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Abstract

This thesis examines how the number of available observations of a time series can
influence its apparent stationarity as measured by two standard tests, namely the standard
Dickey-Fuller (DF) test and the Augmented Dickey-Fuller (ADF) test. The univariate
time series case is examined. A stationary time series generated from a first-order
autoregressive process with positive or negative values of the parameter ¢. Parameters
were chosen that ensured that the series were theoretically stationary. The resulting time
series produced were examined by, the DF, ADF, DF drift, ADF drift, DF trend and ADF
trend tests. Monte Carlo experiments were undertaken using the R program for various
values of parameters and different lengths of data, with each simulation repeated 10,000
times. The simulation studies show that the length of time series data affects the
stationarity as identified by standard tests. For given values of the parameter ¢ of the first-
order autoregressive model the minimum length of time series required to ensure the

correct identification of the series’ stationarity is presented.

Two new portmanteau tests were developed, bases on exponential weights of the residual
autocorrelation function and the residual partial autocorrelation function. The asymptotic
distributions of the new univariate portmanteau tests were derived. Monte Carlo
experiments were used to compare the performance of the two new tests to existing tests.
The simulation studies show that one of the new portmanteau tests, which is based on the

partial autocorrelation function, is statistically more powerful than previous tests.

A new portmanteau test was developed for vector autoregressive moving average models,
which is based on exponential weights of the residual covariance matrix. For this new
multivariate portmanteau test the asymptotic distribution was derived. This new test was
compared with previous tests using Monte Carlo experiments. The simulation study shows

that the new multivariate portmanteau test is statistically more powerful than previous tests.
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Glossary / Notation

Zt — is a value of a time series at time ¢.

Zy — is a value of a non-stationary time series at time t.

Z — is the sample mean of a time series.

u — is the mean of a time series.

Z — is a random variable of a discrete sample space.

S — is the sample variance of a time series.

a? — is the variance of a time series.

cov(z¢,, Zt,) — is the covariance between two random variables z; and z,.
SE — is the standard error.

k — is a lag in a time series.

Ck — is the autocovariance coefficient at lag k.

0] — is a parameter of an autoregressive process.

¢ — is an estimation of a parameter of an autoregressive process.
e — is a white noise at time t.

é; — 1s a white noise estimation at time t.

0 — is a parameter of moving average process.

] — 1s a parameter estimation of moving average process.

n — is number of observations.

m — 1s the maximum number of lags examined in a portmanteau test.
B — is the backshift operator.

\Y — is the difference operator.

A — is the difference operator of order s.

p(zt,, Z¢,) — is the correlation function between z; and z, .

Pk — is an autocorrelation function (ACF) at lag k.

Dk — is an estimation of the autocorrelation function (ACF) at lag k.
Vi — is an autocovariance function at lag k
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r, — is an autocovariance matrix of order n.

P, — is an autocorrelation matrix of order n.

R, — is a residual correlation matrix of order m.

Dk — is a partial autocorrelation function (PACF) at lag k.

Prx — 1s an estimation of partial autocorrelation function (PACF) at lag

k.

Y — is a sequence of constants.

AR(p) — is an autoregressive process of order p.

MA(q) — is a moving average process of order q.

ARMA(p, q) — is an autoregressive moving-average process of order (p, q).

x? — is the Chi-squared.

= — is the convergence in the distribution.

Ogp — 1s the Box and Pierce portmanteau test.

o — is the Ljung and Box portmanteau test.

Ou — is the Monti portmanteau test.

Dy, — is the Pefia and Rodriguez (2002) portmanteau test statistic.

D, — 1s the Pefia and Rodriguez (2006) portmanteau test statistic.

Oum — is the Mahdi and McLeod portmanteau test.

OrcLp — 1s the Fisher and Gallaher portmanteau test.

Ocrx — is the Gallaher and Fisher portmanteau test with Kernel-based
weights.

Ocrp — 1s the Gallaher and Fisher portmanteau test with data adaptive
weights.

Orx1p — is the Ljung and Box test portmanteau test with exponential
weights.

Orxm — 1s the Monti test with exponential weights portmanteau test.

() — is the Daniell Kernel function.

VAR(p) — is a vector autoregressive process of order p.

VMA(q) — 1s a vector moving-average process of order q.
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VARMA(p,q)  — is a vector autoregressive moving-average process of order (p, q).

d — is the number of components in a vector.

Z¢ —isad X 1 vector of variables observed at t.

b —is a d X d identity matrix.

I — is a general d X d identity matrix.

D — is the diagonal matrix.

v, —is ad X d coefficients matrices of a vector autoregressive process.

Y(B) —is a d X d matrix polynomial of the backshift operator B.

I1; — is a d X d coefficients matrices of a vector moving-average
process.

P —is a d X d parameter matrices of a vector autoregressive process.

e; — is a zero mean vector white noise process of dimension d.

0 —is a d X d parameter matrices of vector moving average process.

d — is an estimation of d X d parameter matrices of a vector

autoregressive process.

e; — is a zero mean vector white noise process estimation of dimension
d.
¢] — is an estimation of d X d parameter matrices of vector moving

average process.

R, — is the sample autocorrelation matrix at lag k.

L — is a lower triangular matrix.

tr — is the sum of the diagonal matrix.

) — is a covariance matrix of a vector white noise process.

®(B) — 1is the matrix polynomial of the backshift operator B of an
autoregressive process of order p.

0(B) — is the matrix polynomial of the backshift operator B of a moving
average process of order q.

X(k) — is a covariance matrix of a vector white noise process at lag k.

rk) — is a covariance matrix at lag k.

p(k) — is a correlation matrix at lag k.
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u — is a sample mean vector

r (o) — is a sample covariance matrix.

r'k) — is a sample covariance matrix at lag k.

p;j(k) — is a sample correlation matrix at lag k.

vec — 1s a vector operator.

X — is a Kronecker product.

LR (k) — is a likelihood ratio test at lag k.

AlIC — is the Akaike information criterion.

BIC — is the Bayesian information criterion.

HQ — is the Hanna and Quinn information criterion.

Oy — 1s the Hosking portmanteau test of a VARMA model.

o) — is the modified Li and Mcleod portmanteau test of a VARMA
model.

Oim — 1s the Li and McLeod portmanteau test of a VARMA model.

Oy — 1s the modified Li and McLeod portmanteau test of a VARMA
model.

Ommv — is the Mahdi and McLeod portmanteau test of a VARMA model.

R, — 1is the residual autocorrelation matrix.

Orxco — 1s the exponential weights portmanteau test of a VARMA model

and based on covariance matrix.

Orxau — is the exponential weights portmanteau test of a VARMA model
and based on autocorrelation matrix.

Q — is an idempotent matrix.

T — is a transpose operator of a vector or matrix.

|a| — is the absolute value of real valued constant a.

[|A]l — is the determinant of a matrix, A.

DF test — is the Dickey-Fuller test.

ADF test — is the Augmented Dickey-Fuller test.

Uo — is the drift.
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Uo + Ut — is the deterministic linear trend.

T — is the sum of autoregressive coefficients.
T — is the estimation of the sum of autoregressive coefficients.
112 — is the lag length.
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Chapter 1 - Introduction

1.1 Introduction

Box and Jenkins published a classic book on time series analysis in 1970, which set the
foundation for developments in time series analysis for the next 50 years. In this work they
described the model building process as consisting of three main stages, namely: model

identification, parameter estimation and diagnostic checking.

This thesis discusses the basic ideas of the Box-Jenkins methodology. It concentrates on
diagnostic checking; in particular, it focuses on univariate portmanteau testing and
multivariate portmanteau testing of models, with the aim of developing new and better
portmanteau tests. The thesis also examines how the length of data can affect how standard

unit root tests identify the stationarity of a time series.

This chapter introduces the aims of the thesis and also provides a brief history of time series

analysis.

1.1.1 Aims of research

Portmanteau tests were introduced for the first time in 1970 by Box and Pierce (1970).
Later other portmanteau tests were introduced by researchers, such as, Ljung and Box
(1978), Monti (1994), and Gallagher and Fisher (2012, 2015). The aim of this thesis is to
develop and evaluate new portmanteau tests that are more powerful than previously
published portmanteau tests. The approach taken was be to conduct Monte Carlo
experiments to explain the behaviour of the portmanteau tests and evaluate their
performance compared to existing portmanteau tests. New portmanteau tests were
developed for univariate autoregressive moving average models and for vector
autoregressive moving average models, with the aim of improving on existing portmanteau

tests.

Another aim of this thesis is to examine how the length of data of a time series can influence
its apparent stationarity as measured by two standard tests. The univariate time series case

is examined. To explore this issue, time series were generated from a known
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statistical model, a first-order autoregressive process and a second-order autoregressive
process. Parameters were chosen that ensure the series were theoretically stationary. The
standard Dickey-Fuller test and the Augmented Dickey- Fuller test were used to determine
whether the series of observations produced were stationary or non-stationary. Monte Carlo
experiments were undertaken using the R program for various model parameters and

lengths of series and each simulation was repeated 10,000 times.
1.2 A history of time series

1.2.1 Definition of time series

A time series is a sequence of discrete observations arranged in chronological order. These
data come from repeated observations and may be available, for instance, hourly, daily,
weekly, monthly or yearly. Examples of time series abound in such fields as economics,
business, the natural sciences, engineering, and the social sciences. For example, Figure
1.1 shows the Consumer Price Index (CPI) data of the UK inflation rate, monthly from
January 2005 to January 2015 (CPI, 2015). The aim of time series analysis is to find the
relationship between data over a period of time, and use this to forecast future

measurements.
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Figure 1.1 UK inflation rate, monthly: January 2005 to January 2015, (CPI, 2015).
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1.2.2 The graphical representation of time series data

The plotting of data in time series analysis started with William Playfair, who was the first
researcher to draw a chart of data against a time axis. For example, Playfair’s first chart
showed the sum total of England’s imports and exports from the year 1700 to 1782
displayed as a line plot, this is reproduced in Figure 1.2, (Playfair, 1801). Several years
later, the plotting of data over a period of time was used by the medical researcher
Wunderlich (1870). He drew charts such as fever curves, which plotted a patient’s
temperature over the course of time (see Figure 1.3). Brinton (1914) used the time plot to
represent data in many different subjects, for example, the average yearly earnings of

Princeton graduates, (see Figure 1.4).
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Figure 1.2 Imports and Exports to and from England from the year 1700 to 1782,
reproduced from Playfair (1801).
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Figure 1.4 Average income of 155 Princeton graduates of the class 1901 for ten years
after graduating, reproduced from Brinton (1914).

1.2.3 Thiele, Yule and Hooker concept of time series

Statistical analysis of time series data was first undertaken by Thiele (1880a; 1880b), when
he published his first paper to analyse a model of a time series consisting of a regression
component, a Brownian motion component, and white noise component. He derived
Brownian motion with independent and normal distributions by using the method of least
squares, and estimated variances proportional to the Brownian motion. He was also the
first person to give a recursive computational methodology for filtering and predicting,
which is now known as the Kalman filter (Kalman and Bucy, 1961). However, this work
was unrecognized at the time. A more detailed description of Thiele’s paper is presented

by Lauritzen (1981, 2002).

The mean, variance, standard deviation, and the theory of correlation coefficients and
partial correlation coefficients between data in time series were developed by the British
statistician Yule (1895, 1896, 1897a, 1897b, 1907), and the statistician Hooker (1901).
Yule (1895, 1896) used the correlation coefficients to examine the relationship between
welfare and poverty in the field of economics statistics. The next study by Yule (1897a,
1897b) used the partial correlation coefficients. Hooker applied correlation to find the
relationship between Britain’s marriage rate and export trade over the period 1857-1899,

(Hooker, 1901).
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1.2.4 The periodogram method

The periodogram is used to identify and calculate the significance of different frequencies
of a time series. The physicist Sir Arthur Schuster investigated periodicities in time series,
such as, the periodicity of earthquakes, terrestrial magnetism and sunspot numbers.

Schuster determined the periodogram by

n-Da

21
A= Z as; oS — S
n

s=0
(n-1a

. 2m
B = Z as sin — s
n

s=0

where ag takes the values a4, a,, as, ..., at equidistant values of time ¢, t, + «, ty + 2q, ...,
where n is a number of the observations, and s is sunspots numbers. The calculated
periodogram is plotted in Figure 1.5 and shows that a maximum amplitude occurs at a
period of 10 and 11 years, (Schuster, 1897, 1906). Meanwhile, in 1922 Sir William
Beveridge gave a periodogram analysis of wheat-price indices, extended over
approximately 300 years from 1545 to 1845, (Beveridge, 1922). The theory of Schuster
was modified by Whittaker and Robinson (1924), they constructed their periodogram from
values of correlation ratios as they relate to each value of the arithmetic sequence.
Meanwhile, the researcher Walker (1931) applied the correlation periodogram on the Port
Darwin air pressure data. Later, the periodogram method was further developed by the

researchers Davis (1941) and Kendall (1945).
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Figure 1.5 The periodogram of Wolfer’s sunspot number for each month of the years
1749 to 1901, reproduced from Schuster (1906).

1.2.5 Autoregressive, moving average and mixed models

The next developments in time series analysis were by the British statistician Yule and the
Russian statistician Slutsky. Yule (1927) introduced the scheme of the autoregressive

model, which is defined as
Ze = P1Ze 0 Doz o+ + Ppzip toey, (1.1)

where z; is a value of a time series at time t. The current value of the process z; is expressed
as a weighted sum of the previous p values (with weights ¢4, ¢, ..., ¢p,) plus the current
shock e; (white noise). Yule applied the scheme of the autoregressive model to Wolfer’s
sunspot data that had been used by Schuster in his periodogram method (1897, 1906). Yule
obtained better results with the autoregressive model than Schuster’s periodogram method.
An autoregressive model of order p is denoted as AR(p). Following Yule’s work, Slutsky

(1937) introduced the scheme of the moving average model, which is defined as

Zt = et_elet_l_"'_eqet_q (1.2)
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where z; is assumed to be generated as a finite moving average of a sequence of

independent and identically distributed random variables e; and 84, 8, ..., 6, are weights.
A moving average model of order q is denoted as MA(q).
Furthermore, in 1950 Walker described a mixed autoregressive-moving average process

for the first time, (Walker, 1950). Walker achieved this by adding together the moving

average and autoregressive schemes, as defined by
Zt = P1Ze 1+ PrZep + o F PpZipH e — 01804 — - — Ogerg (1.3)

Box and Jenkins in 1970 referred to the mixed autoregressive-moving average process,
which had been described by Walker, and they named it the general mixed autoregressive-
moving average process of order (p,q). They also gave this model the acronym

ARMA(p, q), and showed that it can be put in the following form (Box and Jenkins, 1970).
(1-¢B—¢,B% — - — ¢,BP)z, = (1 — 0,B — 6,82 — ---— ,B%)e,

or

$(B)z, = 0(B)e, (L.4)

where ¢(B) and 6(B) are polynomials in B of degree p and q respectively, and B is the

backshift operator, which is defined as

Blzy=z; j=0,12,...

1.2.6 Stationary random processes

Many other researchers have contributed to the development of the mathematical
foundations of stationary stochastic processes in time series. Kolmogorov (1931, 1941)
developed the theory of Markov Processes, the theory of stochastic processes and
introduced a general formula for the mean squared error of a linear extrapolation of a
stationary random sequence. Khinchin (1933, 1934) developed the theory of stationary
processes and correlation theory. Wold (1938) developed the probabilistic theory of
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stationary time series, which is based on the development of ergodic theory and prediction

theory.
1.2.7 The methods of parameter estimation of the autoregressive moving average
model

The methods of parameter estimation have an important role in time series analysis. There
are many methods to estimate the parameters of the autoregressive, moving average and

mixed models, such as, the maximum likelihood method and the least squares method.

The estimation of autoregressive processes.

Mann and Wald (1943) estimated an AR(p) process by using the method of maximum
likelihood, while, Hurwicz (1945) estimated the AR(p) process by using the least-squares
method. Meanwhile, Guy and Donald (1949) investigated the merits of autoregressive
transformations and the reduced form transformation, with the main result of estimating
the parameter structure of the AR(1) model. Kendall (1949) investigated the second-order

autoregressive process.

The estimation of moving-average processes.

Durbin (1959) estimated the moving-average process by using the least squares method

and the maximum likelihood estimators. This method was extended by Walker (1961).

The estimation of autoregressive and moving-average processes.

Durbin (1960) introduced the least squares method to estimate the parameters of the

autoregressive moving average model.

1.2.8 The analysis of residuals and forecasting

Anscombe and Tukey (Anscombe 1961, Anscombe and Tukey, 1963) examined the
analysis of residuals as a means of detecting departures from the model’s assumptions, and
they indicated how transformations might be constructed from certain functions of the
residuals. Economic forecasting problems were investigated by Persons (1924) and
Margret (1929). Later on work by Cowles (1933, 1944) predicted the future movements of

stock price in his investigation of the Stock Market, which followed on from the earlier



Chapter 1 - Introduction

work of Bachelier (1900). Generally, forecasting and filtering methods have been
developed by researchers, such as, Wiener, (1949), Kalman (1960), and Yaglom (1962).

1.2.9 Non-stationary time series

Most time series such as those found in economics and business are not stationary and they
will exhibit deterministic trends, random walk and other non-stationary behaviour. Moving
average trends were considered for the first time by Hooker in 1901, when he examined
the correlation between the marriage rate and trade over the period 1857-1899, Hooker
(1901). Hooker, in 1905, considered another method to remove the trend, which he called
a differencing method. Hooker (1905) used differencing to remove the trend before he
estimated the correlation between the variables, and he applied this method to corn price
and marriage rate data. Later, the researcher Student further developed the differencing
method, he estimated the first, second, ... nth differences between variables to get the
correlation required, and he also determined the correlation between residual variation
(Student, 1914). The differencing method was employed by the American economist and
statistician Irving Fisher. He used the differencing method to transform data from non-
stationary to stationary, (Fisher, 1925). Other methods of transforming time series from
non-stationary to stationary, such as trends and random walk have been developed by
researchers, such as, Grenander and Rosenblatt (1957), Box and Jenkins (1962), Box and
Tiao (1965) and Priestley and Rao (1969).

In the case of a non-stationary time series, Z; represents a value of the time series at time

t. The differencing method is used to transform data from non-stationary to stationary.

Zy = VZt

where V= (1 — B) is the differencing operator.
Thus, for the first difference VZ, = Z; — Z;_;
The second difference V22, =V(Z, — Z_1)
= VZ, — V74,
=(Z—Z-1) — (G4—1 — Z—2), t=3,..,n
and for the sth difference V52, = V5712, — Vs71Z,_,

9
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The incorporation of the differencing method in to ARMA modelling was undertaken by
Box and Jenkins (1970). This resulted in the general autoregressive integrated moving

average process ARIMA (p, d, q), which can be defined as

¢(B)V°Z, = 6(B)e,

1.2.10 Box and Jenkins methodology

Box and Jenkins (1970) developed a three-stage methodology to model time series data,

namely:

1. Identification, which is the determination of a specific model on the basis of certain
statistical figures by using the sample of autocorrelation function and the sample of
partial autocorrelation function.

2. Estimation, which is estimation of the parameters of the model estimated by using
either the maximum likelihood function, least squares method or Bayes' theorem.

3. Diagnostic checking, which involves the checking specification of the model by

statistical tests.

1.2.11 Vector ARMA models

The extension of the univariate time series models to multivariate ARMA time series
models was first proposed by Quenouille (1957). He studied a problem with five variables
with 82 observations of each variable from the year 1867 to 1948. He fitted a vector first-
order autoregressive process to the data. Following this, he discussed the identification
method and the estimation method of vector autoregressive, vector moving average and

vector autoregressive moving average processes.

Later, Whittle developed a method of fitting a model to a vector autoregressive process by
using the autocovariance matrices together with the Yule-Walker equations, (Whittle,
1963). Meanwhile, Hannan (1970) discussed a multivariate time series process with
theories of estimation methods for vector autoregressive, vector moving average and mixed
vector autoregressive moving average processes. The researchers Zellner and Palm in 1974
applied simultaneous equation models within the context of the general linear multiple time

series process, (Zellner and Palm, 1974). Furthermore, vector ARMA models have been

10
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discussed by many researchers, such as, Wallis (1977), Tiao and Box (1981), Hannan and
Kavalieris (1984), Tiao and Tsay (1989), and Wei (2006).

Later other researchers extended the Box and Jenkins univariate model building

methodology to vector ARMA models.
Model identification

The researcher Akaike in 1973 introduced the information criterion to identify the vector
AR process, (Akaike, 1973). Later, Schwarz in 1978 introduced the Bayesian information
criterion to identify the vector AR process. Hanna and Quinn (1979) and Quinn (1980)
introduced another form to identify the vector AR process. Tiao and Box (1981) applied
the likelihood ratio test to identify the vector AR process. Tiao and Box (1981) suggested
the cross-correlation matrices to identify vector MA processes. Procedures of model

identification for vector ARMA models have been developed by Tiao and Box (1981).
Model estimation

Tunnicliffe (1973), Reinsel (1979) and Anderson (1980) derived the conditional likelihood
method to estimate VARMA models. The exact likelihood function of a vector moving
average process was derived by Osborn (1977), and Phadke and Kedem (1978). Later, the
exact likelihood function for a stationary vector ARMA was derived by Hillmer and Tiao

(1979), Nicholls and Hall (1979) and Anderson (1980).

1.2.12 Portmanteau testing

Portmanteau testing has been developed to select the best fitted model after the ARMA
models have been identified and estimated. Box and Pierce (1970) introduced the first
portmanteau test, which is based on the residual of the autocorrelation function; this test is
approximately distributed as a chi-squared distribution. Ljung and Box (1978) introduced
a new portmanteau test and they showed this test to be more powerful than the Box and
Pierce (1970) test. In addition, Monti (1994) introduced a test that is based on the residual
of partial autocorrelation, and she showed that this test is at least as powerful as the Ljung
and Box (1978) test. Later, other portmanteau tests, based on the determinant of the
autocorrelation matrix, were introduced by researchers, such as, Pefia and Rodriguez (2002,
2006). Mahdi and McLeod (2011) introduced a new test, which is based on the result of
11
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Pefia and Rodriguez (2002, 2006), the test is based on the log of the sample autocorrelation
matrix. Later, Fisher and Gallagher (2012) presented a new portmanteau test that is a
weighted sum of the squares of the residual autocorrelation coefficients. In 2015, Gallagher
and Fisher introduced further portmanteau tests that are based on the weighted sums of the
squared residual autocorrelations in three different cases, namely, the Kernel-based

Weights test, the Geometrically Decaying Weights test and the Data Adaptive Weights test.

1.2.13 Multivariate portmanteau test

The first application of a portmanteau test to multivariate autoregressive models was by
Chitturi in 1974, (Chitturi, 1974). Later, a portmanteau test was developed for vector
ARMA models by Hosking (1980), which is based on the residual autocorrelation matrix.
Hosking (1980) modified the multivariate portmanteau test, which is based on the residual
autocovariance matrix. Li and McLeod (1981) gave another multivariate portmanteau test,
which is based on the autocorrelation matrix. Mahdi and McLeod (2011) gave another

multivariate portmanteau test, which is based on the residual autocorrelation matrix.

1.3 Thesis overview

Chapter 2 presents the notation used in the thesis and defines the key statistical terms
employed in time series analysis, namely: the definition of the mean, variance,
autocovariance, autocorrelation and partial autocorrelation functions. The same chapter
also outlines the Box-Jenkins model building methodology, autoregressive process,

moving average process and mixed autoregressive-moving average processes.

Chapter 3 offers a brief outline of the vector autoregressive moving average process,
namely, the vector autoregressive process, the vector moving average process and the
mixed vector autoregressive moving average process. Chapter 3 also introduces an outline
of model building of vector autoregressive moving average models and associated

portmanteau tests.

Chapter 4 details simulation studies that explore how the length of data in a time series
affects the identification of its stationarity, as determined by standard tests (the DF test, the
DF drift test and the DF trend test, the ADF test, the ADF drift test and the ADF trend test).

12



Chapter 1 - Introduction

The aim of the thesis is to investigate whether the length of data in a time series influences

its apparent stationarity.

Chapter 5 introduces two new portmanteau tests, the first is based on the exponential
weighted sums of the squared sample autocorrelations function and the second is based on
the exponential weighted sums of the squared sample partial autocorrelation function. The
aim of the thesis is to investigate whether the new portmanteau tests are more powerful

than previous portmanteau tests found in the literature.

Chapter 6 introduces a new multivariate portmanteau test, which is based on the residual
covariance and autocorrelation matrices with exponential weights. The aim is to investigate
whether the new multivariate portmanteau test is more powerful than the previous

multivariate portmanteau tests that have been published.

Chapter 7 provides a summary of the thesis findings together with recommendations for

future work.

1.4 Summary

A brief history of time series analysis has been provided, from the first chart drawn by
William Playfair (1801) to the Box & Jenkins methodology in 1970, (Box & Jenkins,
1970). The development of portmanteau tests has been outlined, starting with Box and
Pierce’s introduction of the first portmanteau test in 1970 (Box and Pierce, 1970), to latest
developments introduced by Gallagher and Fisher (Gallagher and Fisher, 2015). The
extension of ARMA time series models to the multivariate vector case has been considered,
including the work on model building of VARMA time series models. Finally, existing
vector portmanteau tests have been introduced, such as, Chitturi (1974), Hosking (1980),
Li and McLeod (1981) and Mahdi and McLeod (2011).

13



Chapter 2 — Box And Jenkins Methodology

This chapter provides an introduction to the Box and Jenkins methodology of modelling
time series. It provides the standard definitions used in time series analysis and gives the
notation that is used throughout the thesis. It starts with definitions of the mean and the
variance of a time series, the differencing of a time series, and then progresses on to the
autocovariance, autocorrelation and partial autocorrelation functions. It also provides some
definitions of time series such as stochastic process, stationary, Gaussian process, weak
stationary, white noise, backshift operator, linear process and invertibility. Finally, the
Chapter discusses the autoregressive, the moving average and the mixed autoregressive-

moving average processes.
2.1 Standard definitions in time series analysis

2.1.1 The mean, the variance and the covariance functions

The mean of a stationary time series {z;} indicates the overall level of the series. The

sample mean Z provides an estimate of the true mean u of the time series.

Definition 2.1.1 The sample mean of a time series is the sum of the observations for each

time period z; divided by the total number of observations n, then

zn:zt 2.1)

t=

_ 1
zZ=-
n

Juy

The sample variance of a time series is calculated using the normal approach, that is,
determine the deviation of each observation from the mean, square each deviation, sum the

deviations and divide by the total number of observations n, then
n
1
St=2> (22 22)
t=1

Definition 2.1.2 If Z is a random variable of a discrete sample space taking the values z;,

t=0,+1, +2, ..., then the expectation of Z is denoted as E[Z] and is defined as

14
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w=ElZ]= ) 2plZ =2 (23)

where p[Z = z;] is the probability of the occurrence of the value of z;.

Definition 2.1.3 The variance of Z, denoted by var(Z), is defined by
% =var(Z) = E[(Z — w)?]
where u = E[Z] is the expectation of Z, then
= E[Z?%] — p?

Definition 2.1.4 The covariance between two random variables z;, and z;, with expected

values p;, and i, is defined as
COU(Ztl'th) = E[(Ztl - Htl)(ZtZ - th)] (2.4)

= E[Ztlztz] — Kt He,-

Definition 2.1.5 The correlation function between z;  and z;, is defined as

cov(z,,2t,)
p(2e,,2t,) = #- (2.5)

2.1.2 Stochastic process

A stochastic process is a family or sequence of random variables {z;}%,, indexed by time
t. In most applications, the time index is regularly spaced, and represents calendar time, for
example, days, months, or years. A realization of a stochastic process with n observations
is the sequence of observed data {z,.}7. If the probability distribution associated with any
set of times is a Normal distribution, the process is called a Normal or Gaussian process

(Box and Jenkins, 1970).

15
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2.1.3 Strict stationarity and weak stationarity

A stochastic process is said to be strictly stationary if its properties are unaffected by a
change of time origin; that is, if the joint probability distribution function associated with

n observations Zt s Ztyy s Ztp s made at any set of times tq, ty, ..., t,, is the same as that

associated with n observations, (Tsay, 2005).

A stochastic process is said to be weakly stationary if all its joint moments up to order n
exist and are time invariant. Therefore, a second-order weak stationary process will have a
mean, variance and covariance are time invariant. Sometimes, the term covariance

stationary is used to describe a second-order weak stationary process, (Tsay, 2005).

2.1.4 Differencing

The aim of differencing is to transform a non-stationary time series to a stationary one.
Differencing is a simple operation that involves calculating successive changes in the

values of a time series. It is used when the mean of the series is changing over time.

For a non-stationary time series Z; the first difference is calculated by Equation 2.6 which

gives the series z;,
Zt = Zt - Zt_l, t = 2,3, e, n (26)
where z; is called the first difference of Z;. If the first difference does not have a constant

mean, the series can be differenced again to give the second difference of z;

((Pankratz,1983).
The second difference is

VZZt = (Zt - Zt—l) - (Zt—l - Zt_z), t = 3, W, n

2.1.5 The autocovariance function

If z; is stationary then the covariance between z, and its value z; ;, separated by k intervals

of time, is called the autocovariance at lag k and defined by

Yk = cov[zy, Zei] = E[(ze — 1) (Zeyr — 1)] (2.7)

Since z; is stationary, this gives

16
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Yk = COV[Z¢, Ze i ]

= cov|z;_, 7]

=Y-«
where, u is the mean of observations and y, is the autocovariance function at lag k.
2.1.6 The autocorrelation function (ACF)

The standard formula for calculating an autocorrelation function is

_ E[(ze = W (GZesr — W]
VEI(ze = 2E[(zesr — 2]

Pk

_El(ze — wW(zen — W] (2.8)
= =

where, 07 is the variance, u is the mean of observations and pj, is the autocorrelation

function at lag k.

Note that when o2 = ¥,, then

Yk
= — 2.9
Pk ” (2.9

2.1.7 Autocovariance matrix

The covariance matrix associated with a stationary process for observations (z;, z,, ...,

z,) made at n successive times is

[ Yo Y1 Y2 - Vn-1 1
| Y1 Yo Y1 - Vn-2 |
r,= i Y2 Y1 Yo Yn-3 i (2.10)

Yn-1 Yn-2 VYn-3 - Yo

As with autocorrelations, autocovariance can be conveniently represented in matrix form.

Start with matrix (2.10) and divide each element by y,. All elements on the main diagonal

17
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become one, indicating that each z; is perfectly correlated with itself. All other y; values

become p;, values as indicated by Equation (2.9):

1 p1 P2 Pn-11]
pr 1 P1 Pn-2
p

2 P1 1 . pn-s

[
1 |

= O-Z
I TR B
|-pn—1 Pn-2 Pn-3 - 1 J

= 62P, 2.11)

where, I';, is the autocovariance matrix and P,, is the autocorrelation matrix (Box and
Jenkins, 1970).
2.1.8 Conditions satisfied by the autocorrelations of a stationary process

The positive definiteness of the autocorrelation matrix (2.10) implies that its determinant

and all principal minors are greater than zero, Box, Jenkins, Reinsel and Ljung, (2015).

Forn=2
L
so that
1-—p2>0
and hence
-1 < p; <1
Similarly, for n = 3, this requires
PR
1 p1 p2
pr 1 p| >0
p2 p1 1
which implies
-1 <p; <1

18
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-1 <p,<1

_ 2
LTy

1-pi

The determinant of the second matrix must be positive as well as the determinants of its

principal minors, which implies |p;| < 1 and |p,| < 1, so
1+2p3p, —2pf =p52 0 = (p,—2pf-1))(p,—1 <0
Since |p,| <1,
pa—(2p2 —1) 2 0= p, = 2p? — 1
Which lead to

2
-1 <M<1
1-pi

2.1.9 Estimation of autocovariance and autocorrelation functions

An estimate for the autocorrelation function can be obtained by,

N Z?;{{(Zt - Z_)(Zt+k -Z7)
= ) 2.12
Pi NG — 27 @12)

The variance is the average squared difference from the mean, by analogy the
autocovariance of a time series is defined as the average product of differences at time t

andt + k

n—k
1
Cr = Ez(zt — )z —Z),  k=012,...K (2.13)
t=1

where ¢y, is the autocovariance coefficient at lag k, and ¢, is the variance. By combining
Equations 2.12 and 2.13, the autocorrelation at lag k can be written in terms of the

autocovariance:

P =— (2.14)
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So that the estimator is asymptotically unbiased, where pj, is the estimation autocorrelation

function.

The autocovariance function is sometimes computed with the alternative equation

_ 1
“Tm-n

n—k
Y- D= 7),  k=012,..K 2.15)
t=1

The autocovariance function given by Equation 2.15 has a lower bias than the
autocovariance function given by Equation 2.13 (Jenkins and Watts, 1968).
2.1.10 Standard errors of autocorrelation estimates

Bartlett, in 1946, derived an approximation expression for the variance of the estimated

autocorrelation coefficient of a stationary normal process (Bartlett, 1946)
~ 1 C 2 2.2
var [p] = - Z {oi + PirkPi—k — APrPiPi—1k + 2P Pic} (2.16)
i=—o00

For a process with p; = 0 this approximation simplifies to Equation 2.17, since, for i >
k — 1, all terms except the first appearing in the right-hand side of Equation 2.16 are zero.

Then the variance of autocorrelation var [p] is calculated as follows

k-1
1
var [py] = - {1 + 2 Z plz} (2.17)
i=1

A similar approximate expression for the covariance between the estimated correlation py

and py ¢ at two different lags k and k + t have been given by Bartlett (1946).

1 (o'e]
covlpp pirel == ) pipise (2.18)

l=—00

Equation 2.18 is required in the interpretation of individual autocorrelations because large

covariances can exist between neighbouring values.

The standard errors from Equation 2.17 for estimated autocorrelations p, given by
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SE[py] = yvar [p] k>0 (2.19)

2.1.11 The partial autocorrelation function

The partial autocorrelation measures the correlation between z; and z,_ that remains when
the influences of z;_1,Z;_5, ..., Zt_+1 On Z; and z,_; have been eliminated. Consider the

ith order of the correlation between z; and z;_y,
Zy = $p11Ze 1t €
Zy = P212e-1 + P27 + €3
Zy = P31Ze 1 + P322t 5 + P33Zc 5 €3

Zt = Qr1Zi—1 + GraZi—z + -+ PriZe— + € (2.20)

where the sequence ¢4, P22, P33, ..., P denotes partial autocorrelations and e, is an error

term with mean zero and uncorrelated with z;_; forj = 1,2,3, ..., k.

Multiplying Equation 2.20 by z;_, and then taking expected values, gives the

autocovariance function
Yji = Gk1Vj-1 + -+ Pre—1)Vj—k+1 T PrrVj-r» (2.21)

hence,

Pj = brapj—1+ -+ Gr—v)Pj—k+1 + PrxpPj-x  J=12,...k (2.22)

where p; is an autocorrelation function.

Substituting j = 1,2,...,k into Equation 2.23 gives a set of linear equations for

b1, b2, ..., Pi in terms of pq, p, ..., Pk, these are

P1 = di1 + dr201 + 0t PrPr-1
P2 = Pr1p1 + P2 + -+ GrrPr—2

Pi = Pr1Pr—-1 + Pr2Pr—2 + -+ Pk (2.23)
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These are usually called the Yule-Walker equations (Yule, 1927, Walker, 1931).

The Yule-Walker Equations 2.23, may be written

1 P1 P2 v Pr-1] [Pra P1
B e (2.24)
Pk-1 Pk-2 Pk-3 - 1 brx Px
Using Cramer's rule successively for k = 1, 2,3, ..., gives
P11 =p1
1 p 5
by = P1 P2l _ P2~ P1
22 1 p 1— p?
p1 1
1 p1 ;1
p1 1 p2
bas = P2 P1 P3sl _P3— (2102 + B2201)
BT e ope 1= (p21P1 + $2202)
pr 1 py
p2 p1 1
1 p1 P2 w Pr-2P1
P1 1 P1 v Pr-3 P2
Pr—1 Pr—2 Pr-3 - P1_ Pk
= 2.25
P 1 1 P2 v Pr-2 Pr-1 ( )
P1 1 P1 v Pr-3 Pr-2
Pk-1 Pk-2 Pk-3 - P11
Pr — XK1 Pre—1,jPk-;
e = — 22TV =34, (2.26)
1= X521 br-1,jp;
where
b = br-1,j — PrxPr-1k-j, k=2,.., j=12,. k-1
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For an autoregressive process of order p, the partial autocorrelation function ¢, will be

nonzero for k less than or equal to p, and zero for k greater than p.

2.1.12 Estimation of the partial autocorrelation function

An estimated partial autocorrelation function (PACF) is similar to an estimated
autocorrelation function (ACF). An estimated PACEF is also a graphical representation of
the statistical relationship between sets of order pairs (z;, z;_)) drawn from a single time
series (Pankratz, 1983). The main idea of the PACF is to measure how z; and z;, are
related. To estimate the PACF, consider the regression relationship between z;,; and the

preceding value z;:

Zy1 = P11Z¢ + Ay

where ¢4 is a partial autocorrelation coefficient to be estimated, and k = 1 and a;,; is

the error term.
When k = 2, then
Zeyy = $21Ze01 + G222 + Arys

When k = 3, then

Ziy3 = P31Z42 + P32Ze41 + P332 + Apys

Thus, the partial autocorrelation function ¢, can be obtained by substituting p; by p; in
Equation 2.25. Instead of calculating the complicated determinants for lag k in Equation

2.25, a recursive method starting with ¢;; = p; for computing ¢, has been given by

Durbin (1960) as follows:

Pr+1 — Z?=1 PrjPr+1-j
1- Z?=1 bijPj

‘f)k+1,k+1 = » (2.27)

where

Prsrj = Prj — Prerrps1Prejer1—jp  J =12,k (2.28)
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The method holds also for calculating the theoretical PACF ¢y.

2.1.13 Standard errors of partial autocorrelation estimates

It was shown by Quenouille (1949), Jenkins (1954, 1956), and Daniels (1956) that given
the hypothesis that the process is autoregressive of order p, the estimated partial
autocorrelation of order p + 1, and higher are approximately independently distributed

with variance.
- 1
var[d)kk] EE k=>p+1

The standard error (S.E.) of the estimated partial autocorrelation ¢y, is

S.E.[¢pr] = k=p+1 (2.29)

1
Jn
2.1.14 White noise

A time series z; is called a white noise process if {z;} is a sequence of independent and
identically distributed random variables with normal distribution with constant mean
E(e.) = pe (it is usually assumed that E(e,) = 0), constant variance var(e,) = 2, and

Yk = cov(es, epq) = 0 forall k # 0. A white noise process {e; } is stationary with

the autocovariance function

2
_ {oé, k=0,
Vi {0, k#0, (2.30)
the autocorrelation function
1, k=0,
P = {o, k # 0, (231

and the partial autocorrelation function

é’ k=0, (2.32)

d)kk:{’ k#+0,
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2.1.15 Backshift operator

The backshift operator is a useful notion in time series analysis. For a time series {z;}7,,
the backshift operator can be used to model the data series and investigate the

characteristics of {z;}}~,. The basic rules of the backshift operator are
1. th =Zi1q
Example:

VZt = Zt - Zt—l = Zt - BZt = Zt - BZt = (1 - B)Zt.

=1+4+aB +a’B?+a3B3 + -, ifla] <1
1—aB

2.2 Linear process and invertibility

2.2.1 The linear process
The class of linear time series models, which includes the class of autoregressive

moving-average (ARMA) models, provides a general framework for studying stationary

processes. The time series {z;} is a linear process if it has the representation
[ee]
2 = e, + Z e, (2.33)
j=0

for all t, where {e,} is a white noise of mean zero and constant variance g2 and {zpj} isa
sequence of constants Zj‘;_w|t,bj| < oo, The linear process z; can be represented as a

weighted sum of present and past values of the white noise process. The linear process was
developed by several researchers, such as, Walker (1931), Slutsky (1937), Bartlett (1946),
Doob (1953), Grenander and Rosenblatt (1957), and Hannan (1970).

For a linear time series defined by Equation 2.33, the dynamic structure of z; is governed

by the coefficients 1;, which are called the -weights of z; in the time series. If z; is weakly
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stationary, it is possible to obtain its mean and variance easily by using the independence

of {e;} as

E[z] =0, (2.34)
var(zy) = o2 Z Y7, (2.35)
j=1
where 62 is the variance of e,. Because var(z,) < o, {1,012} must be a convergent sequence,

that is wf — 0 as j — oo. Consequently, for a stationary series, the impact of the remote

white noise e;_; on the return z;vanishes as j increases.

The lag-k autocovariance of z; is
Yk = cov(zy, Ze—y) = E (Z lpiet—i) Z Yier_k_j
i=0 j=0

=E Z Yiie_ier_j_;j

i,j=0

= Z YjsWiEel )]
j=0

where E[e? ,_;| = o2, this gives

= 02 ) ety (2.36)
=0

Consequently, y-weights are related to the autocorrelations of z; as follows
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_ Yk _ Yizo Vi)

= S k>0, 237

Pk

where Y, = 1. For a weakly stationary time series, i; = 0 as j — oo and, hence, py

converges to zero as k increases (Box, Jenkins, Reinsel and Ljung, 2015).

The Equation 2.33 implies that z; can be written alternatively as a weighted sum of past

values of z;, plus an added white noise e;, that is

Ze = P12 F Doz o+ F Ppzep g

p
- Z bize; + e, (2.38)
=1

The alternative form Equation 2.38 may be thought of as one where the current deviation
., from the level p, is regressed on past deviations z;_q, Z;_,, ... of the process, where ¢
are weights of z;.

2.2.2 Invertibility
If an MA(q) process can be represented by an AR(o0) process, then the process is said to
be invertible (Box and Jenkins, 1970). Invertibility of a MA(q) process requires that all
the roots of the polynomial (B) = 1 —6;B — ---— §,B9 = 0, lie outside the unit circle.
The invertibility condition was investigated by Granger and Andersen in 1978.
The invertibility of an MA(1) process
To illustrate the invertibility condition, consider the first-order moving average process
MA(1) if|6] < 1

ze = (1 —6B)e; (2.39)
or

e, = (1—6B) 7z, (2.40)

By pre-multiplying both sides of (2.39) by (1 + 6B + 82B?% + --- + 8%B¥), gives
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(1+6B+60%B?>+ -+ 0%B¥)z, = (1 + 6B + 6?B? + ---+ 0¥B*)(1 — 6B)e,
(1+6B+--+6%B*)z, = (1+ 6B+ -+ 0*B* — 9B — --- — gkB¥ — gk+1pkil)e,
then
(14 6B+ 0?B? + -+ 0¥B¥)z, = (1 — 9%*1B**1)e,
By using the backshift operator rule

Bk(Zt) = Zi—g

hence,
Zt + QZt_l + QZZt_Z + -+ Qth_k = et - 9k+1et_1_k
Thus,

Zt = —QZt_l - szt_z — = Qth_k + et - 9k+1et_1_k (2.41)

If |6| < 1, then the last term in this expression tends to zero as k — oo, and the infinite

series can be written as
Zr = e + Z(—e)izt_i (2.42)
i=1

So, |8] < 1 is a sufficient condition for an MA(1) model to be invertible.

In general, an MA(q) model is invertible if all the roots of MA(q) polynomial 6(B) =
1-6,B—--—6,B% =0, lie outside the unit circle (Box and Jenkins, 1970).

2.3 Autoregressive process

The general form for an autoregressive process of order p, an AR(p) process is
Zt = G121 + G2z + o+ Ppzep e (2.43)

where the current value of the process is expressed as a weighted sum of previous values

plus a white noise term. Equation 2.43 can be written as

(1 —$B—-= ¢po)Zt =¢(B)z; = e,
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The Equation 2.43 must satisfy certain conditions for the process to be stationary.

2.3.1 The first-order autoregressive process
The first-order autoregressive process AR(1), can be written as (Guy and Donald 1949),
(1-¢1B)z,=e,
which may also be written as
ze=(1—¢B) e, lpq] <1

Use of lag operator rule 2 gives

[ee]
_ j
Zy = Z ¢1 €t—j
j=0

providing that the infinite series on the right converges in an appropriate sense.

Hence,

WB) = (1-$:B)" = ) ¢l B (2.44)
j=0

or equivalently that

o0
Z|¢1|j < .
j=0

From Equation 2.44 an AR(1) process must satisfy the condition |¢;| < 1 to ensure
stationarity. Since the root of 1 — ¢4 B = 0, this condition is equivalent to saying that the

root of 1 — ¢ B = 0 must lie outside the unit circle.

The autocorrelation of an AR(1) process
Zt =1zt 1 + e
Multiplying by z;_, on both sides gives
Zt—y Zt = P1Z¢-rZt-1 T Zex€t
and taking the expectation on both sides, where ¢;is constant, gives
Elzi_k z:] = ¢1E[2e—1zt-1] + E[ze_re;]
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, because e; and z;_j, are independent, it follows that for k > 1
cov (Ze_k, zt) = P1c0v(Ze_i, Z¢—1)
Yk = ®1Vk-1, fork>1 (2.45)

The variance of an AR(1) process is given by

0.2

and the autocorrelation function is given by
Pk =bipra = ¢, fork =1 (2.47)

where p, = 1. Hence when |¢;| < 1 and the process is stationary, the autocorrelation
exponentially decays in one of two forms depending on the sign of ¢p;. If 0 < ¢p; < 1, then
all autocorrelations are positive; if —1 < ¢; < 0, then the sign of the autocorrelations

shows an alternating pattern, beginning with a negative value.

The partial autocorrelation of an AR(1) process

— p1 = ¢1’ k = 1’
i = {0, k> 2. (2.48)

Hence, the partial autocorrelation of the AR(1) process shows a positive or negative spike

at lag 1 depending on the sign of ¢; and then cuts off, shown in Figure 2.1.
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Figure 2.1 ACF and PACF of the AR(1) process.

2.3.2 The second-order autoregressive process

The second-order autoregressive process AR(2) may be written
Z = P1Ze1 + Paze 2 + e (2.49)

The AR(2) process, as a finite autoregressive process, is always invertible if stationary. To
be stationary the roots of ¢(B) = 1 — ¢;B — ¢, B2 = 0 must lie outside the unit circle.

Consider the second-order polynomial equation (Wei, 2006)

31



Chapter 2 - Box - Jenkins Methodology

1_¢)1x_¢)2x2 = O
where the solution of this equation is
R R R R T R
' 2¢; S 26,
Taking the reciprocal both sides,

1_ 2¢, _ 2¢, [—¢>1—\/¢f+4¢2
AL~ + P2+ 4d,  —pr+PZ + APy [~ — P2 + 4,

:¢1+ ¢7 +4 b
2

Similarly

1 ¢ —Voi+4 9,

4, 2

For real roots, it is required that ¢ + 4 ¢, = 0, which is

_1<¢1—\/¢212+4¢2S¢1+ (1’212+4¢2<1

Consider the left hand side

$1 —Pi +4 9,

2
e -2<¢;—Jopi +4 ¢,
S JPi+4p, <2+ ¢

S Pi+4¢p, <p?+4¢, +4

-1<

S P, <P +1
or
¢, — 1 <1

Now consider the right hand side

¢+ <1
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For complex roots, ¢ + 4¢, < 0. Here A; and A, will be complex conjugates and |Ai| =
1

2
=< 1 if and only if =" < 1.But
2 Az
RN R T )
A, 4 2

so that ¢p, > —1.

Thus, the stationarity condition of the AR(2) model is given by the following triangular

region,

¢+ <1
b, — 1 <1 (2.50)
—1<¢,<1

The autocorrelation function of an AR(2) process

The autocorrelation function of an AR(2) process can be obtained by multiplying z,_; on

both sides of the AR(2) process in Equation 2.49

Ze 1 Zt = P1Z¢_jZi—q t G2Z¢_ 2t o + Zp_pe;

and then taking the expectation on both sides, where ¢, ¢, are constants gives

E[zi_xz¢] = G1E[Ze—rZe—1] + P2E (2t Zt—2]) + E[Zi—ret]

because e; and z;_; are independent, it follows that for k > 1

cov (Ze—g, 2t) = P1c0V(Z_g, Zp—q) + Prc0V(Z¢_, Z¢—3)

Yk = $1Vk-1 + P2Vi-2, k>1 (2.51)
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The variance of AR(2) is
(1—¢r)a
2
Yo =05 = (2.52)
P (o197 - 97
The autocorrelation function satisfies the second-order difference equation
Pk = P1Pr-1 + 2Pk k=1 (2.53)

The stationary conditions for an AR(2) process are, in the cases of k = 1 and 2, given by
p1= b1+ P2py

P2 = P1p1 + b2,

which implies that

(2.54)

Thus, p; and p, must lie in the region,

-1<p; <1

, 1

pi <5 (P2 + 1)
Thus, the ACF of the second-order autoregressive process will decay exponentially if the
roots of (1 — ¢p;B — ¢,B?) = 0 are real, and will follow a damped sine wave if the roots
of 1 — ¢;B — $p,B?% = 0 are complex.
The partial autocorrelation of an AR(2) process
For the AR(2) process, because
Pr = P1Pr-1 t P2Pk-2

For k > 1, then
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¢11:P1:1i¢1¢2
1 p
o ol P2 =k
271 pa| T 1—p?
p1 1
¢+ dr— 93\ _(_d1
() - )
¢ 2
1_(1—1¢2)
Al At T
(1—¢2)? — 7 -

Hence, the partial autocorrelation function of an AR(2) process cuts off after lag 2.

2.3.3 The general pth-order autoregressive AR(p) process
The general AR(p) process may be written as

Zy = P12+ Dozp oy o Ppze_p T e
or

(1= 1B = ¢2B == ¢,B)z, = p(B)z, = e,

This can then put in the form

¢(B) = (1 - G,;B)(1 — G,B) - (1—G,B)
where G;' 1, G5, -+, G, are the root of ¢(B) = 0.

Now consider ¢ ~(B) and using partial fractions, gives

1
(1-6,B)(1—-G,B)+(1—G,B)

¢~'(B) =

A 4, A,
= + + o+ —
1-GB) ' (-G,B) 1-G,B)
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14
_ Z 4
~(1-6GB)

hence,

Zt = ¢ (B)et Z(l—GB)

Thus, if Y(B) = ¢ ~1(B) is to be a convergent series for || < 1, that is, if the weights

p
= ZAi G/,
i=1

are to be absolutely summable so that the AR(p) will represent a stationary process, it is
required that G; < 1, for i = 1,2, ...,p. Equivalently, the roots of ¢(B) = 0 must lie

outside the unit circle, Box and Jenkins (1970).

The autocovariance function of the general pth-order autoregressive AR(p) process is

given by Equation 2.43
Zy = P12+ Przp oy o Ppze_p e
By multiplying z;_; on both sides of the equation, gives
Zt k2t = P1Z¢k Ze—1 F P2Zi Zp—p + - +¢pzt k Zt-p T €¢

and taking the expectation on both sides, gives

E(zi_i 2¢e] = P1E[Ze—k Ze—1] + P2E[Ze—i Ze—2] + -+ PpE[Ze_ 2e_p] + E[Zp_re;]
because e; and z;_ are independent, it follows that

cov(Zi_g, zt) = P1€0V(Zp_i , Ze—1) + Pac0V(Z i, Ze—5) + - + ¢pC0v(Zt—k 'Zt—p)
Hence, the autocovariance function of the general pth- order autoregressive AR(p) process
is

Yk = $1Vi-1+ PoVe—2 + o+ PpVi—p, k>0 (2.55)
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The autocorrelation function of pth-order autoregressive AR(p)

The autocorrelation function of the general pth-order autoregressive AR(p) process will
consist of a mixture of exponential decays and damped sine or cosine waves, (Box and
Jenkins, 1970). Damped sine or cosine waves appear if some of the roots are complex. The
autocorrelation function of autoregressive AR(p) can be found by solving a set of

difference equations called the Yule-Walker equations given by

Pk = $1Pk—1 + P2pk—2 + -+ Gppr—p k>0 (2.56)

The partial autocorrelation function of pth-order autoregressive AR(p)

For the partial autocorrelation function of the general pth-order autoregressive AR(p), the
PACEF ¢y will vanish after lag p, Box and Jenkins (1970)

2.4 Moving average processes

The general form for a moving average process of order q, a MA(q) process, is

Zt = et - 916{:_1 — e Qqet_q
=(1-6,B—-—0,B%e,
= 60(B)e, (2.57)
where 6(B) = (1 — 6,B — ---— 6,B9).

This moving average process is invertible if the roots of 8(B) = 0 lie outside of the unit

circle.

Thus, a moving-average model is expressed as the current value of the series against current
and previous white noise. Moving average processes are useful in describing phenomena
in which events produce an immediate effect that only lasts for short periods of time. This

was first studied by Slutzky (1937).
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2.4.1 The first-order moving average process

When 6(B) = (1 — 6,B), then the first-order moving average MA(1) process is
Zt = et - Hlet_l (2.58)

=(1-06,B)e;

where {e;} is a zero mean white noise process with constant variance g2.

Autocorrelation function of the MA(1) process

To obtain autocorrelation function of the MA(1) process, it is necessary to find for £ = 1

the mean, variance and autocovariance of the MA(1) process, from Equation 2.58.
The mean of the process
z = e — 010
Taking the expectations on both sides, where 8, is constant
Elz:] = E[e; — 61€1-1]
=0
The variance of the MA(1) process
z = e — 010
Taking the variance on both sides
var(z;) = var(e; — 6,e;_4)
=02+ 602c2-0
=1 +60)0;
The first autocovariance of the MA(1) process
zy = e — 0164
Zg = €1 —0Or1€ 1y

and taking the expectations, where 6, is constant
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E[z;zy ] = E[(e; — 01€,-1)(€r—1 — 0101 4)]
= —0,0¢
Hence
V1 = E[z:2e k] = 6108

Thus, the autocorrelation function of MA(1) process is given by

B 2.59
p1_1+912 ()
pk=0' k>1

which is cut off after lag 1, shown in Figure 2.2. Given the mean, variance and
autocovariance of the MA(1) process are constants as show, this means the MA(1) process
is always stationary. For the process to be invertible, the roots 1 — 8, B = 0 must lie outside

the unit circle.
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6,>0 0,>0
1.0 7 1.0 7
05 0.5
w w
S )
2 0.0 T E 0.0 T T T
-0.5 -0.5
10 — 10 —
T T T T T 1 T T 1
2 3 4 5 6 10 5 6 10
Lagm Lagm
0,<0 0,<0
1.0 7 1.0 7
05 0.5
w w
S o |
2 00 T < 00 I .
-0.5 -0.5
10 — 10 —
T T T T T T T T T 1 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Lagm Lagm

Figure 2.2 ACF and PACF of MA(1) process.

Partial autocorrelation function of the MA(1) process

The partial autocorrelation function has no cut-off, it can be shown to decay geometrically

to zero. From Equations 2.25 and 2.59

—6, _ —6.(1-67)
1+62  1-6f

P11 =p1 =

Pl —8F _ —6{1-6D
1-p7 1+67+6f  1-6f

b2 =
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pi —67 _—6:(-6D
1-2p7 1+67+6f+6f  1-67

P33 =

In general

(=D 1o - 6*)61 (1 - 67)
ik = T 20kt D : (2.60)
1

Thus, |¢xx| < 68X, and the partial autocorrelation function is dominated by a damped
exponential. If p; is positive, so that 8; is negative, the partial autocorrelations alternate in
sign. However, if p; is negative, so that 8, is positive, the partial autocorrelations are
negative.

2.4.2 The second-order moving average process

Invertibility conditions

The second-order moving average process is defined by
ze = e —bie 1 — 060 (2.61)

and is stationary for all values of 8; and 6,. However, it is invertible only if the roots of

the characteristic equation

1-6,B—6,B>=0 (2.62)
lie outside the unit circle, that is
6, +6, <1
0, -6, <1 (2.63)
-1<6,<1

Compare with the stationary conditions of the AR(2) process in Equation 2.50.

Autocorrelation function of the MA(2) process

The autocorrelation function of MA(2) process, from Equation 2.61,
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Zy = e — 0181 — 02,

So, the mean of the process, taking the expectations on both sides, where 8; and 6, are

constants

Elz;] = E[e;] — 01E[e;—1] — 62E[e;_»]
=0
The variance of the MA(2) process
zy = e — 0161 —Orer
Taking the variance on both sides
Var(z;) = var(e; — 01e;_1 — 6e¢_3)
where 0, and 6, are constants
=02 + 0702 + 625}
= (1+ 67 +635)0?
The autocovariance of the MA(2) process, from Equation 2.61
zy = e — 0161 —Orer
hence
Y1 = (61 + 6,01)5¢
In general,
2z = (€ — 01601 — 020 3) (e — 01801k — B2 5 )
Taking the expectation for both sides, then

E(z;zi_] = E[(er — 01€,—1 — O2er_3)(€r_y — 01€r_ 1 — 028454 )]

2 2
=F (Z Hl-et_l-) Z Qjet_k_j
i=0 j=0
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2
=F Z Qiejet_i et_k_j

i,j=0

hence,

2
Ve=0% ) 66 (2.64)
k,j=0
Partial autocorrelation function of the MA(2) process

The exact expression for the partial autocorrelation function of an MA(2) process is
complicated, but it is dominated by the sum of two exponentials, if the roots of the
characteristic Equation 2.62 are real; and by a damped sine wave, if the roots of Equation
2.62 are complex. Thus, it behaves like the autocorrelation of an AR(2) process. The
autocorrelation functions (left-hand curves) and partial autocorrelation functions (right-
hand curves).
2.4.3 The general gth-order moving average MA(q) process
The moving average model of order g, the MA(q) process, is given by

Zt = et - Qlet_l — = Qqet_q

=(1-6,B—-—06,B%e,

where, as usual, {e,} is a zero mean white noise process with constant variance oZ. This

can be written

where (B) =1 —6,B — -+ — ,B is the MA(q) operator.

The invertibility condition for higher order MA processes may be obtained by writing

Equation 2.65 as
e, = 071(B)z,
Hence, if
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q

0(B) = 1—[(1 — H;B)

j=1
where 1/H;, j = 1,2, ..., q, are the roots of 8(B),
then

6(B) = (1 - H,B)(1—H,B)...(1-H,B)

1
(1-H,B)(1—-H,B) ..(1 - H,B)

0~(B) =

Using partial fractions, such that

q
M:
B)=0"'B)= ) ——
" ;(1 ~ H;B)

If H; are all distinct, there exist M;, which converges, if |H]| < 1,whenj =1,2,...,q. Since
the root of (B) = 0 are Hj_l, it follows that the invertibility condition for a MA(q) process

is that the roots of the characteristic equation
6(B)=1-60,B—--—0,B1=0 (2.66)
lie outside the unit circle.

Autocorrelation function
The MA(q) process is given by
Zr =e —bO1epq — - —0ge_q
Taking the variance on both sides
var(z;) = var(e; — 01,1 — - — 0ge:_g)

where 04, 0,, ..., 0, are constants
Vo= (1467 +0%+ -+ 02)c? (2.67)

Hence, the autocovariance function of a MA(q) process
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Zy = € — Qlet_l — e — Qqet_q
Zt g =€rq— 0181 = — Oz kg

By multiplying z; and z;_;, and taking the expectation, then

— cee 2 =
. (—0k + 010441 + 020445 + -+ 0,_0,) 02 k=12,..,q (2.68)
0 k>q
Thus, the autocorrelation function is
—Qk + 919k+1 + 029k+2 + b + Hq—keq k _ 1 2
Or = 1402+ 02++ 62 A @0 69y
0, k>q

The autocorrelation function of a moving average process has a cut-off at lag q.

Partial autocorrelation function

The partial autocorrelation function of the MA(q) process tails off as a mixture of
exponential decays and/or damped sine waves depending on the nature of the roots of

(1 —6,B—--—064B q) = 0. The partial autocorrelation function will contain damped sine

waves if the roots of characteristic (1 —60,B—--—06,B q) are complex.

2.5 Mixed autoregressive-moving average processes

A large number of parameters reduce efficiency in estimation. Thus, in model building, it
may be necessary to include both autoregressive and moving average terms in a model,
which leads to the following useful mixed autoregressive-moving average (ARMA) model

(Box and Jenkins, 1970)
Ze = P12 Pz o H Ppz_p e — 01601 — - — Ogerg (2.70)

that is
(1-¢B—¢,B? —-— ¢p,BP)z, = (1 — 0,B — 6,B* — ---— ,B%)e,

or
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¢(B)z, = 6(B)e, (2.71)
where ¢(B) and 6 (B) are polynomials of degrees p and g, in B.

Autocorrelation function of the ARMA(p, q) process

The autocorrelation function of the mixed process may be derived by a similar method to

that used for the autoregressive process. On multiplying throughout in (2.70) by z,_

Zt k Zt = P1Ztk Ze1 T PoZe i Zeo ¥ GpZek Zep t Zip € — 012 €01 —

- qut—k €t—q

and taking the expectation on both sides, where ¢q,¢,,...,¢, and 64,0,,...,0, are

constants

Elzi—y z¢] = 01E[2e—k Ze—1] + P2E[Zp_ 2e5] + - + ¢pE[Zt—k Zt—p] + E[zi—g e;]

—01E[zi—ret—1] = — qu[zt—k et—q]
because z;_; and e; are independent, then
E[z;_rer—;] =0,E[e,—;]] =0 fork>i,
hencecov(z;_y ,z;) = Pp1c0V(Zi_p, Zi—1) + Poc0V(Zi_y , Ze—) + -+ +
¢pcov(zt—k 'Zt—p) + Elz;_xer] — 01E[ze—y €—1] — - — qu[Zt—k et—q]

this gives
Yk = P1Vi-1 + PoVi—2 + -+ GpVi—p (2.72)
The variance of the process, when k = 0, is given by
Yo =d1v1 + Pava + o+ Ppyp + 02 — 01y (—1) — = 07, (—q),  (2.73)

which has to be solved along with the p Equation 2.72 for k = 1,2, ...,p to obtain
Yo, Y1, "'i)/p-

Hence, the autocorrelation function is
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Pr = P1Pk—1 + P2pk—2 + -+ Pppr—p k>(q+1). (2.74)

Partial autocorrelation function of the ARMA(p, q) process
The process given by Equation 2.71 may be written

e = 071 (B)p(B)z
where 81(B) is an infinite series in B. Hence, the partial autocorrelation function of a
mixed process is infinite in extent. It behaves eventually like the partial autocorrelation
function of a pure moving average process, being dominated by a mixture of damped
exponentials and/or damped sine waves, depending on the order of the moving average and
the values of the parameters it contains.
2.5.1 The first-order autoregressive first-order moving average process
A mixed process of considerable practical importance is the first-order autoregressive first-
order moving average ARMA(1,1) process

Z — P12 1 = € — 010 (2.75)

that is

(1—¢1B)z; = (1 —6,B)e;
For stationarity, assuming that |¢;| < 1, and for invertibility, it requires that |6;| < 1.
When ¢, = 0, Equation 2.75 is reduced to an MA(1) process, and when 6; = 0, it is
reduced to AR(1) process. Thus, the AR(1) and MA(1) processes are special cases of the
ARMAC(1,1) process.
Autocorrelation function of the ARMA(1,1) process
To obtain the autocovariance for {z,}, multiply z,_; on both sides of the Equation 2.74

Z — p12e1 = € — O1e0

Z = P12 1 + e — 0100

Ze j Zt = P1Zty Zp1 t Zpg € — 012 €1
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And take the expected value, where ¢, and 8, are constants
Elzt-i 2] = $1E[2¢—y 2e-1] + El2¢—y €] — 61E[2¢—k €-4]
because e; and z,_j are independent, it follows that
cov(Zi_g, Z¢) = Pp1c0V(Z¢_y Ze_1) + E[2z¢_i €] — O1E[Z¢_1 €;_4]
Yie = $1Yi-1 + Elze—k ec] — 01E[z¢y 4] (2.76)
when k =0

Yo = $1v1 t+ Elz, e] — 01E[z; e;_4]

Given that E[z.e,] = 2, and that the term E[z,e,_,] can be written as
Elzie;1] = E[(¢p12c-1 + e — O1_1)e, 1] = (@1 — 01)07
then
Yo = ¢p1v1 + 0& — 01(p1 — 01)0¢ (2.77)
When k = 1, from Equation 2.76
Y1 =$1Yo + Elz;1 €] — 01E[z, 1 ;1]
= ¢1Yo — 6,0¢ (2.78)
Substituting Equation 2.78 in (2.77), then

Yo = ¢1(p1vo — 0105) + 0F — 0,(¢p; — 61)0¢

_ (407 -2¢10)
a-¢H

Thus, from Equation (2.78) then

_ $1(1+ 67 — 2¢:61)

V1 (1—¢2) 0§ — 6,08
_@-00-i8) ,
) ’
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For k > 2, from Equation 2.76

Yk = P1¥k-1, k=2

Hence, the ARMA(1,1) model has the following autocorrelation function:

1 k=0
(p1 —0)(1 — ¢16,) _q

PL=Y"1+02-2¢,0, - (2.79)
1Prk-1 k=2

The autocorrelation function of an ARMA(1,1) model combines characteristics of both
AR(1) and MA(1) processes. The moving average parameter 8, enters into the calculation
of p;. Beyond p,, the autocorrelation function of an ARMA(1,1) model follows the same

pattern as the autocorrelation function of an AR(1) process.

Partial autocorrelation function of the ARMA(1,1) process

The partial autocorrelation function of the mixed ARMA(1,1) process Equation 2.75
consists of a single initial value ¢;; = p;. Thereafter it behaves like the partial
autocorrelation function of a pure MA(1) process, and is dominated by a damped
exponential. Thus, as shown in Figure 2.3, when 6, is positive, it is dominated by a
smoothly damped exponential which decays from a value of p;, with sign determined by
the sign of (¢p; — 6;). Similarly, when 6, is negative, it is dominated by an exponential

which oscillates as it decays from a value of p;, with sign determined by the sign of

(¢1 — 61).
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Figure 2.3 Autocorrelation and partial autocorrelation functions p;, and ¢y, for various
ARMA (1, 1) models.
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2.6 Model building

In 1970, Box and Jenkins proposed an important three-stages procedure in time series
analysis for analysing an appropriated ARMA (p, q) process to forecast the observations.
These three stages are namely, Identification, Estimation and Diagnostic Checking. Figure

2.4 shows the procedure of model building.

General method of ARMA

model

l

Identify model by using
ACF and PACF

l

Estimate the parameters of

the model

l

Diagnostic the model

A

Check the model if

it is adequate

Figure 2.4 Stages of the Box and Jenkins methodology.
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2.6.1 Model identifications

In time series analysis the most significant steps are to identify and build a model based on
the available data. These steps require a good understanding of the process, particularly the
characteristics of the process in terms of their autocorrelation function p, and partial
autocorrelation function ¢y (Akaike,1974). In practice, the ACF and PACF are unknown,
and for a given observed time series z4, Z,, ..., Z,, they have to be estimated by the sample
ACF py, and sample PACF ¢,,. Thus, in model identification, the goal is to match patterns
in the sample ACF p,, and sample PACF ¢, with the theoretical patterns of the ACF pj,
and the PACF ¢y, for the ARMA processes. Table 2.1 shows the theoretical behaviour of
the ACF p,, and the PACF ¢y, for processes known to be of type AR, MA and ARMA.

Process ACF PACE
AR(p) Tails off gxponel_ltial decay or | Cuts off after lag p
damped sine-cosine wave
MA(q) Cuts off after lag g Tails off §xp0neptial decay or
damped sine-cosine wave
ARMA(p, ) Tails off after (q — p) lags, Tails off after (p — q) lags,
q>p p>q

Table 2.1 Characteristics of theoretical ACF and PACF for stationary processes.

2.6.2 Model estimation

The main reason for model estimation is to determine an appropriate ARMA (p, q) model of
a stationary time series. This involves calculating estimates of the mean, white noise variance
and the coefficients of ¢ from an autoregressive process and 6 from a moving average
process. There are several methods of estimating the parameters of a time series model,
namely, the maximum likelihood function, ordinary least squares and Bayes’ theory. The
maximum likelihood function approach has been taken in this thesis (see Equations (5.20)
and (5.21)). These methods of estimation have been derived and developed by researchers,

such as, Barnard (1949), Birnbaum (1962), Rao (1965), Kendall and Stuart (1966), and

Hannan (1970).
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2.6.3 Model diagnostic checking

The final stage of the Box and Jenkins methodology is Diagnostic Checking. The adequacy
of a statistical model is examined - the residual autocorrelations and partial autocorrelations
are used as a diagnostic check to test the goodness of fit of the model. A portmanteau test
is used to test the goodness of fit of an ARMA model. Diagnostic checking will be
discussed in Chapter 5.

2.7 Summary

This chapter has presented the definitions and formulas commonly used in time series
analysis. This chapter has also presented the Box and Jenkins methodology of model
building. In addition, the characteristics of autoregressive, moving average, and mixed

autoregressive-moving average processes have also been provided.
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Chapter 3 - Multivariate Vector ARMA Time Series

A major extension to the Box and Jenkins methodology has been the development of vector
autoregressive moving average (VARMA) models. A VARMA model incorporates several
time series at the same time, and takes into account interactions between one time series
and another. VARMA models offer the potential for greater parsimony and an increase in
forecasting accuracy. They are widely used in economics, in particular, in macroeconomic

modelling, Reinsel (1993) and Liitkepohl (2005).

This chapter will discuss the mean, covariance and correlation matrix functions for the
multivariate case, the vector white noise process, the linear process of vector time series,
the vector autoregressive moving average process, the vector AR(1), the vector AR(p), the
vector MA(1), the vector MA(q), the vector ARMA(1,1) and the model building of vector
ARMA time series.

3.1 Vector time series

The basic idea of vector time series is that at each point in time there are a number of
quantises that can be measured, and these can be regarded as the components of a vector.
For example, consider three weather measurements made on a daily basis: rainfall,
maximum temperature and minimum temperature. These can be represented by the three

variables z; ¢, z, . and z3, respectively. These three variables can be regarded as the three
. T
components of a vector variable z, = (Zl,tf Zy ¢ z3,t) .

In general, a vector time series can be represented by

.I.
Zt = (Zl,tizz,t"“'zd,t) 5 t = 0, 1, 2,..., (3'1)
where d is the number of components in the vector.

There are two main reasons for studying a vector time series. The first reason is to
understand the relationship among the component series. The second reason is to enable

forecasting to be made. Vector time series have been discussed by many researchers, such
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as, Quenouille (1957), Whittle (1963), Hannan (1970), Zellner and Palm (1974), Wallis
(1977), Tiao and Box (1981), Hannan and Kavalieris (1984), Tiao and Tsay (1989) and
Box, Jenkins, Reinsel and Ljung, (2015).

3.2 Mean, covariance and correlation matrix functions

Similar to the univariate case, terms can be derived for the mean, the covariance matrix

function, and the correlation matrix function in a multivariate case.

3.2.1 The mean vector

t . . . .
Suppose that z, = (let, Zz,t'---:zd,t) , t=0,1,2,.., denotes a d-dimensional jointly
stationary real-valued vector process, so that, the mean E [zi,t] = u; is constant for each

component i = 1,2, ..., d, then the mean vector can be written as

251

Elzy] =p={" (3.2)

Ug

3.2.2 Covariance matrix function

A covariance matrix function of a vector time series is used to measure the strength of the

linear dependence between the components of a stationary time series z;. Suppose that

t . . .. .
zZ, = (Zl't, Zy ...,Zd't) ,t=0,1,2,.., denotes a d-dimensional jointly stationary real-
valued vector process. The cross-covariance between z;, and z; c forall i = 1,2, ...,d and

j=1,2,...,d, are functions only of the time difference (s — t).
Hence the lag-k covariance matrix for the vector time series z; can be written as
I(k) = Cov{z;, 2,1} = E[(z; — 0)(z¢— — W)7]

and the lag-k cross-covariance matrix between two vectors z, and z,_, both d X 1 vectors,

can be written as a d X d matrix

I(k) = Cov{z,, 2,4} = El(z, — W (ze— — ']
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|[|[ (Zl,t - .Ul)] ]l
i N (TR AR )|
[l(zd,t - Hd)J J

[ (Zl,t - .ul)(zl,t—k - /11) (Zl,t - #1)(Zz,t—k - .Uz) (Zl,t - .U1)(Zd,t—k - #d) 1
:Ei@m—ug@u%—ua (220 = 1) (k= b2) @u—uﬂkm%—udi
l(zd,t - .ud)'(zl,t—k - Hl) (Zd,t - lidj(Zz,t—k - Hz) (Zd,t - /*‘K')(Zd,t—k - lid)J
Yiu(k) vi2(k) - yia(k)
V21:(k) Yz:z (k) VZd:(k) (3.3)
Yar (k) yax (k) - vaa(k)

where

vij(K) = E[(zie — 1) (Z0-k — 7)) = E[(Zi,0-1c — 1) (21,0 — 15)]
fork =0,1,2,..,i,j = 1,2, ...,d asa function of k, I'(k) is called the covariance matrix

function for the vector process z;.

For a stationary process {Z;} the covariance between z;; and z; ¢, must depend only on
the lag k, not on time ¢ for all i = 1,2,...,d and j = 1,2, ...,d. For i = j, y;;(k) is the
autocovariance function for the ith component process z;,. For i # j, y;;(k) is the cross-

covariance function between z;, and z; ;.
From the definition in Equation 3.3, for negative lag k
r(k) = El(z; — 0z, — 7]
Because of stationarity
= E[(Zer — W) (2 — )]
Applying the rule of matrix transpose, that is, A = (AT)" and (4B)T = BTAT, gives
= {E[@ei — 0z — WY

={El(z: - Wz — W
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n
= {E [(Zt - H)(Zt—(—k) - H)T]}
From the definition of the covariance matrix

={r(-i}'

3.2.3 Correlation matrix functions

A correlation matrix function is used to investigate the dependence between the multiple
variables at the same time. The correlation matrix function for the vector process can be

defined as

p(k) = D2r(k)D~"/% = p;; (k) (34)

for i,j=1,2,..,d, where D is the diagonal matrix of Equation 3.3 in which the ith

diagonal element is the variance of the ith process. Hence

D = diag(y11(0),¥22(0), "+, ¥aa(0)).

Thus, the ith diagonal element of p(k) is the autocorrelation function for the ith component

series z; ., whereas the (i, j)th diagonal element of p(k) is

Yij (k)
1/2
(::(0)y;;(0))

pij(k) = (3.5)

where p;; (k) is the cross-correlation function between component series z; ; and z; ;.

3.2.4 The sample mean, sample covariance matrix and sample cross-correlation

matrix
T . . ..
Suppose that z; = (zl_t, Zotr e Zd_t) ,t=0,1,2,.., denotes a d-dimensional jointly
stationary real-valued vector process, then sample mean vector can be defined as

n

Z z, (3.6)

t=1

Z =

S|e

The sample covariance matrix of a time series can be written as
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X _ _
1(0)==> (2~ 2) (2~ D)t (37
t=1

The sample cross-covariance matrix of a time series at lag k can be written as

n—k
- 1 - _
() =) (2 =2 @i~ D (38)
t=1
The sample cross-correlations are defined

Z?;{((Zi,t - Z_i) (Zj.t+k - Z_])

_ — 2
( ea(zie — Zi)z Ytoi(z — uz;) )

ﬁl](k) = for l,] =12,..,d (39)

1/2"
The cross-correlation p;;(k) and the sample cross-correlation p;;(k) are very useful in
identifying a finite-order moving average model as p;; (k) = 0 for all k > g for the vector
MA(q) model. Unfortunately, the sample cross-correlations p;;(k) may be difficult to

estimate because of the large number of terms that may need to be estimated and examined

for a multivariate time series.

3.3 Vector white noise process

A vector white noise process is defined as a sequence of independent random vectors,
denoted as e;, e,, ..., e, where e, = (ey¢, €3¢, ..., €q¢) T, is a zero mean white noise process
with covariance matrix X = E[e,e, ], where X is a d X d symmetric positive definite

matrix.

X, if k=0
(k) = Elececs’] ={0 o (3.10)

3.4 The linear process of vector time series

t . . ..
Suppose that z, = (zl_t, Zo b ---de,t) ,t=0,1,2,.., denotes a d-dimensional jointly
stationary real-valued vector process so that the mean E [Zi,t] = u; is constant for each i =

1,2,...,d. If the d-dimensional stationary vector process z; can be written as a combination

of a sequence of d-dimensional white noise random vectors, then z; is a linear process
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Zt = ” + et + q‘llet_l + q"zet_z + .-

=Il+quiet_i (311)
i=0

where u is a d-dimensional constant vector, ¥, = I is a d X d identity matrix, the ¥;’s
are d X d coefficients matrices, and e, = (ey, €y, ..., €4¢) T, is a d-dimensional, zero

mean, white noise process. For the stationary linear time series z, in Equation 3.11

Elz] =p

and

r(k) = E[(z; — W(ze- — W]

[ee] [00] -l-
=E (Z q’iet—i) (Z 'I'i—ket—i)
i=0 i=0

=E[(e; + W1+ )(e; + Wi_rerq + )]
=E[(e;+ Pie, s+ )(et + (W_re ) + )]
= E[(etet-l- + et(qll—ket_l)-l- + -+ q’let_let"' + qllet—l(qll—ket—l)-l- + .- )]

From the vector white noise e, = (ey¢, €y, ..., €4:) T such that E[e,] = 0, £ = E[e,e, '],

Elece s 1 =0fork #0and ¥, =1

=E

<Z Ve et—iw’;r_k,)]
i=0

= Z v, E[et—iet—i-l-]ql-il-—k
i=0

= Z p,ryl
i=0
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3.5 The vector autoregressive process
The general form of the vector autoregressive process of order p, VAR(p), can be defined
as

Zt - (Dlzt_l + q’zzt_z + -+ (DpZt_p + et' (312)

where z; is a d-dimensional vector valued time series, ®; (i = 1,2, ...,p) are d X d
t tri de;, = t,is a d-di ional hite noi

parameter matrices and e; = (eq, €3¢, ---, €4¢) ", 18 @ d-dimensional zero mean white noise

process with covariance matrix £ = E[e,e,']. Using backshift operators, the vector

autoregressive process of order p can be written as

(I-®,B— - —®,B?)z, = ®(B)z, = e,
where ®(B) is a matrix polynomial of the backshift operator B of order p. The vector of

autoregressive process VAR(p) was developed by researchers, such as, Sims (1980),

Granger (1981), and Engle and Granger (1987).

The vector autoregressive process of order p will be stationary if this condition is satisfied

that the zeros of ||I - ®,B—--—®,B? || lie outside the unit circle, and if the roots of
eI = | - ®,B—--—®,B?|| =0,

are all greater than one in absolute value, where ||A]| is the determinant of a matrix A,

Reinsel (1993).

3.5.1 Covariance matrix function of vector autoregressive process of order p

The covariance matrix function of a vector AR(p) process can be obtained by multiplying

Equation 3.12 by z;r_ « and taking the expectation, gives
E[thI—k] = (DIE[Zt—lZI—k] + q)zE[Zt_zzI_k] + -+ E[etZI_k]
rtk) =@, rk—1)+ ®,r(k—2) + -+ ®,r(k —p), k>p
For a vector AR(p) process, z; is given by Equation 3.12, it follows from the infinite MA

representation given in Equation 3.14 that
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Elz._iel] = { izg

By using the system of Yule-Walker matrix equations to obtain the AR coefficient matrices

®; from the cross-covariance matrices I'(0), I'(1), ..., I'(p), it can be written in the form

rk) = Z rk—D®, fork=12,..p (3.13)
or
roy [ro rmt - reto o r(p—l)*\ <I>*\
ray\_j ra r rapt - re- 2t ||<1>T
ro) \ro-v re-» ro-»-  ro ) \qﬂ/

Forthecase k = 0

14
X=r(0) - Z r(-ije; (3.14)
i=1

3.5.2 The first-order vector autoregressive process

The first-order vector autoregressive can be written as

Zt = (I)lzt_l + et, (3.15)
or

(I—®,B)z, = e,
For the case k = 2

0= (o @) @)@ 610
or

Zy; = @112y 1+ Py12Z21 H €1
Zyp = @112y 1 + P122Z211 + €3

It is clear that each element of z; is a function of each element of z,_;.
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The first-order vector autoregressive process satisfies the stationarity condition if and only
if |[I — ®B]|| =0, or equivalently ||AI — ®|| =0, where the eigenvalue A = B~1. It
follows that the stationarity condition for the AR(1) model is equivalent to the condition
that all eigenvalues of @, that is, all roots of ||[I — ®B|| = 0, be less than one in absolute

value.

For arbitrary n > 0, successive substitutions of ¢t + n in the right-hand side of Equation
3.15, gives

t+n

2, = Z Die, + ®lZ (3.17)

i=0
provided that all eigenvalues of @ are less than one in absolute value.
3.5.3 The covariance matrix function of the VAR(1) process
The covariance matrix for VAR(1) can be obtained by multiplying the Equation 3.15 by
ZI_ « and taking the expectation, giving

E|z:z]_\] = ®.E[z, 12{_ ] + E[e.z]_;]
hence, when k = 0

ro)=ao,r(-1)+x

=d,r() +z (3.18)

To compute I"(0), the values of ®;, I'(1)T and X need to be known. The ®;, I'(1)T and

X can be obtained from

I (k) = E|z,_.2]]
Since E[e.z]_,| = 0, for k = 1,2, ..., then

rck) = o,r(k—1), fork=12,..

sok=1

r(1) = &,r() (3.19)
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Hence,

r(yt =ro)e] (3.20)
By substituting Equation 3.20 in Equation 3.18
r@) = o, r(0)®; +x (3.21)
Applying the vectorizing operation (vec) to both sides, then

vec(F(O)) = vec(dJlI"(O)(DD + vec(X)
vec(l‘(O)) =(P; QR <l>1)vec(l"(0)) + vec(X)

vec(F(O)) —(P: R <I>1)vec(1"(0)) = vec(X)

vec(l‘(O))(Inz e C 0 <I>1)) = vec(X)

vec (I"(O)) = (Inz (P, ® <I>1))_1vec(2) (3.22)
where ® is a Kronecker product, which multiplies each element of matrix C by the whole
of matrix 4 to create a new matrix.

Note, vec is a linear vector operator that is used to transform a matrix to a vector, and it

has the following vectorizing operation property, (Neudecker, 1969).
For matrices A, B and C
vec(ABC) = (€t ® A)vec(B)
The Equation 3.22 can be used to find I'(0) when @, and X are known.
The ®, and X can be obtained from the parameters I'(0) and I'(1)
rkk)=rk-0De, fork=12,..

Whenk =1

r) =r)e] (3.23)
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@ =r)-r(1) (3.24)
By applying the matrix transpose rule to Equation 3.23
r()t = o,r(o) (3.25)
Equation 3.21 gives
ro) = o, r(0)®; +x

By substituting Equations 3.24 and 3.25 in Equation 3.21

T=r0)-rtro-r (3.26)

Hence, I'(k) is a covariance matrix function. The @; can be obtained from Equation 3.19
and the X can be obtained from Equation 3.26.

3.6 The vector moving average process

The general form of the vector moving average process of order g, VMA(q), can be written
as

Zt = @1et_1 + Ozet_z + e+ qut_q + et (327)

where z, = (244, Zyp) o) Zge) T, is @ d X 1 vector of time series observed at t, e, =
(e1s,€a¢r - €q¢) T, is a d X 1 zero mean white noise process with a covariance matrix £ =
E[e.e.T] and 0; is a d X d matrix of coefficients, for (j = 1,2, ..., q). Using the backshift
operator, the vector moving average process of order g can be written as
(I-0,B—--—0,B%)e, =0(Be, = z,

where @(B) is a matrix polynomial of the backshift operator B of order q.

The invertibility condition of VMA(q) process
The VMA(q) process is invertible if all roots of
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le®I=|1-0,B---—-0,B% =0,

are greater than one in absolute value, where ||. || is the determinant of a matrix.

3.6.1 Covariance matrix function of vector moving average process of order q
The covariance matrix function of VMA(q) process can be obtained by
I (k) = cov(zy, Zesr )
=FE [(et — 0.6, — -+ Oqet—q)(et+k —0ie4p 17—+ Oqet+k—q)T]

=-20,+0,X0], ++0,,z0!

- Z 0,0, (3.28)

fork=1,2,..,qwith®, = —I,and I'(k) = 0 fork > gq.

Whenk =0
q-1
ro)==x+ Z 0;z0f,,
j=0

3.6.2 The first-order of the vector moving average process

The first-order of vector moving average can be written as
Zt = et - ®1et_1 (329)

or

(I—-0,B)e, =z,
Fork =2

()= D) (o o)) (:30)
or equivalently
Ziyp =€ — 0111101 — 01108,
Zyr =€ — 01316101 — 01285,
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It is clear that each element of z; is a function of each element of e;_;.

The first-order of vector moving average process satisfies the invertible condition if all
roots of ||I — @, B|| = 0, are greater than one in absolute value. This is equivalent to the
condition that all eigenvalues of @, that is, all roots A of det{AI — ©®;} = 0, are less than

one in absolute value.

The covariance matrix of the first-order of vector moving average process can be obtained

by
r(o) = cov(z,z.")
= E[(e; — 0,e,_1)(e, — ©,e,_;)"]
_r+ez0l (331)
rq)=-xel (3.32)
and
rtk)=0, forlkl>1 (3.33)

3.7 The vector autoregressive moving average (VARMA) process
The general form of the vector autoregressive moving average of order (p,q) can be
defined as

Zt = (Dlzt_l + -+ (DpZt_p + et + Olet_l + @Zet_z + -+ @qet_q (334)

where z, = (214, Zp¢) -, Zge)T is @ d X 1 vector of variables observed at t, e, =
(e1r €26, -, eqe)T, is a d X 1 zero mean white noise process with covariance matrix X =
Ele.e.T], ®; (i = 1,2,..,p) are d X d parameter matrices and 0; is a d X d matrix of
coefficients, for (j = 1,2, ...,q). The vector autoregressive moving average process of

order (p,q) can also be written using the backshift operator:

(I-®,B—-—®,BP)z, =(I—0,B—--—0,B%)e,
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®(B)z, = O0(B)e;
where ®(B) and ®(B) are matrix polynomials of the backshift operator B of order p and
q. The vector autoregressive moving average process VARMA (p, q) has been discussed
by researchers, such as, Hannan (1970, 1981), Reinsel (1993), Liitkepohl (2005), and Box
etal., (2015).

The vector autoregressive moving average processes is stationary if the roots of

”I - ®,B—--—®,B? || lie outside the unit circle, and if the roots of
IO = |1 - .8 — - - @, =,

are all greater than one in absolute value.

3.7.1 The covariance matrix function of the vector autoregressive moving average

process

The covariance matrix function of the vector ARMA process can be obtained from the

infinite MA representation
Zo=p+ ) Wiewi =+ ¥(Be
i=0
Hence

Elziye,.; 1 =W;,_,2,  fori>k
The covariance matrix function of the vector ARMA process is I'(k) = Cov{z;_y,z;} =

E[(zi—x — ) (z, — p)T] of z,, which satisfies the relation
P q
r(k) = Cov{z,_p, z,} = Z rk—i) o} - Z w,_ . zo! (3.35)
i=1 i=1

with@®, = —Tand I'(k) = le r(k—i) ¢2L fork = 1,2, ..., q. The lag k cross-correlation

matrix is given by
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p(k) = D~'r(k)D~" = p;;(k) (3.36)

fori,j =1,2,..,d, where D is the diagonal matrix, in which the ith diagonal element is

the variance of the ith process. Hence
D= diag()’n(o),)/zz(o), "y Ydd(o))-

3.7.2 The first-order vector autoregressive moving average (VARMA) process
The first-order of vector autoregressive moving average process VARMA(1,1) can be
written as

Zt = (Dlzt_l + et - @let_l (3.37)

or
(I—-®,B)z, = (I - 0,B)e,

The VARMAC(1,1) process satisfies the stationarity condition, if the solutions of the
determinant equation ||I — @, B|| = 0 are all greater than one in modulus and lie outside
the unit circle, or if all the eigenvalues of @, are inside the unit circle. The MA

representation of VARMA(1,1) process can be written as
(I-®,B)(I+ ®,B+ ®?B*+ ) =1
hence (I — ®;B)™! = I + ®,B + ®?B?% + ---, consequently, giving
z, = —-®B)'(I-0,Be,

=e+ (P, —0,)e;_; + P (P, — O )e, 5+

[oe)
= Z Ve
i=0

where W = I and ¥; = ®1"1(d, — 0,) fori > 1.

The VARMAC(1,1) process satisfies the invertible condition, if the solutions of the
determinant equation |I — ®,B| = 0 are all outside the unit circle, or if all the eigenvalues

of O are inside the unit circle.
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The covariance matrix function of the vector ARMA(1,1) process can be obtained by post-

multiplying Equation 3.37 by ZI_ « and taking the expectation, giving
E|z.z]_,| = ®E|z,_12]_,] + E[e.z]_,] — ©,E[e,_12]_,]
tet—k 1 t—-14t-k tet—k 1 t—-1%t—k
From the infinite MA representation

Elzi_yxe,._; 1 =W, 2, fori>k
Hence, fork = 0
rQo=o,r-)+xz-v,xel

Then, ¥; = ®; — 0, and I'(—1) = I'(DT
ro)=o,r()t+x- (e, —0)ze!

Fork =1
r(i) =o,r(0)—0,x

Taking the transpose for both sides

rayt = (&,r©)" - o,
=r)e; - ze!

Substituting Equation 3.39 in Equation 3.38, gives
— t_ T _ _ T
r)=o,(r(o®/ —x0l)+x— (e, —0,)x0]

=&, r0)® - 0,X0 +2— (0, —0,)r06]
ro) - o, r(0)e® =x-0,réf - (@, —0,)r 06!
Applying the vectorizing operation vec to both sides, gives
vec(r(0)) =(I- (@, ® <I>1))_1vec(2 ~-0,20f — (®, -0,z 0)

Fork > 1
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rk) =@,rk—1), fork>1 (3.42)
The Equation 3.42 is useful to find I'(k) when k > 1.

3.8 Model building VARMA models

The model building stages, such as, identification, estimation and diagnostic checking will
be discussed for the vector of autoregressive moving average situation. For instance,
identifying the VARMA process by using the sample covariance and correlation matrices.

The maximum likelihood function will be used to estimate the VARMA processes.

3.8.1 Model identification of a vector time series

The procedure of model identification of a vector ARMA process follows the model
building procedure in the univariate situation. In the univariate case, identification of a time
series model of an ARMA process is based on the sample autocorrelation and the sample
partial autocorrelation functions. In the case of a vector autoregressive process the
identification is based on the covariance matrix function. Model identification can help to
determine the order of a vector ARMA process; this method has been developed by
researchers, such as, Zellner and Palm (1974), Wallis (1977) and Tiao, and Tsay (1989).

Identification of a vector autoregressive process of order p

There are two methods to identify the vector autoregressive process of order p, which are
the likelihood ratio test and the information criterion. The likelihood ratio test is used to
determine the order of the VAR model, which is based on the estimates of the residual
covariance matrices in the fitted models. The parameters of vector autoregressive process

®,, will be zero at lag k. This gives null hypothesis statistics at lag k, (Tiao and Box, 1981)
Hy:®, =0
Hi:®, #0

when the VAR has been fitted to the series. Then, the likelihood ratio test is given by
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B (lSk—1|>
LR(k) = —(n—p — kk — 1.5) In (3.43)
| S|

where n is the number of observations of the vector of data and Sy _; is the residual sum of
the square matrix, obtained by fitting the AR model of order k — 1. The LR(k) test

asymptotically follows a chi square distribution with d? degree of freedom.

Another method to identify the VAR of order p is the information criterion, which can be

defined in three different ways, namely
AIC(k) = In(|Z]) + 2r/n
BIC(k) = In(|Z]) + In(m)r/n
HQ(k) =In(|Z]) + 2In(Inn) r/n

where r denotes the number of parameters estimated by maximum likelihood in the
VARMA model and ¥ is the maximum likelihood estimates of X. AIC is the Akaike
information criterion proposed by Akaike (1973), BIC stands for Bayesian information
criterion (Schwarz 1978) and HQ is the criterion proposed by Hanna and Quinn (1979),
(Quinn, 1980).

Identification of a vector moving average process of order q

The vector moving average process of order g can be identified by using the cross-
correlation matrices, which was suggested by Tiao and Box (1981). The cross-correlation
matrices satisfy p; = 0 for i > q. The elements of the sample cross correlation matrix at

lag k is given by

Yz — 7)) (2041 — Z7)

ﬁij(k) = 1/2
(Z?:l(zi,t - Z_i)z iz - Z_j)z)

fori,j=12,...d (344

where 7 is the number of the observations, Z; is the sample mean and p;;(k) is the lag k

sample cross correlation matrix of z;. The cross-correlation matrix is zero if z; follows

vector moving average process of order g and i > q.
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Identification of a vector autoregressive moving average process of order p and q
The parameters of vector autoregressive moving average of order p and g
®(B)z, = 0(B)e,

can be identified by the patterns in the cross correlations of the residuals after a low order
AR model has been fitted. For example, consider the case of a stationary ARMA(1,1)

model
(I —®B)z, = (I — OB)e; (3.45)

If an AR(1) model has been fitted to the series z;, then the estimate is
®,, = (D))
Thus, the residuals after the AR(1) model has been fitted will be
& =z — 17,
= (I - ®y,B)
These will approximately follow the model, from Equation 3.45.
& = (I—®,,B)(I— ®B)™'(I - OB)e,

The residuals €, of the sample correlations will behave approximately like a MA(1) model.
Therefore, the correct identification of a vector autoregressive moving average process can
be found by the examination of the residual cross correlation matrix after a AR(1) model

has been fitted to the process (Tiao and Box, 1981).

3.8.2 Model estimation of a vector time series

The next step of model building is model estimation. The parameters of a vector ARMA
process can be estimated by using the maximum likelihood function, the least square and
Bayesian methods. These methods of estimation of a vector ARMA process of order p and
q have been derived and developed by researchers, such as, Hillmer and Tiao (1979) and

Nicholls and Hall (1979).
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Estimate of a vector autoregressive process of order p
Consider the vector autoregressive process of order p VAR (p)
Z; = q)th_l + q)zzt_z + -4+ q)pzt_p + €

where z, is a d-dimensional vector valued time series and e; is white noise. The log
likelihood function of a VAR process of order p can be written as

n

1@,2) = - " =Pyoez)) —% Z tr (efze,)

2
t=p+1

By using the trace rules for a matrix, namely, tr(AB) = tr(BA) and tr(A+ B) =
tr(A) + tr(B), then

n
n— 1
__( zp)log(|z|)—§tr 1 Z (ecel) (3.46)
t=p+1
where
=2, — P91z, 1 — Pz, D,z p
and
n
S N
= _ etet
n pt=p+1

Estimate of a vector moving average process of order q
Consider the vector moving average process of order ¢ VMA(q)
Zt = @1et_1 + @zet_z + 4 @qet_q + et

where z, = (z14, Zop, ., Zge) T, is @ d X 1 vector of variables observed at time t, e, =
(e1t, €atr -, €q:) T, is a d X 1 vector white noise process with zero mean, covariance matrix
X = E[e.e,] and 0; is a d X d matrix of coefficients G=12..,9).

The exact likelihood estimation of the vector moving average can be written as

73



Chapter 3— Multivariate vector ARMA time series

_ 1
f(2) = @)~/ |52 |atE-14] " exp {— (Bz + Aé")'5"1(Bz
2
(3.47)
+ Aé*)}

where
e; = Bz + Ae”,
e =(el_, el eJr)Jr
1_q1 Z_ql = %0 D)
A is a matrix of dimension d(n + q) X dq and B is a matrix of dimension d(n + q) X dn,
which are only determined by 04, @5, ..., 0,4, (Osborn, 1977).
Estimate vector autoregressive moving average process of order p and q

Consider the vector autoregressive moving average process of order p and ¢ VARMA(p, q)
Zt == (I)lzt_l + se + (DpZt_p + et - Olet_l - Ozet_z — e = Oqet_q (3.48)

where z, = (244, Zpp, -, Zge) T is a d X 1 vector of variables observed at time t, e, is zero
mean white noise process with covariance matrix X2, ®; (i =1,2,..,p) are d Xd

parameter matrices and @ is a d X d matrix of coefficients, for (j = 1,2, ..., q). There are

two methods to estimate the parameters of the VARMA model, which are the conditional

likelihood method and the exact likelihood method.

The conditional likelihood method of vector ARMA process can be obtained by
n
n 1 ty-1
(®,0,5) = —log(1Z) —5 ) (e[Ze,) (3.49)
t=p+1
From Equation 3.48
(I)Zt = @et
et = 0_1¢Zt

Therefore, the conditional likelihood method for vector ARMA can be written as
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=~ Z1og(12) ~ 3¢ (1, ® T e, (.50)

The conditional likelihood method has been derived by Tunnicliffe (1973), Reinsel (1979)
and Anderson (1980).

The exact likelihood function of a stationary vector ARMA in Equation 3.48 has been
derived by Hillmer and Tiao (1979) and Nicholls and Hall (1979). Further information for
the exact likelihood function is detailed in Reinsel (1993).

3.9 Diagnostic checking of vector ARMA models

Diagnostic checking ensures the adequacy of a model in time series analysis, which can be
conducted by using portmanteau tests. The portmanteau testing of VARMA models is
based on the residual covariance matrices at several lags, this approach was developed by
Hosking (1980). The existing portmanteau test used to examine VARMA models can be
defined as (Hosking, 1980):

Oy = n? Z(n — D" YUr(r@z-tr()tzy), (3.51)
i=1

where

-1
r(k) = n_l étét—k k = 1,2,...,771,
1

S

~
1l

It has been shown by Hosking (1980) that the test statistic O is approximately distributed

as chi-square with d?(m — p — q) degree of freedom.

The next chapter will investigate how the new portmanteau test Oy, can be used with
vector autoregressive moving average models. Monte Carlo experiments will be conducted
to find the empirical size and power level to compare the new portmanteau test with the

existing portmanteau test.
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3.10 Summary

This chapter briefly discussed the extension of the Box and Jenkins methodology to a
vector setting (VARMA models). An outline of the mean vector, the covariance and
correlation matrix functions, the vector white noise process, the linear process of vector
time series, the vector autoregressive, vector moving average, the vector autoregressive
moving average processes and model building of vector ARMA time series have been

provided.

76



Chapter 4 - The Influence Of Data Length On Testing
Stationarity Of Univariate Time Series

The aim of this chapter is to examine how the number of available observations of a time
series can influence its apparent stationarity (that is, its identification as being either
stationary or non-stationary) as measured by two standard tests. The univariate time series
case is examined. To explore this issue, time series are generated from a known statistical
model, a first-order autoregressive process. Parameters are chosen that ensure that the
series are theoretically stationary. The standard Dickey-Fuller test and the Augmented
Dickey-Fuller test are used to determine whether the series of observations produced are
stationary or non-stationary. Monte Carlo experiments are undertaken using the R
program for various model parameters and lengths of series, and each simulation is

repeated 10,000 times.

4.1 Introduction

A critical factor in fitting a model to a time series, using the Box and Jenkins methodology
(1970), is identifying whether or not the time series is stationary or non-stationary. In the
case of the data being non-stationary, extra steps need to be undertaken to make the data
stationary, typically, by differencing the data or by some transformation of the data. The
consequence of incorrectly identifying a stationary time series as being non-stationary is

that it will lead to the data being altered inappropriately and the wrong model being fitted.

One factor that has a strong influence on the ability to identify a time series as being
stationary or non-stationary is the length of data available. Note that, a process is
stationary when its joint probability distribution does not change with time (Box and
Jenkins methodology, 1970). A non-stationary process would be expected to exhibit
deterministic trends, random walks and other non-stationary behaviour. The difficulty in
identification arises from the fact that a stationary process may, for a short period, exhibit
non-stationary behaviour, and conversely, a non-stationary process may exhibit stationary
behaviour for a short period. Identification of stationarity can be achieved by the

application of standard tests.
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To examine the relationship between the length of a series of data and the reliability of the
identification of its stationarity a simulation study was conducted. In outline, the procedure
was as follows. First, stationary data were generated from a known statistical process of a
univariate time series, that is, an autoregressive process. Next, different lengths of the
simulated data were tested using the standard tests of stationarity to examine the apparent
stationarity of the time series. The standard tests employed were; the Dickey-Fuller test

(DF) and the Augmented Dickey-Fuller test (ADF).

When data are generated by a known statistical model (or collected from a real-world
process), the length of data available may affect the apparent stationarity of the time series
produced. For example, when considering a first-order autoregressive process, a short
series of data with a value of parameter, such as 0.9, may produce a non-stationary time
series, whereas a long series of data with the same parameter value may pass a test for

stationarity.

4.2 Testing of non-stationary time series

There are many tests that have been developed to identify whether a time series is stationary
or non-stationary. Unit root tests are widely used to test for stationarity in time series for
different kinds of data, such as, stationary data, stationary data with a drift term, and
stationary data with drift and trend terms. The null hypothesis of a unit root test for a first-
order autoregressive process is, Hy: |¢p1| =1, the time series is non-stationary (has a unit
root). The alternative hypothesis is, H;: |¢;| < 1, the series is stationary (does not have a

unit root).

Phillips and Perron in 1988 introduced a non-parametric modification to the standard
Dickey-Fuller test of a unit root that they used to test for stationary behaviour in a time
series analysis. The Phillips-Perron (PP) test deals with serial correlation. One advantage
of the PP test is that the user does not have to specific the lag length, (Phillips and
Perron,1988). Kwiatkowski, Phillips, Schmidt and Shin (KPSS) in 1992 derived another
form of the null hypothesis test in time series analysis versus alternative of unit root. The
series of observations of the KPSS test is expressed as the sum of the deterministic trend,

a random walk and a stationary error term (Kwiatkowski, Phillips, Schmidt and Shin,
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1992). Eliot, Rothenberg and Stock in 1996 introduced another modification of the
Augmented Dickey-Fuller test in which the data are detrended so that explanatory variables
are “taken out” of the data prior to running the test regression, it is known as the ERS test.
One advantage of this test statistic is that it improves the power when the time series has
unknown mean or trend, (Eliot, Rothenberg and Stock,1996). Perron and Ng in 1996 used
the ADF-GLS detrended procedure data to create efficient versions of the modified form
of Phillips and Perron, (Perron and Ng, 1996). Ng and Perron (2001) suggested the
modified information criteria MIC for selecting the max lag. It is based on the Akaike
information criteria AIC (Akaike, 1973) and the Schwarz information criteria BIC
(Schwarz, 1978). Nason in 2013 introduces a new test for second-order stationarity that
detects different kinds of departures from stationarity. The new test is also computationally
fast, designed to work with Gaussian and a wide range of non-Gaussian time series, and

can locate non-stationarities in time series, (Nason, 2013).

4.2.1 The Dickey-Fuller (DF) test

The Dickey-Fuller test (Dickey, Fuller, 1979) is a unit root test for non-stationarity of a
time series. In 1979, Dickey and Fuller considered three different regression equations
that are based on a first-order autoregressive process, which can be used to test a non-
stationary time series, namely the test for a unit root, the test for a unit root with drift, and
the test for a unit root with drift and a deterministic time trend. The first-order

autoregressive process may be written as

Zy =124+ e 4.1)

where z; is a value of a time series at time t, ¢b; is a real number and e, is a white noise of
mean zero and constant variance 6. Equation 4.1 can be transformed to

Vzy = (p1— Dzeq + e
where V is the differencing operator.
Dickey and Fuller constructed a statistic by analogy to the t-ratio test for the estimate of
¢+, which is estimated by the least squared method,
_ Di=1ZcZt—1

b1 =

n 2
t=1%2t-1
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then,

¢ —1
SE($1) (4.2)

where SE(qgl) is the standard error of the estimated parameter ¢;. The null and alternative
hypotheses of the DF test are

Ho: |1l =1

Hy:lg] <1

The distribution of the DF test statistic was investigated by Dickey (1976), as an analytical
description was not possible, he used simulations to calculate the critical values, see
Appendix E for an outline of the method employed. He provided tables of the critical values
of the DF test statistic’s distribution for the three cases of: stationary, stationary with drift,

and stationary with drift and trend time series.

The first-order autoregressive process with drift can be written as
Ze = o+ P12t-1 + e (4.3)

then, the unit root test with drift can be written as
Vze = po + (P1 — 1ze 1 + e
The first-order autoregressive process with drift and a deterministic time trend can be

written as
Zp =po+ it + 1z 1 e (4.4)

So, the unit root test with drift and a deterministic time trend is
Vz, = po + gt + (g — Dzey + e
where g + pt is a deterministic linear trend.
This provides three tests for data, for the cases where they are either stationary, stationary
with drift, or stationary with a linear trend. In the rest of the chapter these three tests will

be referred to as the DF test, the DF drift test and the DF trend test.
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4.2.2 Augmented Dickey-Fuller test (ADF)

Dickey and Fuller (1981) generalized the DF test and applied it to the AR (p) process. This
is named the Augmented Dickey-Fuller test (ADF). Equation 1.1 can be written using

summation notation as

P
Zy = Z bizi_; + e
i=1

this can be transformed (Dickey and Fuller (1981) to

14
Zt = TZt1 + Z ¢l VZt_i + et

=1

hence,

14
VZt = (T - 1)Zt—1 + Z ¢l VZt_i + et (4.5)

=1

where 7 is the sum of the autoregressive coefficients, that is

T =

b

VE

=1

The test statistic for the Augmented Dickey-Fuller test (ADF) is

(4.6)

where SE(%.) is the standard error of the estimated parameter . The null and alternative
hypotheses of the ADF test is

Hy: |t| =1

Hy: |7l <1
where H, is the null hypothesis (has unit root and non-stationary) and H; is the alternative

hypothesis (stationary).
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The distribution of the ADF test statistic was investigated by Dickey and Fuller (1981),
they used simulations to calculate the critical values following the method of Dickey
(1976), see Appendix E. They provided tables of the critical values of the ADF test
statistic’s distribution for the three cases of: stationary, stationary with drift, and stationary
with drift and trend time series.

The autoregressive process of order p with drift y, can be written as
Zg = o+ P12t 1+ Doz o+ o+ Ppzep + e 4.7)

then, the unit root test with drift can be written as

p
Vzp = po+ (1 = 1ze g + Z b Vz_ i+ e

i=1
The autoregressive process of order p with a deterministic time linear trend pg + p4t can

be written as
Ze = ottt + 1z + Doz o+ + Ppzep + e (4.8)

So, the unit root test with deterministic time linear trend is
P

Vzp = po +mt + (T =Dz g + Z $iVz_i+ e
i=1

The critical values of this test statistic were calculated by simulation and can be obtained
in Dickey (1976) and Fuller (1976). If the test statistic value is greater than the critical
value, then the null hypothesis will be accepted, it means that the time series has a unit root
and is non-stationary. If this is the case, the data will need to be transformed to obtain a

stationary series.

An important issue of the ADF test is the specification of the lag length. If the lag length
is too small then the remaining serial correlation in the error will bias the test, if the lag
length is too large the power of the test will suffer (Schwert, 1989). A useful equation for
determining the lag length that gives the test with the most power, as suggested by Schwert,

1S
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112 = [12 (12—0)1/4] (4.9)

This gives three further tests for data that are either stationary, stationary with drift, or
stationary with a linear trend. In the rest of this thesis these will be referred to as the ADF
test, the ADF drift test, and ADF trend test respectively. In each case, the lag length

employed is determined by Equation 4.9 as recommended by Schwert.

4.3 Monte Carlo experiment

The aim of this simulation is to show how the length of the series of observations will affect
the apparent stationarity of the time series produced. A Monte Carlo experiment was
conducted with 10,000 replications to simulate different lengths of series, namely, n = 25,
50, 75, 100, 250, 500, 750 and 1000 observations. The series were produced using the R
language. Normally distributed N(0,1) pseudo random numbers were generated using the
Mersenne-Twister generator (Matsumoto and Nishimura 1998). Then an AR(1) process
Z¢ — ¢q Z;_1 = e; was used to generate the data to be tested, using different positive and
negative values of parameter ¢p; = £0.1, 0.2, +0.3, £0.4, +£0.5, £0.6, 0.7, +0.8, £0.9, and
+0.99. Versions of the AR(1) process with drift z; = pg + ¢ z,_1 + e, and with drift and
trend z; = po + it + ¢ z,_41 + e, were also produced using the values yy = p; = 0.5
The DF and ADF tests were then used to determine whether the time series produced were

stationary or non-stationary.
4.3.1 The steps of the Monte Carlo experiment to test the length of series
observations

The steps of the Monte Carlo experiment using the DF and ADF tests to examine the

stationarity of an AR(1) process, are:
1. Generate 1000 points of data from a Normal distribution (e, white noise).

2. Use the e; values to generate observations from an AR(1) process with parameter ¢p,=

+0.1, £0.2, +0.3, £0.4, £0.5, 0.6, £0.7, =0.8, +£0.9, and +0.99.
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3. Use the AR(1) data to produce three versions of the time series that are, stationary,
stationary with drift y, = 0.5, and stationary with drift and a deterministic trend p, =

U1 = 0.5.

4. For each of the 3 time series in step 3, select the first n data points, where n = 25, 50,

75, 100, 250, 500, 750, 1000.

5. Test, at the 0.05 significance level, all the time series in step 4 using the DF and ADF
tests, using the appropriate version of the tests (stationary, stationary with drift, or

stationary with drift and trend).
6. Count the number of non-stationary series identified by both tests separately.
7. Repeat 10,000 times from 1-6.

Note, in the simulation result presented, values of u, and u; = 0.5 were used. Simulations
using values of py and u; = 0.1,0.3,0.7 and 0.9 were also conducted and gave the same

results, but these not presented.

4.3.2 Generated data under an AR(1) process with positive values of parameters

Figure 4.1 gives the number of time series from an AR(1) process, identified as being non-
stationary by the DF test, where ¢; varies from 0.1 to 0.99 and different lengths of time
series are examined. For the shortest time series (n = 25) the number identified as non-
stationary is about 6% when ¢; = 0.5 and increases markedly for larger values of ¢;. For
the medium lengths of time series (n = 50, 75, 100) the number identified as non-stationary
increases when the values of ¢, reaches 0.8, 0.9, and 0.9 respectively, with at least 20%
identified as non-stationary in each case. For the longest lengths of data, such as n = 250,
500, 750, 1000 the number of non-stationary time series identified is near zero for all values

of ¢y < 0.99.

For any given value of ¢; the number of time series identified as being non-stationary
decreases as the length of the time series increases. In the case of values of the parameter
¢, very near to 1, such as, ¢p; = 0.99, most of the time series are identified by the DF test
as non-stationary, even for the longest series examined, which is to be expected, as at ¢, =

1 the AR(1) process (Equation 4.2) is no longer stationary
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Figure 4.1 The number of series identified as non-stationary by the DF test, data
generated under an AR(1) process, z; = ¢,2Z;_1 + e;, using a range of positive
parameters ¢; and different lengths of data.

Figure 4.2 gives the number of time series from an AR(1) process identified as being non-
stationary by the ADF test. When the length of the times series is 100 or less, at least 20%
of the series are identified as being non-stationary, irrespective of the value of ¢,. For the
time series of length 250, the number of series identified is under 5% for all values of ¢,
below 0.9, at which point it is approximately 11%. When time series are generated with
the longest lengths (n = 500, 750, and 1000) then all series produced are stationary except

when the value of the parameter is very close to 1, i.e., ¢; = 0.99.
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Figure 4.2 The number of series identified as non-stationary by the ADF test, data
generated under an AR(1) process, z; = ¢12;_1 + e, using a range of positive
parameters ¢, and different lengths of data.

Figure 4.3 gives the number of time series from an AR(1) process with drift (drift parameter
value pg = 0.5) identified as being non-stationary by the DF drift test. For the very shortest
length of time series (n = 25) the number identified as non-stationary is above 5% for all
values of ¢, larger than 0.1. For medium lengths of time series (n = 50, 75, and 100) the
number of non-stationary time series is above 5% for values of ¢, above 0.6, 0.7 and 0.8
respectively. For the longest lengths of data (n = 250, 500, 750 and 1000) the number of

non-stationary time series is near zero for all values of ¢p; below 0.99.
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Figure 4.3 The number of series identified as non-stationary by the DF drift test, data

generated under an AR(1) process with drift, z; = pug + ¢12,_1 + €;, using a range of
positive parameters ¢, and different lengths of data.

Figure 4.4 gives the number of time series from an AR(1) process with drift (drift parameter
value py = 0.5) identified as being non-stationary by the ADF drift test. For the lengths of
time series (n = 25, 50, 75, and 100) over 20% of the series are identified as being non-

stationary for all vales of ¢,. For data lengths 250 and 500 the number of non-stationary

time series rises above 5% for values of ¢, above 0.1 and 0.8 respectively. For longer

lengths of time series (n = 750, and 1000) the number of series identified as non-stationary

is nearly zero for all vales of ¢ below 0.9.
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Figure 4.4 The number of series identified as non-stationary by the ADF drift test, data
generated under an AR(1) process with drift, z; = pug + ¢p12,_1 + €, using a range of
positive parameters ¢, and different lengths of data.

Figure 4.5 gives the number of time series from an AR(1) process with drift and trend
(parameter values py = 0.5 and p; = 0.5) identified as being non-stationary by the DF trend
test. For the shortest length of time series (n = 25) the number of non-stationary time series
is above 5%, even for the lowest value of the parameter examined ¢; = 0.1. For time series
of lengths 50, 75 100 and 250 the number of series identified as being non-stationary is
below 5% for all values of ¢, up to 0.4, 0.6, 0.7, and 0.8 respectively. For the longest
length series (n = 500, 750, and 1000) approximately zero percent of the series are

identified as being non-stationary for all values of ¢»; below 0.99.
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DF TREND TEST
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Figure 4.5 The number of series identified as non-stationary by the DF trend test, data
generated under an AR(1) process with drift and trend, z; = pg + pqt + 121 + ey,
using a range of positive parameters ¢, and different lengths of data.

Figure 4.6 gives the number of time series from an AR(1) process with drift and trend
(parameter values py = 0.5 and pu; = 0.5) identified as being non-stationary by the ADF
trend test. For time series of lengths 25, 50, 75, 100 and 250 the number of non-stationary
time series is above 5% for all values of ¢,. When the length of the time series is 500 the
number identified as non-stationary is below 5% for value of ¢; up to 0.9. For the series

of longer lengths (n = 750, and 1000) the number of non-stationary time series is near zero

for all values of ¢, below 0.99.
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Figure 4.6 The number of series identified as non-stationary by the ADF trend test, data
generated under an AR(1) process with drift and trend, z; = pg + pqt + 121 + ey,
using a range of positive parameters ¢, and different lengths of data.

4.3.3 Generated data under an AR(1) process with negative values of parameters

When data are generated under an AR(1) process with negative values of parameter ¢,
then the DF test identifies all the time series as being stationary irrespective of the length
of the series. Similarly, for an AR(1) process with drift, all cases are identified by the DF

drift test as stationary. Also, in the case of the AR(1) process with drift and trend, all cases

are identified as stationary by the DF trend test.

Figure 4.7 gives the number of time series from an AR(1) process with negative values of
parameter ¢, that have been identified as being non-stationary by the ADF test. For time
series of lengths 25, 50, 75 and 100 the number of non-stationary series are not affected by

the values of parameters, but instead remains approximately constant and dependent on the
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length of the time series. The percentage of non-stationary series identified as non-
stationary decreases with increasing length of series, and for series of length 25, 50, 75 and
100 it is approximately 87%, 63%, 33% and 15% respectively. For longer time series (n >

100) all the series are identified as stationary.
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Figure 4.7 The number of series identified as non-stationary by the ADF test, data
generated under an AR(1) process, z; = ¢12,_1 + e, using a range of negative
parameters ¢, and different lengths of data.

Figure 4.8 gives the number of time series from an AR(1) process with drift (drift parameter
value py = 0.5) and with negative values of parameter ¢, that have been identified as being
non-stationary by the ADF drift test. For time series of lengths 25, 50, 75 and 100 the
number of non-stationary series are not affected by the values of the parameter, but instead

remains approximately constant and dependent on the length of the time series. The
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percentage of non-stationary series identified as non-stationary decreases with increasing
length of series, and for series of lengths 25, 50 75 and 100 it is approximately 95%, 90%,
78% and 60% respectively. For longer time series (n > 100) all the series are identified as

stationary.
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Figure 4.8 The number of series identified as non-stationary by the ADF drift test, data
generated under an AR(1) process with drift, z; = pug + ¢p12,_1 + €, using a range of
negative parameters ¢; and different lengths of data.

Figure 4.9 gives the number of time series from an AR(1) process with drift and trend
(parameter values pg = 0.5 and p; = 0.5), and with negative values of parameter ¢, that
have been identified as being non-stationary by the ADF trend test. For time series of
lengths 25, 50, 75, 100 and 250 the number of non-stationary series are not affected by the

values of the parameter, but instead remains approximately constant and dependent on the
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length of the time series. The percentage of non-stationary series identified as non-
stationary decreases with increasing length of series, and for series of lengths 25, 50 75,
100 and 250, it is approximately 95%, 95%, 88%, 79% and 13% respectively. For longer

time series (n > 250) all the series are identified as stationary.
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Figure 4.9 The number of series identified as non-stationary by the ADF trend test, data
generated under an AR(1) process with drift and trend, z; = pg + pit + 12,1 + €4,
using a range of negative parameters ¢, and different lengths of data.

4.4 Data generated under an AR(2) process with different values of parameters

A Monte Carlo experiment was conducted with 10,000 replications to simulate different
lengths of series, namely, n = 25, 50, 75, 100, 250, 500, 750 and 1000 observations. Then
an AR(2) process z; — ¢ z;_1 — ¢, Z;_, = e; was used to generate the data to be tested,
using different positive values of parameters ¢, and ¢,. All combinations of parameters

¢, =0.1,0.2,...,09 and ¢, = 0.1,0.2, ..., 0.9 were simulated, subject to the stationarity
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condition of an AR(2) process, namely, ¢, + ¢, < 1. Versions of the AR(2) process with
drift z; = puo+ 1 2,1 + b, 2., + e, and with drift and trend 2z, = py + pu it +
¢1 Z—q + P, Zi_, + e, were also produced using the values py = p; = 0.5, and the above
combinations of parameters ¢; and ¢,. All the time series were then tested by the DF tests

and the ADF tests.

4.4.1 AR(2) processes tested for stationarity by the DF tests.

The DF tests was used to determine whether the time series produced were stationary or
non-stationary. Figure 4.10 shows the simulation results for two representative values of

¢+, namely, 0.1 and 0.5, full results can be found in Appendix D.

Figure 4.10a gives the number of non-stationary time series when data are generated by
the AR(2) process z; = ¢1 Zi_1 + $, 25 + €, with ¢p; = 0.1 and where ¢, takes the
values 0.1 to 0.9, tested by the DF test. For data lengths 25 most of the series are non-
stationary when the values of ¢, are greater than 0.6. For the data lengths equal or greater
than 75, all series are non-stationary when the values of parameter ¢, equal or greater than
0.8. Figure 4.10b, gives the number of non-stationary time series when ¢, = 0.5, and ¢,
varies. For the data lengths 50 to 75 most of the series are stationary when the values of ¢,
are less than or equal to 0.2. For data lengths equal or greater than 100 the number of non-
stationary series start to increase rapidly when the values of parameter ¢, reaches 0.5 or

greater.

Figure 4.10c, shows data generated by the AR(2) process z; = o + 1 z¢_1 + &y Z_p +
eq, with ¢p; = 0.1 and where ¢, varies, tested by the DF drift test. For the data lengths 25
most of the series are stationary when the values of ¢, are less than or equal to 0.2. For
data lengths 50 to 100 the number of non-stationary series start to increase rapidly when
the values of parameter ¢, reaches 0.9. Figure 4.10d presents data generated by the AR(2)
process with ¢p; = 0.5, and where ¢, varies. For the data lengths equal to 75 most of the
series are non-stationary when the values of ¢, greater than 0.2. For the data lengths equal

to 100 majority of the series are non-stationary when the values of ¢, greater than 0.3. For
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the data lengths equal or greater to 250 the number of non-stationary series start to increase

rapidly for values of parameter ¢, of 0.5 or greater.

Figure 4.10e, provides data generated by the AR(2) process z; = pg + pqt + 1 2,1 +
¢, z¢_, + e, with ¢p; = 0.1 and where ¢, varies, tested by the DF trend test. For the data
lengths less than or equal 100, most of the series are non-stationary. For the data lengths
25 most of the series non-stationary with different values of ¢,. For the data lengths equal
or greater than 50 most of the series are stationary with different values of ¢,. Figure 4.10f,
presents data generated by the AR(2) process, with ¢p; = 0.5 and where ¢, varies. For the
data lengths equal to 75 most of the series are non-stationary when the values of ¢, greater
than 0.2. For the data lengths equal to 100 majority of the series are non-stationary when
the values of ¢, greater than 0.3. For the data lengths equal or greater to 250 the number

of non-stationary series start to increase rapidly for values of parameter ¢, 0.5 or greater.
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and DF trend test, data generated under AR(2) process.
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4.4.2 AR(2) processes tested for stationarity by the ADF tests.

The ADF tests was used to determine whether the time series produced were stationary or
non-stationary. Figure 4.11 shows the simulation results for two representative values of

¢1, namely, 0.1 and 0.5, full results can be found in Appendix D.

Figure 4.11a gives the number of non-stationary time series when data generated by the
AR(2) process z; — ¢p1 Zy—1 — Py Zs_, = €4, with ¢, = 0.1 and where ¢, takes the values
0.1 to 0.9, tested by the ADF test. For data lengths less than or equal to 50 most of the
series are non-stationary. For the data lengths equal or greater than 250, virtually all the
series are stationary until the parameter ¢, reaches to 0.6, with the number of non-
stationary series increasing rapidly after this point. Figure 4.11b, gives the number of non-
stationary time series when ¢; = 0.5, and ¢, varies. For the data lengths less than or equal
to 75 the majority of the series are non-stationary. For data lengths equal or greater than
250 the number of non-stationary series start to increase rapidly when the values of

parameter ¢, reaches 0.4 or greater.

Figure 4.11c, shows data generated by the AR(2) process z; = o + 1 21 + &y Z_p +
e:, with ¢o; = 0.1 and where ¢, varies, tested by the ADF drift test. For data lengths less
than or equal to 100, most of the series are non-stationary. For data lengths equal or greater
than 250, the number of non-stationary series start to increase for values of parameter ¢,
= (0.7 or greater. Figure 4.11d, presents data generated by the AR (2) process with ¢, =
0.5, and where ¢, varies. For the data lengths less than 250, most of the series are non-
stationary. For the data lengths greater than 250, the number of non-stationary series start

to increase rapidly for values of parameter ¢, of 0.4 or greater.

Figure 4.11e, provides data generated by the AR(2) process z; = pg + pqt + ¢pq 2,1 +
¢, Zi_5 + e, with ¢4 = 0.1 and where ¢, varies, tested by the ADF trend test. For the data
lengths less than or equal 100, most of the series are non-stationary. For data lengths greater
than 500, the number of non-stationary series start to increase rapidly for values of
parameter ¢, = 0.6 or greater. Figure 4.11f, presents data generated by the AR(2) process,
with ¢; = 0.5 and where ¢, varies. For data lengths less than or equal to 100, most of the
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series are non-stationary. For the data lengths greater then 250, the number of non-

stationary series start to increase rapidly for values of parameter ¢, = 0.3 or greater.
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Figure 4.11 The number of series identified as non-stationary by the ADF test, ADF drift
test and ADF trend test, data generated under AR(2) process.
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4.5 Variability of DF tests and ADF tests

To discover the variability of the DF tests and the ADF tests a Monte-Carlo experiment
was conducted with 1000 replications of the experiment carried out in Section 4.3.1. As
this experiment involved 1000 replications of a simulation involving 10,000 replications
this is only conducted ¢; = 0.5. The aim was to calculate the mean and standard deviation
for the DF test, the DF drift test, the DF trend test, the ADF test, the ADF drift test and the
ADF trend test, when n = 100 observations under an AR(1) process. The DF tests and the

ADF tests were calculated by using the steps of the previous Monte-Carlo experiment.

n =100
. . ADF
¢1=0.5 DF DF drift | DF trend ADF ADF drift
trend
Mean 0 0 0.15 2784.95 | 7256.425 | 8588.7
Standard 0 0 0.36162 | 38.66155 | 40.26189 | 35.13943
deviation

Table 4.1 The mean and standard deviation for the test DF tests and ADF tests, data gen-
erated under an AR(1) process with ¢p; = 0.5 and n = 100.

As can be seen from Table 4.1 the results of this experiment show that for the parameter
value ¢, = 0.5 the DF and DF drift tests have the standard deviation equal to zero and the
DF trend with standard deviation 0.36162. These results are as expected as the DF tests are
the appropriate tests for this situation and almost all the time series are identified as sta-
tionary. In the case of the ADF test, the ADF drift test and the ADF trend test most time
series are identified as non-stationary, which is to be expected as these are not the appro-

priate tests (this assumes prior knowledge that the process is an AR(1)).

The standard deviations for the ADF tests are around 1 percent of the associated mean.
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4.6 Summary

The simulations undertaken show that the length of a time series critically affects the
number of series identified as being non-stationary by standard tests (for example, the DF

test and the ADF test).

A stationary time series was generated from an AR(1) process with positive values of the
parameter and examined by the DF test, the DF drift test, and the DF trend test, see Figures
4.1,4.3, and 4.5. It was found to be reliable to examine the series for stationarity by using
the DF test, when n = 25 and the values of the parameter ¢, < 0.5, when n = 50 and for
values of the parameter ¢p; < 0.8, when n =75 or 100 and for values of the parameter ¢p; <

0.9, and when n = 250 with the values of the parameter ¢p; < 0.99.

It is dependable to examine a time series for stationarity when data is examined by the DF
test with drift, when n = 25 and for values of the parameter ¢p; < 0.2, when n = 50 and
for values of the parameter ¢p; < 0.6, when n =75 or 100 and for values of the parameter

¢, < 0.8, and when n > 250 and for values of the parameter ¢p; < 0.99.

It is reliable to examine the series for stationarity by using the DF test with trend, when
n = 50 and for values of the parameter ¢; < 0.5, when n = 75 and for values of the
parameter ¢p; < 0.7, when n = 100 and for values of the parameter ¢p; < 0.8, and when n
= 250 and for values of the parameter ¢; < 0.9, when n > 500 and for values of the
parameter ¢; < 0.99.

A time series was generated from an AR(1) process with positive values of the parameter
and examined by the ADF test, the ADF drift test, and the ADF trend test, see Figures 4.2,
4.4, and 4.6.

It is reliable to examine for stationarity by using the ADF test, when n =250 and the values
of parameter ¢; < 0.9, and when n > 250 with values of the parameter ¢p; < 0.99, see
Figures 4.2.

It was found to be reliable to examine for stationarity by using of the ADF test with drift,

when n = 250 with values of the parameter ¢; < 0.2, see Figures 4.4.
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It is dependable to examine for stationarity by the ADF test with trend, when n = 500 and
values of the parameter ¢; < 0.9, and when n > 500 for values of the parameter ¢p; < 0.99,

see Figures 4.4.

Table 4.2 gives a summary of the findings from the Monte Carlo experiments conducted
in Section 4.5, broken down by the DF, DF drift, DF trend, ADF, ADF drift and ADF trend
tests. For each length of data examined in the experiments, the maximum value of ¢, is
given that ensures the series will be correctly identified as stationary (a cut-off of no more
than 5% of the time series incorrectly identified is used, since the tests in the Monte Carlo
experiments were conducted at the 0.05 significance level). The symbol (-) in Table 4.2

means all time series are non-stationary.

Maximum positive values of ¢

Lengthn | 25| 50 | 75 | 100 | 250 | 500 | 750 | 1000

DF 04107/08]08109]09]09| 09

DF Drift [02]05]06|07 09|09 |09]| 09

DFTrend | - |04(06]0.7]09]09]09| 09
ADF - - - - 108109 09]| 09
ADF Drift | - - - - 103,08 ,09]| 09
ADF Trend | - - - - - 108109 09

Table 4.2 The maximum positive value of ¢, that ensures that the series are correctly
identified as stationary by the DF and ADF tests, the DF drift and ADF drift tests, and the
DF trend and ADF trend tests, for positive values of ¢p; and different lengths of data.

For an AR(1) process generated using negative values of the parameter ¢;and examined
by the ADF tests, the ADF drift test, and the ADF trend test (see Figures 4.7, 4.8, and 4.9)
the number of stationary series identified as non-stationary does not depend on the
parameter ¢4, instead it is dependent only on the number of data points in the time series.

As the number of data points increase the number of stationary time series identified as
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being non-stationary decreases. Table 4.3 gives the minimum number of data points
required to ensure that the ADF, the ADF drift and the ADF trend tests correctly identify

the time series as stationary for negative values of ¢, (again using a 5% cut-ofY).

Minimum number of data points

ADF 250
ADF Drift 250
ADF Trend 500

Table 4.3 The minimum number of data points in a time series generated from an AR(1)
process (with negative ¢;) that ensures that the series is correctly identified as stationary

by the ADF test, the ADF drift test, and the ADF trend test.

A time series was generated from an AR(2) process with a range of positives values of the
parameters ¢, and ¢,, and examined by the ADF test, the ADF drift test, and the ADF
trend test, see Figure 4.10 and Appendix D.

Tables 4.4 and 4.5 give a summary of the findings from the Monte Carlo experiments
conducted in Section 4.4, broken down by DF, DF drift, DF trend, ADF, ADF drift and
ADF trend tests. For each length of data examined in the experiments, the maximum value
of ¢, is given that ensures the series will be correctly identified as stationary (a cut-off of
no more than 5% of the time series incorrectly identified is used, since the tests in the
Monte Carlo experiments were conducted at the 0.05 significance level). The symbol (-) in

Tables 4.4 and 4.5 mean all time series are non-stationary.
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¢, =0.1 Maximum positive values of ¢,

Lengthn | 25| 50 | 75 | 100 | 250 | 500 | 750 | 1000

DF 0.6/08[08]08[08|08]08] 0.8
DF Drift |02]0.8]08/08 080808 0.8

DF Trend - 109/09[09109|09]09]| 09
ADF - - - - 06|08]08]| 0.8
ADF Drift | - - - - - 07108 0.8
ADF Trend | - - - - - 06 07| 08

Table 4.4 The maximum positive value of ¢,, when ¢,= 0.1 that ensures that the series

are correctly identified as stationary by the DF tests, the DF drift tests, the DF trend tests,

the ADF tests, the ADF drift tests, and the ADF trend tests, for positive values of ¢, and
different lengths of data.

¢, =05 Maximum positive values of ¢,
Lengthn | 25| 50 | 75 | 100 | 250 | 500 | 750 | 1000
DF -102/03/04[04/04]04| 04
DFDrift | - | - [02]03]04]04]04]| 04
DFTrend | - | - |02][03/04[04/04] 04
ADF - -] - - 103704041 04
ADF Drift | - | - | - - - 103704 04
ADF Trend | - | - | - - - 102103 04

Table 4.5 The maximum positive value of ¢,, when ¢, = 0.5 that ensures that the series

are correctly identified as stationary by the DF tests, the DF drift tests, the DF trend tests,

ADF tests, the ADF drift tests, and the ADF trend tests, for positive values of ¢, and dif-
ferent lengths of data
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Table 4.4 shows that it is reliable to examine an AR(2) process for stationarity by using the
DF test, the DF drift test, and the DF trend test, when n = 50 and ¢; = 0.1, with ¢, less
than or equal 0.8. It is dependable to examine an AR(2) process for stationarity by using
the ADF test, the ADF drift test, and the ADF trend test, when n =750 and ¢p; = 0.1, with
¢, less than or equal 0.8. It can be seen from Table 4.5 that it is reliable to examine an
AR(2) process for stationarity by using the DF test, the DF drift test, and the DF trend test,
when n =50 and ¢p; = 0.5, with ¢, less than or equal 04. For the ADF test, the ADF drift
test, and the ADF trend test, when n =750 and ¢; = 0.5, then ¢, must be less or equal 0.4
for stationarity to be correctly identified. From Appendix D it can be seen that for values
of ¢, larger than 0.5 all the ADF tests are unreliable even for large values of  (e.g., 1000)

and for small values of ¢, (i.e., less than or equal 0.4).
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The aim of this chapter is to review previous studies in the area of portmanteau tests, which
have been developed by several researchers. The chapter also presents a new portmanteau
test, which is based on exponential weights of the residual partial autocorrelation function.
Monte Carlo experiments are used to compare the performance of the new portmanteau

test to existing tests.

5.1 Introduction

Diagnostic checking is the third stage of the Box and Jenkins methodology. The adequacy
of a statistical model is examined, by considering the model’s residuals, then the
autocorrelation and partial autocorrelation functions are used as diagnostic tools to test the
goodness of fit of the model. A portmanteau test is an important method of diagnostic
checking, which is used to test the goodness of fit of an ARMA model of a time series,

which has been studied by both Box and Pierce (1970) and Ljung and Box (1978).

A portmanteau test is calculated by summing the residuals of the autocorrelation or partial
autocorrelation function of the fitted model. Then the value of the portmanteau test is
compared with a critical value. If the value of the portmanteau test is less than the critical
value, it means the model is appropriate for the data. Alternatively, if the value of the
portmanteau test is bigger than the critical value, it means the model is inappropriate for

the data.

Suppose that a time series {z;} is generated by a stationary and invertible ARMA(p, q)
process

¢(B)z, = 0(B)e;
where {e,} is a white noise process of mean zero and constant variance 2, and ¢ (B)
and 8(B) are polynomials given by ¢(B) =1—¢,B—:-—¢,BP and 6(B) =1—
6:1B — --- — 6,B9, has been fitted by maximum likelihood estimates ((f), é) obtained for the

parameters, then it is possible to identify the residuals as
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ér = é_l(B)(ls(B)Zt’ (5.1

The residuals are computed recursively using Equation 1.3 in the following form

p q
ét=Zt—Z$th_j+zAjét_j t=1,2,"',n (5.2)

These residuals é; from the ARMA model will be random if the model is correct, this
means that the autocorrelation of the residuals p, will be zero at all lags k. This gives the

null hypothesis for all lags k
Ho: Pr = 0
Hl: Pk 0

When considering the partial autocorrelation ¢, of the residuals at lags k the hypothesis

test can be given in the equivalent form
Ho: ¢y =0
H1: ¢kk *0

All the following tests will use one of these forms of the hypothesis, depending on whether

the statistic relies on py or ¢y

5.1.1 Box and Pierce test

Box and Pierce (1970) showed that if the fitted model is appropriate then the portmanteau

test statistic
m
Gor =1 ) PE(® (53)
is approximately distributed as y2(m — p — q), where p; is the sample autocorrelation

function, and n is the number of observations and m is the maximum lag taken into account.
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5.1.2 Ljung and Box test

Ljung and Box (1978) showed that the chi-squared distribution does not provide a
sufficiently accurate approximation to the distribution of the statistic Qgp under the null
hypothesis, with Qpp tending to the smaller values than expected under the chi-squared
distribution. Empirical evidence to support this was presented by Davies, Triggs and
Newbold (1977). Consequently, Ljung and Box (1978) proposed a modified form of the

portmanteau test statistic given by
m
Oup =n(n+2) Y (n =)™ E(@) (54
k=1

where

n n
pr(é) = Z etet—k/z et2
t=1

t=k+1

The modified statistic has, approximately, a mean of E (Q) ~m—p—q of the

x%(m — p — q) distribution, where n is the number of observations and m is the maximum

lag taken into account.

5.1.3 Monti test

Monti (1994) showed that the statistic 3,, in Equation 5.5 is asymptotically distributed as
x?(m — p — q), analogous to the asymptotic distribution of the statistic 9, in Equation
5.4. The portmanteau test 9,5 is based on the autocorrelation functions. Monti (1994)

suggested a portmanteau test statistic
m
On =n(n+2) ) (=107 $2(@) (55)
k=1

where ¢, (8) is the residual partial autocorrelation at lag k, n is the number of

observations and m is the maximum lag taken into account. Hence a test of model

adequacy can be based on referring the value of §,, to the upper critical value of the

x2(m — p — q) distribution. If the model is correct, ¢p#, (&) is approximately distributed
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as a normal random variable with mean zero and variance (n — k)/ (n(n + 2)). The test

based on @), has been found to be typically at least as powerful as 0,5 (Monti, 1994).

5.1.4 Peiia and Rodriguez 2002 test

Pena and Rodriguez (2002) showed that the portmanteau goodness-of-fit test statistic is
based on a general measure of multivariate dependence. Denote the correlation matrix up

to order lag m of residual é; from the fitted ARMA(p, g) model by

/1 p1(&)  p(&) - pi(é)
) @ 1 p® o pea(®
Ru@ =10 p@ 1  Pre2(@) |

\ﬁk(é) Pr-1(8) Pr—2(&) - 1
The proposed portmanteau test statistic is based on the determinant of this correlation

matrix, a general measure of a dependence in multivariate analysis, and is given by
~ ~ ~|1l/m
D =n(1-|Rm(@)]"™) (5.6)

where n is the length of the time series. If the model is correctly identified, D,, is
asymptotically distributed as a linear combination of Chi-squared random variables and is
approximately a Gamma distribution random variable for large values of m with parameter

aand .

The distribution of D,, can be approximated by the Gamma distribution (Pefia and

Rodriguez, 2002), where the parameters are defined by

B 3m[(m+1) —2(p + q)]°
C2[2m+1DC2m+1) - 12m(p + q)]

a

and

_ 3m[(m+1)-2(p+q)]
T 2m+1D@2m+1) —12m(p + q)

B

and the distribution has a mean of

a m+1
E=T—(P+Q)
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and a variance of

a (mMm+1)2m+1)
5 3m —2(p+q)

5.1.5 Peiia and Rodriguez 2006 test

Pefia and Rodriguez (2006) gave a new portmanteau test statistic, which is the log of the

determinant of the mth autocorrelation matrix

n
m+1

D;, =— log|||Rwml| (5.7)

where R,, is the residual correlation matrix of order m and |. | is the absolute value of the
constant. There are two approximations to the asymptotic distribution, which are based on
the Gamma and Normal distribution. The Gamma distribution is the approximation

distribution of Dy,, where the parameters are defined by

3(m+ Dm —2(p + @)I?

T 22mem+ D —12(m+ D + 9)] (5:8)

and

3(m+ D[m—2(p + )]

T 2m2m+ 1D —12(m+ D(p +q) (5-9)

B

and the distribution has a mean of

N 3

-(+q

™I R

and a variance of

a m2m+1)

52" 3mt1n CPTD

Pefia and Rodriguez (2006) suggested a power transformation which reduces the skewness

in order to improve the normal approximation. The test statistic is
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ND;, = <%>_1M (%) (Di) VA — (%)W (1 = %(’1;_21»

and

2(m/2-(+9) (m*/(am+ D) - 0+ )|
3(m2m + 1)/(6(m + 1) — (0 + @)’

1=
where m is moderately large A =~ 4, « and [ are the values obtained in Equations (5.8) and
(5.9). The statistic N Dy, is distributed as N(0,1).

5.1.6 Mahdi and McLeod test

Mahdi and McLeod (2011) showed that for large n, the portmanteau test statistic

Oum = =57

log|R,,| (5.10)

is approximately distributed as a chi squared random variable with

1.5m(m + 1)

—_ + )
2m+ 1 ®+a)

and y?(m — p — q) degrees of freedom. In their paper the simulation study compared

performance of their test with the 9, 5 and 0, tests.

5.1.7 Fisher and Gallagher test
Fisher and Gallagher (2012) introduced a new portmanteau test statistic Qr¢; 5 that is based

on the square of the mth-order autocorrelation matrix

(m — k+1) Pk
n—=k

Orere = n(n +2) Z (5.11)

where p¢ is the autocorrelation at lag k.The statistic is a weighted sum of the squares of
the sample autocorrelation coefficients, where the weights consist of a convolution of the

Ljung-Box standardizing weights with the sequence
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1 2 m-—1
(L2 m-iy

m'm’” m
The Qrg,p is approximately distributed as a Gamma distribution with shape

_3m(m+1)
 8m+4

and scale

_ 22m+1)
B= 3m

The simulation study indicates that Qr¢; p is more powerful than Qgp, O, 5 and 9, (Fisher
and Gallagher, 2012).
5.1.8 Gallagher and Fisher tests

Gallagher and Fisher (2015) introduced three portmanteau test statistics, created by taking

general weighted sums of the first m = m(n) squared sample autocorrelations:
m
Qu =1 wip} (5.12)
k=1

where n is the number of observations, k is the number of lags taken into account and m
is the maximum lag. In addition to the weight given in Equation 5.12 they consider three

additional weighting schemes:

1 - Kernel-based weights: The weights are based on the square of a kernel function and

blended with the Ljung-Box standardizing terms to construct a sequence of weights

wy = ((n+2)/(n = 1)K (k/m)]?

where K (+) is the Daniell Kernel function, which is defined as

sin(\/in(k/m))
K(k/m) = V3r(k/m) P lk/ml <1 )
0 : |k/m| =1

The theoretical asymptotic distributions of the weighting scheme is given by
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—Yw
G — 2V, o),
2w}
where = denotes convergence in the distribution. The asymptotic distribution of this test

is the normal distribution (Gallagher and Fisher, 2015).

2 - Geometrically Decaying Weights: For ARMA models autocorrelations decay
exponentially with respect to the lag. It seems intuitive then that the weights in Equation
5.12 be selected to decay quickly as well, since even under the alternative hypothesis of an
underfitted model, the correlations at large lags should still be relatively small. They

consider weights of the sum of the form

Wi = (p + Q)ak_l'

for some user-specified ratio 0 < a < 1. This weighting will be

Z _(p+p@—-a™)
T

and

2 _ A2m
ZW’E _p+q@*@—-a™
1—a?
The simulation studies used a value of a = 0.9 (Gallagher and Fisher, 2015).

3 - Data Adaptive Weights: In this portmanteau test they used the sample autocorrelation

p and the sample partial autocorrelation ¢. The test is defined as

mo m
bonn 0 5,
=n n w ,
GFD n—kp kP
k=1 k=m0+1

The first m, terms use the standardizing weight (n 4+ 2)/(n — k) from the Ljung-Box

statistics, and the remaining terms use the weights

wy = —log(1 — [ix|)

where m, = min (log(n), M), and M is a finite bound. The simulation studies indicate
that using data adaptive weights is more powerful that all the previous portmanteau tests

(Gallagher and Fisher, 2015).
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4 - Asymptotic distribution of Gallagher and Fisher (2015)

Gallagher and Fisher (2015) considered the asymptotic behaviour of general weighted
portmanteau statistics satisfying Equation 5.12. The gamma approximation is used for
geometrically decaying weights and data adaptive weights similar to Pefia and Rodriguez
(2002-2006) and Fisher and Gallagher (2012), which is based on the work of Satterthwaite
(1941-1946) and Box (1954). That is Q,,~I'(«, B) with shape and scale

) Wk)z
= 13
T EwEi-p-o ©.13)
and
2w —p—9q)
= 5.14
B o (5.14)

respectively (Gallagher and Fisher, 2015).
5.2 A new weighted portmanteau test

5.2.1 Exponential weighted portmanteau test

This thesis introduces two new portmanteau tests that are based on exponential weights.
The first new test is a development of Ljung and Box’s test (1978) and the second test is a

development of Monti’s test (1994). These new portmanteau test statistics are defined as

m
A2
< p
Opxin = n(n+2) Z L (5.15)
n—k
k=1
Ogyy = n(n +2) Z Wi _""k, (5.16)
k=1

where pZ is the sample autocorrelation and @2, is the sample partial autocorrelation at lag

m, and wy, is an exponential weight.
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5.2.2 Derivation of the exponential weight w,
Consider an exponential function of the form

fx)=a*, 0<a<l1l, 0<x<1
where a is the base and x is the exponent.

Constrain x to the values (k — 1)/m, that is, terms from {0,1/m,2/m,...,(m — 1)/m },
where k is the length of lag used in the autocorrelation function and the partial

autocorrelation function, and m is the maximum lag.
. 1
Also, constrain a to take the value —

The exponential function now takes the form
k-1
k-1 (1\(e)
=)=

Then, this can be rearranged as,

. k-1Y . . . . .
Since, f (T) is now only a function of the variable k, and m is a constant it can be

rewritten as a function of the lag k, w(k), which can be written as the exponential weight

Wg.

So that

we = e Gmm p 12 m (5.17)

This exponential weight has similar distribution behaviour to the weights employed by

Fisher and Gallagher (2012), and Gallagher and Fisher (2015).
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5.2.3 Asymptotic distribution of the new univariate portmanteau test

Theorem 5.1 Suppose that a univariate time series {z,} is generated by a stationary and
invertible ARMA(p, q) process with mean zero and constant variance (see Equation 5.1).

Then, the new univariate portmanteau test statistic is asymptotically distributed as

m
Z Ak)(lz,k
k=1

where m is the maximum lag, ka (k =1,2,...,m) are independent )(12 random variables

and A, (14,15, ..., A,,) are the eigenvalues of (I,,, — Q*)G, where G is a m X m diagonal

matrix
w; 0 0
0 0 e Wyl

where wy (k = 1,2,:--,m) are weights that satisfy 0 < wjy, < 1, and Q" is an idempotent
matrix of univariate, which is define as Q* = YV~1Y*, V is the information matrix for the

parameters ¢ and 6 and Y is am X (p + q) matrix with elements ¢T and 67 define d by

1 X0
W_;d)iB

and

L — i ol pi
0(B) L'
i=0

The form of the idempotent matrix Q* was first derived by Box and Pierce (1970) in the

development of their univariate portmanteau tests.

Proof of Theorem 5.1:

Let, )(ik (k =1,2,...,m) be independent )(12 random variables. By using the idempotent

matrix form Box and Pierce (1970) and multiplying the exponential weight with

(I, — Q"), then
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(Im — Q)G
the A (44,45, ..., 4,,) are the eigenvalues of (I,,, — Q*)G.
Summing the eigenvalues and applying the tr matrix to the idempotent matrix, it gives
m
D e =tr((n - @6)
k=1
=tr(6) —tr(Q") + (1/m)tr(Q*F)
where F is a diagonal matrix with elements f; = k, where k = 0,1, ...,(m — 1), and
m
> 2 =tr(U — 06U — €)6)
k=1

= tr(6)* — tr(Q") + (2/m)tr(Q*F) — (2/(m*)?)tr(Q"F?)
+(1/(m*)tr(Q"FQ'F)

As Q" is the idempotent matrix with rank (p + q), then
m m m
D A=) we= @+ @+ A/m) ) (k=1 qu
k=2
m m m m
Y=Y Wi @)+ @/m) Y (= D) qu — 2/mD) Y (k- D g
k=2 k=2

k=1 k=1
+A/m? Y Y (=1 - Daj

i=2 j=2
where q;; are the elements of Q.

Using Kronecker’s lemma (Davidson, 1994), as m — oo, then

(1/m) ) (k=1 gusc > 0
k=2

@/m) ) (k= 1) g = 0
k=2
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2/(m*)%) ) (i = D? qige =0
k=2

and
(A/m? Y Y (=1 = DaF — 0
i=2 j=2
Thus,

m m
Zﬂk=2wi asm — oo (5.18)

m m
ZA%zZWf—(p+q) asm — o (5.19)

From the result of Box (1954), as a vector z, having mean zero and constant covariance
matrix, then the asymptotic distribution of portmanteau test statistic in Equations 5.18 and

5.19 distributed as

m
Z Ak)(lz,k
k=1

5.2.4 Approximation distribution of the new univariate portmanteau test

The two new portmanteau tests are based on exponential weights of the autocorrelation
function or the partial autocorrelation function. By using the results of the Hong (1996 a,

b), the Hong test statistic can be defined as

nZishk? (§) 0) — MS(o
} @MD"

Qn

M is a sequence of truncation values. If the smoothing parameter M = n(M) — oo and

M/n — 0, then

S(k) = f_oooo k?dz,D(k) = ffooo k*dz
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where p(j) is the correlation function, n is number of observations and k is the Kernel
function. From Equation 5.18 and 5.19 the normalize terms are Y., W and Y. p-, wi, then
these two normalize terms could be replaced by S(k) and D(x). The approximation

distribution of the new portmanteau test statistics of ARMA models can be written as

Orxe~T (a, B) and Qgxy~T(a, B) with shape

L Gw
2@Cwg—p—0q)

and scale,

_2@8we—p—q)

g X Wi

5.3 Monte Carlo experiment

5.3.1 Simulation studies

The aim of the simulation study is to compare the new exponential portmanteau test with
the portmanteau tests used in previous studies. The new test is compared with the other
tests, which were developed by Ljung and Box (1978) 9,5, Monti (1994) 0,,, Mahdi and
McLeod (2011) O, Fisher and Gallagher (2012) Qp¢p, Gallagher and Fisher (2015)
Kernel-based weights Q;rx and Data Adaptive Weights Q;rp. The empirical size and the
power level of the tests were investigated by conducting simulations studies using the R

program.

5.3.2 Empirical size

A Monte-Carlo experiment was conducted with 10,000 replications. The aim was to
simulate n = 100 observations under an AR(1) process z; — ¢ z,_; = e; with different
parameters ¢ = 0.1, 0.3,0.5,0.7 and 0.9. Next, an AR(1) model was fitted to the generated
data producing an estimate ¢ of the underlying parameter ¢. The method employed to

achieve the fitted model uses the maximum likelihood function, using approximation 2

from Box, Jenkins and Reinsel, (2008, p. 321).
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n n—1
(n—2)(n—1)"" Z 2,2, / Z 22 (5.20)
t=2 t=2

Next, the autocorrelations of the fitted model were calculated using the residuals é; = z; —

¢ z,_q (£ =2,...,n). The test statistics O;5, Ou» Omm> Qrere» Qoric» Qerp» Qexrp and
Orxm were calculated. This was repeated for lags of autocorrelations and partial

autocorrelations for maximum lags m = 10, 20 and 30.

Method of a Monte-Carlo experiment to calculate the empirical size of a range of

portmanteau tests.

Below are the steps of a Monte-Carlo experiment where data are generated by an AR(1)

process, z; = ¢ zZ;_1 + e, then fitted under an AR(1) model to find the empirical size of
the following portmanteau tests Oy 5, Qu» Omm» Qrcrr» Qeri> Qrp> Qexip and Qpxy.

1. Select the value of the process parameter ¢p and maximum lag m. In this example, ¢p =

0.1 and m = 10.
2. Generate n = 100 values from a Normal distribution (e, white noise).
3. Use the e; values to generate observations z; from an AR(1) process with parameter ¢.

4. Fit an AR(1) model to the observations by estimating its parameters using the

maximum likelihood function.
5. Find the residuals é;.
6. Find the residual autocorrelation and partial autocorrelation functions for the model.

7. Calculate the various portmanteau test statistics. For example, ¢ = 0.1, gives

d) QLB QM QMM QFGLB QGFK QGFD QEXLB QEXM

0.1 |16.6580 | 17.0012 | 11.890 | 8.120 | 0.917 | 8.976 | 6.744 | 7.058

8. Look up the 5 percentage point of the y2,_, distribution and the gamma distribution.
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Distributions XZ_4 Gamma
Tests QLB QM QMM QFGLB QGFK QGFD QEXLB QEXM
m =10 16.9 14.1 | 9.92 1.6 | 11.55 7.764

9. Reject the fitted AR(1) model if the value of portmanteau test is bigger than the critical

value in step 7 (using the appropriate distribution for each portmanteau test).

¢ Q~LB QM QMM Q~FGLB Q~GFK Q~GFD QEXLB QEXM

0.1 | Accept | Reject | Accept | Accept | Accept | Accept | Accept | Accept

10. Repeat 10,000 times for steps 1-8.

11. For each portmanteau test use the number of rejected AR(1) models (out of 10,000) to

find the percentage rejected.

Tables 5.1, 5.2 and 5.3 give the results of the Monte-Carlo experiment and show the
proportion of the test statistics Q;5, Ou, Q> Orcrrs Ocri> Qcrps Qrxip and Oy that
are above the upper 5 percentage point of the yZ,_, distribution or gamma distribution. The
tables show data fitted under the AR(1) with different parameters ¢p = 0.1, 0.3, 0.5, 0.7 and
0.9 with n = 100, and lags of autocorrelations and partial autocorrelations are m = 10, 20

and 30.

d) QLB QM QMM QFGLB QGFK QGFD QEXLB QEXM

0.1 0.0531 | 0.0548 | 0.0294 | 0.0311 | 0.0122 | 0.0301 | 0.0292 | 0.0287
0.3 0.0516 | 0.0541 | 0.0347 | 0.0352 | 0.0165 | 0.0336 | 0.0335 | 0.0355
0.5 0.0574 | 0.0531 | 0.0312 | 0.0369 | 0.0167 | 0.0357 | 0.0369 | 0.0378
0.7 0.0518 | 0.0514 | 0.0308 | 0.0343 | 0.0185 | 0.0317 | 0.0347 | 0.0349
0.9 0.0605 | 0.0568 | 0.0429 | 0.0474 | 0.0364 | 0.0475 | 0.0535 | 0.0504

Table 5.1 Empirical SiZC Of the test StaﬁstiCS QLB’ QM, QMM’ QFGLB’ QGFK’ QGFD’ QEXLB

and Qpym at 5% significance level for fitted AR(1) models, n = 100 and m = 10.
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Table 5.1 shows the values of significant level when a = 0.05, n = 100 and m = 10. The
value of the Q, 5 test is closer to the 0.05 significance level in two cases, i.e., when ¢ =
0.1 and 0.3. The value of the QM test is closer to 0.05 in two cases, i.e., when ¢p = 0.5 and
0.7. The value of the Qg test is closer to 0.05 in one case, i.e., when ¢ = 0.9. Overall,

the Q,, test is better than the other tests in most cases.

¢ QLB QM QMM QFGLB QGFK QGFD QEXLB QEXM

0.1 0.0616 | 0.0557 | 0.025 | 0.0412 | 0.0223 | 0.0385 | 0.0353 | 0.0316
0.3 0.0616 | 0.0545 | 0.0255 | 0.0398 | 0.0232 | 0.0397 | 0.0344 | 0.0336
0.5 0.0622 | 0.0513 | 0.0249 | 0.0438 | 0.0255 | 0.044 | 0.0404 | 0.0337
0.7 0.0671 | 0.0555 | 0.0281 | 0.0504 | 0.0284 | 0.0465 | 0.0467 | 0.0404
0.9 0.0706 | 0.0500 | 0.0284 | 0.0514 | 0.0318 | 0.0456 | 0.0491 | 0.0438

Table 5.2 Empirical size of the test statistics QLB: QM, QMM: QFGLB: QGFK: QGFD, QEXLB

and Qpym at 5% significance level for fitted AR(1) models, n = 100 and m = 20.

Table 5.2 shows the values of significance level when a = 0.05, n =100 and m = 20. The
value of the 9, test is closest to 0.05 in four cases, i.e., when ¢ = 0.1,0.3,0.5 and 0.9.
The values of the Qs 5 test is closest to 0.05 in one case, i.e., when ¢ = 0.7. Overall, the

Oy test is better than the other tests in most cases.

¢ QLB QM Q~MM Q~FGLB QGFK QGFD Q~EXLB QEXM

0.1 | 0.0731 | 0.0450 | 0.0163 | 0.0507 | 0.0264 | 0.0451 | 0.0392 | 0.0348
0.3 | 0.0721 | 0.0475 | 0.0202 | 0.0518 | 0.0262 | 0.0440 | 0.0424 | 0.0380
0.5 ] 0.0684 | 0.0419 | 0.0158 | 0.0504 | 0.0263 | 0.0458 | 0.0402 | 0.0327
0.7 | 0.0768 | 0.0448 | 0.0165 | 0.0573 | 0.0300 | 0.0474 | 0.0481 | 0.0377
0.9 | 0.0749 | 0.0405 | 0.0204 | 0.0569 | 0.0325 | 0.0557 | 0.0544 | 0.0444

Table 5.3 Empirical size of the test statistics QLBﬁ QM, QMM, QFGLBﬁ QGFKﬁ QGFD? QEXLB

and Qgxwm at 5% significance level for fitted AR(1) models, n = 100 and m = 30.
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Table 5.3 shows the values of significance level when & = 0.05, n =100 and m = 30. The
value of the Qr¢ 5 test is closest to 0.05 in three cases, i.e., when ¢ = 0.1,0.3 and 0.5. The

values of the Qg p test is closest to 0.05 in two cases, i.e., when ¢ = 0.7 and 0.9. No test

stands out as the best over the range of ¢ values.

As can be seen from the previous tables of the empirical size, the Oy test is the best test in

most cases, when m = 20. However, this is not the situation when m = 10 or m = 30.
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Figure 5.1 Empirical size for lags from 2 to 20 for a correctly fitted AR(1) model, data
generated by an AR(1) process with ¢p; = 0.5, at 5% significance level, series of length
n = 150.

Figure 5.1 shows the empirical size of lags from 2 to 20 of the 0.8, Oum> Ouint> Orcrrs Ocri,

Ocrp» Opxip and Oy tests based on a 5% significance level, when data are generated by

an AR(1) process ¢p = 0.5 and fitted under an AR(1) model with » = 150 and 10,000

replications. The O, Orcrp, and Ogpp tests increase as the lag increases. In addition, the
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Owums Qrxrp and Ogyy tests slowly increase as the lag increases. The Qspy test rapidly
decreases at lag 3, then increases as the lag increases. The ), test is not affected as the lag
increases. The Qgrp test always rejects the correct models at lags 2, 3, 4 and 5 (these points

are off the scale in Figure 5.1), then from lag 6 the Q;pp increases as the lag increases.
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Figure 5.2 Empirical size for maximum lags for a properly fitted AR(1) model, data
generated by an AR(1) process with ¢p; = 0.5, at 5% significance level, series of length
n = 150.

Figure 5.2 shows the empirical size of large lags based on a 5% significance level when
data are generated by an AR(1) process with ¢ = 0.5 and fitted by an AR(1) model with n
= 100 and 10,000 replications. The Q;5, Orcrp and Qgx.p tests increase as the lag
increases. Other tests such as, Oy, Oy and Qg decrease when the lag increases and the
Ocrp test initially increases with increasing lag but then decreases for larger lags. The

Opxu test remains approximately constant as the lag increases.
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Power studies

The aim of the power studies is to show which tests are the most powerful. The same

processes and parameters were employed as those used in Monti (1994) to compare the

portmanteau tests for the statistics Q; 5, O, Omm»> Qrcre> Qrk> Qorp> Qexis and Qpyu.

The approach taken was to generate data by a number of alternative ARMA(2,2) processes,
zZt = e+ P12e 1 + $2zp 5 — 01601 — Oz,

and to fit an AR(1) model and a MA(1) model to the data. Next the residual of the data was
obtained, and the ACF and PACF were calculated. For each alternative set of parameters
for the ARMA(2,2) process, 10,000 replications of 100 observations were generated. For

each test the power was computed with lags m = 10, 20 and 30.

In these experiments the AR(1) model parameter was estimated by using Equation 5.18.
The MA(1) model parameter was estimated by using the maximum likelihood function,
which is

el

- (5.21)

n
n n
In(0) = - 5In(2m) - ZIn(e?) - ).
t=1
Method of a Monte-Carlo experiment to calculate the power level of a range of

portmanteau tests.

Below are the steps of a Monte-Carlo experiment (with an integrated example) where data
are generated by an ARMA(2, 2) process z; = e + P1Zi_1 + P24 5 — 0161 — 0264,
then fitted under an AR(1) model to find the power level of the following portmanteau tests

Q15> Qm» Qum» Qreres Qerks Q6rp> Qexrs and Qpxy.

1. Select the values of the process parameters ¢4, ¢,, 8,1, 0, and maximum lag m. In this
example, ; = —0.5,0, =0, ¢; =0, ¢, = 0and m = 10.

2. Generate 100 values from a Normal distribution (e; white noise).

3. Use the e; values to generate observations from an ARMA(2,2) process with

parameters ¢ and 6.
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4. Fitan AR(1) model to the observations by estimating its parameters using the maximum

likelihood function.

5. Find the residual é;.
6. Find the residual autocorrelation and partial autocorrelation functions for the model.
7. Calculate the portmanteau test(s). For example, with an ARMA(2, 2) process with
parameter 6; = —0.5,8, =0, ¢; = 0, ¢p, = 0, one randomly generated series gave

61 Q15 Oy Oum | Oreis | Qorx | Qerp | Opxis | Orxm

-0.5 | 18.3804 | 13.8646 | 12.220 | 10.310 | 0.489 | 10.550 | 7.705 | 6.782
8. Look up the 5 percentage point of the y2,_; distribution and gamma distribution.

Distributions XZ_4 Gamma
Tests QLB QM QMM QFGLB QGFK QGFD QEXLB QEXM
m =10 16.9 14.1 | 9.92 1.6 | 11.37 7.764

9. Reject the fitted AR(1) model if the value of portmanteau test is bigger than the critical

value in step 7 (using the appropriate distribution for each portmanteau test). That is,

with the example results from step 7

91 QLB QM QMM QFGLB QGFK QGFD QEXLB QEXM

-0.5 | Reject | Accept | Accept | Reject | Accept | Accept | Accept | Accept

10. Repeat 10,000 times for steps 1-8.

11. For each portmanteau test use the number of rejected AR(1) models (out of 10,000) to

find the proportion rejected.

These steps can be used for data generated by ARMA(2,2) models and fitted under MA(1)

model.
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m =10
Model | ¢, b2 6, 6, 015 Oum Qum Orein | Qerx Qerp | Oexin | Qrxm

1 - - | -050 | --—- |0.2634 | 0.3081 | 0.3886 | 0.3314 | 0.3395 | 0.3266 | 0.3702 | 0.4326
2 - - | -0.80 | --—- | 0.7444 | 0.9659 | 0.9872 | 0.8995 | 0.9392 | 0.9034 | 0.9336 | 0.9901
3 - -~ | -0.60 | 0.30 | 0.7792 | 0.9880 | 0.9935 | 0.9187 | 0.9300 | 0.9275 | 0.9431 | 0.9953
4 0.10 | 0.30 - -~ 1 0.4283 | 0.4269 | 0.5239 | 0.5290 | 0.5424 | 0.5295 | 0.5612 | 0.5619
5 1.30 | -0.35 | -- --- |1 0.7211 | 0.7088 | 0.8467 | 0.8454 | 0.9089 | 0.8238 | 0.8929 | 0.8972
6 070 | -—— | -0.40 | -—- | 0.5541 | 0.6179 | 0.7605 | 0.6958 | 0.7821 | 0.6519 | 0.7713 | 0.8263
7 070 | - |-0.90 | --—- | 0.9872 1 1 0.9997 1 0.9996 1 1
8 040 | -— | -0.60 | 0.30 | 0.8414 | 0.9975 | 0.9992 | 0.9649 | 0.9813 | 0.9669 | 0.983 | 0.9992
9 0.70 | --- 0.70 | -0.15 | 0.1742 | 0.1630 | 0.1822 | 0.1929 | 0.1395 | 0.2024 | 0.1999 | 0.1928
10 0.70 | 0.20 | 0.50 -- 1 0.7506 | 0.7456 | 0.8150 | 0.8121 | 0.7543 | 0.8066 | 0.8258 | 0.8322
11 0.70 | 0.20 | -0.50 | --- | 0.3915 | 0.4801 | 0.6468 | 0.5482 | 0.6764 | 0.5012 | 0.6489 | 0.7268
12 0.90 | -0.40 | 1.20 | -0.30 | 0.7201 | 0.9735 | 0.9800 | 0.8529 | 0.7698 | 0.8746 | 0.8713 | 0.9813

Average 0.6130 | 0.6979 | 0.7603 | 0.7159 | 0.7303 | 0.7095 | 0.7501 | 0.7863

Table 5.4 Power level of the test statistics QLB? QM, QMM: QFGLB: QGFK: QGFD? QEXLB and

Orxm Where data are generated under various alternative ARMA(2,2) processes and fitted

by an AR(1) model.

Table 5.4 shows the power levels based on a 5% significance level when data are generated

from an ARMA(2, 2) process and an AR(1) model is fitted, with » =100 and m = 10. Table

5.4 shows that the Oy, test is more powerful than other portmanteau tests in 8 cases, but

the Qgpx and Q;pp tests are better than the other tests in one case, that is, for models 5 and

9 respectively. The Qu, Qs Qcri> Orxip and Qpyy tests are jointly the most powerful

in one case, that is, for model 7. The Oy and Ogyy tests are jointly the most powerful in

one case, that is, model 8. The average value has been taken for each test when data are

fitted under an AR(1) model with m = 10, it illustrates that overall the Qg test is better

than the other tests. It means that the new Qgy,, test, which is based on the partial

autocorrelation function, is in general more powerful than other tests when data are fitted

by an AR(1) model with m = 10.
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m =10

Model | ¢, b2 6, 0, O1p Ou Oum Oreip | Qerr Ocrp | Oexis | Opxm
13 0.50 - - -—- 10.2836 | 0.2689 | 0.3215 | 0.3438 | 0.3552 | 0.3369 | 0.3765 | 0.3631
14 0.80 - - - 109823 | 0.9758 | 0.9903 | 0.9926 | 0.9942 | 0.9921 | 0.9940 | 0.9933
15 1.10 | -035 | --- -~ 109961 | 0.9957 | 0.9989 | 0.9989 | 0.9997 | 0.9989 | 0.9993 | 0.9995
16 - - 0.80 | -0.50 | 0.8389 | 0.9375 | 0.9734 | 0.9415 | 0.9487 | 0.9481 | 0.9584 | 0.9791
17 - -~ 1-0.60 | 0.30 | 0.3868 | 0.4626 | 0.5940 | 0.5209 | 0.6002 | 0.4784 | 0.6001 | 0.6727
18 0.50 - =070 | -- | 0.8773 | 0.8606 | 0.9365 | 0.9405 | 0.9648 | 0.9338 | 0.9613 | 0.9575
19 050 | - 0.70 -~ 1 0.8933 | 0.8763 | 0.9452 | 0.9516 | 0.9697 | 0.9458 | 0.9660 | 0.9633
20 0.30 - 0.80 | -0.50 | 0.6265 | 0.7602 | 0.8378 | 0.7518 | 0.7323 | 0.7807 | 0.7857 | 0.8579
21 0.80 - [ -0.50 | 0.30 | 0.9786 | 0.9626 | 0.9847 | 0.9897 | 0.9931 | 0.9886 | 0.9928 | 0.9898
22 1.20 | -0.50 | 0.90 - 1 0.4685 | 0.7108 | 0.6157 | 0.4761 | 0.1232 | 0.4932 | 0.4300 | 0.5735
23 0.30 | -0.20 | -0.70 | --- | 0.2649 | 0.2852 | 0.3491 | 0.3268 | 0.3088 | 0.3237 | 0.3721 | 0.3962
24 0.90 | -0.40 | 1.20 | -0.30 | 0.7888 | 0.9335 | 0.9571 | 0.8958 | 0.8121 | 0.9085 | 0.9076 | 0.9615
Average 0.6988 | 0.7525 | 0.7920 | 0.7608 | 0.7335 | 0.7607 | 0.7787 | 0.8090

Table 5.5 Power level of the test statistics QLB’ QM, QMM) QFGLB) QGFK) QGFD’ QEXLB and

Orxm Where data are generated under various alternative ARMA(2,2) processes and fitted

by a MA (1) model.

Table 5.5 shows the power levels based on a 5% significance level when data are generated

from an ARMA(2, 2) process and a MA(1) model is fitted, with » =100 and m = 10. As is

apparent in Table 5.5 the Qgyy, test is more powerful than other portmanteau tests in 5

cases, but the §,, and Qg 5 tests are better than other tests in one case, that is, for models

22 and 13 respectively. The Qg is better in 5 cases. The average across all models has

been calculated for each test, it illustrates that the Qg test is better than other tests. This

means that the new Qgy,, test is more powerful than other tests when data are fitted under

a MA(1) model with m = 10.
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m =20
Model | ¢, P! 6, 0, Oip Ou Oum | Ores | Qerx | Qerp | Opxis | Opxm

1 - - |-0.50| --—- | 0.2197 | 0.2038 | 0.2688 | 0.2614 | 0.3021 | 0.3434 | 0.3292 | 0.3859
2 - -~ | -0.80 | --—- |0.5932 | 0.8651 | 0.9636 | 0.7804 | 0.8928 | 0.9128 | 0.8919 | 0.9879
3 - —- | -0.60 | 0.30 | 0.6239 | 0.9461 | 0.9838 | 0.8140 | 0.9138 | 0.9363 | 0.9109 | 0.9931
4 0.10 | 0.30 | --- - 103624 | 0.2908 | 0.3951 | 0.4487 | 0.5105 | 0.5610 | 0.5272 | 0.5175
5 1.30 | -0.35 | --- - 1 0.6289 | 0.5488 | 0.7288 | 0.7604 | 0.8337 | 0.8392 | 0.8534 | 0.8537
6 070 | --- | -0.40 | -- | 0.4765 | 0.4828 | 0.6347 | 0.6030 | 0.6810 | 0.6977 | 0.7204 | 0.7861
7 070 | --- |-0.90 | -- |0.9302 | 0.9992 1 0.9951 | 0.9998 | 0.9998 | 0.9998 1
8 040 | --- | -0.60 | 0.30 | 0.6874 | 0.9764 | 0.9960 | 0.8748 | 0.9596 | 0.9682 | 0.9577 | 0.9988
9 070 | --- | 0.70 | -0.15 | 0.1596 | 0.1192 | 0.1248 | 0.1762 | 0.1770 | 0.2262 | 0.1955 | 0.1806
10 0.70 | 0.20 | 0.50 | --- | 0.6378 | 0.5977 | 0.7210 | 0.7500 | 0.7931 | 0.8247 | 0.8038 | 0.8107
11 0.70 | 0.20 | -0.50 | --- | 03114 | 0.2987 | 0.4392 | 0.4045 | 0.4870 | 0.5102 | 0.5344 | 0.6194
12 0.90 | -0.40 | 1.20 | -0.30 | 0.5661 | 0.8960 | 0.9604 | 0.7313 | 0.8379 | 0.8851 | 0.8320 | 0.9817

Average 0.5164 | 0.6021 | 0.6847 | 0.6333 | 0.6990 | 0.7254 | 0.7130 | 0.7596

Table 5.6 Power level of the test statistics QLB’ QM, QMM) QFGLB) QGFK) QGFD’ QEXLB and

Orxm Where data are generated under various alternative ARMA(2,2) processes and fitted

by an AR(1) model.

Table 5.6 shows power levels based on a 5% significance level when data are generated

from an ARMA(2, 2) process and an AR(1) model is fitted, with » = 100 and m = 20. Table

5.6 shows that the Qzyy test is more powerful than other portmanteau tests in 8 cases, but

the Qspp test is better in three cases. In addition, the Qg and O,y tests are jointly better

in 1 case, that is, for model 7. The average value obtained by each test shows that the Qg x),

test is better than other tests. This means that the new Qgyy, test is, in general, more

powerful than other tests when data are fitted under an AR(1) model with m = 20.
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m =20
Model ¢, b, 6, 0 OLs Qu Oum OroLs Oarx Oerp Oexie Oexm

13 --- - | -0.50| ---| 0.2468 | 0.1816 | 0.2192| 0.2882 | 0.3194 | 0.3593 | 0.3465| 0.3197
14 --- - | -0.80| ---| 0.9632| 0.9310| 0.9745| 09841 | 0.9911 | 0.9925| 09912 | 0.9891
15 --- - | -0.60| 0.30| 0.9879 | 0.9840 | 0.9981| 0.9979 | 0.9994 | 0.9993 | 0.9996 | 0.9994
16 | 010 030 -- - | 0.7042 | 0.8146 | 0.9260 | 0.8611 | 0.9313 | 0.9522 | 0.9313 | 0.9678
17 | 1.30| -0.35| - -— | 03168 | 0.3237| 0.4425| 0.4110| 0.4883 | 0.5105| 0.5340 | 0.6110
18] 070 - | 040 --—- | 0.7930 | 0.7223 | 0.8643 | 0.8933 | 0.9355| 0.9405| 0.9425| 0.9363
191 070 - | 090 --—- | 08187 | 0.7520 | 0.8831 | 0.9113 | 0.9463 | 0.9497 | 0.9512 | 0.9451
20| 0.40| - | -0.60| 030 0.4959 | 0.5731| 0.7214| 0.6417 | 0.7273 | 0.7895 | 0.7385 | 0.8259
21 070 | -— | 0.70 | -0.15| 0.9624 | 0.9124 | 0.9685| 0.9826 | 0.9899 | 0.9906 | 0.9911 | 0.9864
221 070 020 0.50| --—- | 03866 | 0.5803 | 0.6031 | 0.4463 | 0.4256| 0.5129| 0.4570 | 0.6371
231 070 020 -0.50| --- | 0.2260 | 0.1939 | 0.2366 | 0.2707 | 0.2964 | 0.3516 | 0.3307 | 0.3466
24 | 0.90| -0.40/ 1.20 | -0.30| 0.6292 | 0.8283 | 0.9189 | 0.8007 | 0.8795| 0.9141 | 0.8805| 0.9582

Average 0.6276 | 0.6498 | 0.7297 | 0.7074 | 0.7442| 0.7719 | 0.7578 | 0.7936

Table 5.7 Power level of the test statistics QLB’ QM, QMM) QFGLB) QGFK) QGFD’ QEXLB and

Orxm Where data are generated under various alternative ARMA(2,2) processes and fitted

by a MA(1) model.

Table 5.7 shows the power levels based on a 5% significance level, when data are generated
from an ARMA(2, 2) process and a MA(1) model is fitted, with n = 100 and m = 20. It is
evident from Table 5.7 that the Oy, test is more powerful than other portmanteau tests in
5 cases, while the Qgyp test is better in 4 cases. The Q¢pp is better in three cases. The
average value calculated for each test illustrates that the Qyx,, test is better than the others.

It means that the new Qg test is, in general, more powerful than other the tests when data

are fitted under a MA(1) model with m = 20.
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m = 30

Model | ¢, b2 6, 6, Ois Ou Oum Orers | Qork Ocrp | Oxis | Qrxm
1 - -~ | -050| -- |0.2167 | 0.1628 | 0.1869 | 0.2493 | 0.2514 | 0.3668 | 0.3132 | 0.3571
2 - -~ | -0.80 | --—- | 0.5426 | 0.7478 | 0.9060 | 0.7081 | 0.8107 | 0.9206 | 0.8621 | 0.9797
3 - --- | -0.60 | 0.30 | 0.5747 | 0.8577 | 0.9522 | 0.7355 | 0.8307 | 0.9302 | 0.8736 | 0.9910
4 0.10 | 0.30 - --- 10.3442 | 0.2221 | 0.2939 | 0.4223 | 0.4510 | 0.5787 | 0.5066 | 0.4841
5 1.30 | -0.35 | --- --- 10.5924 | 0.4335 | 0.6076 | 0.7145 | 0.7611 | 0.8342 | 0.8273 | 0.8228
6 070 | --- | -0.40 | --—- | 0.4215 | 0.3433 | 0.4760 | 0.5318 | 0.5804 | 0.6953 | 0.6685 | 0.7250

7 070 | - | -090 | --—- | 0.8817 | 0.9957 | 0.9999 | 0.9816 | 0.9973 | 0.9994 | 0.9995 1
8 040 | --—- | -0.60 | 0.30 | 0.6307 | 0.9292 | 0.9887 | 0.8078 | 0.9043 | 0.9677 | 0.9379 | 0.9983
9 0.70 | --- 0.70 | -0.15 | 0.1697 | 0.0932 | 0.0836 | 0.1723 | 0.1533 | 0.2367 | 0.1895 | 0.1675
10 0.70 | 0.20 | 0.50 -—- 1 0.5986 | 0.4971 | 0.6353 | 0.7183 | 0.7633 | 0.8336 | 0.7916 | 0.7916
11 0.70 | 0.20 | -0.50 | --- | 0.3303 | 0.2613 | 0.3392 | 0.3890 | 0.4108 | 0.5420 | 0.5158 | 0.5828
12 0.90 | -0.40 | 1.20 | -0.30 | 0.5148 | 0.7824 | 0.9101 | 0.6634 | 0.7538 | 0.8861 | 0.7971 | 0.9731
Average 0.4848 | 0.5272 | 0.6150 | 0.5912 | 0.6390 | 0.7326 | 0.6902 | 0.7394

Table 5.8 Power level of the test statistics QLB’ QM, QMM: QFGLB: QGFK: QGFD’ QEXLB and

Orxm Where data are generated under various alternative ARMA(2,2) processes and fitted

by an AR(1) model.

Table 5.8 shows the power levels based on a 5% significance level, when data are generated
from an ARMA(2, 2) process and with an AR(1) model is fitted, with » = 100 and m = 30.
Table 5.8 shows that the Qg x, test is more powerful than other portmanteau tests in 7 cases,
but the Q;pp test is better in 5 cases. The average value calculated for each test illustrates
that the Qpyy test is better than other tests. It means that the new Qpy test is more

powerful than other tests when data are fitted under an AR(1) model with m = 30.
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m =30

Model ¢1 ¢2 01 92 QLB QM Q~MM Q~FGLB QGFK Q~GFD QEXLB QEXM

13 0.50 - - -—- | 0.2394 | 0.1400 | 0.1535 | 0.2753 | 0.2854 | 0.3850 | 0.3394 | 0.2998
14 0.80 - - -—- | 0.9487 | 0.8841 | 0.9549 | 0.9785 | 0.9857 | 0.9917 | 0.9889 | 0.9845
15 1.10 | -035 | --- --- 1 0.9760 | 0.9606 | 0.9908 | 0.9939 | 0.9974 | 0.9989 | 0.9980 | 0.9982
16 - - 0.80 | -0.50 | 0.6528 | 0.6949 | 0.8509 | 0.8017 | 0.8735 | 0.9467 | 0.9055 | 0.9547
17 - --- | -0.60 | 0.30 | 0.3097 | 0.2560 | 0.3349 | 0.3842 | 0.4072 | 0.5241 | 0.5007 | 0.5672
18 0.50 - |-070 | - | 0.7618 | 0.6188 | 0.7853 | 0.8670 | 0.9014 | 0.9423 | 0.9280 | 0.9154
19 -0.50 | --- 0.70 --- | 0.7847 | 0.6501 | 0.8149 | 0.8860 | 0.9209 | 0.9571 | 0.9432 | 0.9311
20 0.30 - 0.80 | -0.50 | 0.4599 | 0.4460 | 0.6012 | 0.5847 | 0.6551 | 0.7985 | 0.7132 | 0.7963
21 0.80 --- | -0.50 | 0.30 | 0.9487 | 0.8642 | 0.9418 | 0.9757 | 0.9824 | 0.9900 | 0.9875 | 0.9800
22 1.20 | -0.50 | 0.90 --- | 0.3553 | 0.4514 | 0.5073 | 0.4200 | 0.4300 | 0.5257 | 0.4608 | 0.6497
23 0.30 | -0.20 | -0.70 | --- | 0.2230 | 0.1515 | 0.1618 | 0.2523 | 0.2515 | 0.3620 | 0.3141 | 0.3184
24

0.90 | -0.40 | 1.20 | -0.30 | 0.5758 | 0.7016 | 0.8448 | 0.7261 | 0.8174 | 0.9150 | 0.8485 | 0.9474

Average 0.6030 | 0.5683 | 0.6618 | 0.6788 | 0.7090 | 0.7781 | 0.7440 | 0.7786

Table 5.9 Power level of the test statistics QLB’ QM, QMM’ QFGLB’ QGFK’ QGFD’ QEXLB and

Orxm Where data are generated under various alternative ARMA(2,2) processes and fitted
by a MA(1) model.

Table 5.9 shows the power levels based on a 5% significance level, when data are generated
from an ARMA(2, 2) process and with a MA(1) model fitted, with » = 100 and m = 30.
From Table 5.9 it is clear that the Qpp test is more powerful than other portmanteau tests
in 8 cases, but the Qgyy, test is better in 4 cases. The average value has been taken for each
test, which illustrates that the Qry), test is the best overall. This means that the new Qspp

test is more powerful than other tests when data are fitted under a MA(1) model with m =

30.
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Figure 5.3 Power level for lags from 2 to 20 for a correctly fitted AR(1) model, data
generated by a MA(1) process with 8; = —0.8, at 5% significance level, series of length
n = 85.

Figure 5.3 shows the power level for lags from 2 to 20 based on a 5% significance level,
when data are generated by a MA(1) process with 8 = —0.8 and fitted under an AR(1)
model with n = 85 (following the simulation of Gallagher and Fisher (2015)) and 10,000
replications. The power of the 0, 5, O, and Op¢, 5 tests decreases as the lag increases. The
Owum and Opy,p tests slowly decrease as the lag increases. The Q;py test rapidly decreases
at lags 3 and 4, then slowly increases as the lag increases. The Qgpp test rapidly decreases

at lag 5, then slowly increases as the lag increases. From Figure 5.3 it is apparent that this
test rejects all models, even correct ones, for the lags examined. The Qg test remains

constant as the lag increases. In most cases, the Qgy,, is the most powerful tests.
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Figure 5.4 Power level for maximum lags for a correctly fitted AR(1) model, data
generated by a MA(1) process with 8; = —0.8, at 5% significance level, series of length
n = 85.

Figure 5.4 shows the power level of large lags based on a 5% significance level, when data
are generated by a MA(1) process with § = —0.8 and fitted under an AR(1) model with »
= 85 and 10,000 replications. The power of the Qgrp, Opxip and Qgxy tests slowly
decreases as the lag increases. The Q.5 and Qp¢,p tests have similar behaviour to each
other, initially slowly decreasing and then remaining constant as the lag increases further.
The power of the Oy, Oy and Qg tests decreases as the lag increases. In all cases, the

Opxum is the most powerful test.

The next study is similar to Gallagher and Fisher (2015), where data are generated under
an ARMA(2,2) process and are fitted by an ARMA(1,1) model, see Tables 5.10 and 5.11.
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Following on from previously published research in this area, m was set at 10 and 20, and

n was set at 100, and in each case, the critical value was determined from the corresponding

asymptotic distribution.

m =10

Model ¢1 ¢2 91 92 QLB QM QMM QFGLB QGFK QGFD QEXLB QEXM
4 0.10 | 030 | -- - | 0.2988 | 0.2681 | 0.3252 | 0.3497 | 0.2951 | 0.3310 | 0.4343 | 0.4148
5 1.30 | -0.35 | - - | 0.1183 | 0.1292 | 0.123 | 0.1105 | 0.0659 | 0.1001 | 0.1552 | 0.1651
9 070 | -—— | 0.70 | -0.15 | 0.1180 | 0.1121 | 0.1032 | 0.1107 | 0.0534 | 0.1068 | 0.1483 | 0.1446
10 0.70 | 0.20 | 0.50 | --—- | 0.1663 | 0.1538 | 0.1737 | 0.1863 | 0.1528 | 0.1715 | 0.2490 | 0.2407
12 0.90 | -0.40 | 1.20 | -0.30 | 0.3856 | 0.3902 | 0.4289 | 0.4338 | 0.2873 | 0.4325 | 0.5132 | 0.5032
15 1.10 | -0.35 | --- - | 0.1428 | 0.1460 | 0.1193 | 0.1168 | 0.0201 | 0.097 | 0.1383 | 0.1459
16 - - | 0.80 | -0.50 | 0.3664 | 0.4477 | 0.4691 | 0.3859 | 0.1234 | 0.4323 | 0.4412 | 0.5085
17 -— -~ |-0.60 | 0.30 | 0.1194 | 0.1179 | 0.1188 | 0.1151 | 0.0598 | 0.1033 | 0.1565 | 0.1679
20 030 | -— | 0.80 | -0.50 | 0.3986 | 0.4626 | 0.4941 | 0.4332 | 0.1756 | 0.4683 | 0.4867 | 0.5383
21 080 | -— |-050 | 030 | 0.1195 | 0.1329 | 0.1241 | 0.1062 | 0.0364 | 0.0955 | 0.1421 | 0.1619
22 1.20 | -0.50 | 0.90 | --- | 0.4549 | 0.7459 | 0.6585 | 0.4605 | 0.0500 | 0.4703 | 0.4895 | 0.6768
23 030 | -0.20 | -0.70 | --- | 0.1836 | 0.1829 | 0.1896 | 0.1948 | 0.0894 | 0.2044 | 0.2391 | 0.2412
Average 0.2339 | 0.2741 | 0.2773 | 0.2503 | 0.1174 | 0.2511 | 0.2995 | 0.3257

Table 5.10 Power level of the test statistics QLB’ QM, QMM’ QFGLB’ QGFK’ QGFD’ QEXLB

and Qpyy Where data are generated under various alternative ARMA(2,2) processes, and
fitted by an ARMA(1,1) model m = 10.

Table 5.10 shows the power levels based on a 5% significance level, when data are

generated from an ARMA(2, 2) process and an ARMA(1,1) model is fitted, with » = 100

and m = 10. Table 5.10 demonstrates that the Qpy,, test is more powerful than other

portmanteau tests in 7 cases, but the Oy, test is better in 4 cases, and the Qx5 and Oy,

tests are best in 1 case each. The average value has been taken for each test, which

illustrates that the Qg test is better than other tests. This means that the new Oy, test is

more powerful than other tests when data are fitted under an ARMA(1,1) model with m =

10.
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m =20
Model | ¢, b2 01 0, 015 Ou Oum OreLp Qrk Qerp OexLp Orxm

4 0.10 | 0.30 | - -—- | 0.2440 | 0.1774 | 0.2106 | 0.2724 | 0.2720 | 0.3615 | 0.3525 | 0.3247
5 1.30 | -035 | --- -—- 1 0.1105 | 0.0885 | 0.0704 | 0.0841 | 0.0595 | 0.1131 | 0.1110 | 0.1139
9 070 | --—- | 0.70 | -0.15 | 0.1194 | 0.0899 | 0.0706 | 0.1026 | 0.0742 | 0.1294 | 0.1247 | 0.1078
10 070 | 0.20 | 0.50 | --- | 0.1449 | 0.1053 | 0.1052 | 0.1409 | 0.1310 | 0.1954 | 0.1936 | 0.1795
12 0.90 | -0.40 | 1.20 | -0.30 | 0.2996 | 0.3140 | 0.3320 | 0.3461 | 0.3472 | 0.4625 | 0.4367 | 0.4288
15 1.10 | -0.35 | --- --- | 0.1298 | 0.1141 | 0.0883 | 0.1119 | 0.0711 | 0.1185 | 0.1233 | 0.1211
16 - - | 0.80 | -0.50 | 0.2940 | 0.3063 | 0.3569 | 0.3201 | 0.2812 | 0.4711 | 0.3888 | 0.4525
17 - - | -0.60 | 0.30 | 0.1451 | 0.1062 | 0.0999 | 0.1168 | 0.0840 | 0.1375 | 0.1448 | 0.1472
20 030 | --—- | 0.80 | -0.50 | 0.3143 | 0.3168 | 0.3699 | 0.3422 | 0.3120 | 0.4997 | 0.4138 | 0.4635
21 080 | - |[-0.50| 0.30 | 0.1125 | 0.0999 | 0.0795 | 0.0907 | 0.0600 | 0.1115 | 0.1119 | 0.1217
22 1.20 | -0.50 | 0.90 | - | 0.3466 | 0.6033 | 0.6279 | 0.3828 | 0.3069 | 0.4911 | 0.4428 | 0.6838
23 030 | -0.20 | -0.70 | --- | 0.1641 | 0.1307 | 0.1295 | 0.1624 | 0.1384 | 0.2365 | 0.2005 | 0.1938

Average 0.2021 | 0.2044 | 0.2117 | 0.2061 | 0.1781 | 0.2773 | 0.2537 | 0.2782

Table 5.11 Power level of the test statistics QLB, QM, QMM, Q~FGLB, QGFK, Q~GFD, QEXLB

and Qpym When data are generated under various alternative ARMA(2,2) processes, and
fitted by an ARMA(1,1) model m = 20.

Table 5.11 shows the power levels based on a 5% significance level, when data are
generated from an ARMA(2, 2) process and an ARMA(1,1) model is fitted, with » = 100
and m = 20. Table 5.11 shows that the Qpy,, test is more powerful than other portmanteau
tests in 5 cases, but the Qpp test is better in 7 cases. The average value calculated for each
test illustrates that the Qgyy, test is better than other tests. Generally, the new Qzy, test is

more powerful than other tests in most cases when data fitted under an ARMA(1,1) model

with m = 10 or 20.
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Figure 5.5 Power level for lags from 5 to 20 for a correctly fitted ARMA(1,1) model, data
generated by an ARMA(2,1) process with ¢p1=1.2, ¢,=-0.5 and 8,=-0.9, at 5%
significance level, series of length n = 150.

Figure 5.5 shows the power level for lags from 5 to 20 based on a 5% significance level,
when data are generated by an ARMA(2,1) process with ¢= 1.2, ¢,=—0.5 and 6; =
—0.9, and fitted under an ARMA(1,1) model with » = 150 and 10,000 replications. The
power of the Q;p, Orx.p and Qrs.p tests decreases as the lag increases. The Qy, test
increases up to lag 10, then it slowly decreases as the lag increases. The §,y, test increases
as the lag increases. The Q;px test is stable at lags 5, 6 and 7, then rapidly increases as the
lag increases. The Q;pp test rapidly decreases at lag 6, then slowly increases as the lag
increases further. The power level of the Qgyy test is approximately constant as the lag

increases. In general, the Oy, is the most powerful test.
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Figure 5.6 Power level for maximum lags for a correctly fitted ARMA(1,1) model, data

generated by an ARMA(2,1) process with ¢p,=1.2, ¢,=-0.5 and 6,=-0.9, at 5%
significance level, series of length n = 150.

Figure 5.6 shows the power level for large lags based on a 5% significance level, when
data are generated by an ARMA(2,1) process with ¢p;= 1.2, p,=—0.5and 8; = —0.9, and
fitted under an ARMA(1,1) model with n = 150 and 10,000 replications. The results of
Figure 5.6 are similar to the results of Figure 5.4, except in the case of the O,y test. The
value of the Qgpy test is less than 0.2 at lag 10, rapidly increasing at lag 20 and then

decreasing as lag increases further.
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5.4 Variability of the univariate portmanteau test

To find out the variability of the new univariate portmanteau test statistics a Monte-Carlo

experiment was conducted with 1000 replications of the experiment to determine the

empirical size carried out in Section 5.3.3. As this experiment involved 1000 replications

of a simulations involving 10,000 replications this is only conducted for one value of ¢;.

The aim was to calculate the mean and standard deviation for the test statistics Q;5, Qu.

Orcir> Ocris Qcrps Orxip and Orxpy, when n =100 observations under an AR(1) process

Zy — ¢ z;_1 = e; with parameter ¢p; = 0.5 and maximum lags m = 10. The test statistics

Q18> Om»> Oree» Qeri> Qcrp» Qexie and Qpxy were calculated by using the steps of the

previous Monte-Carlo experiment.

m =10
¢, =05 Q15 Oum OreLp Qérr Q6rp OrxLp Qrxm
Mean | 0.052669 | 0.053590 | 0.034766 | 0.015218 | 0.031812 | 0.033215 | 0.032987
Standard
o 0.00231 | 0.002312 | 0.001943 | 0.001163 | 0.001684 | 0.001818 | 0.001884
deviation

Table 5.12 The mean and standard deviation for the test statistics 0,5, Ou, Orcrr, Qcris
9¢rp> Qexip and Qgxp, data generated under an AR(1) process with parameter ¢,= 0.5,
and fitted under AR(1) with » = 100 and maximum lags m = 10.

As can be seen from Table 5.12 the results of this experiment are consistent with those

from Table 5.1. The standard deviations for the new tests and previous tests are around 5

percent of their associate mean, in most cases.
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A second experiment was conducted to examine the variability of the new test when applied

to the power study in Section 5.3.4. Again 1000 replications of the original experiment

were undertaken for a single choice of 6, (i.e. -0.8).

m =10
il —08 Q LB Q M Q FGLB Q GFK Q GFD QEXLB Q EXM
Mean 0.75297 | 0.964627 | 0.905353 | 0.938861 | 0.850433 | 0.939353 | 0.990351
Standard
o 0.002310 | 0.002312 | 0.001943 | 0.001163 | 0.001684 | 0.001818 | 0.001884
deviation

Table 5.13 The mean and standard deviation for the test statistics @, 5, Ou, Orcrr, Qcris
Q6rp> Qexip and Qgxy, data generated under an MA(1) process with parameter 8, =
—0.8, and fitted under AR(1) with n = 100 and maximum lags m = 10.

As can be seen in Table 5.13 the standard deviations are less than 1 percent of the associate

mean for the new tests and almost all the previous tests.

5.5 Summary

The empirical size simulations (see Tables 5.1, 5.2 and 5.3) show that the Monti 9, test
is better than other tests when data are generated from an AR(1) process and fitted by an
AR(1) model with n =100 and m =10, 20 and 30. The empirical size Figure 5.1 shows that
portmanteau tests from previous studies do not have significant levels that are stable with
respect to lag length. Figure 5.2, the exponential weighted portmanteau test is not affected

by lag length, which means the Q) test is stable with respect to lag length.

The power level simulations (see Tables 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9) show that the new
portmanteau Qg test is more powerful than previous tests, when data are generated from
an ARMA(2,2) process and fitted under either an AR(1) model or a MA(1) model with n
=100 and m = 10, 20 and 30. The average power level for each portmanteau test given in

140



Chapter 5 - Portmanteau Tests

these tables shows that the new test Qgy,, is the best. When data are fitted under an AR(1)
model and m = 30 the new test Oy, is better than the previous tests in 7 cases, while data
fitted under a MA(1) model with m = 30, the Q;5p test is better in 8 cases. The power level
Figures 5.3 and 5.4 show that the Qgyy, test is more powerful than those from the previous

studies in both cases of small and large lags.

Furthermore, when data are generated from an ARMA(2,2) process and fitted under an
ARMAC(1,1) model with m = 10, the results of the power level simulations given in Tables
5.10 and 5.11 show that the new test Q) is better in 6 cases. When m = 20 the new test
is better in 5 cases. So the new Qg test is more powerful in the power levels when m =
10 and the O;pp test when m = 10. The average value of the power level tables for each
portmanteau test shows that the new test Q) is better than the previous tests. The power
level experiments given in Figures 5.5 and 5.6 show that the Qgy,, test is more powerful

than previous portmanteau tests with small and large lags.

Monte-Carlo studies of the variability of the new portmanteau tests show the standard
deviations to be low in comparison to their associated means, and also low in comparison

to the standard deviation of some of the previous tests.
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The aim of this chapter is to review previous studies in the area of portmanteau tests of
vector autoregressive moving average models, which have been developed by several
researchers. This chapter will focus on developing a new portmanteau test, which is based
on exponential weights of the residual covariance matrix. The performance of the new
portmanteau test is then compared with previous studies by the use of Monte Carlo

experiments using the R program.

6.1 Introduction

A major extension of portmanteau tests has been the application to vector autoregressive
moving average (VARMA) time series models. In the univariate time series case,
portmanteau tests are based on the residual of the autocorrelation and partial
autocorrelation functions. In the vector time series case, portmanteau tests are based on the
residual of the covariance matrices and the cross correlation matrices. The first application
of a portmanteau test to multivariate autoregressive models was by Chitturi (1974). Since
then, Portmanteau tests for VARMA(p,q) models have been developed by many
researchers, such as, Hosking (1980), Poskitt and Tremayne (1982) and Li and McLeod
(1981).

A portmanteau test of a vector autoregressive moving average model is calculated by
summing the residuals of the covariance or autocorrelation matrix of the fitted model. Then
the value of the portmanteau test is compared with a critical value. If the value of the
portmanteau test is less than the critical value, it means the model is an appropriate one for
the data. Alternatively, if the value of the portmanteau test is bigger than the critical value,

it means that the model is inappropriate for the data.

Consider a vector time series {z;} generated by a stationary and invertible VARMA(p, q)

process given by
Zt = (I)llt_l + q)zzt_z + b + (DpZt_p + et - Olet_l - Ozet_z - = Oqet_q

(I-®B——®,BP)z, = (I-0,B—--—0,B%)e, (6.1)
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®(B)z, = O(B)e; (6.2)

where z, = (214, Zo¢) ., Zge) T is a d X 1 vector of variables observed at time t, e, =
(e1r, €26, -, eqe) T, is a d X 1 zero mean white noise process with covariance matrix X =
Ele.e.], ®; (i = 1,2,..,p) are d X d parameter matrices and 0; is a d X d matrix of
coefficients, for (j =1,2,...,q) and ®(B) and O(B) are matrix polynomials of the
backshift operator B of order p and q respectively.

The parameters matrices ®(B) and @(B) can be estimated fitted by use of the conditional
likelihood method (see Equation 3.56) to obtain the fitted models

é, = ®(B)z,07'(B) (6.3)

The residuals e, are computed by

14 q
étzzt—zAjzt_ﬁZjét_j t=12,,n (6.4)

For the VARMA (p, q) model to be correct the residuals &; need to be approximately zero,
this means the autocovariance matrix of the residuals I' (k) will be zero at all lags k. This

gives the null hypothesis for all lags k
Hy:T'(k)=0

H,: I'(k) # 0.

6.1.1 Hosking vector portmanteau tests

Hosking (1980, 1981) gave a general form of a multivariate portmanteau test statistic for
VARMA(p, q) models, which is based on the residual autocorrelation matrix, it can be

written as

Gu=ny (vec(Ry)) (R ® Ry*)vec(Rs) 6.5)

k=1
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This is asymptotically chi-squared distributed with degrees of freedom d?(m —p — q),
where n is the series length, m is the maximum lag and R, is the sample autocorrelation

matrix at lag k. The residual of the autocorrelation matrix can be found by
R, =L'T,L (6.6)

where

is a sample autocovariance matrix and L is a lower triangular matrix such that LLT =

IO

Hosking (1980) gave the modified multivariate portmanteau test statistic, which is based

on the residual autocovariance matrix, it can be written as

m
Gt = n? Z(n — )Y [F()TE 1T ()2 (6.7)
k=1
where
n-1
rk)=nt) eel_,
t=1

and tr (trace) is the sum of the diagonal matrix. This is asymptotically chi-squared

distributed with degrees of freedom d?(m — p — q).

6.1.2 Liand McLeod vector portmanteau test

Li and McLeod (1981) provided another multivariate portmanteau test statistic, which is
based on the autocorrelation matrix, it can be written as

m

Oy = nz (Vec(l'?,((*)»Jr (Ry* ® ﬁgl)vec(ﬁ,({*)) (6.8)

k=1

which is asymptotically chi-squared distributed with degrees of freedom d?(m — p — q),

where
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Ti’f{‘) = (ﬁ',j(k))

dxd
and 7, j(k) = 7;;(k)/\[7::(0)7::(0), i,j = 1,2, ...,d, P;;(k) = n™ X1 81y é;r_t_k

Li and McLeod (1981) recommended a multivariate modified portmanteau test statistic,

which is defined as

- d’m(m+1)

Qi =0u + o (6.9)

which is asymptotically chi-squared distributed with degrees of freedom d?(m — p — q).

6.1.3 Mahdi and McLeod vector portmanteau test

Mahdi and McLeod (2011) proposed another multivariate portmanteau test statistic, which

is based on the residual autocorrelation matrix as

Oumy = —nlog|Ry| (6.10)
where
/Id R, - ﬁm\
Ro=| R To o Rno |
o m )

The Qv test is approximately distributed as ay?2, where

_2m+1
=73
3d?m(m+ 1)
p="o g2 .
22m+ 1) (P +a)

6.2 A new weighted portmanteau test of vector ARMA models

The new weighted portmanteau test statistics of univariate time series models developed in
Chapter 5 are based on the residual autocorrelation and partial autocorrelation functions
with exponential weights. This chapter provides a new portmanteau test statistic for vector

time series models, which is based on exponential weights of the residual covariance and
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residual autocorrelation matrices. The approximate distribution of the test is derived. The

test can be written as

m
~ w
Gexco =n* )~ tr{T(OTE T ()] (6.11)
k=1
the modified portmanteau test is
S t
~ w - - - -
Qpxay =n° Z o _kk (VeC(Rk)) (Ro* ® Ry )vec(Ry) (6.12)

k=1
where n is the number of observations, m is the maximum lag taken into account, I' (k) is

a covariance matrix at lag k, Rj is an autocorrelation matrix at lag k and wy is an

exponential weight, given by
Wk = e_( m

6.2.1 Asymptotic distribution of the new multivariate portmanteau test

Theorem 6.1. Suppose that a vector time series {z,} is generated by a stationary and
invertible VARMA(p, q) process with mean zero and constant covariance matrix (see

Equation 6.2). Then, the new portmanteau test statistic is asymptotically distributed as

d%m

2
Z A X1k
k=1

where m is the maximum lag, d is the number of vector components, xi
(k = 1,2, ...,d*m) are independent y? random variables and A, (14,1, ..., 142,,) are the

eigenvalues of (I 2,, — Q)W, where W is a d?m X d?m diagonal matrix

Wlle 0 oo 0
I
0 0 o Wil g2

where wy, (k = 1,2,---,m) are weights that satisfy 0 < w;, < 1, and Q is an idempotent

matrix, which is define as
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Q=XXtM'X)"'xtmM? (6.13)

and X is a d®m X d?(p + q) matrix with elements ¥ and I1 defined by
W(B) = ®(B)"! = Z p, B
i=0
and
nB)=1I- Z I, Bt = O(B)?
i=0

and M =1I,, ® I'y Q I is a positive-definite symmetric.

The form of the idempotent matrix Q was first derived by Box and Pierce (1970), and has
been subsequently used by McLeod (1978), Hosking (1980), and Mahdi and McLeod

(2011) in the development of their multivariate portmanteau tests.

Proof of Theorem 6.1:

Let, x7, (k = 1,2, ...,d*m) be independent y7 random variables. By using the idempotent

matrix form Hosking (1980) and multiplying the exponential weight with (I ;2,,, — @), then
I 42,y — QW
the A, (44,15, ..., A42,,) are the eigenvalues of (I ;2,, — Q)W.

Summing the eigenvalues and applying the tr matrix to the idempotent matrix, it gives

d*m
Z A =tr(Ugzm — QW)
k=1
=tr(W) — tr(Q) + (1/d*m)tr(QC)

where C is a diagonal matrix with elements ¢, = k, where k = 0,1, ..., (d?m — 1), and

d*m
> B =tr(Ugpm - QWU 2y — QW)
k=1

= tr(W)? — tr(Q) + (2/d*m)tr(QC) — (2/(d*m?*)*)tr(QC?)
+ (1/(d*m*))tr(QCQC)
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As Q is the idempotent matrix with rank d?(p + q), then

d*m d*m d?m
D A=) we—d2p+ @+ (1/dPm) ) (k= 1) qu
k=1 k=1
d*m d?*m d?*m
W=D wE— 2+ )+ 2/dPm) ) (k= 1)
k=1 k=1 —
d?m

- @/@m?) Y (k= 17 g

d?md?m

+/dPm? Y (= DG - Daf

i=2 j=2
where q;; are the elements of Q.

Using Kronecker’s lemma (Davidson, 1994), as d*m — oo, then

d?m

(1/d?m) D" (k= 1) g = 0
k=2

d*m

@/d?m) )" (k= 1) g = 0
k=2

d?m

/(@) ) (= D? qige 0
k=2

and
d*md?m
(1/d?m? Y (i =1~ Daj — 0
i=2 j=2
Thus,
m m
Z Z ; as d*’m — o (6.14)
k=1 i=1
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m
Z 2w —d?(p+q) asd?m - o (6.15)

i=1

T'rl.\4 3

From the result of Box (1954), as a vector z; having mean zero and constant covariance
matrix, then the asymptotic distribution of portmanteau test statistic in Equation 6.11

distributed as

d%m

2
Z A X1k
k=1

6.2.2 Approximation distribution of the new multivariate portmanteau test

Duchesne and Roy (2004) proposed a test statistic for checking the hypothesis of non-

correlation or independence in the Gaussian case. The test statistic is

Oy — d*M,(K)
(2d2V, ()

T, =

where Qy, is the Hosking multivariate portmanteau test, K is a Kernel function,

n-1

o= 3 (-5 (£)

k=1

0= (1-5)(1- D) (8),

=

and B, is a sequence of truncation values. If B, — o0 and B, /n — 0, then M,,(K) = [ 000 K?
and V,(K) = fooo K*. From Equation 6.14 and 6.15 the normalize terms are Zﬁi”f wy and

Zk ™ w2, then these two normalize terms could be replaced by M, (K) and V,(K).
Duchesne and Roy (2004) proved that T,, = N (0,1) and T,, = T, is Op(1), where Op(.)
is “order in probability”. By using the result of Duchesne and Roy (2004) then the
approximation distribution of the new portmanteau test statistic of vector ARMA models

can be written as Q,,~I"(a, ) with shape and scale
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2
o = (i wi) (6.16)
2d2(ZErwi —p — q)

and

_2d* (T wi -p—q)

(6.17)
Zgiql Wi

B

6.3 Monte Carlo experiment with vector time series

6.3.1 Simulation studies

The aim of this simulation study is to examine the effectiveness of the new exponential
portmanteau test Ogyco compared with the portmanteau tests used in previous studies.
Specifically, the new test is compared with tests developed by Hosking (1980)
Oy, and Mahdi and McLeod (2011) Qypp,. The empirical size and the power level of the

tests were investigated by conducting simulations studies using the R program.

6.3.2 Empirical size

A Monte-Carlo experiment was conducted with 10,000 replications. The procedure used
was the same as that outlined in Section 5.3.3, with the exception of step 5 in which the
calculation of the autocorrelation and partial autocorrelation function is replaced by the
calculated covariance matrices. The aim was to simulate 100 and 200 observations under
the VAR(1) process.

One model was taken from Hosking (1980) (j = 1)

Model 1

o =(00 oa) E=(% 19

and three models were taken from Li and McLeod (1981) (j = 2, 3,4).

Model 2

-1.5 1.2) '

¢2=(_0.9 Y 1.0 0.5)

2= (0.5 1.0
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Model 3

*=(_10 050 %=(s 1o)
Model 4

%= (To6 17) 5=(g5 10)

All models are a Gaussian bivariate VAR(1) model of the form z, = ®;z;,_; + e, j =

1,2, ...,4. The coefficients matrices and the covariance matrices are taken from Hosking

(1980) (@4, X,), and Li and McLeod (1981) {(®,, 2,), (P3,23), (P4, X,) }

Tables 6.1 and 6.2 show the proportion of Qy, Oy and Qgxco values that are above the
upper 5 percentage point of the appropriate distribution, )(22 (m-1) for the Oy and Qyuum
tests, and the gamma distribution for the Oy, test. The data fitted under the VAR(1) with

different coefficients matrices ® and covariance matrices X with n» = 100 and 200, and lags

of covariance matrices of m =10, 20 and 30.

m =10 m = 20 m = 30

Model | 9y Qvmum | QExco Oy Qvmm | QExco Oy Qvmm | QExco
1 0.0570 | 0.0559 | 0.0701 | 0.0637 | 0.0692 | 0.0823 | 0.0706 | 0.0968 | 0.0908
2 0.0522 | 0.0518 | 0.0544 | 0.0638 | 0.0688 | 0.0633 | 0.0665 | 0.0916 | 0.0786
3 0.0521 | 0.0448 | 0.0503 | 0.0615 | 0.0659 | 0.0606 | 0.0677 | 0.0921 | 0.0737
4 0.0579 | 0.0609 | 0.0655 | 0.0595 | 0.0702 | 0.0768 | 0.0712 | 0.1036 | 0.0928

Table 6.1 Empirical size of Oy, Oy and Ogxco at 5% significance level for fitted
VAR(1) models, n = 100 and m = 10, 20 and 30.

Table 6.1 shows the values of significance level when & = 0.05, n = 100 and m = 10, 20
and 30. When m = 10, the value of QH test 1s also closer to 0.05 in one case with model 4,
the Oy test is closer to 0.05 significance level than any other tests in two cases with
models 1 and 2. The value of Qgxco test is closer to 0.05 in one case with model 3. When
m =20, the value of Qg xco test is close to 0.05 in two cases with models 2 and 3. The value
of @y, test is also closer to 0.05 in two cases with models 1 and 4. When m = 30, the value

of @y test is close to 0.05 in four cases with models 1, 2, 3 and 4.
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m = 10 m = 20 m = 30
Model | Oy | Ovmm | Qrxco | OQn | Qvmm | Orxco | Qu | Qvmm | Qrxco
1 0.0509 | 0.0474 | 0.0688 | 0.0592 | 0.0533 | 0.0754 | 0.0599 | 0.0646 | 0.0876
2 0.0532 | 0.0407 | 0.0508 | 0.0593 | 0.052 | 0.0633 | 0.0606 | 0.0611 | 0.0708
3 0.0530 | 0.0386 | 0.0453 | 0.0548 | 0.0490 | 0.0573 | 0.0590 | 0.0619 | 0.0733
4 0.0549 | 0.0519 | 0.0706 | 0.0562 | 0.056 | 0.0753 | 0.0647 | 0.0653 | 0.0900

Table 6.2 Empirical size of Qy, Oy and Ogxco at 5% significance level for fitted
VAR(1) models, n = 200 and m = 10, 20 and 30.

Table 6.2 shows the values of significance level when a = 0.05, n = 200 and m = 10, 20

and 30. When m = 10, the value of @ and Qgyco tests are closer to 0.05 significance level

in two cases with models 1, 3 and 2, 4 respectively. When m = 20, the value of Oy, test

is closer to 0.05 significance level than any other test in all cases. When m = 30, the value

of Qy test is closer to 0.05 in all cases.
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Figure 6.1 Empirical size for maximum lags of Qy, Oy and Qpyco tests at 5%
significance level fitted VAR(1), and data generated by model 2, series of length n =
150.
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Figure 6.1 shows the empirical size for maximum lags of the Qy, Oymm and Qpxco tests
at 5% significance level fitted under a VAR(1) model, with data generated by Model 2 with
n = 150. The Qy test is stable as the lag increases, and the Qyyy test rapidly increases as
the lag increases, whereas the Qpyco test slowly increases as the lag increases. This means

the Qy test is more stable with respect to lag length than other tests as the lag increases.
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Figure 6.2 Empirical size for lags from 2 to 20 of the Ou, Oy and Qgxco tests at 5%
significance level fitted VAR(1), and data generated by model 2, series of length n =
150.

Figure 6.2 shows the empirical size for lags from 2 to 20 of the Oy, Ovmm and Ogxco tests
at 5% significance level fitted under a VAR(1) model, and data generated by Model 2 with
n=150. The Qgyco test is close to 0.05 at lags 6, 8, 9 and 10, then slowly increases as lag
size increases, whereas the Qyyy test is close to 0.05 at lag 4, then slowly decreases as the
lag increases up to lag 6. From this point it becomes close to the significance level,

thereafter it slowly increases as lag increase. The Qgyco test decreases as the lag increases
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and becomes close to 0.05 at lag 6. Then the Qgyco test increases at lag 7, after that it
becomes very close 0.05 at lag 8, thereafter it slowly increases as the lag increases. The Qy

test is close to 0.05 at lags 5 < m < 140.

Figures 6.1 and 6.2 together show the effect of the choice of large lag size on the empirical
size of the three tests. The Qy test is effective when 5 < m < 140, while the Oy test is

effective when 6 < m < 25, and the Qgyco test when 5 < m < 25.

6.3.3 Power studies

The aim of the power studies is to show which tests are the most powerful. The data were

generated by a number of different VARMA(2,2) processes.
zZy =Pz 4+ Pz, + € — 0101 — 0z,

For each alternative, 10,000 replications of 100 and 200 observations were generated. The
procedure used was the same as that outlined in Section 5.3.4, with the exception of step 5
in which the calculation of the autocorrelation and partial autocorrelation function is
replaced by the calculated covariance matrices. For each test the power was computed with

lags m = 10,20 and 30. The residuals of the data were obtained.

The VARMA models below were used to compare the new method against the tests of
Mahdi and McLeod and Hoskings. These models were selected from the literature by
Mahdi and McLeod (2011) to give a representative sample of models on which to test their

methods.

These Models have been fitted under the VAR(1) model to make comparisons among the

three tests, the models are:
Model 5
Liitkepohl, (2005, p.17).
(2= (05 05) (@)~ (s )
2=(o71 100)

(cr7)
€2t
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Model 6
Brockwell and Davis (1991, p. 428).
()= (@0 08) i) = () + (o o
2= (671 200)

Model 7

Reinsel (1993, p. 71).

—-0.6 0.3

() -G2 o) @) =(0)-os o
2= (550 125)

Model 8
Tsay (2005, 2“d, p. 371).
() - (08 =20y ey - (G - (05 00

=371 100)

Model 9
Reinsel (1993, p. 30).
() = ()~ (os 06)(exen)
2= (o0 200)

Model 10

Tsay (2005, 2™, p. 350).

()= (- (0% 99
£=(300 100)

155



Chapter 6 — Portmanteau tests for vector time series

Model 11

Liitkepohl, (2005, p. 445).

(H0)-05 08 ) =(02s 0 =+ (s o9 ()
£=(1.00 0.30)
0.30 1.00

Model 12

Reinsel et al. (1992, p. 141).

Zyt 04 03 —-0.6 Z1t-1 €1t 0.7 0.0 0.0\ /€1t-1
<Z2,t> - (0.0 0.8 0.4 ) <Z2,t—1> = (ez,t) — ( 0.1 0.2 0.0) (ez,t—1>
Z3 ¢ 0.3 0.0 0.0 Z3,t—1 €3¢ —04 05 —0.1/ \e3t-1

1.00 0.50 0.40
2=(050 1.00 0.70

040 0.70 1.00

Tables 6.3 and 6.4 show the power level of O, Oy and Qpxco values that are above the

upper 5 percentage point of )(22 ) distribution and gamma distribution. The data was

(m-1
fitted under a VAR(1) model with different coefficients matrices and covariance matrices

with n = 100 and 200, and lags of covariance matrices of m = 10, 20 and 30.

m= 10 m = 20 m = 30
Model On | Qvum | Qexco | 9u | Qvmm | Qexco | 9u | Qvmm | Qexco
5 0.3522 | 0.5569 | 0.7001 | 0.2518 | 0.4692 | 0.6554 | 0.2088 | 0.4428 | 0.6309
6 0.7827 | 0.992 | 0.9814 | 0.6528 | 0.9748 | 0.9709 | 0.6062 | 0.9485 | 0.9625
7 0.9921 1 1 0.8632 | 0.9998 | 0.9999 | 0.6952 | 0.9996 1

8 0.5363 | 0.8845 | 0.933 | 0.4133 | 0.7743 | 0.8769 | 0.3696 | 0.7179 | 0.8433
9 0.8892 1 0.9999 | 0.6629 | 0.9998 | 0.9994 | 0.5530 | 0.9993 | 0.9981
10 0.6783 | 0.9972 | 0.9742 | 0.5118 | 0.9877 | 0.9495 | 0.4549 | 0.9703 | 0.9306
11 0.3330 | 0.5725 | 0.6491 | 0.224 | 0.4725 | 0.6204 | 0.2073 | 0.4336 | 0.6011
12 0.768 | 0.9975 | 0.9896 | 0.5921 | 0.9961 | 0.9779 | 0.5095 | 0.9958 | 0.9657
Average | 0.6664 | 0.8750 | 0.9034 | 0.5214 | 0.8342 | 0.8812 | 0.4505 | 0.8134 | 0.8665

Table 6.3 Power level of Oy, Qyuu and Orxco at 5% significance level for fitted VAR(1)
models, n = 100 and m = 10,20 and 30.
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Table 6.3 shows that the @y, test is more powerful than other portmanteau tests in 5
cases, and the Oy, test is more powerful than other portmanteau tests in 4 cases, when
m = 10. In addition, when m = 20, the Qy test is the most powerful in 4 cases, and the
Orxco test is more powerful than other portmanteau tests in 4 cases. When m = 30, the
Orxco test is more powerful than other portmanteau tests in 5 cases, and the Qypy test is

more powerful in 3 cases. It means that the Qgxco test is more powerful when m = 30 and

n = 100.

m =10 m =20 m = 30
Model Qn Qvmm QEexco Qn Qvmm QExco Qy Qvmm QExco
5 0.7204 | 0.8820 | 0.9647 | 0.5198 | 0.8032 | 0.9457 | 0.4213 | 0.7358 | 0.9369
6 09993 |1 1 09798 | 1 1 09545 |1 1
7 1 1 1 1 1 1 0.9992 |1 1
8 0.9192 | 0.9987 | 0.9998 | 0.7709 | 0.9922 | 0.9988 | 0.6790 | 0.9791 | 0.9982
9 1 1 1 0.9939 | 1 1 09586 |1 1
10 0.9916 |1 1 09162 | 1 1 0.8302 |1 1
11 0.7373 ] 0.9050 | 0.9562 | 0.5119 | 0.8381 | 0.9474 | 0.4144 | 0.7765 | 0.9363
12 0.9967 |1 1 0.9499 | 1 1 0.7586 |1 1
Average | 0.9205 | 0.9732 | 0.9900 | 0.8303 | 0.9541 | 0.9864 | 0.7519 | 0.9364 | 0.9839

Table 6.4 Power level of Oy, Qyum and Ogxco at 5% significance level for fitted VAR(1)
models, n = 200 and m = 10,20 and 30.

Table 6.4 shows that the Oy, test is more powerful in all cases than other portmanteau
tests, when m = 10, 20 and 30. The Oy, test is more powerful than other tests in 5 cases,
when m = 10, 20 and 30. The Qy test is more powerful in 2 cases when m = 10, and 1

case when m = 20. This means that the Qg xco test is more powerful than other tests when

m = 30 and n = 200.
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Figure 6.3 Power level for maximum lags of Ox, Ovmm and Qrxco at 5% significance
level fitted VAR(1), and data generated by model 5, series of length n = 150.

Figure 6.3 shows the power level for maximum lags of the Oy, Qymm and Ogxco tests at
5% significance level fitted under a VAR(1) model, with data generated by model 5 with
n = 150. The Oy test decreases as the lag increases, and the Qyyy test decreases till lag
50, then it increases as the lag increases. The Qgxco test decreases only slightly as the lag

increases. This means the Qpyco test is more stable and powerful than other tests as the lag

increases.
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Figure 6.4 Power level for lags from 2 to 20 of Oy, Qymm and Qgxco at 5% significance
level fitted VAR(1), and data generated by model 5, series of length n = 150..

Figure 6.4 shows the power level for lags from 2 to 20 of the Oy, Oymm and Qgxco tests
at 5% significance level fitted under a VAR(1) model, with data generated by model 5 with
n = 150. The Qy and Qyymu tests decrease as the lag increases, and the Qpxco test slowly
decreases as the lag increases. As can be seen from Figure 6.4 the Qpyco test is more stable

and powerful than other tests as the lag increases.

Figures 6.3 and 6.4 together show the effect of the choice of large lag size on the power
level of all three tests. For a power level of 75%, the Oy test is effective when m < 5, while

the Qumu test is effective when m < 11, and the Qgxco test when m < 140.

Next, a VMA(1) model is fitted to the data to compare the portmanteau tests Oy, Ovum

and Ogxco. The data are generated by a number of alternative VARMA(2,2) processes,
which have been selected from the literature (Liitkepohl, (2005).
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2, =@z, |+ Pz, ,+e.—0,e,_; —0,e;,_,

For each alternative, 10,000 replications of 100 and 200 observations were generated. The
coefficients matrices were estimated by using the conditional maximum likelihood
function. For each test the power was computed with lags m = 10,20 and 30. The
residual of the data was obtained.

There is no published empirical research on fitting a VAM(1) model to non-VAM(1)
processes. Consequently, the VARMA processes below were selected from the literature
to give a representative sample of processes on which to test the new method. As a
comparison, the methods of Mahdi and McLeod, and Hoskings were also used to evaluated

the fitted models
Model 13
Liitkepohl, (2005, p.17).
(a0) = (02 08)Gar) =05 (i) =(e)

1.00 0.71

z= [0.71 1.00

Note that this is the same as Model 5 as used in the power studies experiments in Section

6.3.3.
Model 14
Brockwell and Davis (1991, p. 428).
(2= 6o 08 (i) =)+ (57 o))
2= (o1 200

Note that this is the same as Model 6 as used in the power studies experiments in Section

6.3.3.

Model 15
Huong (2013, p. 113)

)= (e ) ) = (o)~ (g 9397 (i)
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2= (G20 100)

Model 16
Huong (2013 p. 112)
() = (Cooses 06303) (i) = (es)
5= (1.00 0.20)

0.20 1.00
Model 17

Liitkepohl, (2005, p. 445).
()= (02 05) (i) = (025 ) Grms) = () + (0 03) ()

£=(G30 100)

Note that this is the same as Model 11 as used in the power studies experiments in Section
6.3.3.

Tables 6.5 and 6.6 show the power level of Oy, Oy and Qpxco values that are above the
upper 5 percentage point of X;z(m_l) distribution and gamma distribution. The data were
fitted under the VMA(1) model with different coefficients matrices and covariance
matrices with n =100 and 200, and with lags of covariance matrices of m =

10,20 and 30.

m =10 m = 20 m = 30

Model 9y Qvum | QExco Oy Qvmm | QExco 9y Qvum | QExco
13 0.9999 | 0.9999 1 0.9898 | 0.9996 1 0.9722 | 0.9983 1
14 0.9228 | 0.9887 | 0.9918 | 0.8009 | 0.9775 | 0.9897 | 0.7314 | 0.9520 | 0.9859
15 0.3962 | 0.4290 | 0.5781 | 0.3144 | 0.3961 | 0.5744 | 0.3064 | 0.3923 | 0.5748
16 0.9766 | 0.9899 | 0.9972 | 0.9391 | 0.9791 | 0.9967 | 0.9001 | 0.9672 | 0.9959
17 0.5585 ] 0.7317 | 0.8371 | 0.3642 | 0.6673 | 0.8242 | 0.2918 | 0.6093 | 0.8056

Average | 0.7708 | 0.8278 | 0.8808 | 0.6816 | 0.8039 | 0.877 | 0.6403 | 0.7838 | 0.8724

Table 6.5 Power level of Oy, Oy and Qrxco at 5% significance level for fitted VMA(1)
models, n = 100 and m = 10, 20 and 30.

Table 6.5 shows that the Qgyco test is more powerful than other portmanteau tests in all
cases, and the Qyy test is also more powerful than the O test in all cases, when n = 100

and m = 10, 20 and 30.
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m =10 m = 20 m = 30
Model On Qvum QExco On Qvmm QExco Qu Qvmm | QExco
13 1 1 1 1 1 1 1 1 1
14 1 1 1 0.9992 1 1 0.9924 1 1
15 0.7680 | 0.8384 | 0.9300 | 0.6486 | 0.7740 | 0.9286 | 0.5784 | 0.7124 | 0.9180
16 1 1 1 0.9996 1 1 0.9994 1 1
17 0.9378 | 0.9800 | 0.9934 | 0.7874 | 0.9538 | 0.9928 | 0.6692 | 0.9212 | 0.9890
Average | 0.9411 | 0.9636 | 0.9846 | 0.8869 | 0.9455 | 0.9842 | 0.8478 | 0.9267 | 0.981

Table 6.6 Power level of Oy, Qyum and Ogxco at 5% significance level for fitted VMA(1)
models, n = 200 and m = 10,20 and 30.

Table 6.6 shows that the Qgyco test is more powerful than other portmanteau tests in all
cases, when m = 10, 20 and 30. The Qy ), and O tests are more powerful in three cases,
when m = 10. When m = 20 and 30, the Oy, test is more powerful in three cases, and

the Qy is more powerful in one case.

6.4 Variability of the new multivariate portmanteau test

To explore the variability of the new multivariate portmanteau test statistics a Monte-Carlo
experiment was conducted with 1000 replications of the experiment to determine the
empirical size carried out in Section 6.3.2. As this experiment involved 1000 replications
of a simulations involving 10,000 replications this is only conducted for Model 3. The aim
was to calculate the mean and standard deviation for the test statistics Oy and Qgxco, When
n =100 observations under an VAR(1) process by using Model 3 and maximum lags m =
10. The test statistics Qy and Qgyco Were calculated by using the steps of the previous

Monte-Carlo experiment.

m=10
Model 3 Oy Qexco
Mean 0.050165 0.054235
Standard deviation 0.002192 0.002337

Table 6.7 The mean and standard deviation for the test statistics 9, and Qgxco, data fit-
ted under an VAR(1) and generated by model 3, with » = 100 and maximum lags m = 10.
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As can be seen from Table 6.7 the results of this experiment are consistent with those from
Table 6.1. The standard deviations for the new test is less than 5 percent of the associate

mean.

A second experiment was conducted to examine the variability of the new test when applied
to the power study in Section 6.3.3. Again 1000 replications of the original experiment

were undertaken for a single choice of Model 8.

m=10
Model 8 Oy Oexco
Mean 0.470114 0.9331
Standard deviation 0.004848 0.002644

Table 6.8 The mean and standard deviation for the test statistics Oy and Qg xco, data fit-
ted under an VAR(1) and generated by model 8, with n = 100 and maximum lags m = 10.

As can be seen in Table 6.8 the standard deviations of the new multivariate test is less than

1 percent of the associate mean for the new test.

6.5 Summary

The simulation of empirical size (see Tables 6.1 and 6.2) shows that none of the Oy, Oy um
and Qo tests are better than the others in all cases. The experiments have been conducted
with 10,000 replications, and data generated by a range of VAR(1) processes, then fitted
under the VAR(1) model.

The results of the simulation studies of power level (see Tables 6.3, 6.4, 6.5 and 6.6) show
that the new portmanteau Qgyco test is more powerful than other tests. The experiments

have been conducted with 10,000 replications, and data generated by a range of

VARMA(2,2) processes, then fitted under a VAR(1) model and a VMA(1) model.

The simulation of empirical size and power level (see Figures 6.1, 6.2, 6.3 and 6.4) show
that the Qrxco, Ovmm O tests are close to 0.05 at lags 6, 3, and 7 respectively in the
empirical size, whereas all three tests are the most powerful at lag 2 in the power level.

Furthermore, the Qgyco test slowly increases, while the Oy test rapidly increases, and
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the @y test is stable as lag increases in the empirical size. In comparison, the power level
of the Qxco is the most stable and most powerful as lag increases. The Oy, test starts to
increase at lag 70. Overall, the Ogy o test is better than other tests for empirical size when

the lag is small, and better for power level for all lags.
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Chapter 7 - Conclusion

The thesis has explored how the length of data of a univariate time series can influence its
apparent stationarity as measured by two standard tests, namely, the Dickey-Fuller test and

the Augmented Dickey-Fuller test.

The research has examined the effectiveness of two new exponential portmanteau tests, for

univariate time series. These new portmanteau test statistics developed in Chapter 5 are

m ﬁz
= _ k
Qexi = n(n + Z)ZW"n— .

k=1

and

m ~
_ Pick
Qpxm =n(n+ 2);Wkn_ 2

where p?2 is the autocorrelation and 2, is the partial autocorrelation at lag k, and wy, is

the exponential weight.

Next, the thesis explored the effectiveness of a new exponential portmanteau test for
multivariate time series. The new portmanteau test statistics of multivariate time series that

is given in Chapter 6 is

m
Gexco =n? ) —tr[F()TE T (2]
k=1

or equivalently as

m

~ =~ \T = = -

Qpxay = N Z nvikk (VeC(Rk)) (Ry" ® Ry")vec(Ry)
k=1

where n is the number of observations, m is the maximum lag taken into account, I' (k) is

a covariance matrix at lag k, Rj is an autocorrelation matrix at lag k and wy is an

exponential weight.
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7.1 The length of a time series

Chapter 4 examined how the length of data in a time series affects the identification of its
stationarity as identified by the standard tests (the DF test, the DF drift test and the DF
trend test, the ADF test, the ADF drift test and the ADF trend test).

A time series was generated from an AR(1) process with positive values of parameters with
different lengths of series, namely, n = 25, 50, 75, 100, 250, 500, 750 and 1000
observations. This was then tested by the DF test, the DF drift test, the DF trend test, the
ADF test, the ADF drift test and the ADF trend test. As is evident in Figures 4.1, 4.2, 4.3,
4.4, 4.5 and 4.6, the number of series identified as being non-stationary increases as the
value of the AR(1) process parameter ¢, increases, and the number identified as being non-
stationary decreases as the length of data increases. The researcher proves that the length
of data has a strong impact on the stationarity in time series when data are generated under

an AR(1) process with positive values of parameter ¢;.

For an AR(1) process generated using negative values of parameter ¢p; and examined by
the ADF test, the ADF drift test, and the ADF trend test, the number of series identified as
non-stationary does not depend on the parameter ¢, instead it depends only on the number
of data points in the time series. As the number of data points increases the number of time
series identified as non-stationary decreases, see Figures 4.7, 4.8, and 4.9. So, for negative
values of parameter ¢, the stationarity of the time series depends only on the length of

data.

The minimum number of data points required to ensure that the ADF, the ADF drift and
the ADF trend tests correctly identify the time series as being stationary, when data are
generated from an AR(1) process using negative values of ¢, (using a 5% cut-off), is given

in Table 4.3.

A time series was generated from an AR(2) process with positive values of parameters ¢4
and ¢,, with different lengths of series, namely, n = 25, 50, 75, 100, 250, 500, 750 and
1000 observations. This was then tested by, the DF test, the DF drift test the DF trend test,
the ADF test, the ADF drift test and the ADF trend test. As is evident in Figures 4.10 and

4.11, the number of series identified as being non-stationary increases as the value of the
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AR(2) process parameters ¢; and ¢, increase, and the number identified as being non-
stationary decreases as the length of data increases. The researcher proves that the length
of data has a strong impact on the ADF tests’ ability to correct identify stationarity in time

series when data are generated under an AR(2) process.

7.2 New univariate portmanteau test

The aim of the simulation studies in Chapter 5 was to compare the effectiveness of the new
autocorrelation and partial autocorrelation portmanteau tests in relation to those
portmanteau tests proposed in previous studies. Monte-Carlo experiments were conducted
to examine the empirical size. The empirical size simulations (Section 5.3.3) of different
lags, based on a 5% significance level, show that the Qgy,, test is not affected by the length
of lag used, however, other portmanteau tests are affected. For example, the empirical size
simulations based on a 5% significance level show that the values of the 015, Orcrs Ocrp
and Qgyx.p tests increase to 5% significance level as the lag increases and the values of the
Oum,> Oum and Qgpy tests decrease to 5% significance level when the lag increases, see

Figures 5.1 and 5.2.

In Section 5.3.4 the power level simulation study identified the most powerful portmanteau
tests. Monte-Carlo experiments were conducted for 12 different ARMA(2,2) processes.
These models were based on those from Monti (1994). An AR(1) model and a MA(1)
model were fitted to the data generated from ARMA(2,2) processes. For each test the power
was computed with lags m = 10,20 and 30. The residual of the fitted model was
obtained. The power level simulations show that the new exponential portmanteau Qg
test is more powerful than all previous tests used for this purpose, see Tables 5.4, 5.5, 5.6,
5.7,5.8 and 5.9. The power level simulations for different lags at the 5% significance show
that the 9,5, Ou, O Orcrss Qe Ocrp and Qgyyp tests decrease as the lag increases,

while the Oy, test slowly decreases as the lag increases, see Figures 5.3 and 5.4.

Following the methodology of the simulation study conducted by Gallagher and Fisher
(2015), the data were generated from a subset of the ARMA(2,2) process and fitted under
an ARMA(1,1) model. The new Qgyy, test proved to be more powerful than all other tests

proposed in previous studies. The power level simulations for different lags at the 5%
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significance show that the Oy, test is not affected as the lag increases, while the 0,5, Oy,

Oums> 9rcLe> Qcrr> Qcrp and Oy p tests decrease or increase as the lag increases, see

Figures 3.5 and 3.6.

7.3 New multivariate portmanteau test.

The aim of the VARMA simulation study in Chapter 6 was to compare the new exponential
portmanteau test Oy of vector autoregressive moving average models to those identified
in previous studies of vector portmanteau tests, namely, Hosking’s Qy test (1980), and
Mahdi and McLeod’s Oy test (2011). Monte-Carlo experiments were conducted for four
different VAR(1) processes, then fitted under a VAR(1) model with » = 100 and 200, and
withm = 10, 20 and 30 in the simulation of the empirical size. The power level simulation
study, which was conducted in Section 6.3.3, involved the generation of 12 different
VARMA(2,2) processes, each of which were fitted under either a VAR(1) or a VMA(1)
model (with n =100 and 200, and with m = 10, 20 and 30).

The simulation study of empirical size shows that none of the Qy, Oy and Qpxco tests
are better than the others in all cases, see Tables 6.1 and 6.2. However, the power level
simulation study shows that the new portmanteau Qgxco test is more powerful compared

with the Oy and Oy tests, for more details see Tables 6.3, 6.4, 6.5 and 6.6.

A Monte-Carlo experiment of empirical size was conducted with data generated by

®=(T0% 08, n=(2 ¥

in Section 6.3.2, with different number of lags and n = 150, then fitted under a VAR(1)

model.
The data were generated by
()~ 05)Gi) =05 0)Gri) = (er0)
2= (571 100)

in Section 6.3.3, with different number of lags and n = 150, then fitted under VAR(1)

model in the simulation of power level. This simulation study of different lags shows that
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the Qgxco test is more stable than the Oy and Qypy tests, in that, the Oy and Oy tests
decrease or increase as different length of lag are employed in both empirical size and

power level simulation studies, see Figures 6.1, 6.2, 6.3 and 6.4.

7.4 Summary and Key findings

The thesis has shown that the length of data has a strong impact on the apparent stationarity
of a time series when data generated by AR(1) process and AR(2) process, and it has
demonstrated how to select the appropriate estimated value of parameter for a

corresponding length of time series.

For a univariate time series the Ogy, test has been presented and shown to be more
powerful than the Qgy.p test and all the previous tests (namely, the Q;5, Ou, Omms
Orcrp, Qcri and Qgrp tests). A new portmanteau test of a multivariate time series has been

presented and proven to be better that the Q5 and Qy s tests.

7.5 Future work

Chapter 4 shows how the length of a time series affects its apparent stationarity when data
are generated from a known statistical process of a univariate autoregressive process.
Future work will examine how the length of a time series affects the apparent stationarity
when data are generated from a moving average process of a univariate time series with
positive and negative values of parameters. Another area that will be investigated is how
the length of a time series affects the apparent stationarity when data are generated from
ARMAC(1,1) process with positive and negative values of parameters. Other types of unit
root tests will be used to examine how the length of a time series affects the apparent
stationarity, such as the tests of Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt
and Shin (KPSS), and Eliot, Rothenberg and Stock (ADF-GLS).

In Chapter 5 new portmanteau tests for univariate time series were developed. These new
portmanteau test statistics assume the data is non-seasonal. Future work will aim to extend
these tests to seasonal data and make a comparison with previous studies of seasonality

portmanteau tests.
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The Autoregressive Conditional Heteroscedastic (ARCH) model explicitly models the
change in variance within a time series over time (Engle, 1982). Current practice is for the
0, portmanteau test to be used to test for remaining ARCH model effects in the variance
equation and to check the specification of the variance equation. The new portmanteau test
statistics will be extended in future work and applied to the (ARCH) model and compared

with the existing 9, 5 test.

Bollerslev (1986) extended the ARCH model to Generalized Autoregressive Conditional
Heteroscedastic (GARCH) models, in which the current conditional variance equation also
includes the past conditional variance. Bollerslev (1986) already suggested a Lagrange
multiplier (LM) test for testing a GARCH model against a higher order GARCH model, Li
and Mak (1994). The new portmanteau test statistics will be extended in future work and
applied to the (GARCH) model and compared with the existing LM test.

In Chapter 6, the new multivariate portmanteau test statistic was applied to multivariate
non-seasonal data. This equation will be extended in future work to cover seasonal data,
and work will be undertaken to compare the new multivariate portmanteau test statistics

with previous studies of seasonal portmanteau tests.

Many researchers have extended the Generalized Autoregressive Conditional
Heteroscedastic (GARCH) model from the univariate to the multivariate case to create the
Multivariate Generalized Autoregressive Conditional Heteroscedastic (MGARCH) model.
For instance, Bollerslev (1990) studied the changing variance structure of the exchange
rate regime in the European Monetary System, assuming the correlations to be time
invariant. Ling and Li (1997) introduced a portmanteau test for testing the adequacy of the
multivariate MGARCH model. The new multivariate portmanteau test statistic will be

extended in future work to enable it to apply to the MGARCH model.
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Appendix A

R program for data length simulation

ns<-10000 ### number of simulations

n<-25 ### number of data

al<- list(mode="vector",length=ns) ## produce vector as same length of simulation
ad1<- list(mode="vector",length=ns)

a2<- list(mode="vector",length=ns)

ad2<- list(mode="vector",length=ns)

a3<- list(mode="vector",length=ns)

ad3<- list(mode="vector",length=ns)

for (iin 1:ns)

{

fun<-rnorm(n) ### generate data by using normal distribution
y<-0.5*seq(l,n) ### the trend sequence
sim<-arima.sim(list(ar=0.1),n=n,innov=fun) ### simulate AR(1)
simd<-arima.sim(list(ar=0.1),n=n,innov=fun)+0.5 ### simulate AR(1) with drift

simt<-arima.sim(list(ar=0.1),n=n,innov=fun)+0.5+y ### simulate AR(1) with drift and
trend

adfl<-ur.df(sim,type="none",lags=0) ### DF test
adf2<-ur.df(simd,type="drift",lags=0) ### DF test with drift
adf3<-ur.df(simt,type="trend",lags=0) ### DF test with drift and trend

al[[i]]<-adfl@teststat ### critical value of DF test
ad1[[i]]<-al[[i]]<adfl@cval[2]
a2[[i]]<-adf2@teststat[1,1] ### critical value of DF test with drift

ad2[[i]]<-a2[[i]]<adf2@cval[1,2]

a3[[i]]<-adf3@teststat[1,1]

ad3[[i]]<-a3[[i]]<adf3@cval[1,2] ### critical value of DF test with drift and trend
}

length(ad1[adl ==FALSE]) ### number of false for DF test

length(ad2[ad2 ==FALSE]) ### number of false for DF test with drift
length(ad3[ad3 ==FALSE]) ### number of false for DF test with drift and trend
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Appendix B

R program of simulate empirical size and power level for univariate

portmanteau tests.

n<-100 ### number of observations
ns<-1000 ### number of simulations
m<-10 ### maximum lag

round <- round(log(n)) ### indicating the number of decimal places
round1<-round +1

mmsd<-(3*m*(m+1))/(2*(2*m+1)))-1

mmchi<-qchisq(.95, df=mmsd) ### chi-squared critical value Mahdi and McLeod (2012)
boxchi<- qchisq(.95, df=(m-1)) ### chi-squared critical value Ljung and Box (1978)
w<- numeric(m) ### creates a real vector of the specified length

wfg<- numeric(m)

r<- numeric(m)

p<- numeric(m)

fg<- numeric(m)

exacf<- numeric(m)

expacf<- numeric(m)

kernel<- numeric(m)

ker <- numeric(m)

rdaw<- numeric(round)

ss<- numeric(round)

ss1<- numeric(round)

In<- numeric(m)

Inlagacf<- numeric(m)

Insquar<- numeric(m)

newsd<- numeric(m)

fgsd<- numeric(m)

QIb <- list(mode="vector",length=ns) ## produce vector as same length of simulation
Qm <- list(mode="vector",length=ns)
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Qlbe <- list(mode="vector",length=ns)

Qme <- list(mode="vector",length=ns)

Qfg<- list(mode="vector",length=ns)

Qke<- list(mode="vector",length=ns)

boxtest<- list(mode="vector",length=ns)

montitest<- list(mode="vector",length=ns)

boxnewtest<- list(mode="vector",length=ns)

montinewtest<- list(tmode="vector",length=ns)

fgtest<- list(mode="vector",length=ns)

ketest<- list(mode="vector",length=ns)
MLtest<-list(mode="vector",length=ns)

Qmm<- list(mode="vector",length=ns)

matrixcolumn<- list(mode="vector",length=ns)

dawtest<- list(mode="vector",length=ns)

Qdaw<- list(mode="vector",length=ns)

gammadaw<- list(mode="vector",length=ns)

y<-c(l:m)

for (j in 1:m){

newsd[j]<-(1/m)*((y[j]-1)/m) ### loop for weight new test

fgsd[j]<- ((m- y[j]+1)/(m)) ### loop for weight Fisher and Gallagher (2012) test
}

squarnewsd<-(newsd"2) ### square the weight of the new test
sum1<-(sum(newsd))"2 ### sum the square weight of the new test
sum2<- 2*(sum(squarnewsd)-1)

divd1<- sum1/sum2

divd2<- sum2/sqrt(suml)

gamma<-qgamma(0.95,divd1,1/divd2) ### gamma distribution for new test
squarfgsd<-(fgsd"2) #HiHH## square the weight of the FG (2012) test
sumfgl<-(sum(fgsd))"2 ### sum the square weight of the FG (2012) test
sumfg2<- 2*(sum(squarfgsd)-1)

divdfgl<- sumfgl/sumfg2

divdfg2<- sumfg2/sqrt(sumfgl)
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gammafg<-qgamma(0.95,divdfgl,1/divdfg?2) ###gamma distribution for FG (2012) test
set.seed(1234)

for (iin 1:ns)

{

fun<-rnorm(n) ### generate random number
sim<-arima.sim(list(ar=(0.1)),n=n,innov=fun) ### simulate AR(1) process
fit <- arima(sim, order = ¢(1,0,0)) ### fitted AR(1) model
res<-residuals(fit) ### the residual of the fitted model

acf<- acf(res, lag=m, plot=F)$acf ### autocorrelation function

pacf<- pacf(res, lag=m, plot=F)$acf ### partial autocorrelation function
for(l in 1:m) ### loop for the weight with maximum lag

{

w[l]<-(I/m)*((y[1]-1)/m) ### for new test

wig[l]<- (m- y[1]+1)/(m)) ### for FG (2012) test
r[1]<-((acf[1+1])"*2)/(n-1)

plI]<~((pact[1])"2)/(n-1)

fg[l]<- wig[1]* r[l]

exacf[l]<- w[l]* r[1]

expacfll]<- w[l]* p[l]

kernel[1]<-((n+2)/(n-1))*((sin(sqrt(3)*pi*(I/m))/( sqrt (3)*pi*(I/m)))"2)*(r[1]*(n-1)) ##
kernel test

sumkernel<-n*sum( kernel)
ker[1]<-(((sin(sqrt(3)*pi*(1/m)))/(sqrt(3)*pi*(/m)))"2)*( (n+2)/(n-1))
sumk1<- sumkernel-sum(ker)

sumk2<- sqrt(2*sum( (ker)"2))

}

for (s in 1:round) ###critical value of data adaptive weight
{

rdaw[s]<-((acf[s+1])"2)/(n-s)

ss[s]<-((n+2)/(n-s))

ss1[s]<-((nt+2)/(n-s))"2

}

for(t in round1:m)
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{

In[t]<- -(log(1-abs(pacf[t])))

Inlagact[t]<-In[t]*(act]t+1])"2

Insquar[t]<-(In[t])"2

h

QIb[[i]]<-n*(n+2)*sum(r) ### Ljung and Box

Qm[[i]]<-(n*(n+2))*sum(p) ### Monti (1994)

Qfg[[1]]<-(n*(n+2))*sum(fg) ### Fisher and Gallagher (2012)
Qlbe[[i]]<-(n*(n+2))*sum(exact) ### new test with autocorrelation function
Qme[[i]]<-(n*(n+2))*sum(expacf) ### new test with partial autocorrelation function

Qmm{[[i]]<-portest(res,lag=m,order=0,SquaredQ=FALSE,Kernel=FALSE)###Mahdi and
McLeod (2012)

matrixcolumn([[i]]<-Qmm][[i]][2]
MLtest[[i]]<-matrixcolumn[[i]]<mmchi ###Look up the 5 percentage point
boxtest[[i]]<- QIb[[i]]< boxchi ###Look up the 5 percentage point
montitest[[1]]<- Qm[[i]]< boxchi ###Look up the 5 percentage point
boxnewtest[[1]]<- Qlbe[[1]]< gamma ###Look up the 5 percentage point
montinewtest[[1]]<- Qme[[i]]< round(gamma,digits=2)

fgtest[[i]]<- Qfg[[i]]< gammafg

Qke|[[i]]<- sumk1/sumk?2

ketest[[1]]<- Qke[[i]]< 1.6
Qdaw[[1]]<-n*(n+2)*sum(rdaw)+n*sum(Inlagact) ### data adaptive weight test
sumsd1<-(sum(In)+sum(ss))"2
sumsd2<-2*((sum(Insquar)+sum(ss1))-1)

alpha<- sumsdl1/ sumsd2

beta<- sumsd2/sqrt(sumsdl)
gammadaw([i]]<-qgamma(0.95,alpha,1/beta)

dawtest[[1]]<- Qdaw][[i]]< gammadaw[[i]]

}

length(boxtest[boxtest ==FALSE])/ns ### account number of rejection
length(montitest{montitest ==FALSE])/ns

length(MLtest[MLtest ==FALSE])/ns

length(fgtest[fgtest ==FALSE])/ns
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length(ketest[ketest ==FALSE])/ns
length(dawtest[dawtest ==FALSE])/ns
length(boxnewtest[boxnewtest ==FALSE])/ns
length(montinewtest{montinewtest ==FALSE])/ns
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Appendix C

R program of simulate empirical size and power level for multivariate

portmanteau tests.

n<-150 ### number of observations
m<-20 ### maximum lag

k<-2 ##H## vector dimension
ns<-10000 ### number of simulations
lag<-k"2*m

lag2<-k"4*m

tracelag<- numeric(m) ### creates a real vector of the specified length
tracelagw<- numeric(m)

w<- numeric(m)

newsd<- numeric(lag)

Qvho<- list(mode="vector",length=ns) ### produce vector as same length of simulation
Qve<- list(mode="vector",length=ns)

hostest<- list(mode="vector",length=ns)

newtest<- list(mode="vector",length=ns)

MLtest<-list(mode="vector" length=ns)

Qmm<- list(mode="vector",length=ns)

matrixcolumn<- list(mode="vector",length=ns)
mmsd<-(k"2)*((3*m*(m+1))/(2*(2*m+1)))-(k"2)

mmchi<-qchisq(.95, df=mmsd) ### critical value for vector Mahdi and McLeod (2011)
test

hchi<- qchisq(.95, df=k"2*(m-1)) ### critical value for vector Hosking (1980) test
y<-c(1:lag)

for (j in 1:lag){

newsd[j]<-(1/(1ag2))((y[j]-1)/lag) ### loop for the weight new vector portmanteau test
}

squarnewsd<-(newsd”"2)

sum1<-sum(newsd)"2

sum2<- k"2*(sum(squarnewsd)-1)

189



Appendices

divdl<- suml/sum2
divd2<- sum2/sqrt(sum]1)

gamma<-qgamma(0.95,divd1,1/divd2) ## gamma distribution for new vector portmanteau
test

set.seed(1234)

for (1 in 1:mns)

{

phi <- array(c(0.5,0.4,0.1,0.5,0,0.3,0,0),dim=c(k k,2))

theta <- NULL

d<-NA

sigma <- matrix(c(1,0.71,0.71,1),k.k)

siml <- varima.sim(phi, theta, d, sigma, n) ### generate data
fitVAR <- VAR(sim1, p=1) ### fitted data

res <- residuals(fitVAR) ### residual of the fitted data

cov <- acf(res[,1:k],lag.max=m,type="covariance",plot=F)$acf ## covariance matrix
invclag0 <- solve(cov[1,,]) ### inverse matrix

x<-¢(1:m)

for(l in 1:m)

{

w[l]<-(1/((k"2)*m))™((x[1]-1)/m) ### loop for the weight of new vector portmanteau test
clag<-cov[l+1,,]

tclag<-t(clag) ### trace of the covariance matrix

mclag<- tclag%*% invclag0%*% clag%*% invclag0
tracelag[l]<- tr(mclag)/(n-1)

tracelagw[1]<- w[l]*tr(mclag)/(n-1)
Qvho[[i]]<-(n*n)*sum(tracelag) ### vector Hosking test
Qve[[i]]<-(n*n)*sum(tracelagw) ### vector new test

Qmm[[i]]<-gvtest(res,lag=m,order=0,SquaredQ=FALSE,Kermel=FALSE) ## vector
Mahdi and McLeod (2011)

matrixcolumn[[i]]<-Qmm[[i]][,2,drop=F]
MLtest[[1]]<- matrixcolumn [[i]]< mmchi
hostest[[1]]<-Qvho[[i]]<hchi

newtest[[1]]<-Qve[[i]]<gamma
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}

h
length(hostest[hostest==FALSE])/ns ### account number of rejection

length(MLtest [MLtest ==FALSE])/ns
length(newtest[newtest=—FALSE])/ns
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Appendix D

Simulation studies of data generated under an AR(2) process tested by the DF tests

and the ADF test

¢, and ¢, are given from 0.1 to 0.9 (subject to the stationarity condition of an AR(2)
process, i.e. ¢p; + ¢, < 1), and n =25, 50, 75, 100, 250, 500, 750, and 1000.
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9379
9598

7048
7326
7649
8042
8487
8947
9385
9600
9994

7443
7840
8319
8827
9342
9603
9998
10000
10000

7738
813
87713

9599

250
605
m

1322
1942
2964
4816
7631
9549

250

695

905
1227
1778
2742
4566
7491
9546
10000

250
1014

210
4036
7104
9550
10000

10000

2766
9494

2482
9496
10000

500

1527
9494
10000
10000
10000
10000

01,01
0102
01,03
0104
01,05
01,06
01,07
01,08
01,09

0201
0202
0203
0204
0205
0206
0207
0208
0209

0301

0309

0401
0402
0403
0404
0405
0406
0407
0408
0409

adf drift tren
25
9399
9382
9378
9389
9411
9418
9423
9393
9410

adf trend
25
9370
9367
9366
9400
9407
9417
9409
9403
9438

adf trend

9692

adf trend
5
9314
9331
9342
9371
9389
9409
9439
9738
9924

adf trend
25
9283
9304
9334
9356
9395
9419
9763
9930
9974

lag12
50
9591
9616
9622
9639
9654
9659
9664
9677
9692

lag12
50
9611
9620
9625
9644
9654
9653
9677
9683
9864

lag12
50
9605
9623
9633
9651
9654
9670
9682
9886
9993

lag12
50
9611
9628
9638
9656
9666
9666
9901
9993
10000

lag12
50

9023
9110
9170
9233
9321
9434
9533
9588
9641

9080
9150
9233
9295

9525
9591

9977

9126
9205

9390
9515

9635
9970

9180
9266
9361
9507

9630
9982
9999
10000

8422
8531
8672
8861
9026
9235
9426
9595
9647

8486
8636
8806
8987
9188
9405
9584

9997

250
2039
234
2770
3398
4216
5405
6953
8667
9560

216
2613
M
4010
5189
6776
8583
9552
10000

1312
5122
9529

1135
4796
9529

9525

9526
10000
10000
10000
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0601
0602
0603
0604
0.60.5
0606
0.60.7
0608
0609

0701
0702
0703
0704
07,05
07,06
0707
07,08
07,09

0801
0802
0803
0804
0805
0806
080.7
0808
08,09

090.1
09,02
09,03
0904
09,05
09,06
0807
0908
0909

9991

060.1
060.2
0603
0604
060.5
060.6
060.7
060.8
0609

0701
0702
07,03
0704
0705
0706
0707
0708
07,09

080.1
0802
0.8,0.3
0804
0.8,0.5
080.6
0807
0808
0809

090.1
0902
0903
0904
0905
090.6
09,07
09,08
09,09

adf drift
2

adf drift

adf drift

9401
9438
9736
9963
9984
9989
9995
9996
9996

adf drift

9411

lag12
50

9429

lag12
50

9516

9578

lag12
50

9573

lag12
50

9634

9597

0601
0602
0603
0604
0605
0606
0607
0608
06,09

07,01
07,02
07,03
07,04
07,05
07,06
07,07
07,08
07,09

0801
0802
0803
08,04
0805
08,06
08,07
0808
08,09

09,01
09,02
09,03
09,04
09,05
09,06
09,07
09,08
0909

adf trend

adf trend
2
9284
9332
9444

adf trend
9312

9444
9871
9967
9992
9996
9995
9994
9997

lag12
50
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Appendix E

Dickeys’ method for calculating the critical values of the DF test and the ADF test.

For example, for the DF test (similar procedure for the ADF test), (Dickey, 1976)

Generate 7 points of data from a Normal distribution (e; white noise).

Use the e, values to generate observations from an AR(1) process with parameter
¢.

Estimate all parameters by least squared method using the data you have, and
compute the t-test statistic.

Fix all estimated parameters except T which you set to zero.

Using this sample re-estimate T and then the t-test statistic using least squared
method, which is a random number drawn from the sampling distribution under the
null, say t;.

Repeat steps (3) and (4) above 10,000 times, and produce a set t;, 5.

Percentiles of this distribution give the critical values.
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