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Abstract: The goodness of a predictive distribution depends on the aim of
the prediction. This presentation intends to shed light on properties of predictive
distributions in use nowadays. We also propose a new predictive distribution that
may be useful to obtain calibrated predictions for the probabilities of a future
random variable of interest. This predictive distribution can be easily computed
by a simple bootstrap procedure. In order to compare the different predictive
distributions, some simulation studies are also presented.
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1 Introduction

Let us define the notation and the general assumptions that we will use
in the sequel. Suppose that {Yi}i≥1 is a sequence of continuous ran-
dom variables with probability distribution depending on an unknown d -
dimensional parameter θ ∈ Θ ⊆ Rd, d ≥ 1; Y = (Y1, · · · , Yn), n > 1, is
observable, while Z = Yn+1 is a future or not yet available observation.
For simplicity, we consider the case of Y and Z being independent random
variables and we indicate with G(z; θ) and Q(α; θ) the distribution func-
tion and the quantile function of Z, respectively. Given the observed sample
y = (y1, . . . , yn), we look for a predictive distribution Ĝ(z; y), with corre-
sponding quantile function Q̂(α; y), that fullfills some good requirements
for prediction.
There are different desirable properties that a predictive distribution should
possess. Here we consider only two of the most important:

(A) calibrated quantile function: EY [G{Q̂(α;Y ); θ}] = α, ∀α ∈ (0, 1)

(B) calibrated distribution function: EY [Q{Ĝ(z;Y ); θ}] = z, ∀z ∈ R.
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Unfortunately, these properties cannot be satisfied at the same time. They
regard different aspects of a predictive distribution and depend on the
target of the prediction itself. A quantile function is calibrated if, in mean,
it coincides with the inverse of the true distribution function. This last
property can also be expressed in terms of coverage probabilities, since

EY [G{Q̂(α;Y ); θ}] = PZ,Y {Z ≤ Q̂(α;Y )}.

Similarly, a predictive distribution function is calibrated if, in mean, it
coincides with the inverse of the true quantile function. While from a the-
oretical point of view the knowledge of the distribution function coincides
with that of the quantile function for continuous random variables, this
is not true when we talk about predictive distributions. Thus, a predic-
tive distribution may be good for estimating quantiles but not as good for
estimating probabilities and the converse is also true.
In the sequel we always consider the maximum likelihood estimator (mle)

θ̂ = θ̂(Y ) for θ, or an asymptotically equivalent alternative. The estimative

predictive distribution and quantile functions, G(z; θ̂) and Q(α; θ̂) respec-
tively, usually satisfy properties (A) and (B) with an error term of order
O(n−1), as the sample size n → +∞, see e.g. Barndorff-Nielsen and Cox
(1996). It is well known that this error term could be substantial, in par-
ticular for small sample sizes.

2 Calibrated quantile functions

Modern literature has largely focused on the problem of prediction lim-
its, that is the problem of finding a predictive distribution which quantiles
satisfy property (A) with a high approximation. This requirement is usu-
ally met when a pivotal quantity for prediction is available. Unfortunately
in many situations of practical interest, a pivot is not known. Further-
more, even in the case of the normal distribution, sometimes the unknown
parameters are estimated using ad hoc estimators whose exact distribu-
tion is unknown. As a consequence, the distribution of a quantity such as
(Z− µ̂)/σ̂ is not known. Thus, it becomes of interest in the applications to
find alternative approximate solutions.
Here we quickly recall the procedure used in Fonseca et al. (2014), since
we will follow the same steps in the next section. The starting point is the
coverage probability associated to the estimative quantile function Q(α; θ̂):

PY,Z{Z ≤ Q(α; θ̂); θ} = EY [G{Q(α; θ̂); θ}] = C(α, θ).

Although an explicit expression of this coverage probability is rarely avail-
able, it is well-known that it does not match the target value α. Fonseca et
al. (2014) noticed that the function Gc(z; θ̂, θ) = C{G(z; θ̂), θ}, obtained by

substituting α with G(z; θ̂) in C(α, θ), is a proper predictive distribution
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function, whose associated quantile function is calibrated, giving coverage
probability equal to the target nominal value α, for all α ∈ (0, 1). A suit-

able parametric bootstrap estimator for Gc(z; θ̂, θ) may be readily defined
as

Gboot
c (z; θ̂) =

1

B

B∑
b=1

G{Q(α; θ̂b); θ̂}|α=G(z;θ̂),

where θ̂b, b = 1, . . . , B, are estimates obtained with B bootstrap samples
from G(z; θ̂). The corresponding α-quantile defines, for each α ∈ (0, 1), a
prediction limit having coverage probability equal to the target α, with
an error term which depends on the efficiency of the bootstrap simulation
procedure.

3 Calibrated distribution functions

In this section we address the dual problem, looking for predictive distri-
butions that satisfy property (B). We use exactly the same ideas proposed
by Fonseca et al. (2014) and recalled in the previous section, applied to the
distribution function instead of the quantile function. The result is a new
predictive distribution that may be useful for predicting probabilities for
the interest variable Z, instead of quantiles.
The estimative distribution function is not well calibrated in the sense of
property (B). Infact, the mean of quantiles of level equal to G(z; θ̂) is

EY [Q{G(z; θ̂); θ}] = A(z, θ)

and it does not match the target value z. Instead, the function

Qc(α; θ̂, θ) = A{Q(α; θ̂), θ}, (1)

obtained by substituting z with Q(α; θ̂) in A(z, θ), is a proper predictive

quantile function whose distribution function Gc(z; θ̂, θ) = G{A−1(z, θ); θ̂}
satisfies property (B) for every z ∈ R. Indeed,

EY [Q{Gc(z; θ̂, θ); θ}] = EY [Q{G(A−1(z, θ); θ̂); θ}]
= A{A−1(z, θ), θ} = z.

The predictive quantile function (1) and the corresponding calibrated pre-
dictive distribution are not useful in practice, since they depend on the
unknown parameter θ. However, a suitable parametric bootstrap estimator
for Qc(α; θ̂, θ) may be readily defined. Let yb, b = 1, . . . , B, be parametric
bootstrap samples generated from the estimative distribution of the data
and let θ̂b, b = 1, . . . , B, be the corresponding estimates. We can thus write

Qboot
c (α; θ̂) =

1

B

B∑
b=1

Q{G(z; θ̂b); θ̂}|z=Q(α;θ̂).
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The corresponding distribution function allows to predict the target prob-
ability P (Z ≤ z0), for each z0 ∈ R, with an error term which depends on
the efficiency of the bootstrap simulation procedure. Indeed, the estimate
is the value α0 such that Qboot

c (α0; θ̂) = z0.

4 The normal distribution

Let Y1, . . . , Yn, Z be independent and normally distributed with mean µ
and standard deviation σ, both unknown. In this context the pivotal quan-
tity T =

√
n/(n+ 1)(Z − Ȳ )/S is useful for prediction, with Ȳ and S

the sample mean and sample standard deviation, respectively. Its distri-
bution is Student t with n − 1 degrees of freedom. The quantile function√

(n+ 1)/nQt (α;n− 1)S+ Ȳ , satisfies property (A). Hence, in this case,
the calibrated quantile function presented in section 2 replicates the distri-
bution obtained from the pivot. However, as shown in the following simu-
lation study, the pivotal distribution is not the best choice for prediction
of probabilities.
The following tables show the results of Monte Carlo simulations based
on M = 10000 replications and B = 500 bootstrap replications for the
computation of the calibrated distributions. The sample size is n = 10, 25
and the true parameter values are µ = 0 and σ = 1. We have compared
the estimative distribution with the mle, the predictive distribution ob-
tained from the pivotal quantity and the two bootstrap calibrated predic-
tive distributions on the basis of the corresponding coverage probability
for α = 0.5, 0.9, 0.95, 0.99, 0.999 (Table 1) and the mean quantiles of lev-
els Ĝ(z; y) for z = 0, 1.5, 2, 2.5, 3.5 (Table 2). The best performances are
written in bold face, clearly showing how the aim of the prediction should
influence on the choice of the predictive distribution.

TABLE 1. Coverage probabilities. Standard errors smaller than 0.001.

Target estim. pivotal qu. calib. pr. calib.
n=10 α = 0.5 0.500 0.500 0.500 0.500

α = 0.9 0.861 0.900 0.899 0.892
α = 0.95 0.914 0.950 0.949 0.939
α = 0.99 0.967 0.990 0.990 0.981
α = 0.999 0.989 0.999 0.999 0.995

n=25 α = 0.5 0.500 0.500 0.500 0.500
α = 0.9 0.885 0.900 0.900 0.897
α = 0.95 0.936 0.950 0.950 0.946
α = 0.99 0.983 0.990 0.990 0.987
α = 0.999 0.997 0.999 0.999 0.998
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TABLE 2. Mean quantiles of level Ĝ(z; y). Standard errors smaller than 0.001

Target estim. pivotal qu. calib. pr. calib.
n=10 z = 0 -0.001 -0.001 0.000 0.000

z = 1.5 1.734 1.411 1.411 1.504
z = 2 2.312 1.803 1.804 2.004
z = 2.5 2.889 2.151 2.153 2.505
z = 3.5 4.044 2.732 2.741 3.498

n=25 z = 0 0.000 0.000 0.000 0.000
z = 1.5 1.581 1.465 1.465 1.500
z = 2 2.108 1.920 1.920 2.000
z = 2.5 2.635 2.350 2.350 2.500
z = 3.5 3.689 3.130 3.133 3.500
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