AND TRUE

POSITIVE RATE (TPR) OR SENSITIVITY INDICATORS.

ACC TPR
Ground 98.68% 100%

No ground 98.97% 100%

different, and is able to distinguish among them. In (c), a
red wire belonging to one of the connectors under analysis
presents strong markings, which affect also the area inside the
ROI, as it can be seen in the output of the wire identification
step (d). The system is nevertheless able to recover the correct
wire color, and passes the check. Finally, in (e) a check is
made difficult by two factors: on one hand, the ground wire
towards the center, beyond being affected by strong highlights,
shows a very small green component, looking yellow almost
everywhere. On the other hand, the segmentation algorithm,
whose output is shown in (f) (binary mask) and (g) (in which
the original image and the mask are processed with an AND
operator), produces two errors: two wires are not detached in
the upper part on the left, while two others are fused together,
towards the center; this is because wires are large and put
close to each other, producing a high amount of shadow. The
system is anyway able to solve such situations, and recover
the right wire colors.

The main causes of classification errors are wire markings
and highlights not correctly removed. In particular, in certain
situations it may happen that a combination of marking and
reflections reduces too much the area on which the system can
evaluate the wire color, as it is the case of figure 9 (a), (b),
(c) and (d).

Another event that might cause false positives is when the
background subtraction is not accurate enough, and leaves
some background around the wire. In this case wires are
separated into blobs slightly larger than they should be. This
might lead to a wrong selection of the areas where color is
measured, producing classification errors. This case is shown
in figure 9 (e) and (f).

Other minor sources of error are:

• the incorrect wire detection, due to problem in the back-
ground subtraction phase: this can happen when wires
have a color very similar to the background;

• shadows of the wires strongly affecting the background:
when this happens, the background subtraction algorithm
detects wrong regions due to sudden illumination changes
– this is the case of figure 9(e) and (f);

• ground wires placed in a way that lets only one of the
two colors to be visible.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 8. Example of good behavior in difficult situations: (a) shows an example
in which wires of similar colors but different materials (the brown ones)
are distinguished by the color analysis algorithm; in (b) the result of the
segmentation step can be seen. In (c) the color is correctly measured even
though strong markings are present; such markings affect also the ROI in
which the analysis is performed (d). In (e) an example of correct behavior
with ground wires showing an extremely small green area is shown. Moreover
as it can be noticed in (f) and (g), the system can recover two errors of
the segmentation step, that, due to shadows, fuses together two wires, either
partially (on the left) or completely (towards the center).

C. Computational load

All the computer vision algorithms needed to perform the
inspection are run on an industrial computer equipped with
an Intel Core2 Duo E7500 processor and 2 GB RAM. On
such platform, the average running time is of 1.45 s for each
inspection. This processing time is rather stable, and it does
not strongly depend on the inspected cable, since the main
part is spent in low-level algorithms, that are run before wire
segmentation. For this reason, on the cable with the highest
number of wires, namely 12, the processing time is of 1.94 s,
which is still shorter than the speed at which the human
operator produces a cable. No issues have therefore been
encountered regarding the computational load.

VI. CONCLUSIONS

In this paper, a system for automatic visual inspection for
production of cables with flat connectors has been presented.
The system is meant to perform a check on 100% of the
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Examples of wrong classifications: in (a), the system is not able to recover the right wire color, and reports a defect, indicated by the red arrow,
as shown in detail in (b); the same happens also in (c) and (d). In (e) and (f), even though the region labeling produces a correct output, and successfully
segments the overlapping wires, the presence of shadows around the wires causes their shapes to be enlarged, which in turn leads to wrong localization and
color analysis results. In all cases the ground wire is correctly recognized.

produced parts, avoiding any false negative, thus assuring
error-free production. The system has a self-learning module
that enables it to inspect any kind of cable, with any color
sequence, given that a correctly assembled cable can be
observed before the production is started.

The system relies on a wire detection algorithm whose
output is exploited by a color measurement module, that works
on the images after color equalization. The system can deal
with difficult situations typical of a real-world scenario: wires
that overlap, wires with markings on them, and wires made
of different materials. Illumination issues like highlights and
shadows are also handled.

The inspection system has been installed into a crimping
machine, and tested on a series of real production lots, over a
period of several months. The measured performance is very
high, since the goal of no false negatives has been reached,
with a false positive ratio that is compatible with a production
machine. The main sources of error come from two main
factors: strong noise on the observed wires, that makes it
almost impossible to precisely determine the wire color, and
uneven illumination conditions. While the former depends on
the raw materials used in the production, the latter effect can
be eliminated with a larger observation window, and a stronger
illumination. Both could be achieved if the crimping machine
would be designed to host the visual inspection system, leaving
more room for placing the hardware: the limitations in the
current version are due to the fact that the crimping machine
was not modifiable and thus the visual inspection hardware
had to be installed in a small empty region, the only available
in the current version of the crimping machine.
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