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Abstract

The Matérn family of covariance functions has played a central role in spatial statistics for decades, being a flexible
parametric class with one parameter determining the smoothness of the paths of the underlying spatial field. This paper
proposes a family of spatial covariance functions, which stems from a reparameterization of the generalized Wendland
family. As for the Matérn case, the proposed family allows for a continuous parameterization of the smoothness of
the underlying Gaussian random field, being additionally compactly supported.

More importantly, we show that the proposed covariance family generalizes the Matérn model which is attained
as a special limit case. This implies that the (reparametrized) Generalized Wendland model is more flexible than the
Matérn model with an extra-parameter that allows for switching from compactly to globally supported covariance
functions.

Our numerical experiments elucidate the speed of convergence of the proposed model to the Matérn model. We
also inspect the asymptotic distribution of the maximum likelihood method when estimating the parameters of the
proposed covariance models under both increasing and fixed domain asymptotics. The effectiveness of our proposal
is illustrated by analyzing a georeferenced dataset of mean temperatures over a region of French, and performing a
re-analysis of a large spatial point referenced dataset of yearly total precipitation anomalies.
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1. Introduction

Many applications of statistics across a wide range of disciplines rely on the estimation of the spatial dependence
of a physical process based on irregularly spaced observations and predicting the process at some unknown spatial
locations. Gaussian random fields (RFs) are fundamental to spatial statistics and several other disciplines, such as
machine learning, computer experiments and image analysis, as well as in other branches of applied mathematics
including numerical analysis and interpolation theory.

The Gaussian assumption implies the finite dimensional distributions to be completely specified through the mean
and covariance function. A necessary and sufficient requirement for a given function to be the covariance function
of a Gaussian RF is that it is positive definite. Such a requirement is traditionally ensured by selecting a parametric
family of covariance functions [43].

Covariance functions depending exclusively on the distance between any pair of points located over the spatial
domain are called isotropic. There is a rich catalog of available spatially isotropic covariance functions [4, 12, 43],
and we make an explicit point in that covariance functions might be globally or compactly supported. The former
means that the covariance function does not vanish in the domain of reference, and the latter means that the covariance
function vanishes outside a ball with given radii embedded in a d-dimensional Euclidean space. The use of compactly
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supported covariance models has been advocated when working with (but not necessarily) large spatial datasets [6,
16, 29, 40] since well-established and implemented algorithms for sparse matrices can be used when estimating the
covariance and/or predicting at some unknown spatial location (see [17] and the references therein).

Among covariance models with global support, the Matérn family [24, 34] is the most popular, as it allows for
parameterizing in a continuous fashion the differentiability of the sample paths of the associated Gaussian RF. Fur-
thermore, it has a very simple form for the associated spectral density, which is crucial for studying the properties of
maximum likelihood (ML) estimation [53], and kriging prediction [16, 41, 42] under fixed domain asymptotics. The
Matérn family includes interesting special cases, such as the exponential model, and a rescaled version of the Matérn
family converges to the Gaussian covariance model [24]. Additionally, the Matérn model is associated with a class
of stochastic partial differential equations [49] that has inspired a fertile body of literature on the approximation of
continuously indexed Gaussian RFs through Markov Gaussian RFs [32]. Finally, most of the literature on modeling
spatiotemporal or multivariate data modeling is based on the Matérn model as a building block (see [44], [35] and
[19], to name a few).

From a computational perspective, a drawback of the globally supported Matérn family is that, for a given col-
lection of n scattered spatial points, the associated covariance matrix is dense and in this case the evaluation of the
multivariate Gaussian density and/or of the optimal predictor is impractical when n is large. Various scalable esti-
mating/prediction methods for massive spatial data have been proposed to reduce the computational burden (see [25]
and the references therein for a recent review). One of these method is the covariance tapering technique proposed
in [16, 29, 45, 47]. This kind of approximation is obtained by specifying a covariance model as the product of the
Matérn model with a compactly supported correlation function (the taper function). This allows to achieve a prefixed
level of sparseness in the (misspecified) covariance matrix that can be handled using algorithms for sparse matrices.

As recently shown in [6], a more appealing approach with respect to the covariance tapering technique is to
work with flexible compactly supported covariance models. In particular they study the generalized Wendland family
introduced in the seminal paper of [18] (see also [48] and [52]). This class of covariance functions is compactly
supported over balls with given radius embedded in IRd and it allows for the parameterization of the differentiability of
the sample paths of the underlying Gaussian RF in the same fashion as the Matérn model. The fact that it is compactly
supported manifests a clear practical computational advantage with respect to a globally supported covariance Matérn
model. [6] show, additionally, that under some specific conditions, the Gaussian measures induced by the Matérn and
generalized Wendland families are equivalent. As a consequence, the kriging predictors using these two covariance
models, have asymptotically the same efficiency under fixed domain asymptotics [43].

Both Matérn and generalized Wendland models have three parameters indexing variance, spatial scale (compact
support parameter for the second) and smoothness of the underlying Gaussian RF. Additionally, the generalized Wend-
land model has an extra-parameter that has been conventionally fixed in applications involving spatial data and whose
interpretation has not been well understood so far.

This paper shows that this additional parameter serves a crucial role in proposing a class of spatial covariance
models that unifies the most common covariance models, whatever their support. Specifically, we consider a spe-
cific reparameterized version of the generalized Wendland model, and we show that the Matérn model is attained
as special case when the limit to infinity of the additional parameter is considered. Hence, for the first time, we
unify compactly and globally supported models under a unique flexible class of spatially isotropic covariance models.
In other words, the proposed family is a generalization of the the Matérn model with an additional parameter that,
for given smoothness and spatial dependence parameters, allows for switching from the world of flexible compactly
supported covariance functions to the world of flexible globally supported covariance functions.

Our numerical experiments examine the speed of convergence of the proposed model to the Matérn model and
then we focus on assessing the asymptotic distribution of the ML estimator under both increasing and fixed domain
asymptotics when estimating the parameters of the proposed covariance model.

While the use of compactly rather than globally supported models implies considerable computational gains
[6, 16], it is common belief that compactly supported models are generally associated with a poorer finite sample
performance in both terms of maximum likelihood estimation as well as best linear unbiased prediction. Our real data
illustrations show that the reparameterized generalized Wendland model can even outperform the Matérn model in
terms of both model fitting and prediction performance. This fact is particularly shown in the first application. The
second application emphasizes the computational savings of the proposed model with respect to the Matérn model.
The proposed model has been implemented in the GeoModels package [8] for the open-source R statistical environ-
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ment.
The remainder of this paper is organized as follows. Section 2 provides background material about the Matérn and

generalized Wendland covariance models. Section 3 provides the main theoretical results of this paper. In particular,
we propose a reparametrization of the Generalized Wendland class and we show that the Matérn model becomes a
special limit case of this class. Section 4 provides numerical experiments on the speed of convergence of the proposed
model to the Matérn model. We also inspect the asymptotic distribution of the ML estimator under both increasing
and fixed domain asymptotics. In Section 5 we analyze a georeferenced dataset of mean temperatures over a specific
region of French and perform a re-analysis of a large spatial point referenced dataset of yearly total precipitation
anomalies. Finally, Section 6 provides some conclusions.

2. Matérn and generalized Wendland covariance models

2.1. Gaussian RFs and Isotropic covariance Functions
We denote Z = {Z(s), s ∈ D} as a zero-mean Gaussian RF on a bounded set D of IRd, d = 1, 2, . . . with stationary

covariance function C : IRd → IR. The function C is called isotropic when

cov (Z(s1),Z(s2)) = C(s1 − s2) = σ2φ(‖s2 − s1‖),

with si ∈ D, i = 1, 2, and ‖ · ‖ denoting the Euclidean norm, σ2 denoting the variance of Z, and φ : [0,∞) → IR with
φ(0) = 1. For the remainder of the paper, we shall be ambiguous when calling φ a correlation function. Additionally,
we use r for ‖x‖, x ∈ IRd.
Spectral representation of isotropic correlation functions is available thanks to [39], who showed that the function φ
can be uniquely written as

φ(r) =

∫ ∞

0
Ωd(rz)F(dz), r ≥ 0,

where Ωd(r) = r1−d/2Jd/2−1(r) and Jν is a Bessel function of order ν. Here, F is a probability measure and is called
isotropic spectral measure. If F is absolutely continuous, then Fourier inversion in concert with arguments in Yaglom
[50] and Stein [43] allow to define the isotropic spectral density, φ̂, as

φ̂(z) =
z1−d/2

(2π)d

∫ ∞

0
ud/2Jd/2−1(uz)φ(u)du, z ≥ 0. (1)

A sufficient condition for φ̂ to be well-defined is that φ(r)rd−1 is absolutely integrable. We now focus on two flexible
parametric families of isotropic correlation functions.

2.2. The Matérn Family
The Matérn family of isotropic correlation functions [43] is defined as follows:

Mν,β(r) =
21−ν

Γ(ν)

(
r
β

)ν
Kν

(
r
β

)
, r ≥ 0,

for ν > 0, β > 0, and it is positive definite in any dimension d = 1, 2, . . .. Here, Γ is the gamma function and Kν

is the modified Bessel function of the second kind [1] of the order ν. The parameter ν indexes the mean squared
differentiability of a Gaussian RF having a Matérn correlation function and its associated sample paths. In particular,
for a positive integer k, the sample paths are k times differentiable, in any direction, if and only if ν > k [5, 43]. The
associated isotropic spectral density is given by:

M̂ν,β(z) =
Γ(ν + d/2)
πd/2Γ(ν)

βd

(1 + β2z2)ν+d/2 , z ≥ 0. (2)

When ν = m + 1/2 for m a nonnegative integer, then Mν,β factors into the product of a negative exponential with
a polynomial of degree m. For instance, m = 0 and m = 1 correspond, respectively, to M1/2,β(r) = exp(−r/β) and
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M3/2,β(r) = exp(−r/β)(1 + r/β) (see Table 1). Another relevant fact is that a reparametrized version of the Matérn
model converges to the square exponential (or Gaussian) correlation model:

Mν,β/(2
√
ν)(r) −−−−→

ν→∞
exp(−r2/β2), (3)

with convergence being uniform on any compact set of IRd.

2.3. The Generalized Wendland Family
The generalized Wendland family of isotropic correlation functions [6, with the references therein] is defined for

ν > 0 as

GWν,µ,β(r) :=

 1
B(2ν,µ+1)

∫ 1
r/β u(u2 − (r/β)2)ν−1(1 − u)µ du, 0 ≤ r ≤ β,

0, r > β,
(4)

and for ν = 0 as the Askey function [3]:

GW0,µ,β(r) :=


(
1 − r

β

)µ
, 0 ≤ r ≤ β,

0, r > β.
(5)

Arguments in [51] show that GWν,µ,β is positive definite in IRd for µ ≥ λ(d, ν) := (d + 1)/2 + ν and ν ≥ 0 and for
a positive compact support parameter β. Using results in [26], an alternative useful representation of the generalized
Wendland function for ν > 0, in terms of hypergeometric Gaussian function 2F1, is given by:

GWν,µ,β(r) =

K
(
1 −

(
r
β

)2
)ν+µ

2F1

(
µ
2 ,

µ+1
2 ; ν + µ + 1; 1 −

(
r
β

)2
)

0 ≤ r ≤ β

0 r > β,
(6)

with K =
Γ(ν)Γ(2ν+µ+1)

Γ(2ν)Γ(ν+µ+1)2µ+1 . The associated isotropic spectral density for ν ≥ 0 is given by the following [6]:

ĜWν,µ,β(z) = Lβd
1F2

(
λ(d, ν); λ(d, ν) +

µ

2
, λ(d, ν) +

µ + 1
2

;−
(zβ)2

4

)
, z > 0, (7)

where L = 2−dπ−
d
2 Γ(µ + 2ν + 1)Γ(2ν + d)Γ(ν)/ (Γ (ν + d/2) Γ(µ + 2ν + d + 1)Γ(2ν)). Note that the spectral density is

well-defined when ν = 0 as limx→0 Γ(ν)/Γ(2ν) = 2.
The functions 2F1 and 1F2 are special cases of the generalized hypergeometric functions pFq [1] given by:

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; x) :=
∞∑

k=0

(a1)k, (a2)k, . . . , (ap)k

(b1)k, (b2)k, . . . , (bq)k

xk

k!
for p, q = 0, 1, 2, . . .

and (a)k := Γ(a + k)/Γ(a), for k ∈ IN∪ {0}, is the Pochhammer symbol. Similarly to the Matérn model, closed-formed
solutions can be obtained when ν = k is a nonnegative integer [18]. In particular in this case GWν,µ,β factors into the
product of the Askey function GW0,µ+k,β in Equation (5), with a polynomial of degree k (see Table 1). Other closed
form solutions can be obtained when ν = k + 0.5, using some results in [38].

More importantly, the generalized Wendland model, as in the Matérn case, allows for parameterization in a con-
tinuous fashion of the mean squared differentiability of the underlying Gaussian RF and its associated sample path-
sthrough the smoothness parameter ν. Specifically, the sample paths of the generalized-Wendland model are k times
differentiable, in any direction, if and only if ν > k − 0.5. A thorough comparison between the generalized Wendland
and Matérn models with respect to indexing mean squared differentiability is provided by [6].
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2.4. Equivalence of Gaussian Measures
Denote by Pi, i = 0, 1, two probability measures defined on the same measurable space {Ω,F }. P0 and P1 are

called equivalent (denoted P0 ≡ P1) if P1(A) = 1 for any A ∈ F implies P0(A) = 1, and vice versa. For a RF
Z = {Z(s), s ∈ D ⊂ IRd}, we restrict the event A to the σ-algebra generated by Z and we emphasize this restriction by
saying that the two measures are equivalent on the paths of Z.

The equivalence of Gaussian measures is a fundamental tool when studying Gaussian RFs under fixed domain
asymptotics and has important implications on both estimation and prediction. For instance, using equivalence of
Gaussian measures, [53] has shown that, for the Matérn covariance model σ2Mν,β, variance and scale cannot be
consistently estimated (for fixed ν). Instead, the parameter σ2β−2ν can be estimated consistently. Similarly, for the
generalized Wendland covariance model σ2GWν,µ,β, [6] have shown that the parameter σ2µβ−(2ν+1) can be estimated
consistently. We call those parameters that can be estimated consistently microergodic. Another important implication
of the equivalence of Gaussian measures is that the true (under P0) and misspecified (under P1) kriging prediction
attain the same asymptotic prediction efficiency [43] when P0 ≡ P1.

Henceforth we write P(σ2φ) for zero-mean Gaussian measures with variance parameter σ2 and an isotropic corre-
lation function φ. The following result is taken from [6] and provides sufficient conditions for the equivalence of two
Gaussian measures having Matérn and generalized Wendland correlation functions and sharing the same variance.

Theorem 1. For given ν0 ≥ 1/2 and ν1 ≥ 0, let P(σ2Mν0,β) and P(σ2GWν1,µ,δ) be two zero-mean Gaussian measures.
If ν0 = ν1 + 1/2, µ > λ(d, ν1) + d/2, and

δ = β

(
Γ(µ + 2ν1 + 1)

Γ(µ)

) 1
1+2ν1

, (8)

then for any bounded infinite set D ⊂ IRd, d = 1, 2, 3, P(σ2Mν0,β) ≡ P(σ2GWν1,µ,δ) on the paths of Z.

3. A Class of Isotropic Correlations that Unifies Compact and Global Supports

This Section provides the main theoretical result of the paper. Theorem 1 is the crux for the subsequent construc-
tion. Using Equation (8), we now define the mapping δν,µ,β through the identity

δν,µ,β = β

(
Γ(µ + 2ν + 1)

Γ(µ)

) 1
1+2ν

, (9)

where ν ≥ 0, β > 0 and µ ≥ 0 and we define the ϕν,µ,β class of isotropic correlation models as:

ϕν,µ,β(r) := GWν,µ,δν,µ,β (r), r ≥ 0. (10)

The model ϕν,µ,β is a reparameterization of the generalized Wendland family and, as a consequence, it is positive
definite in IRd under the conditions µ ≥ λ(d, ν), β > 0, ν ≥ 0. Under this parameterization, the compact support is
jointly specified by ν, β and µ, and basic properties of the Gamma function show that δν,·,β, δ·,µ,β and δν,µ,· are strictly
increasing on [λ(d, ν),∞), [0,∞) and (0,∞) respectively. Hereafter, we use ϕν,µ,β or GWν,µ,δν,µ,β depending on the
context and whenever there is no confusion.

We now show that this new parameterization of the generalized Wendland model is very flexible, as it allows us
to consider, under the same umbrella, compactly and globally supported correlation functions. In particular, we show
that the Matérn family Mν+1/2,β is a special case of the ϕν,µ,β model when µ → ∞. Table 1 is taken from [6] and it
reports the ϕν,µ,β correlation model for the special cases ν = 0, 1, 2, 3 and its associated limit case when µ → ∞ i.e.,
the Matérn correlation modelMν+1/2,β.

Two preliminary results are needed for the proof of our main result. Our first preliminary result is of its own
interest and establishes the convergence of the spectral density associated with the ϕν,µ,β model to the spectral density
of the Matérn familyMν+1/2,β when µ → ∞, uniformly for z in an arbitrary bounded subinterval of the positive real
line.
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Table 1: The ϕν,µ,β model with compact support δν,µ,β (see Equation 9) for ν = 0, 1, 2, 3 and the associated limit case when µ→ ∞ i.e., the Matérn
modelMν+1/2,β.

ν ϕν,µ,β(r) Mν+1/2,β(r)

0
(
1 − r

δ0,µ,β

)µ
+

e−
r
β

1
(
1 − r

δ1,µ,β

)µ+1

+

(
1 + r

δ1,µ,β
(µ + 1)

)
e−

r
β (1 + r

β
)

2
(
1 − r

δ2,µ,β

)µ+2

+

(
1 + r

δ2,µ,β
(µ + 2) +

(
r

δ2,µ,β

)2
(µ2 + 4µ + 3) 1

3

)
e−

r
β (1 + r

β
+ r2

3β2 )

3

(
1 − r

δ3,µ,β

)µ+3

+

(
1 + r

δ3,µ,β
(µ + 3) +

(
r

δ3,µ,β

)2
(2µ2 + 12µ + 15) 1

5 e−
r
β (1 + r

β
+ 2r2

5β2 + r3

15β3 )

+

(
r

δ3,µ,β

)3
(µ3 + 9µ2 + 23µ + 15) 1

15
)

Theorem 2. For ν ≥ 0, let ϕ̂ν,µ,β be the isotropic spectral density of the correlation function ϕν,µ,β defined in Equation
(10), and determined according to (7). Let M̂ν+0.5,β be the isotropic spectral density of the correlation function
Mν+1/2,β as defined through (2). Then,

lim
µ→∞

ϕ̂ν,µ,β(z) = M̂ν+0.5,β(z), ν ≥ 0 (11)

uniformly for z in an arbitrary bounded subinterval of the positive real line.

Proof. We provide a constructive proof. We first calculate the spectral density ϕ̂ν,µ,β associated with ϕ̂ν,µ,β. To do so,
we use Equation (7), in concert with basic properties of Fourier calculus to obtain

ϕ̂ν,µ,β(z) =
2−dπ−

d
2 Γ(µ + 2ν + 1)Γ(2ν + d)Γ(ν)δd

ν,µ,β

Γ
(
ν + d

2

)
Γ(µ + 2ν + d + 1)Γ(2ν)

1F2

λ(d, ν); λ(d, ν) +
µ

2
, λ(d, ν) +

µ + 1
2

;−
(zδν,µ,β)2

4

 . (12)

We use the duplication formula for the Gamma function to obtain Γ(x)Γ (x + 1/2) = 21−2xΓ(2x). We now invoke the
series expansion of hypergeometric function 1F2, and since λ(d, ν) = 0.5(d + 1) + ν, we obtain

ϕ̂ν,µ,β(z) =
2−dπ−

d
2 Γ(µ + 2ν + 1)Γ(2ν + d)Γ(ν)δd

ν,µ,β

Γ
(
ν + d

2

)
Γ(µ + 2ν + d + 1)Γ(2ν)

∞∑
n=0

(
d+1

2 + ν
)
n
δ2n
ν,µ,β

n!
( d+µ+1

2 + ν
)
n

( d+µ
2 + ν + 1

)
n

(
−z2

4

)n

= 2−dπ−
d
2

∞∑
n=0

Γ(2ν + 2n + d)Γ(µ + 2ν + 1)Γ(ν)δ2n+d
ν,µ,β

n!Γ(2ν)Γ(µ + 2ν + 2n + d + 1)Γ
(
ν + d

2 + n
) (
−z2

4

)n

= 2−dπ−
d
2

∞∑
n=0

ωn(ν)
(
−z2

4

)n

, (13)

where

ωn(ν) :=
Γ(2ν + 2n + d)Γ(µ + 2ν + 1)Γ(ν)δ2n+d

ν,µ,β

n!Γ(2ν)Γ(µ + 2ν + 2n + d + 1)Γ
(
ν + d

2 + n
) .

The ratio test shows that
∞∑

n=0
ωn(ν)

(
−z2

4

)n
is absolutely convergent for all z ∈ IR+. As a consequence, by the dominated

convergence Theorem, we can take the limit as µ→ ∞ inside the infinite sum in Equation (13), giving

lim
µ→∞

ϕ̂ν,µ,β(z) = 2−dπ−
d
2

∞∑
n=0

lim
µ→∞

ωn(ν)
(
−z2

4

)n

. (14)
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By the Stirling formula we have Γ(x+a)
Γ(x+b) ∼ xa−b, and using the definition of the Pochhammer symbol [1], we have

ωn(ν) =
Γ(2ν + 2n + d)Γ(µ + 2ν + 1)Γ(ν)δ2n+d

ν,µ,β

n!Γ(2ν)Γ(µ + 2ν + 2n + d + 1)Γ
(
ν + d

2 + n
)

=
2d+2nΓ

(
d+1

2 + ν
)
Γ(µ + 2ν + 1)

n!Γ(µ + 2ν + 2n + d + 1)Γ
(
ν + 1

2

) β (
Γ(µ + 2ν + 1)

Γ(µ)

) 1
1+2ν


d+2n

∼
2d+2nΓ

(
d+1

2 + ν
) (

d+1
2 + ν

)
n
βd+2n

n!Γ
(
ν + 1

2

) . (15)

Combining Equations (14) and (15), we obtain

lim
µ→∞

ϕ̂ν,µ,β(z) =
π−

d
2 Γ

(
d+1

2 + ν
)
βd

Γ
(
ν + 1

2

) ∞∑
n=0

(
d+1

2 + ν
)

n

n!
[−(zβ)2]n. (16)

Finally, considering the convergent series
∞∑

n=0

(a)n
n! (−x)n = (1 + x)−a we obtain

lim
µ→∞

ϕ̂ν,µ,β(z) =
π−

d
2 Γ

(
d+1

2 + ν
)
βd

Γ
(
ν + 1

2

)
(1 + z2β2)

d+1
2 +ν

= M̂ν+0.5,β(z).

This proves pointwise convergence of a sequence of continuous functions, which is necessarily uniform on a bounded
interval.

The following result will be useful for the main result in Theorem 3.

Lemma 1. Let ϕ̂ν,µ,β be the spectral density of the isotropic correlation function defined in Equation (10). Let M̂ν,β

be the isotropic spectral density of the Matérn isotropic correlation function as defined through (2).Then,∫ ∞

0
zd−1ϕ̂ν,µ,β(z)dz =

∫ ∞

0
zd−1M̂ν+0.5,β(z)dz =

Γ
(

d
2

)
2πd/2 . (17)

Proof. First, using Equation (2) in the main document, in concert with 3.241.411 of [23], we obtain∫ ∞

0
zd−1M̂ν+0.5,β(z)dz =

Γ
(
ν + d+1

2

)
βd

πd/2Γ
(
ν + 1

2

) ∫ ∞

0

zd−1

(1 + β2z2)ν+(d+1)/2 dz =
Γ
(

d
2

)
2πd/2 . (18)

We now invoke (12) to obtain∫ ∞

0
zd−1ϕ̂ν,µ,β(z)dz =

2−dπ−
d
2 Γ(µ + 2ν + 1)Γ(2ν + d)Γ(ν)δd

ν,µ,β

Γ
(
ν + d

2

)
Γ(µ + 2ν + d + 1)Γ(2ν)

×

∫ ∞

0
zd−1

1F2

d + 1
2

+ ν;
d + µ + 1

2
+ ν,

d + µ

2
+ ν + 1;−

(zδν,µ,β)2

4

 dz

=
2−dπ−

d
2 Γ(µ + 2ν + 1)Γ(2ν + d)Γ(ν)δd

ν,µ,β

Γ
(
ν + d

2

)
Γ(µ + 2ν + d + 1)Γ(2ν)

I(d, µ, ν). (19)

with

I(d, µ, ν) :=
∫ ∞

0
zd−1

1F2

(
d + 1

2
+ ν;

d + µ + 1
2

+ ν,
d + µ

2
+ ν + 1;−

(zδν,µ,β)2

4

)
dz.

Using the identity (8.4.48.1) of [37] given by

∞∫
0

za−1
1F2 (a1; b1, c1;−z) dz =

Γ(a)Γ(a1 − a)Γ(b1)Γ(c1)
Γ(a1)Γ(b1 − a)Γ(c1 − a)
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and with the change in variable u = z2δ2
ν,µ,β/4, we obtain

I(d, µ, ν) =
2d−1

δd
ν,µ,β

∫ ∞

0
ud/2−1

1F2

(
d + 1

2
+ ν;

d + µ + 1
2

+ ν,
d + µ

2
+ ν + 1;−u

)
du

=
2d−1Γ

(
d
2

)
Γ
(
ν + 1

2

)
Γ
( d+µ+1

2 + ν
)
Γ
( d+µ

2 + ν + 1
)

δd
ν,µ,βΓ

(
d+1

2 + ν
)
Γ
(
µ+1

2 + ν
)
Γ
(
µ
2 + ν + 1

) . (20)

Combining Equations (19), and (20) and using the duplication formula for the gamma function Γ(x)Γ
(
x + 1

2

)
=

21−2xΓ(2x), we obtain∫ ∞

0
zd−1ϕ̂ν,µ,β(z)dz =

Γ(µ + 2ν + 1)Γ(2ν + d)Γ(ν)Γ
(

d
2

)
Γ
(
ν + 1

2

)
Γ
( d+µ+1

2 + ν
)
Γ
( d+µ

2 + ν + 1
)

2πd/2Γ
(
ν + d

2

)
Γ(µ + 2ν + d + 1)Γ(2ν)Γ

(
d+1

2 + ν
)
Γ
(
µ+1

2 + ν
)
Γ
(
µ
2 + ν + 1

)
=

Γ
(

d
2

)
2πd/2 . (21)

The proof is completed.

We are now able to state the main result of this paper. We establish the uniform convergence of the ϕν,µ,β correlation
model to the MatérnMν+1/2,β correlation model as µ→ ∞.

Theorem 3. Let ϕν,µ,β be the isotropic correlation function defined in Equation (10). Then,

lim
µ→∞

ϕν,µ,β(r) =Mν+1/2,β(r), ν ≥ 0 (22)

with uniform convergence for r ∈ (0,∞).

Proof. We need to verify that, for all ε > 0, there exists N ∈ IN. such that
|ϕν,µ,β(r) −Mν+1/2,β(r)| ≤ ε, µ > N

LetD = |ϕν,µ,β(r) −Mν+1/2,β(r)|. Using Equation (1) and invoking the Hölder inequality, we have

D =

∣∣∣∣∣r1−d/2
∫ ∞

0
zd/2ϕ̂ν,µ,β(z)Jd/2−1(rz)dz − r1−d/2

∫ ∞

0
zd/2M̂ν+0.5,β(z)Jd/2−1(rz)dz

∣∣∣∣∣
= r1−d/2

∣∣∣∣∣∫ ∞

0

(
ϕ̂ν,µ,β(z) − M̂ν+0.5,β(z)

)
zd/2 Jd/2−1(rz)dz

∣∣∣∣∣
≤ r1−d/2

∫ ∞

0

∣∣∣∣(ϕ̂ν,µ,β(z) − M̂ν+0.5,β(z)
)

zd/2 Jd/2−1(rz)
∣∣∣∣ dz.

In particular, by the inequality |Jd/2−1(rz)| ≤ |rz|d/2−1/(2d/2−1Γ (d/2)) [11], and by direct inspection, we obtain

D ≤
1

2d/2−1Γ
(

d
2

) ∫ ∞

0

∣∣∣∣̂ϕν,µ,β(z) − M̂ν+0.5,β(z)
∣∣∣∣ zd−1dz

≤
1

2d/2−1Γ
(

d
2

) { ∫ B

0

∣∣∣∣̂ϕν,µ,β(z) − M̂ν+0.5,β(z)
∣∣∣∣ zd−1dz +

∫ ∞

B
zd−1ϕ̂ν,µ,β(z)dz

+

∫ ∞

B
zd−1M̂ν+0.5,β(z)dz

}
=

1

2d/2−1Γ
(

d
2

) { ∫ B

0

∣∣∣∣̂ϕν,µ,β(z) − M̂ν+0.5,β(z)
∣∣∣∣ zd−1dz +

∫ B

0

[
M̂ν+0.5,β(z) − ϕ̂ν,µ,β(z)

]
zd−1dz

+ 2
∫ ∞

B
zd−1M̂ν+0.5,β(z)dz +

∫ ∞

0
zd−1ϕ̂ν,µ,β(z)dz −

∫ ∞

0
zd−1M̂ν+0.5,β(z)dz

}
≤

1

2d/2−1Γ
(

d
2

) {2
∫ B

0

∣∣∣∣̂ϕν,µ,β(z) − M̂ν+0.5,β(z)
∣∣∣∣ zd−1dz + 2

∫ ∞

B
zd−1M̂ν+0.5,β(z)dz

}
, (23)

where the last inequality is a direct consequence of Lemma 1. Set K(d) = (2d/2−1Γ(d/2))−1. From the integrability of
zd−1M̂ν+0.5,β(z) over IR+, given an arbitrary ε > 0 we can choose B to be sufficiently large to ensure that∫ ∞

B
zd−1M̂ν+0.5,β(z)dz ≤ ε/(4K(d)).
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For the first term, we note from Theorem 2, that there exists N ∈ IN, such that∫ B

0

∣∣∣∣̂ϕν,µ,β(z) − M̂ν+0.5,β(z)
∣∣∣∣ zd−1dz ≤ ε/(4K(d)), ∀µ > N.

Then,D ≤ K(d)[ε/(2K(d)) + ε/(2K(d))] = ε, ∀µ > N which completes the proof.

Some comments are in order. First, note that for a given smoothness parameter ν and scale parameter β, the µ
parameter allows us to increase or decrease the compact support δν,µ,β of the proposed model ϕν,µ,β = GWν,µ,δν,µ,β

since δν,·,β is strictly increasing on [λ(d, ν),∞). In addition, Theorem 3 states that when µ → ∞ the Matérn model
with global compact support is achieved. Hence, the parameter µ is crucial to fix the sparseness of the associated
correlation matrix and it allows to switch from the world of flexible compactly supported covariance functions to the
world of flexible globally supported covariance functions. In principle, µ can be estimated from the data (see Section
4 and the real data Application in Section 5) or can be fixed by the user when seeking highly sparse matrices for
computational reasons.

As an illustrative example, Figure 1 (b) gives a graphical representation ofGWν,µ,δν,µ,β when ν = 2 and µ = 5, 10, 15
and when µ → ∞, that is the Matérn model Mν+1/2,β. The parameter β is chosen so that the practical range of the
Matérn model is equal to 0.2 (with practical range, we mean the value x such that Mν+1/2,β(r) is lower than 0.05
when r > x). Apparently, when increasing µ, the GWν,µ,δν,µ,β model approaches the Mν+1/2,β model. Figure 1 (b)
also reports the associated increasing compact supports δν,µ,β (0.231, 0.403 and 0.911). Figure 1 (a) gives a graphical
representation of the generalized Wendland model using the original parameterization i.e., GWν,µ,β when ν = 2,
β = 0.5 when increasing µ. Using the original parameterization the behavior of the correlation changes drastically
when increasing µ. In particular as µ→ ∞, it can be shown that GWν,µ,β(r) = 0 if r > 0 and GWν,µ,β(r) = 1 if r = 0.
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(a) (b)

Fig. 1: a): The Generalized Wendland model GWν,µ,0.5 when ν = 2, µ = 5, 10, 25, 200. b): the proposed reparametrized Generalized Wendland
model ϕν,µ,β = GWν,µ,δν,µ,β when ν = 2, β = 0.0338 and µ = 5, 10, 25 and the limit case when µ → ∞ that is the Matérn modelMν+1/2,β. In b) the
points (N, �, •) (from left to right) denote the increasing compact support δν,µ,β = 0.231, 0.403, 0.911 associated with µ = 5, 10, 25 respectively.

Figure 2 shows four realizations of a zero-mean Gaussian RF with GWν,µ,δν,µ,β correlation model using the same
parameter settings of Figure 1. For the four realizations we use a common Gaussian simulation using Cholesky
decomposition. It can be appreciated that the realizations are very smooth (the sample paths are 2 times differentiable
in this case), and they look very similar, even if the first three realizations come from Gaussian RFs with compactly
supported correlation functions.

Finally, we point out that the Matérn model is attained as limit when the smoothness parameter is greater than or
equal than 0.5. This implies that the full range of validity of the smoothness parameter is not covered. In particular,
the proposed model is not able to parameterize the fractal dimension [21] of the associated Gaussian RF as in the
Matérn case.
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Fig. 2: Four realizations of a Gaussian RF with ϕν,µ,β correlation model when ν = 2, β = 0.0338 and µ = 5, 10, 25 and the limit case when µ→ ∞,
that is the Matérn modelMν+1/2,β (on the bottom right corner).

4. Numerical experiments

4.1. Speed of convergence
In the absence of theoretical rates of convergence, we show some simple numerical results on the convergence of

the ϕν,µ,β to the Matérn model when increasing µ. Specifically, we analyze the absolute error

Eµ,ν(r) := |ϕν,µ,β(r) −Mν+1/2,β(r)|, r ≥ 0, (24)

when increasing µ given ν and β.
In particular in Figure 3 (first row) we plot ϕν,µ,β , for µ = λ(2, ν), 5, 10, 20, 40, 60, 80 andMν+1/2,β for ν = 0, 1, 2.

Here the β parameter is chosen such that the practical range of the Matérn model model is approximately equal to 0.5
(β = 0.167, 0.105, 0.084, respectively, for ν = 0, 1, 2). The second row displays the associated values of Eµ,ν. It can be
appreciated that Eµ,ν decreases when increasing µ for each ν, as expected from Theorem 3 and the magnitude of the
absolute error is increasing with ν. In addition, the third row depicts the spectral densities associated to the correlation
models in the first row. Note that the approximation is getting better for the high-frequency components as µ increases
and it deteriorates when increasing ν. These simple numerical examples shows that the speed of convergence depends
on the smoothness parameter ν. Table 2 more deeply depicts the convergence of the proposed model to Matérn by
reporting the maximum absolute error under a more general parameter setting. Table 2 confirms that ϕν,µ,β approaches
Mν+1/2,β when increasing µ and the maximum absolute error between them strongly depends on ν.

4.2. On the asymptotic distribution of the maximum likelihood estimator
This Section focus on the ML estimation of the proposed covariance model. Let D be a subset of IRd and S n =

{s1, . . . , sn ∈ D} denote any set of distinct locations. Let Zn = (Z(s1), . . . ,Z(sn))> be a finite realization of a zero-mean
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Fig. 3: First row: the ϕν,µ,β(r) model with µ = λ(2, ν), 5, 10, 20, 40, 80 and µ → ∞ (the Matérn model) and with β = 0.167, 0.105, 0.084 and
ν = 0, 1, 2 (from left to right) respectively. Second row: associated absolute value error Eµ,ν(r) as defined in (24). Third row: spectral densities
associated with the correlation models in the first row.

stationary Gaussian RF Z = {Z(s), s ∈ D}, with isotropic covariance function σ2ϕν,µ,β. Here, > denotes transposition.
We then write Rn(τ) = [ϕτ(‖si − s j‖)]n

i, j=1 with τ = (ν, µ, β)> for the associated correlation matrix. If θ = (σ2, τ)>,
the Gaussian log-likelihood function is defined as follows:

Ln(θ) = −
1
2

(
n log(2πσ2) + log(|Rn(τ)|) +

1
σ2 Z>n Rn(τ)−1Zn

)
, (25)

and θ̂n := argmaxθ∈θLn(θ) is the ML estimator of θ. [33] provide general conditions for the consistency and the
asymptotic normality of the ML estimator irrespective of the correlation model. Under suitable conditions, θ̂n is
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Table 2: Maximum of Eµ,ν as defined in (24) when increasing µ for ν = 0, 0.5, . . . , 2.5.

µ λ(d, ν) 5 10 20 40 80 160 320 640
ν = 0.0 0.22944 0.05799 0.02800 0.01376 0.00682 0.00340 0.00170 0.00085 0.00042
ν = 0.5 0.25586 0.11010 0.05643 0.02857 0.01438 0.00721 0.00361 0.00181 0.00090
ν = 1.0 0.27001 0.15470 0.08346 0.04345 0.02218 0.01121 0.00564 0.00283 0.00141
ν = 1.5 0.27914 0.19257 0.10856 0.05800 0.03004 0.01529 0.00772 0.00388 0.00194
ν = 2.0 0.28554 0.22475 0.13164 0.07205 0.03782 0.01940 0.00983 0.00494 0.00248
ν = 2.5 0.29029 0.25230 0.15279 0.08552 0.04549 0.02350 0.01195 0.00603 0.00303

consistent and asymptotically normal, that is θ̂n − θ
D
−→ N

(
0, F−1

n (θ)
)

as n→ ∞ where

Fn(θ) =

[
1
2

tr
(
Σn(θ)−1 dΣn(θ)

dθi
Σn(θ)−1 dΣn(θ)

dθ j

)]p

i, j=1
. (26)

is the Fisher Information matrix and Σn(θ) = σ2Rn(τ). The conditions are normally difficult to verify and they assume
indirectly that the sample set grows in such a way that the sampling domain increases in extent as n increases (i.e.,
||si − s j|| ≥ c > 0), which implies that the set D is unbounded.

Under fixed domain asymptotics, no general results are available for the asymptotic properties of ML estimator.
For the Generalized Wendland model they have been studied in [6]. In particular, using Theorem 4 in [6], it can be
shown that if P(σ2

i ϕν,µi,βi ), i = 0, 1, are two zero mean Gaussian measures and if µi > ν+ d + 0.5 then for any bounded
infinite set D ⊂ IRd, d = 1, 2, 3, P(σ2

0ϕν,µ0,β0 ) ≡ P(σ2
1ϕν,µ1β1 ) on the paths of Z if and only if

σ2
0

β2ν+1
0

g(ν, µ0) =
σ2

1

β2ν+1
1

g(ν, µ1). (27)

where g(ν, µ) = Γ(µ + 1)/Γ(2ν + µ + 1). A straight consequence is that for fixed ν, the β, µ and σ2 parameters cannot
be estimated consistently under fixed domain asymptotics. Instead, the microergodic parameter

c(θ) =
σ2

β1+2κ g(ν, µ)

is consistently estimable. Additionally, using Theorem 8 in [6], for any fixed ν and µ ≥ λ(d, ν) + 3 as n → ∞, the
asymptotic distribution of ML estimator of the microergodic parameter is given by

√
n
(
σ̂2

n

β̂2ν+1
n

g(ν, µ) − c(θ)
)
D
−→ N

(
0, 2c(θ)2

)
.

where β̂n and σ̂2
n are ML estimators of β and σ2.

We analyze the performance of the ML method when estimating the parameters of the covariance model σ2ϕν,µ,β
from both increasing and fixed domain asymptotics perspective. In particular we focus on assessing the approximation
given by the asymptotic distribution of the ML estimation under both types of asymptotics.

We first simulate 500 realizations of a zero mean Gaussian RF with covariance model σ2ϕν,µ,β observed over
n = 1000 location sites uniformly distributed in the unit square. The smoothness parameter is assumed to be known
and fixed equal to ν = 0, 1, 2. We set σ2 = 1, µ = λ(2, ν) + x with x = 1, 2, 4 and since the increasing as well as
the fixed-domain frameworks can be mimicked by fixing the number of location sites over a given spatial domain
and decreasing or increasing the spatial dependence [30, 55], we set the β parameter, such that the compact support
δν,µ,β is identically equal to 0.15 and 0.6 for each scenario. For instance, when ν = 0 and µ = λ(2, 0) + 2 = 3.5 then
β = 0.15/3.5 to obtain a compact support equal to δ0,3.5,β = 0.15.

In the ML estimation of (σ2, β, µ)> for the covariance model σ2ϕν,µ,β, we found a reparameterization of the µ
parameter to be useful by considering its inverse. That is, we consider the ML estimation of (σ2, β, µ∗)> where
µ∗ = 1/µ ∈ [0, 1/λ(2, ν)] for the covariance model σ2ϕν,1/µ∗,β. In the original parameterization, we found high
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variability in the ML estimates of the µ parameter, particularly for large values of µ. A similar pattern has been
observed in literature when estimating the degrees of freedom of the Student’s t distribution; to alleviate this issue
some authors [2, 13] propose to considering the estimation of the inverse degrees of freedom.

Figure 4 reports the boxplots of the centered and rescaled ML estimates (µ̂∗i − µ
∗)/

√
f11, (̂βi − β)/

√
f22, (σ̂2

i −

σ2)/
√

f33, i = 1, . . . , 500 (first, second and third rows, respectively), when ν = 0, 1, 2 (first, second and third column
respectively), µ = λ(2, ν) + x with x = 1, 2, 4 ( for each subfigure ) by considering increasing and fixed domain asymp-
totics scenarios δ = 0.15, 0.6 (left and right part of each subfigure respectively). Here fii are the diagonal elements
of the inverse of the Fisher information matrix in Equation (26). Using the asymptotic results under increasing do-
main asymptotics the displayed boxplots should be similar to the boxplot of a Gaussian random variable. Overall the
asymptotic distribution seems to work reasonably well (at least for values between the first and third quartiles) and, as
expected, the asymptotic approximation worsens when switching from the increasing domain (δ = 0.15) to the fixed
domain (δ = 0.60) setting, irrespective of the values of µ and ν.

To analyze the approximation given by the asymptotic distribution under fixed domain of the microergodic param-
eter σ2β−(1+2κ)g(ν, µ), we replicate the previous numerical experiment using the same simulation settings but this time,
we assume that µ is known and fixed. Last row of Figure 4 depicts the boxplots of m(σ̂2

i , β̂i) =
√

n/2(σ̂2
i β̂
−(1+2κ)
i /σ2β−(1+2κ)−

1), i = 1, . . . , 500, for each ν and µ. Also in this case the boxplots should be similar to the boxplot of a standard Gaus-
sian random variable. As expected, the asymptotic approximation works much better under fixed domain asymptotics
(δ = 0.60), and it seems to improve with decreasing ν. In addition, under increasing domain the approximation clearly
deteriorates when increasing both µ and ν.

5. Data Examples

We consider two data examples that explain, from our perspective, how the proposed model should be used
depending on the size of the available dataset. The first approach involves the estimation of the µ parameter and
should be applied to (not necessarily) small spatial datasets with the goal of looking for an improvement of the
Matérn family from modeling viewpoint. The second approach is more suitable for large datasets and considers an
arbitrary fixed µ. In this case the goal is to seek highly sparse matrices to reduce the computational complexity.

5.1. Application to Mean Temperature Data
We consider data from WorldClim (www.worldclim.org) a global database of high spatial resolution global

weather and climate data for the years 1970-2000 [15]. In particular, we consider mean temperature data of September
over a specific region of French (see Figure 5 (a)) observed at 624 geo-referenced location sites. Following [31], we
first detrend the data using splines to remove the cyclic pattern of both variables along the longitude and latitude
directions, and then regard the residuals y(si), i = 1, . . . , n, n = 624 as a realization from a zero mean Gaussian
RF with isotropic covariance function σ2ρ(r) (the empirical semi-variogram is depicted in Figure 5 (b)). For the
isotropic correlation function ρ(r) we specify the proposed reparametrized Generalized Wendland correlation model.
In particular, we consider ϕν,µ,β for ν = 0, 1 and the associated special limit case, that is the Matérn modelMν+1/2,β
for ν = 0, 1.

Here, we adopt an increasing domain approach by estimating all parameters of the covariance models with ML
method, and we compute the associated standard error estimation, as the square root of diagonal elements of the
inverse of the Fisher Information matrix (26). For the µ parameter we use the parameterization described in Section
4.2 that is, µ∗ = 1/µ ∈ (0, λ(2, ν)−1] and the Matérn model, under this parametrization, is attained when µ∗ → 0.

The results of the estimation are summarized in Table 3, where we also report the values of the maximized log-
likelihoods and the associated values of Akaike information criterion (AIC). It can be appreciated that the covariance
model σ2ϕ0,µ∗,β achieves the lower AIC with respect to the Matérn model σ2M0.5,β. When ν = 1, the reparametrized
Generalized Wendland model σ2ϕ1,µ∗,β coincides with the Matérn modelM1.5,β since the estimation of the µ∗ param-
eter collapses to the lower bound. For this reason in Table 3 we only report the estimates of the covariance model
σ2M1.5,β. Overall the best fitted covariance model is σ2ϕ0,µ∗,β. Figure 6 provides a graphical comparison between the
empirical and estimated semivariograms using the σ2M0.5,β and σ2ϕ0,µ∗,β covariance models, respectively.

We further evaluate the predictive performances of the three Gaussian RFs. We use the following resampling
approach: we randomly choose 80% of the spatial locations and we use the remaining 20% as data for the predictions.
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Fig. 4: Boxplots of the centered and rescaled ML estimates (µ̂∗i −µ
∗)/

√
f11, (̂βi −β)/

√
f22, (σ̂2

i −σ
2)/

√
f33, i = 1, . . . , 500 of the covariance model

σ2ϕν,1/µ∗ ,β with µ∗ = 1/µ when ν = 0, 1, 2, µ = λ(2, ν) + x, x = 1, 2, 4 and β is such that the compact support δν,µ,β = 0.15, 0.6 (left and right part of

each subfigure). Last row: boxplots of m(σ̂2
i , β̂i) =

√
n/2(σ̂2i (̂βi, µ)̂β−(1+2κ)

i /σ2β−(1+2κ) − 1), i = 1, . . . , 500. The horizontal dotted lines represent
the quantiles of the order 0.25 and 0.75 of the standard Gaussian distribution.
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Fig. 5: From left to right: a) spatial locations of mean temperature of September in a specific region of France and b) empirical semivariogram of
the residuals after detrending the original data.
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Fig. 6: Empirical semivariogram versus estimated semivariogram using the Matérn model σ2M0.5,β (left part) and the Generalized Wendland
model σ2ϕ0,µ∗ ,β (right part) covariance models.

We then use the estimates in Table 3 to compute three prediction scores [20] for each Gaussian RF. Specifically, for
each j − th left-out sample (yL

j (s1), . . . , yL
j (sK)), for j = 1, . . . , 1000 we compute

1. the root mean squared error

RMSE j =

 1
K

K∑
i=1

(
yL

j (si) − ŶL
j (si)

)2


1
2

2. the logarithmic score

log S j =
1
K

K∑
i=1

[
1
2

log{2πσL
j (si)} +

1
2
{zL

j (si)}2
]
, (28)

3. the continuous ranked probability

CPRS j =
1
K

K∑
i=1

σ j(si)
(
zL

j (si)
(
2Φ(zL

j (si)) − 1
)

+ 2Φ(zL
j (si)) −

1
√
π

)
, (29)

where ŶL
j (si) is the optimal linear predictor, σL

j (si) is the corresponding square root variance and zL
j (si) = (yL

j (si) −

ŶL
j (si))/σL

j (si). Table 3 reports the overall means RMSE =
∑1000

j=1 RMSE j/1000, log S =
∑1000

j=1 log S j/1000 and
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Table 3: ML estimates with associated standard error (in parentheses), RMSE, LSCORE and CRPS for the three Gaussian RFs with underlying
covariance functions σ2ϕ0,µ∗ ,β, its special limit case σ2M0.5,β and σ2M1.5,β.

β σ2 µ∗ -loglik AIC RMSE LSCORE CRPS

σ2M0.5,β
160.0165
(79.263)

0.1222
(0.059) 464.25 −924.5 0.0932 0.1965 0.0923

σ2ϕ0,µ∗,β
103.7678
(7.239)

0.0787
(0.008)

0.6342
(0.047) 470.86 −935.7 0.0926 0.1950 0.0916

σ2M1.5,β
16.3599
(0.899)

0.06163
(0.008) 457.65 −911.3 0.0947 0.2627 0.0928

CRPS =
∑1000

j=1 CPRS j/1000 for each of the eight Gaussian RFs. As expected, the covariance model σ2ϕ0,µ∗,β outper-
forms the Matérn model limit caseM0.5,β and the Matérn modelM1.5,β for the three prediction scores considered.

5.2. Application to Yearly total precipitation anomalies
We consider the dataset in Kaufman et al. [29] of yearly total precipitation anomalies z = {z(si), i = 1, . . . , n}

registered at n = 7, 352 location sites in the USA since 1895 to 1997. The yearly totals have been standardized
by the long-run mean and standard deviation for each station from 1962 (Figure 7, right part). Kaufman et al. [29]
adapted a zero-mean Gaussian random field with an exponential covariance model using covariance tapering to reduce
the computational costs associated with ML estimation and optimal linear prediction. Here we present an improved
analysis by considering a zero mean Gaussian RF with correlation:

ρ∗(r) = (1 − τ2)ρ(r) + τ2I(r = 0), .r ≥ 0, (30)

that includes a nugget effect 0 ≤ τ2 < 1, as suggested by inspecting the empirical semivariogram in Figure 7, with
a correlation function ρ(r) specified as M0.5,β and its generalization ϕ0,µ,β. For the ϕ0,µ,β model, to obtain sparse
covariance matrices we fixed different values of µ = 1.5, 1.75, 2, 2.5, 3.5, 4.5 and let θ = (τ2, σ2, β)> to be estimated
for each of the six Gaussian RFs.

The bottleneck when maximizing the likelihood function or computing the optimal liner predictor is the Cholesky
decomposition which generally has O(n3) time and O(n2) memory complexity. If the matrix is sparse, then the com-
putation of the Cholesky factor can be hastened by using sparse matrix algorithms and the computational performance
of the factorization depends on the percentage of zero elements of the covariance matrix and on how the locations are
ordered.

We point out that ML estimation can partially take advantage of the computational benefits associated with the
proposed model: for a fixed smoothness parameter, the compact support depends on β and µ. Even when considering
a fixed µ, the covariance matrix can be highly or slightly sparse, depending on the value of β in the optimization
process. An alternative strategy is to use estimation methods with a good balance between statistical efficiency and
computational complexity that do not require any restrictions on the covariance model, such as composite likelihood
methods [7, 14] or multi-resolution approximation methods [27] or more in general using Vecchia’s approximations
[28]. However, in this application we consider ML estimation which is still computational feasible although very slow
to obtain.

Table 4 depicts the ML estimates of θwith associated standard error forM0.5,β and ϕ0,µ,β, µ = 1.5, 1.75, 2, 2.5, 3.5, 4.5
along with the associated maximized log-likelihood. It can be appreciated that the maximized log-likelihood increases
with increasing µ, and that the Matérn performs the best fitting in this case. For each model, Table 4 also reports the
percentage of zero entries in the estimated covariance matrix Σ(θ̂) and the estimated compact support δ̂0,µ,β̂ = µβ̂. As
expected, the percentage decreases and δ̂0,µ,β̂ increases with increasing µ.

Clear computational gains can be achieved using the proposed model when computing the optimal linear kriging
predictor which requires the computation of the Cholesky factor of Σ(θ̂). To provide an idea of the computational
gains, Table 4 reports, the time needed for the computation of the Cholesky factor of Σ(θ̂) using the R package spam
[17] when using σ̂2M0.5,β̂ and σ̂2ϕ0,µ,β̂ for µ = 1.5, 1.75, 2, 2.5, 3.5, 4.5. The time in seconds is expressed in terms of
elapsed time, using the function system.time of the R software on a laptop with a 2.4 GHz processor and 16 GB of
memory.
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It is apparent that the computational saving with respect to the Matérn model can be huge when decreasing µ.
In particular when µ = 1.5 the computation of the Cholesky factor is approximately 50 times faster with respect
the Matérn case. However, the loss of prediction efficiency is generally very small. To compare the models in
terms of prediction performance, we have used leave-one-out cross-validation as described in Zhang and Wang [54].
In particular the authors show that RMSE, LSCORE and CRPS leave-one-out cross-validation can be computed in
just one step by using the estimated covariance matrix. In Table 4 we report RMSE, LSCORE and CRPS for the
correlation models considered and the three prediction scores for the Matérn model and its generalization are quite
similar when µ ≥ 2. In this specific example, taking into account the balance between computational complexity,
statistical efficiency and prediction performance, a good choice for the correlation model could be ϕ0,2,β.
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Fig. 7: From left to right: a) coloured map of precipitation anomalies data. b) empirical semivariogram of precipitation anomalies data.

Table 4: ML estimates for the parameters of the Matérn model M0.5,β and the proposed model ϕ0,x,β for x = 1.5, 1.75, 2.5, 3.5, 4.5. Prediction
measures RMSE, LSCORE, and CRPS based on leave-one-out cross-validation are also reported. The estimated compact support δ̂0,µ,β̂ = µβ̂, the
percentage of zeros in the estimated covariance matrix and the computational time (in seconds) to perform the associated Cholesky decomposition
are also reported.

τ̂2 β̂ σ̂2 -loglik RMSE LSCORE CRPS δ̂0,µ,β̂ = µβ̂ % TIME

ϕ0,1.5,β
0.1002
(0.008)

266.38
(2.20)

1.112
(0.047) −5443.78 0.4691 0.9647 0.6444 399.57 0.939 1.86

ϕ0,1.75,β
0.0945
(0.008)

298.88
(7.48)

1.179
(0.053) −5405.82 0.4674 0.9607 0.6410 523.04 0.905 2.78

ϕ0,2,β
0.0964
(0.007)

295.21
(5.29)

1.1547
(0.053) −5393.02 0.4668 0.9595 0.6396 590.42 0.884 3.63

ϕ0,2.5,β
0.1103
(0.008)

247.48
(8.16)

0.999
(0.048) −5391.58 0.4669 0.9594 0.6396 618.70 0.874 4.07

ϕ0,3.5,β
0.1110
(0.011)

243.75
(23.86)

0.9905
(0.085) −5388.47 0.4669 0.9594 0.6396 853.13 0.791 9.17

ϕ0,4.5,β
0.1195
(0.013)

216.45
(27.49)

0.9078
(0.092) −5386.23 0.4669 0.9593 0.6393 974.03 0.743 11.9

M0.5,β
0.1334
(0.012)

167.24
(18.58)

0.7729
(0.062) −5377.68 0.4668 0.9585 0.6383 ∞ 0 95.25

6. Conclusions

This paper shows that the celebrated Matérn covariance model is actually a special limit case of a more general
compactly supported covariance model which is a reparameterized version of the generalized Wendland family. As
a consequence, the (reparametrized) Generalized Wendland model is more flexible than the Matérn model with an
extra-parameter that allows for switching from compactly to globally supported covariance functions.
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On the one hand the proposed family can be potentially more efficient with respect to the Matérn family when
modeling the covariance function of point-referenced spatial data, as shown, for instance in the first real data appli-
cation. On the other hand, depending on the size of the available dataset, the proposed model can potentially lead to
(highly) sparse correlation matrices by fixing the extra-parameter µ, with clear computational savings with respect to
the Matérn model as shown in the second real data application. Further details on computational gains when handling
sparse matrices with sparse matrices algorithms can be found in [16], [29], [17], [9] and [36] just to mention a few.

Most of the literature on modeling spatial or spatiotemporal multivariate data modeling is based on the Matérn
model as a building block (see [44], [35] and [19], to name a few). Thus, our results open new doors and opportunities
in spatial statistics. For instance, [32] developed an approximation of Gaussian RFs with the Matérn covariance model
using a Gaussian Markov RF. The connection is established through a specific stochastic partial differential equation
(SPDE), formulation in that a Gaussian RF with Matérn covariance is a solution to the SPDE. It could be of theoretical
interest to find a generalization of this specific SPDE exploiting, for instance, the results given in [10]. However, the
spectral density of the proposed model cannot be written as the reciprocal of a polynomial. As a consequence the
associated Gaussian RF is Markovian only when µ→ ∞.

For some important special cases the proposed covariance model can be easily calculated, as in the Matérn case
(see Table 1). More generally, the proposed model can be easily implemented since efficient numerical computation
of the Gaussian hypergeometric function can be found in different libraries such as the GNU scientific library [22] and
the most important statistical softwares including R, MATLAB and Python. In particular, the R package GeoModels
[8] used in this paper for the numerical experiments and the application computes the proposed model using the
Python implementation of the Gaussian hypergeometric function in the SciPy library [46].
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