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Abstract 

 

This thesis examines how the number of available observations of a time series can 

influence its apparent stationarity as measured by two standard tests, namely the standard 

Dickey-Fuller (DF) test and the Augmented Dickey-Fuller (ADF) test. The univariate 

time series case is examined. A stationary time series generated from a first-order 

autoregressive process with positive or negative values of the parameter 𝜙. Parameters 

were chosen that ensured that the series were theoretically stationary. The resulting time 

series produced were examined by, the DF, ADF, DF drift, ADF drift, DF trend and ADF 

trend tests. Monte Carlo experiments were undertaken using the R program for various 

values of parameters and different lengths of data, with each simulation repeated 10,000 

times. The simulation studies show that the length of time series data affects the 

stationarity as identified by standard tests. For given values of the parameter 𝜙 of the first-

order autoregressive model the minimum length of time series required to ensure the 

correct identification of the series’ stationarity is presented. 

Two new portmanteau tests were developed, bases on exponential weights of the residual 

autocorrelation function and the residual partial autocorrelation function. The asymptotic 

distributions of the new univariate portmanteau tests were derived. Monte Carlo 

experiments were used to compare the performance of the two new tests to existing tests. 

The simulation studies show that one of the new portmanteau tests, which is based on the 

partial autocorrelation function, is statistically more powerful than previous tests.  

A new portmanteau test was developed for vector autoregressive moving average models, 

which is based on exponential weights of the residual covariance matrix. For this new 

multivariate portmanteau test the asymptotic distribution was derived. This new test was 

compared with previous tests using Monte Carlo experiments. The simulation study shows 

that the new multivariate portmanteau test is statistically more powerful than previous tests.  
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Glossary / Notation 

z  − is a value of a time series at time 𝑡. 

z  − is a value of a non-stationary time series at time 𝑡. 

𝑧̅  − is the sample mean of a time series. 

𝜇 − is the mean of a time series. 

𝑍 − is a random variable of a discrete sample space. 

S  − is the sample variance of a time series. 

𝜎  − is the variance of a time series. 

𝑐𝑜𝑣(𝑧 , 𝑧 ) − is the covariance between two random variables 𝑧  and 𝑧 . 

𝑆𝐸 − is the standard error. 

𝑘 − is a lag in a time series. 

𝑐  − is the autocovariance coefficient at lag 𝑘. 

𝜙 − is a parameter of an autoregressive process. 

𝜙 − is an estimation of a parameter of an autoregressive process. 

𝑒  − is a white noise at time 𝑡. 

�̂�  − is a white noise estimation at time 𝑡. 

𝜃 − is a parameter of moving average process. 

𝜃 − is a parameter estimation of moving average process. 

𝑛 − is number of observations.  

𝑚 − is the maximum number of lags examined in a portmanteau test. 

𝐵 − is the backshift operator. 

∇ − is the difference operator. 

∇  − is the difference operator of order 𝑠. 

𝜌(𝑧 , 𝑧 ) − is the correlation function between 𝑧  and 𝑧 . 

𝜌  − is an autocorrelation function (ACF) at lag 𝑘. 

𝜌  − is an estimation of the autocorrelation function (ACF) at lag 𝑘. 

𝛾  − is an autocovariance function at lag 𝑘 
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𝜞  − is an autocovariance matrix of order 𝑛. 

𝑷  − is an autocorrelation matrix of order 𝑛. 

𝑅  − is a residual correlation matrix of order 𝑚. 

𝜙  − is a partial autocorrelation function (PACF) at lag 𝑘. 

𝜙  − is an estimation of partial autocorrelation function (PACF) at lag 
𝑘. 

𝜓  − is a sequence of constants. 

AR(𝑝) − is an autoregressive process of order 𝑝. 

MA(𝑞) − is a moving average process of order 𝑞. 

ARMA(𝑝, 𝑞) − is an autoregressive moving-average process of order (𝑝, 𝑞). 

𝜒  − is the Chi-squared. 

⇒ − is the convergence in the distribution. 

𝒬  − is the Box and Pierce portmanteau test. 

𝒬  − is the Ljung and Box portmanteau test. 

𝒬  − is the Monti portmanteau test. 

𝐷  − is the Peña and Rodríguez (2002) portmanteau test statistic. 

𝐷∗  − is the Peña and Rodríguez (2006) portmanteau test statistic. 

𝒬  − is the Mahdi and McLeod portmanteau test. 

𝒬  − is the Fisher and Gallaher portmanteau test. 

𝒬  − is the Gallaher and Fisher portmanteau test with Kernel-based      
weights. 

𝒬  − is the Gallaher and Fisher portmanteau test with data adaptive 
weights. 

𝒬  − is the Ljung and Box test portmanteau test with exponential 
weights. 

𝒬  − is the Monti test with exponential weights portmanteau test. 

𝒦(∙) − is the Daniell Kernel function. 

VAR(𝑝) − is a vector autoregressive process of order 𝑝.  

VMA(𝑞) − is a vector moving-average process of order 𝑞. 
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VARMA(𝑝, 𝑞) − is a vector autoregressive moving-average process of order (𝑝, 𝑞). 

𝑑 − is the number of components in a vector. 

𝐳  − is a 𝑑 × 1 vector of variables observed at 𝑡. 

𝜳   − is a 𝑑 × 𝑑 identity matrix. 

𝐼 − is a general 𝑑 × 𝑑 identity matrix. 

𝐷 − is the diagonal matrix. 

𝜳  − is a 𝑑 × 𝑑 coefficients matrices of a vector autoregressive process. 

𝜳(𝐵) − is a 𝑑 × 𝑑 matrix polynomial of the backshift operator 𝐵. 

П  − is a 𝑑 × 𝑑 coefficients matrices of a vector moving-average 
process. 

𝚽 − is a 𝑑 × 𝑑 parameter matrices of a vector autoregressive process. 

𝒆  − is a zero mean vector white noise process of dimension 𝑑. 

𝚯 − is a 𝑑 × 𝑑 parameter matrices of vector moving average process. 

𝚽 − is an estimation of 𝑑 × 𝑑 parameter matrices of a vector 
autoregressive process. 

𝒆  − is a zero mean vector white noise process estimation of dimension 
𝑑. 

𝚯 − is an estimation of 𝑑 × 𝑑 parameter matrices of vector moving 
average process. 

𝑹  − is the sample autocorrelation matrix at lag 𝑘. 

𝑳 − is a lower triangular matrix. 

tr  − is the sum of the diagonal matrix. 

𝚺 − is a covariance matrix of a vector white noise process. 

𝚽(𝐵)  − is the matrix polynomial of the backshift operator 𝐵 of an 
autoregressive process of order 𝑝. 

𝚯(𝐵) − is the matrix polynomial of the backshift operator 𝐵 of a moving 
average process of order 𝑞. 

𝚺(𝑘) − is a covariance matrix of a vector white noise process at lag 𝑘. 

𝜞(𝑘) − is a covariance matrix at lag 𝑘.  

𝝆(𝑘) − is a correlation matrix at lag 𝑘. 
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𝝁 − is a sample mean vector 

𝜞(0) − is a sample covariance matrix. 

𝜞(𝑘) − is a sample covariance matrix at lag 𝑘. 

𝝆 (𝑘) − is a sample correlation matrix at lag 𝑘. 

𝑣𝑒𝑐 − is a vector operator. 

⊗ − is a Kronecker product. 

𝐿𝑅(𝑘) − is a likelihood ratio test at lag 𝑘. 

𝐴𝐼𝐶 − is the Akaike information criterion. 

𝐵𝐼𝐶 − is the Bayesian information criterion. 

𝐻𝑄 − is the Hanna and Quinn information criterion. 

𝒬  − is the Hosking portmanteau test of a VARMA model. 

𝒬∗  − is the modified Li and Mcleod portmanteau test of a VARMA 
model. 

𝒬  − is the Li and McLeod portmanteau test of a VARMA model. 

𝒬∗  − is the modified Li and McLeod portmanteau test of a VARMA   
model. 

𝒬  − is the Mahdi and McLeod portmanteau test of a VARMA model. 

ℜ  − is the residual autocorrelation matrix. 

𝒬  − is the exponential weights portmanteau test of a VARMA model 
and based on covariance matrix. 

𝒬  − is the exponential weights portmanteau test of a VARMA model 
and based on autocorrelation matrix. 

𝑸 − is an idempotent matrix. 

† − is a transpose operator of a vector or matrix. 

|𝑎| − is the absolute value of real valued constant 𝑎. 

‖𝑨‖ − is the determinant of a matrix, 𝑨. 

DF test − is the Dickey-Fuller test. 

ADF test − is the Augmented Dickey-Fuller test. 

𝜇  − is the drift. 
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𝜇 + 𝜇 𝑡 − is the deterministic linear trend. 

𝜏 − is the sum of autoregressive coefficients. 

�̂� − is the estimation of the sum of autoregressive coefficients. 

𝑙12 − is the lag length. 
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Chapter 1 - Introduction 

1.1 Introduction 

Box and Jenkins published a classic book on time series analysis in 1970, which set the 

foundation for developments in time series analysis for the next 50 years. In this work they 

described the model building process as consisting of three main stages, namely: model 

identification, parameter estimation and diagnostic checking. 

This thesis discusses the basic ideas of the Box-Jenkins methodology. It concentrates on 

diagnostic checking; in particular, it focuses on univariate portmanteau testing and 

multivariate portmanteau testing of models, with the aim of developing new and better 

portmanteau tests. The thesis also examines how the length of data can affect how standard 

unit root tests identify the stationarity of a time series. 

This chapter introduces the aims of the thesis and also provides a brief history of time series 

analysis. 

1.1.1 Aims of research 

Portmanteau tests were introduced for the first time in 1970 by Box and Pierce (1970). 

Later other portmanteau tests were introduced by researchers, such as, Ljung and Box 

(1978), Monti (1994), and Gallagher and Fisher (2012, 2015). The aim of this thesis is to 

develop and evaluate new portmanteau tests that are more powerful than previously 

published portmanteau tests. The approach taken was be to conduct Monte Carlo 

experiments to explain the behaviour of the portmanteau tests and evaluate their 

performance compared to existing portmanteau tests. New portmanteau tests were 

developed for univariate autoregressive moving average models and for vector 

autoregressive moving average models, with the aim of improving on existing portmanteau 

tests.  

Another aim of this thesis is to examine how the length of data of a time series can influence 

its apparent stationarity as measured by two standard tests. The univariate time series case 

is examined. To explore this issue, time series were generated from a known  
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statistical model, a first-order autoregressive process and a second-order autoregressive 

process. Parameters were chosen that ensure the series were theoretically stationary. The 

standard Dickey-Fuller test and the Augmented Dickey- Fuller test were used to determine 

whether the series of observations produced were stationary or non-stationary. Monte Carlo 

experiments were undertaken using the R program for various model parameters and 

lengths of series and each simulation was repeated 10,000 times. 

1.2 A history of time series 

1.2.1 Definition of time series 

A time series is a sequence of discrete observations arranged in chronological order.  These 

data come from repeated observations and may be available, for instance, hourly, daily, 

weekly, monthly or yearly. Examples of time series abound in such fields as economics, 

business, the natural sciences, engineering, and the social sciences. For example, Figure 

1.1 shows the Consumer Price Index (CPI) data of the UK inflation rate, monthly from 

January 2005 to January 2015 (CPI, 2015). The aim of time series analysis is to find the 

relationship between data over a period of time, and use this to forecast future 

measurements.  

 

Figure 1.1 UK inflation rate, monthly: January 2005 to January 2015, (CPI, 2015). 
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1.2.2 The graphical representation of time series data 

The plotting of data in time series analysis started with William Playfair, who was the first 

researcher to draw a chart of data against a time axis. For example, Playfair’s first chart 

showed the sum total of England’s imports and exports from the year 1700 to 1782 

displayed as a line plot, this is reproduced in Figure 1.2, (Playfair, 1801). Several years 

later, the plotting of data over a period of time was used by the medical researcher 

Wunderlich (1870). He drew charts such as fever curves, which plotted a patient’s 

temperature over the course of time (see Figure 1.3). Brinton (1914) used the time plot to 

represent data in many different subjects, for example, the average yearly earnings of 

Princeton graduates, (see Figure 1.4).  

 

 
Figure 1.2 Imports and Exports to and from England from the year 1700 to 1782, 

reproduced from Playfair (1801). 

 

 
Figure 1.3 Fever charts, reproduced from Wunderlich (1870). 
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Figure 1.4 Average income of 155 Princeton graduates of the class 1901 for ten years 
after graduating, reproduced from Brinton (1914). 

 

1.2.3 Thiele, Yule and Hooker concept of time series  

Statistical analysis of time series data was first undertaken by Thiele (1880a; 1880b), when 

he published his first paper to analyse a model of a time series consisting of a regression 

component, a Brownian motion component, and white noise component. He derived 

Brownian motion with independent and normal distributions by using the method of least 

squares, and estimated variances proportional to the Brownian motion. He was also the 

first person to give a recursive computational methodology for filtering and predicting, 

which is now known as the Kalman filter (Kalman and Bucy, 1961). However, this work 

was unrecognized at the time. A more detailed description of Thiele’s paper is presented 

by Lauritzen (1981, 2002).  

The mean, variance, standard deviation, and the theory of correlation coefficients and 

partial correlation coefficients between data in time series were developed by the British 

statistician Yule (1895, 1896, 1897a, 1897b, 1907), and the statistician Hooker (1901). 

Yule (1895, 1896) used the correlation coefficients to examine the relationship between 

welfare and poverty in the field of economics statistics. The next study by Yule (1897a, 

1897b) used the partial correlation coefficients. Hooker applied correlation to find the 

relationship between Britain’s marriage rate and export trade over the period 1857-1899, 

(Hooker, 1901).  



Chapter 1 - Introduction 

 

5 

 

1.2.4 The periodogram method 

The periodogram is used to identify and calculate the significance of different frequencies 

of a time series. The physicist Sir Arthur Schuster investigated periodicities in time series, 

such as, the periodicity of earthquakes, terrestrial magnetism and sunspot numbers. 

Schuster determined the periodogram by 

𝐴 = 𝑎  𝑐𝑜𝑠 
2𝜋

𝑛
 𝑠

( )

 

𝐵 = 𝑎  𝑠𝑖𝑛 
2𝜋

𝑛
 𝑠

( )

 

where 𝑎  takes the values 𝑎 , 𝑎 , 𝑎 , …, at equidistant values of time 𝑡 , 𝑡 + 𝛼, 𝑡 + 2𝛼, …, 

where 𝑛 is a number of the observations, and 𝑠 is sunspots numbers. The calculated 

periodogram is plotted in Figure 1.5 and shows that a maximum amplitude occurs at a 

period of 10 and 11 years, (Schuster, 1897, 1906). Meanwhile, in 1922 Sir William 

Beveridge gave a periodogram analysis of wheat-price indices, extended over 

approximately 300 years from 1545 to 1845, (Beveridge, 1922). The theory of Schuster 

was modified by Whittaker and Robinson (1924), they constructed their periodogram from 

values of correlation ratios as they relate to each value of the arithmetic sequence. 

Meanwhile, the researcher Walker (1931) applied the correlation periodogram on the Port 

Darwin air pressure data. Later, the periodogram method was further developed by the 

researchers Davis (1941) and Kendall (1945).  
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Figure 1.5 The periodogram of Wolfer’s sunspot number for each month of the years 
1749 to 1901, reproduced from Schuster (1906). 

 

1.2.5 Autoregressive, moving average and mixed models 

The next developments in time series analysis were by the British statistician Yule and the 

Russian statistician Slutsky. Yule (1927) introduced the scheme of the autoregressive 

model, which is defined as 

 z = 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒 , (1.1) 

where z  is a value of a time series at time 𝑡. The current value of the process z  is expressed 

as a weighted sum of the previous 𝑝 values (with weights 𝜙 , 𝜙 , … , 𝜙 ) plus the current 

shock 𝑒  (white noise). Yule applied the scheme of the autoregressive model to Wolfer’s 

sunspot data that had been used by Schuster in his periodogram method (1897, 1906). Yule 

obtained better results with the autoregressive model than Schuster’s periodogram method. 

An autoregressive model of order 𝑝 is denoted as AR(𝑝). Following Yule’s work, Slutsky 

(1937) introduced the scheme of the moving average model, which is defined as 

 z = 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  (1.2) 
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where z  is assumed to be generated as a finite moving average of a sequence of 

independent and identically distributed random variables 𝑒  and 𝜃 , 𝜃 , … , 𝜃  are weights. 

A moving average model of order 𝑞 is denoted as MA(𝑞). 

Furthermore, in 1950 Walker described a mixed autoregressive-moving average process 

for the first time, (Walker, 1950). Walker achieved this by adding together the moving 

average and autoregressive schemes, as defined by 

 z = 𝜙 z + 𝜙 z + ⋯ + 𝜙 z + 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  (1.3) 

Box and Jenkins in 1970 referred to the mixed autoregressive-moving average process, 

which had been described by Walker, and they named it the general mixed autoregressive-

moving average process of order (𝑝, 𝑞). They also gave this model the acronym 

ARMA(𝑝, 𝑞), and showed that it can be put in the following form (Box and Jenkins, 1970).      

1 − 𝜙 𝐵 − 𝜙 𝐵 − ⋯ − 𝜙 𝐵 z = 1 − 𝜃 𝐵 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 𝑒  

or  

 𝜙(𝐵)z = 𝜃(𝐵)𝑒  (1.4) 

 

where 𝜙(𝐵) and 𝜃(𝐵) are polynomials in 𝐵 of degree 𝑝 and 𝑞 respectively, and 𝐵 is the 

backshift operator, which is defined as 

𝐵 z = z        𝑗 = 0, 1, 2, … . 

1.2.6 Stationary random processes 

Many other researchers have contributed to the development of the mathematical 

foundations of stationary stochastic processes in time series. Kolmogorov (1931, 1941) 

developed the theory of Markov Processes, the theory of stochastic processes and 

introduced a general formula for the mean squared error of a linear extrapolation of a 

stationary random sequence. Khinchin (1933, 1934) developed the theory of stationary 

processes and correlation theory. Wold (1938) developed the probabilistic theory of 
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stationary time series, which is based on the development of ergodic theory and prediction 

theory.  

1.2.7 The methods of parameter estimation of the autoregressive moving average 

model 

The methods of parameter estimation have an important role in time series analysis. There 

are many methods to estimate the parameters of the autoregressive, moving average and 

mixed models, such as, the maximum likelihood method and the least squares method.   

The estimation of autoregressive processes.  

Mann and Wald (1943) estimated an AR(𝑝) process by using the method of maximum 

likelihood, while, Hurwicz (1945) estimated the AR(𝑝) process by using the least-squares 

method. Meanwhile, Guy and Donald (1949) investigated the merits of autoregressive 

transformations and the reduced form transformation, with the main result of estimating 

the parameter structure of the AR(1) model. Kendall (1949) investigated the second-order 

autoregressive process. 

The estimation of moving-average processes.  

Durbin (1959) estimated the moving-average process by using the least squares method 

and the maximum likelihood estimators. This method was extended by Walker (1961). 

The estimation of autoregressive and moving-average processes.  

Durbin (1960) introduced the least squares method to estimate the parameters of the 

autoregressive moving average model.  

1.2.8 The analysis of residuals and forecasting 

Anscombe and Tukey (Anscombe 1961, Anscombe and Tukey, 1963) examined the 

analysis of residuals as a means of detecting departures from the model’s assumptions, and 

they indicated how transformations might be constructed from certain functions of the 

residuals. Economic forecasting problems were investigated by Persons (1924) and 

Margret (1929). Later on work by Cowles (1933, 1944) predicted the future movements of 

stock price in his investigation of the Stock Market, which followed on from the earlier 
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work of Bachelier (1900). Generally, forecasting and filtering methods have been 

developed by researchers, such as, Wiener, (1949), Kalman (1960), and Yaglom (1962).  

1.2.9 Non-stationary time series 

Most time series such as those found in economics and business are not stationary and they 

will exhibit deterministic trends, random walk and other non-stationary behaviour. Moving 

average trends were considered for the first time by Hooker in 1901, when he examined 

the correlation between the marriage rate and trade over the period 1857-1899, Hooker 

(1901). Hooker, in 1905, considered another method to remove the trend, which he called 

a differencing method. Hooker (1905) used differencing to remove the trend before he 

estimated the correlation between the variables, and he applied this method to corn price 

and marriage rate data. Later, the researcher Student further developed the differencing 

method, he estimated the first, second, ... nth differences between variables to get the 

correlation required, and he also determined the correlation between residual variation 

(Student, 1914). The differencing method was employed by the American economist and 

statistician Irving Fisher. He used the differencing method to transform data from non-

stationary to stationary, (Fisher, 1925). Other methods of transforming time series from 

non-stationary to stationary, such as trends and random walk have been developed by 

researchers, such as, Grenander and Rosenblatt (1957), Box and Jenkins (1962), Box and 

Tiao (1965) and Priestley and Rao (1969). 

In the case of a non-stationary time series, �̃�  represents a value of the time series at time 

𝑡. The differencing method is used to transform data from non-stationary to stationary. 

z = ∇�̃�  

where ∇= (1 − 𝐵) is the differencing operator.  

Thus, for the first difference  ∇�̃� = �̃� − �̃�  

The second difference              ∇ �̃� = ∇(�̃� − �̃� ) 

                                                          = ∇�̃� − ∇�̃�  

                                                         = (�̃� − �̃� ) − (�̃� − �̃� ),      𝑡 = 3, … , 𝑛 

and for the 𝑠𝑡ℎ difference ∇ �̃� = ∇ �̃� − ∇ �̃�  
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The incorporation of the differencing method in to ARMA modelling was undertaken by 

Box and Jenkins (1970). This resulted in the general autoregressive integrated moving 

average process ARIMA(𝑝, 𝑑, 𝑞), which can be defined as 

𝜙(𝐵)∇ �̃� = 𝜃(𝐵)𝑒  

1.2.10 Box and Jenkins methodology 

Box and Jenkins (1970) developed a three-stage methodology to model time series data, 

namely: 

1. Identification, which is the determination of a specific model on the basis of certain 

statistical figures by using the sample of autocorrelation function and the sample of 

partial autocorrelation function.  

2. Estimation, which is estimation of the parameters of the model estimated by using 

either the maximum likelihood function, least squares method or Bayes' theorem. 

3. Diagnostic checking, which involves the checking specification of the model by 

statistical tests.  

1.2.11 Vector ARMA models 

The extension of the univariate time series models to multivariate ARMA time series 

models was first proposed by Quenouille (1957). He studied a problem with five variables 

with 82 observations of each variable from the year 1867 to 1948. He fitted a vector first-

order autoregressive process to the data. Following this, he discussed the identification 

method and the estimation method of vector autoregressive, vector moving average and 

vector autoregressive moving average processes.  

Later, Whittle developed a method of fitting a model to a vector autoregressive process by 

using the autocovariance matrices together with the Yule-Walker equations, (Whittle, 

1963). Meanwhile, Hannan (1970) discussed a multivariate time series process with 

theories of estimation methods for vector autoregressive, vector moving average and mixed 

vector autoregressive moving average processes. The researchers Zellner and Palm in 1974 

applied simultaneous equation models within the context of the general linear multiple time 

series process, (Zellner and Palm, 1974). Furthermore, vector ARMA models have been 
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discussed by many researchers, such as, Wallis (1977), Tiao and Box (1981), Hannan and 

Kavalieris (1984), Tiao and Tsay (1989), and Wei (2006).  

Later other researchers extended the Box and Jenkins univariate model building 

methodology to vector ARMA models.  

Model identification 

The researcher Akaike in 1973 introduced the information criterion to identify the vector 

AR process, (Akaike, 1973). Later, Schwarz in 1978 introduced the Bayesian information 

criterion to identify the vector AR process. Hanna and Quinn (1979) and Quinn (1980) 

introduced another form to identify the vector AR process. Tiao and Box (1981) applied 

the likelihood ratio test to identify the vector AR process. Tiao and Box (1981) suggested 

the cross-correlation matrices to identify vector MA processes. Procedures of model 

identification for vector ARMA models have been developed by Tiao and Box (1981).  

Model estimation 

Tunnicliffe (1973), Reinsel (1979) and Anderson (1980) derived the conditional likelihood 

method to estimate VARMA models. The exact likelihood function of a vector moving 

average process was derived by Osborn (1977), and Phadke and Kedem (1978). Later, the 

exact likelihood function for a stationary vector ARMA was derived by Hillmer and Tiao 

(1979), Nicholls and Hall (1979) and Anderson (1980). 

1.2.12 Portmanteau testing 

Portmanteau testing has been developed to select the best fitted model after the ARMA 

models have been identified and estimated. Box and Pierce (1970) introduced the first 

portmanteau test, which is based on the residual of the autocorrelation function; this test is 

approximately distributed as a chi-squared distribution. Ljung and Box (1978) introduced 

a new portmanteau test and they showed this test to be more powerful than the Box and 

Pierce (1970) test. In addition, Monti (1994) introduced a test that is based on the residual 

of partial autocorrelation, and she showed that this test is at least as powerful as the Ljung 

and Box (1978) test. Later, other portmanteau tests, based on the determinant of the 

autocorrelation matrix, were introduced by researchers, such as, Peña and Rodríguez (2002, 

2006). Mahdi and McLeod (2011) introduced a new test, which is based on the result of 
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Peña and Rodríguez (2002, 2006), the test is based on the log of the sample autocorrelation 

matrix. Later, Fisher and Gallagher (2012) presented a new portmanteau test that is a 

weighted sum of the squares of the residual autocorrelation coefficients. In 2015, Gallagher 

and Fisher introduced further portmanteau tests that are based on the weighted sums of the 

squared residual autocorrelations in three different cases, namely, the Kernel-based 

Weights test, the Geometrically Decaying Weights test and the Data Adaptive Weights test.  

1.2.13 Multivariate portmanteau test 

The first application of a portmanteau test to multivariate autoregressive models was by 

Chitturi in 1974, (Chitturi, 1974).  Later, a portmanteau test was developed for vector 

ARMA models by Hosking (1980), which is based on the residual autocorrelation matrix. 

Hosking (1980) modified the multivariate portmanteau test, which is based on the residual 

autocovariance matrix. Li and McLeod (1981) gave another multivariate portmanteau test, 

which is based on the autocorrelation matrix. Mahdi and McLeod (2011) gave another 

multivariate portmanteau test, which is based on the residual autocorrelation matrix.    

1.3 Thesis overview  

Chapter 2 presents the notation used in the thesis and defines the key statistical terms 

employed in time series analysis, namely: the definition of the mean, variance, 

autocovariance, autocorrelation and partial autocorrelation functions. The same chapter 

also outlines the Box-Jenkins model building methodology, autoregressive process, 

moving average process and mixed autoregressive-moving average processes.  

Chapter 3 offers a brief outline of the vector autoregressive moving average process, 

namely, the vector autoregressive process, the vector moving average process and the 

mixed vector autoregressive moving average process. Chapter 3 also introduces an outline 

of model building of vector autoregressive moving average models and associated 

portmanteau tests. 

Chapter 4 details simulation studies that explore how the length of data in a time series 

affects the identification of its stationarity, as determined by standard tests (the DF test, the 

DF drift test and the DF trend test, the ADF test, the ADF drift test and the ADF trend test). 
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The aim of the thesis is to investigate whether the length of data in a time series influences 

its apparent stationarity.  

Chapter 5 introduces two new portmanteau tests, the first is based on the exponential 

weighted sums of the squared sample autocorrelations function and the second is based on 

the exponential weighted sums of the squared sample partial autocorrelation function. The 

aim of the thesis is to investigate whether the new portmanteau tests are more powerful 

than previous portmanteau tests found in the literature.  

Chapter 6 introduces a new multivariate portmanteau test, which is based on the residual 

covariance and autocorrelation matrices with exponential weights. The aim is to investigate 

whether the new multivariate portmanteau test is more powerful than the previous 

multivariate portmanteau tests that have been published. 

Chapter 7 provides a summary of the thesis findings together with recommendations for 

future work. 

1.4 Summary 

A brief history of time series analysis has been provided, from the first chart drawn by 

William Playfair (1801) to the Box & Jenkins methodology in 1970, (Box & Jenkins, 

1970). The development of portmanteau tests has been outlined, starting with Box and 

Pierce’s introduction of the first portmanteau test in 1970 (Box and Pierce, 1970), to latest 

developments introduced by Gallagher and Fisher (Gallagher and Fisher, 2015). The 

extension of ARMA time series models to the multivariate vector case has been considered, 

including the work on model building of VARMA time series models. Finally, existing 

vector portmanteau tests have been introduced, such as, Chitturi (1974), Hosking (1980), 

Li and McLeod (1981) and Mahdi and McLeod (2011). 
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Chapter 2 – Box And Jenkins Methodology 

This chapter provides an introduction to the Box and Jenkins methodology of modelling 

time series. It provides the standard definitions used in time series analysis and gives the 

notation that is used throughout the thesis. It starts with definitions of the mean and the 

variance of a time series, the differencing of a time series, and then progresses on to the 

autocovariance, autocorrelation and partial autocorrelation functions. It also provides some 

definitions of time series such as stochastic process, stationary, Gaussian process, weak 

stationary, white noise, backshift operator, linear process and invertibility. Finally, the 

Chapter discusses the autoregressive, the moving average and the mixed autoregressive-

moving average processes.   

2.1 Standard definitions in time series analysis 

2.1.1 The mean, the variance and the covariance functions 

The mean of a stationary time series {𝑧 } indicates the overall level of the series. The 

sample mean 𝑧̅ provides an estimate of the true mean 𝜇 of the time series.   

Definition 2.1.1 The sample mean of a time series is the sum of the observations for each 

time period 𝑧  divided by the total number of observations 𝑛, then       

 𝑧̅ =
1

𝑛
𝑧  (2.1) 

The sample variance of a time series is calculated using the normal approach, that is, 

determine the deviation of each observation from the mean, square each deviation, sum the 

deviations and divide by the total number of observations n, then 

 𝑆 =
1

𝑛
(𝑧 − 𝑧̅)    (2.2) 

Definition 2.1.2 If 𝑍 is a random variable of a discrete sample space taking the values 𝑧 , 

t = 0, +1, +2, …, then the expectation of 𝑍 is denoted as 𝐸[𝑍] and is defined as
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 𝜇 = 𝐸[𝑍] = 𝑧 𝑝[𝑍 = 𝑧 ],  (2.3) 

where 𝑝[𝑍 = 𝑧 ] is the probability of the occurrence of the value of 𝑧 .   

Definition 2.1.3 The variance of 𝑍, denoted by 𝑣𝑎𝑟(𝑍), is defined by 

𝜎 = 𝑣𝑎𝑟(𝑍) = 𝐸[(𝑍 − 𝜇) ] 

 where 𝜇 = 𝐸[𝑍] is the expectation of  𝑍, then  

                                                        = 𝐸[𝑍 ] − 𝜇  

Definition 2.1.4 The covariance between two random variables 𝑧  and 𝑧  with expected 

values 𝜇  and 𝜇  is defined as     

 𝑐𝑜𝑣 𝑧 , 𝑧 = 𝐸 𝑧 − 𝜇 𝑧 − 𝜇  (2.4) 

                  = 𝐸 𝑧 𝑧 − 𝜇 𝜇 .       

Definition 2.1.5 The correlation function between 𝑧  and 𝑧  is defined as  

 𝜌 𝑧 , 𝑧 =
𝑐𝑜𝑣 𝑧 , 𝑧

𝜎 𝜎
.  (2.5) 

2.1.2 Stochastic process 

A stochastic process is a family or sequence of random variables {𝑧 }  indexed by time 

t. In most applications, the time index is regularly spaced, and represents calendar time, for 

example, days, months, or years. A realization of a stochastic process with 𝑛 observations 

is the sequence of observed data {𝑧 } . If the probability distribution associated with any 

set of times is a Normal distribution, the process is called a Normal or Gaussian process 

(Box and Jenkins, 1970).  
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2.1.3 Strict stationarity and weak stationarity 

A stochastic process is said to be strictly stationary if its properties are unaffected by a 

change of time origin; that is, if the joint probability distribution function associated with 

𝑛 observations 𝑧 , 𝑧 , … , 𝑧 , made at any set of times 𝑡 , 𝑡 , … , 𝑡 , is the same as that 

associated with 𝑛 observations, (Tsay, 2005).  

A stochastic process is said to be weakly stationary if all its joint moments up to order 𝑛 

exist and are time invariant. Therefore, a second-order weak stationary process will have a 

mean, variance and covariance are time invariant. Sometimes, the term covariance 

stationary is used to describe a second-order weak stationary process, (Tsay, 2005). 

2.1.4 Differencing  

The aim of differencing is to transform a non-stationary time series to a stationary one. 

Differencing is a simple operation that involves calculating successive changes in the 

values of a time series. It is used when the mean of the series is changing over time.  

For a non-stationary time series �̃�  the first difference is calculated by Equation 2.6 which 

gives the series 𝑧 , 

 𝑧 = �̃� − �̃� ,       𝑡 = 2,3, … , 𝑛  (2.6) 

where 𝑧  is called the first difference of �̃� . If the first difference does not have a constant 

mean, the series can be differenced again to give the second difference of 𝑧  

((Pankratz,1983). 

The second difference is 

∇ �̃� = (�̃� − �̃� ) − (�̃� − �̃� ),    𝑡 = 3, … , 𝑛  

2.1.5 The autocovariance function  

If 𝑧  is stationary then the covariance between 𝑧  and its value 𝑧 , separated by 𝑘 intervals 

of time, is called the autocovariance at lag 𝑘 and defined by 

 𝛾 = 𝑐𝑜𝑣[𝑧 , 𝑧 ] = 𝐸[(𝑧 − 𝜇)(𝑧 −  𝜇)]  (2.7) 

Since 𝑧  is stationary, this gives   
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𝛾 = 𝑐𝑜𝑣[𝑧 , 𝑧 ] 

     = 𝑐𝑜𝑣[𝑧 , 𝑧 ] 

= 𝛾              

where, 𝜇 is the mean of observations and 𝛾  is the autocovariance function at lag 𝑘. 

2.1.6 The autocorrelation function (ACF)  

The standard formula for calculating an autocorrelation function is   

 

𝜌 =  
𝐸[(𝑧 −  𝜇)(𝑧 −  𝜇)]

𝐸[(𝑧 − 𝜇) ]𝐸[(𝑧 −  𝜇) ]
 

 
=

𝐸[(𝑧 −  𝜇)(𝑧 −  𝜇)]

𝜎
  

(2.8) 

 

where, 𝜎  is the variance, 𝜇 is the mean of observations and 𝜌  is the autocorrelation 

function at lag 𝑘. 

Note that when  𝜎 =  𝛾 , then   

𝜌 =  
𝛾

𝛾
 (2.9) 

2.1.7 Autocovariance matrix 

The covariance matrix associated with a stationary process for observations (𝑧  , 𝑧  , … .,

𝑧 ) made at 𝑛 successive times is 

 𝜞 =  

⎣
⎢
⎢
⎢
⎡

𝛾        𝛾        𝛾     …     𝛾
𝛾        𝛾        𝛾     …     𝛾
𝛾        𝛾        𝛾     …     𝛾
⋮         ⋮         ⋮       …        ⋮   

𝛾    𝛾    𝛾  …     𝛾       ⎦
⎥
⎥
⎥
⎤

.   (2.10) 

As with autocorrelations, autocovariance can be conveniently represented in matrix form. 

Start with matrix (2.10) and divide each element by 𝛾 . All elements on the main diagonal 
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become one, indicating that each 𝑧  is perfectly correlated with itself. All other 𝛾  values 

become 𝜌  values as indicated by Equation (2.9):     

       = 𝜎  

⎣
⎢
⎢
⎢
⎡

1         𝜌        𝜌      …      𝜌
𝜌        1         𝜌      …      𝜌
𝜌       𝜌          1      …      𝜌
⋮         ⋮           ⋮        …       ⋮      

 𝜌    𝜌   𝜌  …     1         ⎦
⎥
⎥
⎥
⎤

 

 = 𝜎 𝜬                                               (2.11) 

where, 𝜞  is the autocovariance matrix and 𝜬  is the autocorrelation matrix (Box and 

Jenkins, 1970). 

2.1.8 Conditions satisfied by the autocorrelations of a stationary process  

The positive definiteness of the autocorrelation matrix (2.10) implies that its determinant 

and all principal minors are greater than zero, Box, Jenkins, Reinsel and Ljung, (2015). 

For 𝑛 = 2 

1     𝜌
𝜌     1

 > 0 

so that   

1 −  𝜌 > 0 

and hence  

−1 <  𝜌  < 1 

Similarly, for 𝑛 = 3, this requires  

1     𝜌
𝜌      1

 > 0,    
1     𝜌
𝜌      1

 > 0 

1     𝜌      𝜌
𝜌      1     𝜌
𝜌      𝜌      1

 > 0 

which implies 

−1 < 𝜌 < 1 
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−1 < 𝜌 < 1 

−1 <
𝜌 − 𝜌

1 − 𝜌
< 1 

The determinant of the second matrix must be positive as well as the determinants of its 

principal minors, which implies |𝜌 | ≤ 1 and |𝜌 | ≤ 1, so 

1 + 2𝜌 𝜌 − 2𝜌 − 𝜌 ≥  0   ⇒  𝜌 − (2𝜌 − 1)  (𝜌 − 1) ≤ 0 

Since  |𝜌 | ≤ 1, 

𝜌 − (2𝜌 − 1) ≥ 0 ⇒ 𝜌 ≥ 2𝜌 − 1 

Which lead to  

−1 <
𝜌 − 𝜌

1 − 𝜌
< 1 

2.1.9 Estimation of autocovariance and autocorrelation functions   

An estimate for the autocorrelation function can be obtained by,  

 𝜌 =
∑ (𝑧 −  𝑧̅)(𝑧 − 𝑧 ) 

∑ (𝑧 −  𝑧̅)
.  (2.12) 

The variance is the average squared difference from the mean, by analogy the 

autocovariance of a time series is defined as the average product of differences at time 𝑡 

and 𝑡 + 𝑘  

 𝑐 =  
1

𝑛
(𝑧 −  𝑧̅)(𝑧 − 𝑧 ),        𝑘 = 0,1,2, … , 𝐾  (2.13) 

where 𝑐  is the autocovariance coefficient at lag 𝑘, and 𝑐  is the variance. By combining 

Equations 2.12 and 2.13, the autocorrelation at lag 𝑘 can be written in terms of the 

autocovariance: 

 𝜌 =
𝑐

𝑐
   (2.14) 



Chapter 2 - Box - Jenkins Methodology 

 

20 

 

So that the estimator is asymptotically unbiased, where 𝜌  is the estimation autocorrelation 

function. 

The autocovariance function is sometimes computed with the alternative equation 

 𝑐 =  
1

(𝑛 − 𝑘)
(𝑧 − 𝑧̅)(𝑧 − 𝑧 ),        𝑘 = 0,1,2, … , 𝐾  (2.15) 

The autocovariance function given by Equation 2.15 has a lower bias than the 

autocovariance function given by Equation 2.13 (Jenkins and Watts, 1968). 

2.1.10 Standard errors of autocorrelation estimates 

Bartlett, in 1946, derived an approximation expression for the variance of the estimated 

autocorrelation coefficient of a stationary normal process (Bartlett, 1946) 

 𝑣𝑎𝑟 [𝜌 ] − 
1

𝑛
 {𝜌 + 𝜌 𝜌 − 4𝜌 𝜌 𝜌 + 2𝜌 𝜌 } (2.16) 

For a process with 𝜌 = 0 this approximation simplifies to Equation 2.17, since, for 𝑖 >

𝑘 − 1, all terms except the first appearing in the right-hand side of Equation 2.16 are zero. 

Then the variance of autocorrelation 𝑣𝑎𝑟 [𝜌 ] is calculated as follows  

 𝑣𝑎𝑟 [𝜌 ] ≃
1

𝑛
 1 + 2 𝜌 .  (2.17) 

A similar approximate expression for the covariance between the estimated correlation 𝜌  

and 𝜌  at two different lags 𝑘 and 𝑘 + 𝑡 have been given by Bartlett (1946). 

 𝑐𝑜𝑣⌈𝜌 , 𝜌 ⌉ ≃
1

𝑛
𝜌 𝜌  (2.18) 

Equation 2.18 is required in the interpretation of individual autocorrelations because large 

covariances can exist between neighbouring values. 

The standard errors from Equation 2.17 for estimated autocorrelations 𝜌  given by 
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 𝑆𝐸[𝜌 ] ≃ 𝑣𝑎𝑟 [𝜌 ]            𝑘 > 0 (2.19) 

2.1.11 The partial autocorrelation function 

The partial autocorrelation measures the correlation between 𝑧  and 𝑧  that remains when 

the influences of 𝑧 , 𝑧 , … , 𝑧  on 𝑧  and 𝑧  have been eliminated. Consider the 

𝑖th order of the correlation between 𝑧  and 𝑧 ,  

                                          𝑧 = 𝜙 𝑧 + 𝑒                           

                                          𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + 𝑒  

                                          𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + 𝜙 𝑧 + 𝑒  

               𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒  (2.20) 

where the sequence 𝜙 , 𝜙 , 𝜙 , … , 𝜙  denotes partial autocorrelations and 𝑒  is an error 

term with mean zero and uncorrelated with 𝑧  for 𝑗 = 1, 2, 3, … , 𝑘.  

Multiplying Equation 2.20 by 𝑧  and then taking expected values, gives the 

autocovariance function   

 𝛾 = 𝜙 𝛾 + ⋯ + 𝜙 ( )𝛾 + 𝜙 𝛾 , (2.21) 

hence,  

 𝜌 = 𝜙 𝜌 + ⋯ + 𝜙 ( )𝜌 + 𝜙 𝜌       𝑗 = 1,2, … , 𝑘 (2.22) 

where 𝜌  is an autocorrelation function.  

Substituting 𝑗 = 1,2, … , 𝑘 into Equation 2.23 gives a set of linear equations for 

𝜙 , 𝜙 , … , 𝜙  in terms of 𝜌 , 𝜌 , … , 𝜌 , these are  

 

𝜌 = 𝜙           + 𝜙 𝜌     + ⋯ + 𝜙 𝜌  

𝜌 = 𝜙 𝜌       + 𝜙         + ⋯ + 𝜙 𝜌  

⋮           ⋮           ⋮                    …   ⋮              

 𝜌 = 𝜙 𝜌 + 𝜙 𝜌 + ⋯ + 𝜙              (2.23) 
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These are usually called the Yule-Walker equations (Yule, 1927, Walker, 1931). 

The Yule-Walker Equations 2.23, may be written 

 

1           𝜌        𝜌        …      𝜌
𝜌           1         𝜌        …      𝜌
 ⋮           ⋮          ⋮           …         ⋮    

𝜌    𝜌     𝜌     …       1       

  

𝜙
𝜙

⋮
𝜙

=

𝜌
𝜌
⋮

𝜌

 (2.24) 

Using Cramer's rule successively for 𝑘 = 1, 2, 3, …,  gives 

                                                   𝜙 = 𝜌    

𝜙 =

1     𝜌
𝜌    𝜌
1     𝜌
𝜌    1

=
𝜌 − 𝜌

1 − 𝜌
     

𝜙 =

1     𝜌     𝜌  
𝜌    1     𝜌
𝜌    𝜌    𝜌
1     𝜌     𝜌  
𝜌    1     𝜌
𝜌     𝜌      1

=
𝜌 − (𝜙 𝜌 + 𝜙 𝜌 )

1 − (𝜙 𝜌 + 𝜙 𝜌 )
 

 𝜙 =

1           𝜌        𝜌         …      𝜌  𝜌
𝜌           1         𝜌         …     𝜌  𝜌  

⋮           ⋮          ⋮           …       ⋮       ⋮ 
𝜌    𝜌     𝜌     …    𝜌      𝜌  

1           𝜌        𝜌         …      𝜌  𝜌
𝜌           1         𝜌         …     𝜌  𝜌  

⋮           ⋮          ⋮           …         ⋮       ⋮  
𝜌     𝜌      𝜌     …      𝜌       1    

 (2.25) 

 

 𝜙 =
𝜌 − ∑ 𝜙 , 𝜌

1 − ∑ 𝜙 , 𝜌
,        𝑘 = 3,4, …,    (2.26) 

where 

𝜙 , = 𝜙 , − 𝜙 𝜙 ,  ,      𝑘 = 2, … , 𝑗 = 1, 2, … , 𝑘 − 1 
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For an autoregressive process of order 𝑝, the partial autocorrelation function 𝜙  will be 

nonzero for 𝑘 less than or equal to 𝑝, and zero for 𝑘 greater than 𝑝. 

2.1.12 Estimation of the partial autocorrelation function 

An estimated partial autocorrelation function (PACF) is similar to an estimated 

autocorrelation function (ACF). An estimated PACF is also a graphical representation of 

the statistical relationship between sets of order pairs (𝑧 , 𝑧 ) drawn from a single time 

series (Pankratz, 1983). The main idea of the PACF is to measure how 𝑧  and 𝑧  are 

related. To estimate the PACF, consider the regression relationship between 𝑧  and the 

preceding value 𝑧 : 

𝑧 = 𝜙 𝑧 + 𝑎  

where 𝜙  is a partial autocorrelation coefficient to be estimated, and 𝑘 = 1 and 𝑎  is 

the error term.  

When k = 2, then   

𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + 𝑎  

When k = 3, then    

𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + 𝜙 𝑧 + 𝑎  

 

Thus, the partial autocorrelation function 𝜙  can be obtained by substituting 𝜌  by 𝜌  in 

Equation 2.25. Instead of calculating the complicated determinants for lag 𝑘 in Equation 

2.25, a recursive method starting with 𝜙 = 𝜌  for computing 𝜙  has been given by 

Durbin (1960) as follows: 

 𝜙 , =
𝜌 − ∑ 𝜙 𝜌

1 − ∑ 𝜙 𝜌
,   (2.27) 

where 

 𝜙 , = 𝜙 − 𝜙 , 𝜙 , , 𝑗 = 1,2, … , 𝑘  (2.28) 
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The method holds also for calculating the theoretical PACF 𝜙 . 

2.1.13 Standard errors of partial autocorrelation estimates 

It was shown by Quenouille (1949), Jenkins (1954, 1956), and Daniels (1956) that given 

the hypothesis that the process is autoregressive of order 𝑝, the estimated partial 

autocorrelation of order 𝑝 + 1, and higher are approximately independently distributed 

with variance. 

𝑣𝑎𝑟 𝜙 ≅
1

𝑛
                𝑘 ≥ 𝑝 + 1 

The standard error (S.E.) of the estimated partial autocorrelation 𝜙  is 

 𝑆. 𝐸. 𝜙  − 
1

√𝑛
       𝑘 ≥ 𝑝 + 1 (2.29) 

2.1.14 White noise 

A time series 𝑧  is called a white noise process if {𝑧 } is a sequence of independent and 

identically distributed random variables with normal distribution with constant mean 

𝐸(𝑒 ) = 𝜇  (it is usually assumed that 𝐸(𝑒 ) = 0), constant variance 𝑣𝑎𝑟(𝑒 ) = 𝜎 , and 

𝑦 = 𝑐𝑜𝑣(𝑒 , 𝑒 ) = 0 for all 𝑘 ≠ 0. A white noise process {𝑒 } is stationary with  

the autocovariance function 

 𝛾 =
𝜎 ,        𝑘 = 0,
0,          𝑘 ≠ 0,

  (2.30) 

the autocorrelation function  

 𝜌 =
1,          𝑘 = 0,
0,          𝑘 ≠ 0,

 (2.31) 

and the partial autocorrelation function 

 

 𝜙 =
1,          𝑘 = 0,
0,          𝑘 ≠ 0,

 (2.32) 
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2.1.15 Backshift operator   

The backshift operator is a useful notion in time series analysis. For a time series {𝑧 } , 

the backshift operator can be used to model the data series and investigate the 

characteristics of {𝑧 } . The basic rules of the backshift operator are 

1. 𝐵z = z  

Example: 

∇z = z − z = z − 𝐵z = z − 𝐵z = (1 − 𝐵)z . 

2.  

1

1 − 𝑎𝐵
= 1 + 𝑎𝐵 + 𝑎 𝐵 + 𝑎 𝐵 + ⋯ ,            if |𝑎| < 1 

 

2.2 Linear process and invertibility 

2.2.1 The linear process 

The class of linear time series models, which includes the class of autoregressive 

moving-average (ARMA) models, provides a general framework for studying stationary 

processes. The time series {z } is a linear process if it has the representation 

 z = 𝑒 + 𝜓 𝑒  (2.33) 

for all 𝑡, where {𝑒 } is a white noise of mean zero and constant variance 𝜎  and 𝜓  is a 

sequence of constants ∑ 𝜓 < ∞. The linear process z  can be represented as a 

weighted sum of present and past values of the white noise process. The linear process was 

developed by several researchers, such as, Walker (1931), Slutsky (1937), Bartlett (1946), 

Doob (1953), Grenander and Rosenblatt (1957), and Hannan (1970).  

For a linear time series defined by Equation 2.33, the dynamic structure of z  is governed 

by the coefficients 𝜓 , which are called the 𝜓-weights of z  in the time series. If z  is weakly 
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stationary, it is possible to obtain its mean and variance easily by using the independence 

of {𝑒 } as 

 𝐸[z ] = 0,         (2.34) 

 𝑣𝑎𝑟(z ) = 𝜎 𝜓 , (2.35) 

 

where 𝜎  is the variance of 𝑒 . Because 𝑣𝑎𝑟(z ) < ∞, 𝜓  must be a convergent sequence, 

that is 𝜓 → 0 as 𝑗 → ∞. Consequently, for a stationary series, the impact of the remote 

white noise 𝑒  on the return z vanishes as 𝑗 increases. 

 

The lag-𝑘 autocovariance of  z  is 

𝛾 = 𝑐𝑜𝑣(z , 𝑧 ) = 𝐸 𝜓 𝑒 𝜓 𝑒  

                 = 𝐸 𝜓 𝜓 𝑒 𝑒

,

 

         = 𝜓 𝜓 𝐸 𝑒  

where 𝐸 𝑒 = 𝜎 , this gives     

 = 𝜎 𝜓 𝜓 . (2.36) 

Consequently, 𝜓-weights are related to the autocorrelations of z  as follows  
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 𝜌 =
𝛾

𝛾
=

∑ 𝜓 𝜓

1 + ∑ 𝜓
, 𝑘 ≥ 0, (2.37) 

where 𝜓 = 1. For a weakly stationary time series, 𝜓 → 0 as 𝑗 → ∞ and, hence, 𝜌  

converges to zero as 𝑘 increases (Box, Jenkins, Reinsel and Ljung, 2015).              

The Equation 2.33 implies that z  can be written alternatively as a weighted sum of past 

values of z , plus an added white noise 𝑒 , that is  

z = 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒  

 = 𝜙 𝑧 + 𝑒                  (2.38) 

The alternative form Equation 2.38 may be thought of as one where the current deviation 

z , from the level 𝜇, is regressed on past deviations 𝑧 , 𝑧 , … of the process, where 𝜙 

are weights of z . 

2.2.2 Invertibility 

If an MA(𝑞) process can be represented by an AR(∞) process, then the process is said to 

be invertible (Box and Jenkins, 1970). Invertibility of a MA(𝑞) process requires that all 

the roots of the polynomial 𝜃(𝐵) = 1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 = 0, lie outside the unit circle. 

The invertibility condition was investigated by Granger and Andersen in 1978. 

The invertibility of an MA(𝟏) process  

To illustrate the invertibility condition, consider the first-order moving average process 

MA(1) if |𝜃| < 1 

 𝑧 = (1 − 𝜃𝐵)𝑒  (2.39) 

or 

 𝑒 = (1 − 𝜃𝐵) 𝑧  (2.40) 

By pre-multiplying both sides of (2.39) by (1 + 𝜃𝐵 + 𝜃 𝐵 + ⋯ + 𝜃 𝐵 ), gives 
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(1 + 𝜃𝐵 + 𝜃 𝐵 + ⋯ + 𝜃 𝐵 )𝑧 = (1 + 𝜃𝐵 + 𝜃 𝐵 + ⋯ + 𝜃 𝐵 )(1 − 𝜃𝐵)𝑒  

(1 + 𝜃𝐵 + ⋯ + 𝜃 𝐵 )𝑧 = (1 + 𝜃𝐵 + ⋯ + 𝜃 𝐵 − 𝜃𝐵 − ⋯ − 𝜃 𝐵 − 𝜃 𝐵 )𝑒  

then    

(1 + 𝜃𝐵 + 𝜃 𝐵 + ⋯ + 𝜃 𝐵 )𝑧 = (1 − 𝜃 𝐵 )𝑒  

By using the backshift operator rule   

𝐵 (z ) = z  

hence, 

𝑧 + 𝜃𝑧 + 𝜃 𝑧 + ⋯ + 𝜃 𝑧 = 𝑒 − 𝜃 𝑒  

Thus,  

 𝑧 = −𝜃𝑧 − 𝜃 𝑧 − ⋯ − 𝜃 𝑧 + 𝑒 − 𝜃 𝑒  (2.41) 

If |𝜃| < 1, then the last term in this expression tends to zero as  𝑘 → ∞, and the infinite 

series can be written as  

 𝑧 = 𝑒 + (−𝜃) 𝑧  (2.42) 

So, |𝜃| < 1 is a sufficient condition for an MA(1) model to be invertible.  

In general, an MA(𝑞) model is invertible if all the roots of MA(𝑞) polynomial 𝜃(𝐵) =

1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 = 0, lie outside the unit circle (Box and Jenkins, 1970).  

2.3 Autoregressive process 

The general form for an autoregressive process of order 𝑝, an AR(𝑝) process is                               

                                 𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒  (2.43) 

where the current value of the process is expressed as a weighted sum of previous values 

plus a white noise term. Equation 2.43 can be written as     

1 − 𝜙 𝐵 − ⋯ − 𝜙 𝐵 𝑧 = 𝜙(𝐵)𝑧 = 𝑒  
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The Equation 2.43 must satisfy certain conditions for the process to be stationary. 

2.3.1 The first-order autoregressive process 

The first-order autoregressive process AR(1), can be written as (Guy and Donald 1949), 

(1 − 𝜙 𝐵)𝑧 = 𝑒  

which may also be written as 

𝑧 = (1 − 𝜙 𝐵) 𝑒 , |𝜙 | < 1 

Use of lag operator rule 2 gives 

𝑧 = 𝜙 𝑒  

providing that the infinite series on the right converges in an appropriate sense. 

Hence,  

 𝜓(𝐵) = (1 − 𝜙 𝐵) = 𝜙 𝐵 , (2.44) 

or equivalently that 

|𝜙 | < ∞. 

From Equation 2.44 an AR(1) process must satisfy the condition |𝜙 | < 1 to ensure 

stationarity. Since the root of 1 − 𝜙 𝐵 = 0, this condition is equivalent to saying that the 

root of 1 − 𝜙 𝐵 = 0 must lie outside the unit circle. 

The autocorrelation of an AR(1) process 

𝑧 = 𝜙 𝑧 + 𝑒  

Multiplying by 𝑧  on both sides gives  

𝑧  𝑧 = 𝜙 𝑧 𝑧 + 𝑧 𝑒  

and taking the expectation on both sides, where 𝜙 is constant, gives 

𝐸[𝑧  𝑧 ] = 𝜙 𝐸[𝑧 𝑧 ] + 𝐸[𝑧 𝑒 ] 
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, because 𝑒  and 𝑧  are independent, it follows that for 𝑘 ≥ 1 

𝑐𝑜𝑣 (𝑧 , 𝑧 ) = 𝜙 𝑐𝑜𝑣(𝑧 , 𝑧 ) 

 𝛾 = 𝜙 𝛾 ,                    for 𝑘 ≥ 1 (2.45) 

The variance of an AR(1) process is given by 

 𝛾 = 𝜎 =
𝜎

1 − 𝜙
, |𝜙 | < 1 (2.46) 

and the autocorrelation function is given by 

 𝜌 = 𝜙 𝜌 = 𝜙 ,         for 𝑘 ≥ 1 (2.47) 

where 𝜌 = 1. Hence when |𝜙 | < 1 and the process is stationary, the autocorrelation 

exponentially decays in one of two forms depending on the sign of 𝜙 . If 0 < 𝜙 < 1, then 

all autocorrelations are positive; if −1 < 𝜙 < 0, then the sign of the autocorrelations 

shows an alternating pattern, beginning with a negative value.  

The partial autocorrelation of an AR(1) process  

 𝜙 =
𝜌 = 𝜙 ,          𝑘 = 1,
0,                      𝑘 ≥ 2.

 (2.48) 

Hence, the partial autocorrelation of the AR(1) process shows a positive or negative spike 

at lag 1 depending on the sign of 𝜙  and then cuts off, shown in Figure 2.1.  
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Figure 2.1 ACF and PACF of the AR(1) process. 

 

2.3.2 The second-order autoregressive process 

The second-order autoregressive process AR(2) may be written 

 𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + 𝑒  (2.49) 

The AR(2) process, as a finite autoregressive process, is always invertible if stationary. To 

be stationary the roots of 𝜙(𝐵) = 1 − 𝜙 𝐵 − 𝜙 𝐵 = 0 must lie outside the unit circle. 

Consider the second-order polynomial equation (Wei, 2006)  
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1 − 𝜙 𝑥 − 𝜙 𝑥 = 0 

where the solution of this equation is  

𝐴 =
−𝜙 + 𝜙 + 4 𝜙

2𝜙
, 𝐴 =

−𝜙 − 𝜙 + 4 𝜙

2𝜙
 

Taking the reciprocal both sides, 

1

𝐴
=

2𝜙

−𝜙 + 𝜙 + 4 𝜙
=

2𝜙

−𝜙 + 𝜙 + 4 𝜙

−𝜙 − 𝜙 + 4 𝜙

−𝜙 − 𝜙 + 4 𝜙
 

=
𝜙 + 𝜙 + 4 𝜙

2
 

Similarly  

1

𝐴
=

𝜙 − 𝜙 + 4 𝜙

2
 

For real roots, it is required that 𝜙 + 4 𝜙 ≥ 0, which is  

−1 <
𝜙 − 𝜙 + 4 𝜙

2
≤

𝜙 + 𝜙 + 4 𝜙

2
< 1 

Consider the left hand side 

−1 <
𝜙 − 𝜙 + 4 𝜙

2
 

                                                    ⇔ −2 < 𝜙 − 𝜙 + 4 𝜙  

                                                    ⇔ 𝜙 + 4 𝜙 < 2 + 𝜙  

                                                    ⇔ 𝜙 + 4 𝜙 < 𝜙 + 4𝜙 + 4 

                                                    ⇔  𝜙 < 𝜙 + 1 

or 

                                                          𝜙 − 𝜙 < 1 

Now consider the right hand side 

𝜙 + 𝜙  < 1 
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For complex roots, 𝜙 + 4𝜙 < 0. Here 𝐴  and 𝐴  will be complex conjugates and =

< 1 if and only if < 1. But 

 

1

𝐴
=

[𝜙 + (−𝜙 − 4𝜙 )]

4
= −𝜙  

so that 𝜙 > −1.  

 

Thus, the stationarity condition of the AR(2) model is given by the following triangular 

region, 

 

 

𝜙 + 𝜙  < 1 

𝜙 − 𝜙  < 1 

−1 < 𝜙 < 1 

(2.50) 

 

The autocorrelation function of an AR(2) process  

The autocorrelation function of an AR(2) process can be obtained by multiplying 𝑧  on 

both sides of the AR(2) process in Equation 2.49 

𝑧 𝑧 = 𝜙 𝑧 𝑧 + 𝜙 𝑧 𝑧 + 𝑧 𝑒  

and then taking the expectation on both sides, where 𝜙 , 𝜙  are constants gives 

𝐸[𝑧 𝑧 ] = 𝜙 𝐸[𝑧 𝑧 ] + 𝜙 𝐸[𝑧 𝑧 ] + 𝐸[𝑧 𝑒 ] 

because 𝑒  and 𝑧  are independent, it follows that for 𝑘 ≥ 1 

𝑐𝑜𝑣 (𝑧 , 𝑧 ) = 𝜙 𝑐𝑜𝑣(𝑧 , 𝑧 ) + 𝜙 𝑐𝑜𝑣(𝑧 , 𝑧 ) 

 𝛾 = 𝜙 𝛾 + 𝜙 𝛾 ,             𝑘 ≥ 1 (2.51) 
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The variance of AR(2) is  

 𝛾 = 𝜎 =
(1 − 𝜙 )𝜎

(1 + 𝜙 )(1 − 𝜙 ) − 𝜙
 (2.52) 

The autocorrelation function satisfies the second-order difference equation  

 𝜌 = 𝜙 𝜌 + 𝜙 𝜌               𝑘 ≥ 1 (2.53) 

The stationary conditions for an AR(2) process are, in the cases of 𝑘 = 1 and 2, given by 

𝜌 = 𝜙 + 𝜙 𝜌  

𝜌 = 𝜙 𝜌 + 𝜙 , 

which implies that 

 

𝜌 =
𝜙

1 − 𝜙
           

𝜌 = 𝜙 +
𝜙

1 − 𝜙 ⎭
⎪
⎬

⎪
⎫

 (2.54) 

Thus, 𝜌  and 𝜌  must lie in the region,  

−1 < 𝜌 < 1 

−1 < 𝜌 < 1 

𝜌 <
1

2
 (𝜌 + 1) 

Thus, the ACF of the second-order autoregressive process will decay exponentially if the 

roots of (1 − 𝜙 𝐵 − 𝜙 𝐵 ) = 0 are real, and will follow a damped sine wave if the roots 

of 1 − 𝜙 𝐵 − 𝜙 𝐵 = 0 are complex.   

The partial autocorrelation of an AR(2) process  

For the AR(2) process, because 

𝜌 = 𝜙 𝜌 + 𝜙 𝜌  

For 𝑘 ≥ 1, then  



Chapter 2 - Box - Jenkins Methodology 

 

35 

 

𝜙 = 𝜌 =
𝜙

1 − 𝜙
 

𝜙 =

1     𝜌
𝜌    𝜌
1     𝜌
𝜌    1

=
𝜌 − 𝜌

1 − 𝜌
 

=

𝜙 + 𝜙 − 𝜙
1 − 𝜙

−
𝜙

1 − 𝜙
 

1 −
𝜙

1 − 𝜙

 

=
𝜙 [(1 − 𝜙 ) − 𝜙 ]

(1 − 𝜙 ) − 𝜙
= 𝜙 . 

Hence, the partial autocorrelation function of an AR(2) process cuts off after lag 2. 

2.3.3 The general 𝒑th-order autoregressive AR(𝒑) process 

The general AR(𝑝) process may be written as 

𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒  

or 

1 − 𝜙 𝐵 − 𝜙 𝐵 − ⋯ − 𝜙 𝐵 𝑧 = 𝜙(𝐵)𝑧 = 𝑒  

This can then put in the form   

𝜙(𝐵) = (1 − 𝐺 𝐵)(1 − 𝐺 𝐵) ⋯ 1 − 𝐺 𝐵  

where 𝐺 , 𝐺 , ⋯ , 𝐺  are the root of 𝜙(𝐵) = 0.  

Now consider 𝜙 (𝐵) and using partial fractions, gives  

𝜙 (𝐵) =
1

(1 − 𝐺 𝐵)(1 − 𝐺 𝐵) ⋯ 1 − 𝐺 𝐵
 

=
𝐴

(1 − 𝐺 𝐵)
+

𝐴

(1 − 𝐺 𝐵)
+ ⋯ +

𝐴

1 − 𝐺 𝐵
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 =
𝐴

1 − 𝐺 𝐵
. 

hence,  

𝑧 = 𝜙 (𝐵)𝑒 =
𝐴

1 − 𝐺 𝐵
𝑒 . 

Thus, if 𝜓(𝐵) = 𝜙 (𝐵) is to be a convergent series for |𝜙| < 1, that is, if the weights  

𝜓 = 𝐴 𝐺 , 

are to be absolutely summable so that the AR(𝑝) will represent a stationary process, it is 

required that 𝐺 < 1, for 𝑖 = 1, 2, … , 𝑝. Equivalently, the roots of 𝜙(𝐵) = 0 must lie 

outside the unit circle, Box and Jenkins (1970). 

The autocovariance function of the general 𝑝th-order autoregressive AR(𝑝) process is 

given by Equation 2.43 

𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒  

By multiplying 𝑧  on both sides of the equation, gives 

𝑧  𝑧 = 𝜙 𝑧  𝑧 + 𝜙 𝑧  𝑧 + ⋯ + 𝜙 𝑧  𝑧 + 𝑒  

and taking the expectation on both sides, gives 

𝐸[𝑧  𝑧 ] = 𝜙 𝐸[𝑧  𝑧 ] + 𝜙 𝐸[𝑧  𝑧 ] + ⋯ + 𝜙 𝐸[𝑧  𝑧 ] + 𝐸[𝑧 𝑒 ] 

because 𝑒  and 𝑧  are independent, it follows that  

𝑐𝑜𝑣(𝑧 , 𝑧 ) = 𝜙 𝑐𝑜𝑣(𝑧  , 𝑧 ) + 𝜙 𝑐𝑜𝑣(𝑧  , 𝑧 ) + ⋯ + 𝜙 𝑐𝑜𝑣 𝑧  , 𝑧  

Hence, the autocovariance function of the general 𝑝th- order autoregressive AR(𝑝) process 

is 

 𝛾 = 𝜙 𝛾 + 𝜙 𝛾 + ⋯ + 𝜙 𝛾 ,        𝑘 > 0 (2.55) 
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The autocorrelation function of 𝒑th-order autoregressive AR(𝒑)  

The autocorrelation function of the general 𝑝th-order autoregressive AR(𝑝) process will 

consist of a mixture of exponential decays and damped sine or cosine waves, (Box and 

Jenkins, 1970). Damped sine or cosine waves appear if some of the roots are complex. The 

autocorrelation function of autoregressive AR(𝑝) can be found by solving a set of 

difference equations called the Yule-Walker equations given by 

 𝜌 = 𝜙 𝜌 + 𝜙 𝜌 + ⋯ + 𝜙 𝜌          𝑘 > 0 (2.56) 

The partial autocorrelation function of 𝒑th-order autoregressive AR(𝒑) 

For the partial autocorrelation function of the general 𝑝th-order autoregressive AR(𝑝), the 

PACF 𝜙 will vanish after lag 𝑝, Box and Jenkins (1970) 

2.4 Moving average processes 

The general form for a moving average process of order 𝑞, a MA(𝑞) process, is 

𝑧 = 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  

  = 1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 𝑒  

 = 𝜃(𝐵)𝑒                               (2.57) 

where 𝜃(𝐵) = 1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 . 

This moving average process is invertible if the roots of 𝜃(𝐵) = 0 lie outside of the unit 

circle.  

Thus, a moving-average model is expressed as the current value of the series against current 

and previous white noise. Moving average processes are useful in describing phenomena 

in which events produce an immediate effect that only lasts for short periods of time. This 

was first studied by Slutzky (1937). 
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2.4.1 The first-order moving average process 

When 𝜃(𝐵) = (1 − 𝜃 𝐵), then the first-order moving average MA(1) process is 

 𝑧 = 𝑒 − 𝜃 𝑒       (2.58) 

= (1 − 𝜃 𝐵)𝑒    

where {𝑒 } is a zero mean white noise process with constant variance 𝜎 .  

Autocorrelation function of the MA(1) process 

To obtain autocorrelation function of the MA(1) process, it is necessary to find for k = 1 

the mean, variance and autocovariance of the MA(1) process, from Equation 2.58. 

The mean of the process 

𝑧 = 𝑒 − 𝜃 𝑒  

Taking the expectations on both sides, where 𝜃  is constant 

𝐸[𝑧 ] = 𝐸[𝑒 − 𝜃 𝑒 ] 

                                                              = 0 

The variance of the MA(1) process 

𝑧 = 𝑒 − 𝜃 𝑒  

Taking the variance on both sides 

𝑣𝑎𝑟(𝑧 ) = 𝑣𝑎𝑟(𝑒 − 𝜃 𝑒 ) 

         = 𝜎 + 𝜃 𝜎 − 0 

   = (1 + 𝜃 )𝜎  

The first autocovariance of the MA(1) process  

𝑧 = 𝑒 − 𝜃 𝑒  

                                                           𝑧 = 𝑒 − 𝜃 𝑒  

and taking the expectations, where 𝜃  is constant   
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𝐸[𝑧 𝑧 ] = 𝐸[(𝑒 − 𝜃 𝑒 )(𝑒 − 𝜃 𝑒 )] 

= −𝜃 𝜎                                   

Hence 

𝛾 = 𝐸[𝑧 𝑧 ] = −𝜃 𝜎  

Thus, the autocorrelation function of MA(1) process is given by 

 𝜌 =
−𝜃

1 + 𝜃
      (2.59) 

𝜌 = 0,    𝑘 > 1 

which is cut off after lag 1, shown in Figure 2.2. Given the mean, variance and 

autocovariance of the MA(1) process are constants as show, this means the MA(1) process 

is always stationary. For the process to be invertible, the roots 1 − 𝜃 𝐵 = 0 must lie outside 

the unit circle.  
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Figure 2.2 ACF and PACF of MA(1) process. 

 

Partial autocorrelation function of the MA(1) process 

The partial autocorrelation function has no cut-off, it can be shown to decay geometrically 

to zero. From Equations 2.25 and 2.59 
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𝜙 =
𝜌

1 − 2𝜌
=

−𝜃

1 + 𝜃 + 𝜃 + 𝜃
=

−𝜃 (1 − 𝜃 )

1 − 𝜃
 

In general  

 𝜙 =
(−1) 𝜃 (1 − 𝜃 )𝜃 (1 − 𝜃 )

1 − 𝜃
( )

. (2.60) 

Thus, |𝜙 | < 𝜃 , and the partial autocorrelation function is dominated by a damped 

exponential. If 𝜌  is positive, so that 𝜃  is negative, the partial autocorrelations alternate in 

sign. However, if 𝜌  is negative, so that 𝜃  is positive, the partial autocorrelations are 

negative. 

2.4.2 The second-order moving average process 

Invertibility conditions  

The second-order moving average process is defined by  

 𝑧 = 𝑒 − 𝜃 𝑒 − 𝜃 𝑒   (2.61) 

and is stationary for all values of 𝜃  and 𝜃 . However, it is invertible only if the roots of 

the characteristic equation 

  1 − 𝜃 𝐵 − 𝜃 𝐵 = 0 (2.62) 

lie outside the unit circle, that is   

 

𝜃 + 𝜃 < 1 

𝜃 − 𝜃 < 1 

−1 < 𝜃 < 1 

(2.63) 

Compare with the stationary conditions of the AR(2) process in Equation 2.50. 

 

Autocorrelation function of the MA(2) process 

The autocorrelation function of MA(2) process, from Equation 2.61,  
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𝑧 = 𝑒 − 𝜃 𝑒 − 𝜃 𝑒  

So, the mean of the process, taking the expectations on both sides, where 𝜃  and 𝜃  are 

constants 

 

𝐸[𝑧 ] = 𝐸[𝑒 ] − 𝜃 𝐸[𝑒 ] − 𝜃 𝐸[𝑒 ] 

                                                 = 0 

The variance of the MA(2) process 

𝑧 = 𝑒 − 𝜃 𝑒 − 𝜃 𝑒  

Taking the variance on both sides  

𝑉𝑎𝑟(𝑧 ) = 𝑣𝑎𝑟(𝑒 − 𝜃 𝑒 − 𝜃 𝑒 ) 

where 𝜃  and 𝜃  are constants  

= 𝜎 + 𝜃 𝜎 + 𝜃 𝜎  

= (1 + 𝜃 + 𝜃 )𝜎      

The autocovariance of the MA(2) process, from Equation 2.61 

𝑧 = 𝑒 − 𝜃 𝑒 − 𝜃 𝑒  

hence   

𝛾 = (𝜃 + 𝜃 𝜃 )𝜎  

In general, 

𝑧 𝑧 = (𝑒 − 𝜃 𝑒 − 𝜃 𝑒 )(𝑒 − 𝜃 𝑒 − 𝜃 𝑒 ) 

Taking the expectation for both sides, then  

𝐸[𝑧 𝑧 ] = 𝐸[(𝑒 − 𝜃 𝑒 − 𝜃 𝑒 )(𝑒 − 𝜃 𝑒 − 𝜃 𝑒 )] 

= 𝐸 𝜃 𝑒 𝜃 𝑒  
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                                                = 𝐸 𝜃 𝜃 𝑒

,

𝑒  

hence, 

 𝛾 = 𝜎 𝜃 𝜃

,

                                         (2.64) 

Partial autocorrelation function of the MA(2) process 

The exact expression for the partial autocorrelation function of an MA(2) process is 

complicated, but it is dominated by the sum of two exponentials, if the roots of the 

characteristic Equation 2.62 are real; and by a damped sine wave, if the roots of Equation 

2.62 are complex. Thus, it behaves like the autocorrelation of an AR(2) process. The 

autocorrelation functions (left-hand curves) and partial autocorrelation functions (right-

hand curves).  

2.4.3 The general 𝒒th-order moving average MA(𝒒) process 

The moving average model of order 𝑞, the MA(𝑞) process, is given by 

𝑧 = 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  

  = 1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 𝑒  

where, as usual, {𝑒 } is a zero mean white noise process with constant variance 𝜎 . This 

can be written      

 𝑧 = 𝜃(𝐵)𝑒                                       (2.65) 

where 𝜃(𝐵) = 1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵  is the MA(𝑞) operator. 

The invertibility condition for higher order MA processes may be obtained by writing 

Equation 2.65 as 

𝑒 = 𝜃 (𝐵)𝑧  

Hence, if 
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𝜃(𝐵) = 1 − 𝐻 𝐵  

where 1 𝐻⁄ , 𝑗 = 1,2, … , 𝑞, are the roots of 𝜃(𝐵), 

then 

    𝜃(𝐵) = (1 − 𝐻 𝐵)(1 − 𝐻 𝐵) … 1 − 𝐻 𝐵  

𝜃 (𝐵) =
1

(1 − 𝐻 𝐵)(1 − 𝐻 𝐵) … 1 − 𝐻 𝐵
 

 Using partial fractions, such that  

𝜋(𝐵) = 𝜃 (𝐵) =
𝑀

1 − 𝐻 𝐵
 

If 𝐻  are all distinct, there exist 𝑀 , which converges, if 𝐻 < 1, when 𝑗 = 1,2, … , 𝑞. Since 

the root of 𝜃(𝐵) = 0 are 𝐻 , it follows that the invertibility condition for a MA(𝑞) process 

is that the roots of the characteristic equation 

 𝜃(𝐵) = 1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 = 0 (2.66) 

lie outside the unit circle. 

Autocorrelation function 

The MA(q) process is given by 

𝑧 = 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  

Taking the variance on both sides 

𝑣𝑎𝑟(𝑧 ) = 𝑣𝑎𝑟(𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒 ) 

where 𝜃 , 𝜃 , … , 𝜃   are constants  

 𝛾 = 1 + 𝜃 + 𝜃 + ⋯ + 𝜃 𝜎  (2.67) 

Hence, the autocovariance function of a MA(𝑞) process  
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𝑧 = 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  

𝑧 = 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  

By multiplying 𝑧  and 𝑧 , and taking the expectation, then 

 𝛾 =
−𝜃 + 𝜃 𝜃 + 𝜃 𝜃 + ⋯ + 𝜃 𝜃 𝜎             𝑘 = 1,2, … , 𝑞

0                                                                                           𝑘 > 𝑞            
 (2.68) 

Thus, the autocorrelation function is  

 𝜌 =

−𝜃 + 𝜃 𝜃 + 𝜃 𝜃 + ⋯ + 𝜃 𝜃

1 + 𝜃 + 𝜃 + ⋯ + 𝜃
           𝑘 = 1,2, … , 𝑞

0,                                                                                𝑘 > 𝑞            

 (2.69) 

The autocorrelation function of a moving average process has a cut-off at lag 𝑞. 

Partial autocorrelation function 

The partial autocorrelation function of the MA(𝑞) process tails off as a mixture of 

exponential decays and/or damped sine waves depending on the nature of the roots of 

1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 = 0. The partial autocorrelation function will contain damped sine 

waves if the roots of characteristic 1 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵  are complex.  

2.5 Mixed autoregressive-moving average processes 

A large number of parameters reduce efficiency in estimation. Thus, in model building, it 

may be necessary to include both autoregressive and moving average terms in a model, 

which leads to the following useful mixed autoregressive-moving average (ARMA) model 

(Box and Jenkins, 1970) 

 𝑧 = 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒 − 𝜃 𝑒 − ⋯ − 𝜃 𝑒  (2.70) 

that is 

1 − 𝜙 𝐵 − 𝜙 𝐵 − ⋯ − 𝜙 𝐵 𝑧 = 1 − 𝜃 𝐵 − 𝜃 𝐵 − ⋯ − 𝜃 𝐵 𝑒  

or  
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 𝜙(𝐵)𝑧 = 𝜃(𝐵)𝑒  (2.71) 

where 𝜙(𝐵) and 𝜃(𝐵) are polynomials of degrees 𝑝 and 𝑞, in 𝐵. 

Autocorrelation function of the ARMA(𝒑, 𝒒) process 

The autocorrelation function of the mixed process may be derived by a similar method to 

that used for the autoregressive process. On multiplying throughout in (2.70) by 𝑧   

𝑧  𝑧 = 𝜙 𝑧  𝑧 + 𝜙 𝑧  𝑧 + ⋯ + 𝜙 𝑧  𝑧 + 𝑧  𝑒 − 𝜃 𝑧  𝑒 − ⋯

− 𝜃 𝑧  𝑒  

and taking the expectation on both sides, where 𝜙 , 𝜙 , … , 𝜙  and 𝜃 , 𝜃 , … , 𝜃  are 

constants   

𝐸[𝑧  𝑧 ] = 𝜙 𝐸[𝑧  𝑧 ] + 𝜙 𝐸[𝑧  𝑧 ] + ⋯ + 𝜙 𝐸 𝑧  𝑧 + 𝐸[𝑧  𝑒 ]  

− 𝜃 𝐸[𝑧  𝑒 ] − ⋯ − 𝜃 𝐸[𝑧  𝑒 ] 

because 𝑧  and 𝑒  are independent, then  

𝐸[𝑧  𝑒 ] = 0, 𝐸[ 𝑒 ] = 0     for k > i, 

hence𝑐𝑜𝑣(𝑧  , 𝑧 ) = 𝜙 𝑐𝑜𝑣(𝑧 , 𝑧 ) + 𝜙 𝑐𝑜𝑣(𝑧  , 𝑧 ) + ⋯ +

𝜙 𝑐𝑜𝑣 𝑧  , 𝑧 + 𝐸[𝑧 𝑒 ] − 𝜃 𝐸[𝑧  𝑒 ] − ⋯ − 𝜃 𝐸[𝑧  𝑒 ] 

this gives 

 𝛾 = 𝜙 𝛾 + 𝜙 𝛾 + ⋯ + 𝜙 𝛾  (2.72) 

The variance of the process, when 𝑘 = 0, is given by 

 𝛾 = 𝜙 𝛾 + 𝜙 𝛾 + ⋯ + 𝜙 𝛾 + 𝜎 − 𝜃 𝛾 (−1) − ⋯ − 𝜃 𝛾 (−𝑞), (2.73) 

which has to be solved along with the 𝑝 Equation 2.72 for 𝑘 = 1,2, … , 𝑝 to obtain 

𝛾 , 𝛾 , … , 𝛾 .   

Hence, the autocorrelation function is 
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 𝜌 = 𝜙 𝜌 + 𝜙 𝜌 + ⋯ + 𝜙 𝜌                  𝑘 ≥ (𝑞 + 1). (2.74) 

Partial autocorrelation function of the ARMA(𝒑, 𝒒) process 

The process given by Equation 2.71 may be written 

𝑒 = 𝜃 (𝐵)𝜙(𝐵)�̃�  

where 𝜃 (𝐵) is an infinite series in 𝐵. Hence, the partial autocorrelation function of a 

mixed process is infinite in extent. It behaves eventually like the partial autocorrelation 

function of a pure moving average process, being dominated by a mixture of damped 

exponentials and/or damped sine waves, depending on the order of the moving average and 

the values of the parameters it contains.  

2.5.1 The first-order autoregressive first-order moving average process 

A mixed process of considerable practical importance is the first-order autoregressive first-

order moving average ARMA(1,1) process 

 𝑧 − 𝜙 𝑧 = 𝑒 − 𝜃 𝑒  (2.75) 

that is 

(1 − 𝜙 𝐵)𝑧 = (1 − 𝜃 𝐵)𝑒  

For stationarity, assuming that |𝜙 | < 1, and for invertibility, it requires that |𝜃 | < 1. 

When 𝜙 = 0, Equation 2.75 is reduced to an MA(1) process, and when 𝜃 = 0, it is 

reduced to AR(1) process. Thus, the AR(1) and MA(1) processes are special cases of the 

ARMA(1,1) process.  

Autocorrelation function of the ARMA(1,1) process 

To obtain the autocovariance for {𝑧 }, multiply 𝑧  on both sides of the Equation 2.74 

𝑧 − 𝜙 𝑧 = 𝑒 − 𝜃 𝑒  

𝑧 = 𝜙 𝑧 + 𝑒 − 𝜃 𝑒  

𝑧  𝑧 = 𝜙 𝑧  𝑧 + 𝑧  𝑒 − 𝜃 𝑧  𝑒  
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And take the expected value, where 𝜙  and 𝜃  are constants 

𝐸[𝑧  𝑧 ] = 𝜙 𝐸[𝑧  𝑧 ] + 𝐸[𝑧  𝑒 ] − 𝜃 𝐸[𝑧  𝑒 ] 

because 𝑒  and 𝑧  are independent, it follows that  

𝑐𝑜𝑣(𝑧 , 𝑧 ) = 𝜙 𝑐𝑜𝑣(𝑧  𝑧 ) + 𝐸[𝑧  𝑒 ] − 𝜃 𝐸[𝑧  𝑒 ] 

 𝛾 = 𝜙 𝛾 + 𝐸[𝑧  𝑒 ] − 𝜃 𝐸[𝑧  𝑒 ] (2.76) 

when 𝑘 = 0 

𝛾 = 𝜙 𝛾 + 𝐸[𝑧  𝑒 ] − 𝜃 𝐸[𝑧  𝑒 ] 

Given that 𝐸[𝑧 𝑒 ] = 𝜎 , and that the term 𝐸[𝑧 𝑒 ] can be written as  

𝐸[𝑧 𝑒 ] = 𝐸[(𝜙 𝑧 + 𝑒 − 𝜃 𝑒 )𝑒 ] = (𝜙 − 𝜃 )𝜎  

then 

 𝛾 = 𝜙 𝛾 + 𝜎 − 𝜃 (𝜙 − 𝜃 )𝜎   (2.77) 

When 𝑘 = 1, from Equation 2.76 

                                             𝛾 = 𝜙 𝛾 + 𝐸[𝑧  𝑒 ] − 𝜃 𝐸[𝑧  𝑒 ] 

 = 𝜙 𝛾 − 𝜃 𝜎  (2.78) 

Substituting Equation 2.78 in (2.77), then   

𝛾 = 𝜙 (𝜙 𝛾 − 𝜃 𝜎 ) + 𝜎 − 𝜃 (𝜙 − 𝜃 )𝜎  

=
(1 + 𝜃 − 2𝜙 𝜃 )

(1 − 𝜙 )
𝜎  

Thus, from Equation (2.78) then  

𝛾 =
𝜙 (1 + 𝜃 − 2𝜙 𝜃 )

(1 − 𝜙 )
𝜎 − 𝜃 𝜎  

 =
(𝜙 − 𝜃 )(1 − 𝜙 𝜃 )

(1 − 𝜙 )
𝜎  
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For 𝑘 ≥ 2, from Equation 2.76 

𝛾 = 𝜙 𝛾 ,       𝑘 ≥ 2  

Hence, the ARMA(1,1) model has the following autocorrelation function: 

 𝜌 =

1                                                            𝑘 = 0
(𝜙 − 𝜃 )(1 − 𝜙 𝜃 )

1 + 𝜃 − 2𝜙 𝜃
,                     𝑘 = 1

𝜙 𝜌 ,                                                𝑘 ≥ 2

  (2.79) 

The autocorrelation function of an ARMA(1,1) model combines characteristics of both 

AR(1) and MA(1) processes. The moving average parameter 𝜃  enters into the calculation 

of 𝜌 . Beyond 𝜌 , the autocorrelation function of an ARMA(1,1) model follows the same 

pattern as the autocorrelation function of an AR(1) process. 

Partial autocorrelation function of the ARMA(1,1) process 

The partial autocorrelation function of the mixed ARMA(1,1) process Equation 2.75 

consists of a single initial value 𝜙 = 𝜌 . Thereafter it behaves like the partial 

autocorrelation function of a pure MA(1) process, and is dominated by a damped 

exponential. Thus, as shown in Figure 2.3, when 𝜃  is positive, it is dominated by a 

smoothly damped exponential which decays from a value of 𝜌 , with sign determined by 

the sign of (𝜙 − 𝜃 ). Similarly, when 𝜃  is negative, it is dominated by an exponential 

which oscillates as it decays from a value of 𝜌 , with sign determined by the sign of 

(𝜙 − 𝜃 ).   
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Figure 2.3 Autocorrelation and partial autocorrelation functions 𝜌  and 𝜙  for various 
ARMA (1, 1) models. 
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2.6 Model building 

In 1970, Box and Jenkins proposed an important three-stages procedure in time series 

analysis for analysing an appropriated ARMA (𝑝, 𝑞) process to forecast the observations. 

These three stages are namely, Identification, Estimation and Diagnostic Checking. Figure 

2.4 shows the procedure of model building.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Stages of the Box and Jenkins methodology.  
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2.6.1 Model identifications 

In time series analysis the most significant steps are to identify and build a model based on 

the available data. These steps require a good understanding of the process, particularly the 

characteristics of the process in terms of their autocorrelation function 𝜌  and partial 

autocorrelation function 𝜙  (Akaike,1974). In practice, the ACF and PACF are unknown, 

and for a given observed time series 𝑧 , 𝑧 , … , 𝑧 , they have to be estimated by the sample 

ACF 𝜌  and sample PACF 𝜙 . Thus, in model identification, the goal is to match patterns 

in the sample ACF 𝜌 , and sample PACF 𝜙 , with the theoretical patterns of the ACF 𝜌  

and the PACF 𝜙 , for the ARMA processes. Table 2.1 shows the theoretical behaviour of 

the ACF 𝜌  and the PACF 𝜙  for processes known to be of type AR, MA and ARMA. 

Process ACF PACF 

AR(𝒑) Tails off exponential decay or 
damped sine-cosine wave 

Cuts off after lag 𝑝 

MA(𝒒) Cuts off after lag 𝑞 Tails off exponential decay or 
damped sine-cosine wave 

ARMA(𝒑, 𝒒) Tails off after (𝑞 − 𝑝) lags, 
𝑞 > 𝑝 

Tails off after (𝑝 − 𝑞) lags, 
𝑝 > 𝑞 

Table 2.1 Characteristics of theoretical ACF and PACF for stationary processes. 

 

2.6.2 Model estimation 

The main reason for model estimation is to determine an appropriate ARMA (𝑝, 𝑞) model of 

a stationary time series. This involves calculating estimates of the mean, white noise variance 

and the coefficients of 𝜙 from an autoregressive process and 𝜃 from a moving average 

process. There are several methods of estimating the parameters of a time series model, 

namely, the maximum likelihood function, ordinary least squares and Bayes’ theory. The 

maximum likelihood function approach has been taken in this thesis (see Equations (5.20) 

and (5.21)). These methods of estimation have been derived and developed by researchers, 

such as, Barnard (1949), Birnbaum (1962), Rao (1965), Kendall and Stuart (1966), and 

Hannan (1970). 
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2.6.3 Model diagnostic checking 

The final stage of the Box and Jenkins methodology is Diagnostic Checking. The adequacy 

of a statistical model is examined - the residual autocorrelations and partial autocorrelations 

are used as a diagnostic check to test the goodness of fit of the model. A portmanteau test 

is used to test the goodness of fit of an ARMA model. Diagnostic checking will be 

discussed in Chapter 5.   

2.7 Summary 

This chapter has presented the definitions and formulas commonly used in time series 

analysis. This chapter has also presented the Box and Jenkins methodology of model 

building. In addition, the characteristics of autoregressive, moving average, and mixed 

autoregressive-moving average processes have also been provided.                                                                         
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Chapter 3 - Multivariate Vector ARMA Time Series 

A major extension to the Box and Jenkins methodology has been the development of vector 

autoregressive moving average (VARMA) models. A VARMA model incorporates several 

time series at the same time, and takes into account interactions between one time series 

and another. VARMA models offer the potential for greater parsimony and an increase in 

forecasting accuracy. They are widely used in economics, in particular, in macroeconomic 

modelling, Reinsel (1993) and Lütkepohl (2005).  

This chapter will discuss the mean, covariance and correlation matrix functions for the 

multivariate case, the vector white noise process, the linear process of vector time series, 

the vector autoregressive moving average process, the vector AR(1), the vector AR(p), the 

vector MA(1), the vector MA(q), the vector ARMA(1,1) and the model building of vector 

ARMA time series. 

3.1 Vector time series 

The basic idea of vector time series is that at each point in time there are a number of 

quantises that can be measured, and these can be regarded as the components of a vector. 

For example, consider three weather measurements made on a daily basis: rainfall, 

maximum temperature and minimum temperature. These can be represented by the three 

variables 𝑧 , , 𝑧 ,  and 𝑧 ,  respectively. These three variables can be regarded as the three 

components of a vector variable 𝒛 = 𝑧 , , 𝑧 , , 𝑧 , . 

In general, a vector time series can be represented by   

 𝒛 = 𝑧 , , 𝑧 , , … , 𝑧 , , 𝑡 = 0, 1, 2, …, (3.1) 

where 𝑑 is the number of components in the vector.  

There are two main reasons for studying a vector time series. The first reason is to 

understand the relationship among the component series. The second reason is to enable 

forecasting to be made. Vector time series have been discussed by many researchers, such 
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as, Quenouille (1957), Whittle (1963), Hannan (1970), Zellner and Palm (1974), Wallis 

(1977), Tiao and Box (1981), Hannan and Kavalieris (1984), Tiao and Tsay (1989) and 

Box, Jenkins, Reinsel and Ljung, (2015). 

3.2 Mean, covariance and correlation matrix functions 

Similar to the univariate case, terms can be derived for the mean, the covariance matrix 

function, and the correlation matrix function in a multivariate case.    

3.2.1 The mean vector 

Suppose that 𝒛 = 𝑧 , , 𝑧 , , … , 𝑧 , , 𝑡 = 0,1,2, …, denotes a 𝑑-dimensional jointly 

stationary real-valued vector process, so that, the mean 𝐸 𝒛 , = 𝜇  is constant for each 

component 𝑖 = 1, 2, … , 𝑑, then the mean vector can be written as  

 𝐸 𝒛 , = 𝝁 =

𝜇
𝜇
⋮

𝜇

 (3.2) 

3.2.2 Covariance matrix function 

A covariance matrix function of a vector time series is used to measure the strength of the 

linear dependence between the components of a stationary time series 𝒛 . Suppose that 

𝒛 = 𝑧 , , 𝑧 , , … , 𝑧 , , 𝑡 = 0, 1, 2, …, denotes a 𝑑-dimensional jointly stationary real-

valued vector process. The cross-covariance between 𝒛 ,  and 𝒛 ,  for all 𝑖 = 1, 2, … , 𝑑 and 

𝑗 = 1, 2, … , 𝑑, are functions only of the time difference (𝑠 − 𝑡). 

Hence the lag-𝑘 covariance matrix for the vector time series 𝒛  can be written as  

𝜞(𝑘) = 𝐶𝑜𝑣{𝒛 , 𝒛 } = 𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ] 

and the lag-𝑘 cross-covariance matrix between two vectors 𝒛  and 𝒛 , both 𝑑 × 1 vectors, 

can be written as a 𝑑 × 𝑑 matrix 

𝜞(𝑘) = 𝐶𝑜𝑣{𝒛 , 𝒛 } = 𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ] 
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= 𝐸

⎣
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎡

𝑧 , − 𝜇

𝑧 , − 𝜇

⋮
𝑧 , − 𝜇 ⎦

⎥
⎥
⎥
⎤

𝑧 , − 𝜇 , 𝑧 , − 𝜇 ⋯ 𝑧 , − 𝜇

⎦
⎥
⎥
⎥
⎤

 

= 𝐸

⎣
⎢
⎢
⎢
⎡

𝑧 , − 𝜇 𝑧 , − 𝜇      𝑧 , − 𝜇 𝑧 , − 𝜇      ⋯    𝑧 , − 𝜇 𝑧 , − 𝜇

𝑧 , − 𝜇 𝑧 , − 𝜇      𝑧 , − 𝜇 𝑧 , − 𝜇     ⋯    𝑧 , − 𝜇 𝑧 , − 𝜇

⋮                                                ⋮                              ⋯                         ⋮      
𝑧 , − 𝜇 𝑧 , − 𝜇      𝑧 , − 𝜇 𝑧 , − 𝜇      ⋯     𝑧 , − 𝜇 𝑧 , − 𝜇 ⎦

⎥
⎥
⎥
⎤

 

 =

𝛾 (𝑘)     𝛾 (𝑘)     ⋯     𝛾 (𝑘)

𝛾 (𝑘)     𝛾 (𝑘)     ⋯     𝛾 (𝑘)
⋮              ⋮             ⋯           ⋮

𝛾 (𝑘)     𝑦 (𝑘)     ⋯     𝛾 (𝑘)

 (3.3) 

where   

𝛾 (𝑘) = 𝐸 𝑧 , − 𝜇 𝑧 , − 𝜇 = 𝐸 𝑧 , − 𝜇 𝑧 , − 𝜇  

for 𝑘 = 0, 1, 2, … , 𝑖, 𝑗 = 1, 2, … , 𝑑  as a function of 𝑘, 𝜞(𝑘) is called the covariance matrix 

function for the vector process 𝒛 .  

For a stationary process {𝒛 } the covariance between 𝑧 ,  and 𝑧 ,  must depend only on 

the lag 𝑘, not on time 𝑡 for all 𝑖 = 1, 2, … , 𝑑 and 𝑗 = 1, 2, … , 𝑑. For 𝑖 = 𝑗, 𝛾 (𝑘) is the 

autocovariance function for the 𝑖th component process 𝒛 , . For 𝑖 ≠ 𝑗, 𝑦 (𝑘) is the cross-

covariance function between 𝒛 ,  and 𝒛 , . 

From the definition in Equation 3.3, for negative lag 𝑘 

𝜞(𝑘) = 𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ] 

Because of stationarity 

         = 𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ] 

Applying the rule of matrix transpose, that is, 𝐴 = (𝐴 )  and (𝐴𝐵) = 𝐵 𝐴 , gives 

= {{𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ]} }  

                                             = {𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ]}  
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= 𝐸 (𝒛 − 𝝁) 𝒛 ( ) − 𝝁  

From the definition of the covariance matrix  

= {𝜞(−𝑘)}  

3.2.3 Correlation matrix functions 

A correlation matrix function is used to investigate the dependence between the multiple 

variables at the same time. The correlation matrix function for the vector process can be 

defined as 

 𝝆(𝑘) = 𝐷 ⁄ 𝜞(𝑘)𝐷 ⁄ = 𝜌 (𝑘) (3.4) 

for 𝑖, 𝑗 = 1, 2, … , 𝑑, where 𝐷 is the diagonal matrix of Equation 3.3 in which the 𝑖th 

diagonal element is the variance of the 𝑖th process. Hence 

𝐷 = diag 𝛾 (0), 𝛾 (0), ⋯ , 𝛾 (0) . 

Thus, the 𝑖th diagonal element of 𝝆(𝑘) is the autocorrelation function for the 𝑖th component 

series 𝒛 , , whereas the (𝑖, 𝑗)𝑡ℎ diagonal element of 𝝆(𝑘) is 

 𝝆 (𝑘) =
𝛾 (𝑘)

𝛾 (0)𝛾 (0)
⁄

 (3.5) 

where 𝝆 (𝑘) is the cross-correlation function between component series 𝒛 ,  and 𝒛 , . 

3.2.4 The sample mean, sample covariance matrix and sample cross-correlation 

matrix 

Suppose that 𝒛 = 𝑧 , , 𝑧 , , … , 𝑧 , , 𝑡 = 0, 1, 2, …, denotes a 𝑑-dimensional jointly 

stationary real-valued vector process, then sample mean vector can be defined as 

  �̅� =
1

𝑛
𝒛  (3.6) 

The sample covariance matrix of a time series can be written as 
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 𝜞(0) =
1

𝑛
(𝒛 − �̅�) (𝒛 − �̅�)  (3.7) 

The sample cross-covariance matrix of a time series at lag 𝑘 can be written as 

 𝜞(𝑘) =
1

𝑛
(𝒛 − �̅�) (𝒛 − �̅�)  (3.8) 

The sample cross-correlations are defined 

 𝝆 (𝑘) =
∑ 𝑧 , − �̅� 𝑧 , − �̅�

∑ 𝑧 , − �̅� ∑ 𝑧 , − 𝜇�̅�
⁄

, for 𝑖, 𝑗 = 1, 2, … , 𝑑 (3.9) 

The cross-correlation 𝝆 (𝑘) and the sample cross-correlation 𝝆 (𝑘) are very useful in 

identifying a finite-order moving average model as 𝝆 (𝑘) = 0 for all 𝑘 > 𝑞 for the vector 

MA(𝑞) model. Unfortunately, the sample cross-correlations 𝝆 (𝑘) may be difficult to 

estimate because of the large number of terms that may need to be estimated and examined 

for a multivariate time series. 

3.3 Vector white noise process 

A vector white noise process is defined as a sequence of independent random vectors, 

denoted as 𝒆 , 𝒆 , … , 𝒆  where 𝒆 = (𝑒 , 𝑒 , … , 𝑒 ) , is a zero mean white noise process 

with covariance matrix 𝜮 = 𝐸[𝒆 𝒆 ], where 𝜮 is a 𝑑 × 𝑑 symmetric positive definite 

matrix. 

 𝜞(𝑘) = 𝐸[𝒆 𝒆 ] =
𝜮,        if   𝑘 = 0
𝟎 ,       if   𝑘 ≠ 0

 (3.10) 

3.4 The linear process of vector time series 

Suppose that 𝐳 = z , , z , , … , z , , 𝑡 = 0, 1, 2, … , denotes a 𝑑-dimensional jointly 

stationary real-valued vector process so that the mean 𝐸 𝑧 , = 𝜇  is constant for each 𝑖 =

1, 2, … , 𝑑. If the 𝑑-dimensional stationary vector process 𝐳  can be written as a combination 

of a sequence of 𝑑-dimensional white noise random vectors, then 𝐳  is a linear process 
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𝐳 = 𝝁 + 𝐞 + 𝜳 𝐞 + 𝜳 𝐞 + ⋯ 

 = 𝝁 + 𝜳 𝐞  (3.11) 

where 𝝁 is a 𝑑-dimensional constant vector, 𝜳 = 𝐼 is a 𝑑 × 𝑑 identity matrix, the 𝜳 ’s 

are 𝑑 × 𝑑 coefficients matrices, and 𝒆 = (𝑒 , 𝑒 , … , 𝑒 ) , is a 𝑑-dimensional, zero 

mean, white noise process. For the stationary linear time series 𝐳  in Equation 3.11 

𝐸[𝐳 ] = 𝝁 

and 

                                 𝜞(𝑘) = 𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ] 

= 𝐸 𝜳 𝐞 𝜳 𝐞  

        = 𝐸[(𝐞 + 𝜳 𝐞 + ⋯ )(𝐞 + 𝜳 𝐞 + ⋯ ) ] 

        = 𝐸[(𝐞 + 𝜳 𝐞 + ⋯ )(𝒆 + (𝜳 𝐞 ) + ⋯ )] 

= 𝐸[(𝐞 𝒆 + 𝐞 (𝜳 𝐞 ) + ⋯ + 𝜳 𝐞 𝒆 + 𝜳 𝐞 (𝜳 𝐞 ) + ⋯ )] 

From the vector white noise 𝒆 = (𝑒 , 𝑒 , … , 𝑒 )  such that 𝐸[𝒆 ] = 0, 𝜮 = 𝐸[𝒆 𝒆 ], 

𝐸[𝒆 𝒆 ] = 0 for 𝑘 ≠ 0 and 𝜳 = 𝐼 

 

= 𝐸 𝜳 𝐞 𝐞 𝜳  

= 𝜳 𝐸[𝐞 𝐞 ]𝜳         

= 𝜳 𝜮 𝜳                           
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3.5 The vector autoregressive process 

The general form of the vector autoregressive process of order 𝑝, VAR(𝑝), can be defined 

as 

 𝒛 = 𝚽 𝒛 + 𝚽 𝒛 + ⋯ + 𝚽 𝒛 + 𝒆 , (3.12) 

where 𝒛  is a 𝑑-dimensional vector valued time series, 𝚽  (𝑖 = 1,2, … , 𝑝) are 𝑑 × 𝑑 

parameter matrices and 𝒆 = (𝑒 , 𝑒 , … , 𝑒 ) , is a 𝑑-dimensional zero mean white noise 

process with covariance matrix 𝜮 = 𝐸[𝒆 𝒆 ]. Using backshift operators, the vector 

autoregressive process of order 𝑝 can be written as    

𝑰 − 𝚽 𝐵 − ⋯ − 𝚽 𝐵 𝒛 = 𝚽(𝐵)𝒛 = 𝒆  

where 𝚽(𝐵) is a matrix polynomial of the backshift operator 𝐵 of order 𝑝. The vector of 

autoregressive process VAR(𝑝) was developed by researchers, such as, Sims (1980), 

Granger (1981), and Engle and Granger (1987). 

The vector autoregressive process of order 𝑝 will be stationary if this condition is satisfied 

that the zeros of 𝑰 − 𝚽 𝐵 − ⋯ − 𝚽 𝐵  lie outside the unit circle, and if the roots of  

‖𝚽(𝐵)‖ = 𝑰 − 𝚽 𝐵 − ⋯ − 𝚽 𝐵 = 0, 

are all greater than one in absolute value, where ‖𝑨‖ is the determinant of a matrix 𝑨, 

Reinsel (1993).  

 

3.5.1 Covariance matrix function of vector autoregressive process of order 𝒑 

The covariance matrix function of a vector AR(𝑝) process can be obtained by multiplying 

Equation 3.12 by 𝒛  and taking the expectation, gives 

𝐸 𝒛 𝒛 = 𝚽 𝐸 𝒛 𝒛 + 𝚽 𝐸 𝒛 𝒛 + ⋯ + 𝐸 𝒆 𝒛  

𝜞(𝑘) = 𝚽 𝜞(𝑘 − 1) + 𝚽 𝜞(𝑘 − 2) + ⋯ + 𝚽 𝜞(𝑘 − 𝑝), 𝑘 > 𝑝 

For a vector AR(𝑝) process, 𝒛  is given by Equation 3.12, it follows from the infinite MA 

representation given in Equation 3.14 that 
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𝐸 𝒛 𝒆 =
0       𝑘 > 0
𝜮       𝑘 = 0

 

By using the system of Yule-Walker matrix equations to obtain the AR coefficient matrices 

𝚽  from the cross-covariance matrices 𝜞(0), 𝜞(1), … , 𝜞(𝑝), it can be written in the form 

 𝜞(𝑘) = 𝜞(𝑘 − 𝑖)𝚽

𝑝

𝑖=1

, for 𝑘 = 1,2, … , 𝑝 (3.13) 

or 

𝜞(0)

𝜞(1)
⋮

𝜞(𝑝)

=

⎝

⎜
⎛

𝜞(0)       𝜞(1)†            𝜞(2)†         ⋯    𝜞(𝑝 − 1)† 

𝜞(1)         𝜞(0)            𝜞(1)†        ⋯    𝜞(𝑝 − 2)† 
      ⋮                ⋮                    ⋮             ⋱            ⋮             
𝜞(𝑝 − 1)    𝛤(𝑝 − 2)    𝜞(𝑝 − 3)  ⋯          𝜞(0)      

⎠

⎟
⎞

⎝

⎜
⎛

𝚽1
†

𝚽2
†

⋮
𝚽𝑝

†
⎠

⎟
⎞

 

For the case 𝑘 = 0  

 𝜮 = 𝜞(0) − 𝜞(−𝑖)𝚽  (3.14) 

3.5.2 The first-order vector autoregressive process  

The first-order vector autoregressive can be written as   

 𝒛 = 𝚽 𝒛 + 𝒆 , (3.15) 

or 

(𝐼 − 𝚽 𝐵)𝒛 = 𝒆  

For the case 𝑘 = 2 

 
𝒛 ,

𝒛 ,
=

𝚽 ,     𝚽 ,  

𝚽 ,     𝚽 ,

𝒛 ,

𝒛 ,
+

𝒆 ,

𝒆 ,
   (3.16) 

or 

𝒛 , = 𝚽 , 𝒛 , + 𝚽 , 𝒛 , + 𝒆 ,  

𝒛 , = 𝚽 , 𝒛 , + 𝚽 , 𝒛 , + 𝒆 ,  

It is clear that each element of 𝒛  is a function of each element of 𝒛 . 



Chapter 3– Multivariate vector ARMA time series 

 

62 

 

The first-order vector autoregressive process satisfies the stationarity condition if and only 

if ‖𝑰 − 𝚽𝐵‖ = 0, or equivalently ‖𝜆𝑰 − 𝚽‖ = 0, where the eigenvalue 𝜆 = 𝐵 . It 

follows that the stationarity condition for the AR(1) model is equivalent to the condition 

that all eigenvalues of 𝚽, that is, all roots of ‖𝑰 − 𝚽𝐵‖ = 0, be less than one in absolute 

value.  

 

For arbitrary 𝑛 > 0, successive substitutions of 𝑡 + 𝑛 in the right-hand side of Equation 

3.15, gives 

 𝐳 = 𝚽𝒊𝐞 + 𝚽 𝐳  (3.17) 

provided that all eigenvalues of 𝚽 are less than one in absolute value.  

3.5.3 The covariance matrix function of the VAR(1) process 

The covariance matrix for VAR(1) can be obtained by multiplying the Equation 3.15 by 

𝒛  and taking the expectation, giving  

𝐸 𝒛 𝒛 = 𝚽 𝐸 𝒛 𝒛 + 𝐸 𝒆 𝒛  

hence, when 𝑘 = 0 

                                       𝜞(0) = 𝚽 𝜞(−1) + 𝚺 

 = 𝚽 𝜞(1) + 𝚺 (3.18) 

To compute 𝛤(0), the values of 𝚽 , 𝜞(1)  and 𝚺 need to be known. The 𝚽 , 𝜞(1)  and 

𝚺 can be obtained from  

                                              𝜞(𝑘) = 𝐸 𝒛 𝒛  

Since 𝐸 𝒆 𝒛 = 0, for 𝑘 = 1, 2, …, then  

               𝜞(𝑘) = 𝚽 𝜞(𝑘 − 1),        for 𝑘 = 1,2, …, 

so 𝑘 = 1    

 𝜞(1) = 𝚽 𝜞(0) (3.19) 
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Hence, 

 𝜞(1) = 𝜞(0)𝚽  (3.20) 

By substituting Equation 3.20 in Equation 3.18 

 𝜞(0) = 𝚽 𝜞(0)𝚽 + 𝚺 (3.21) 

Applying the vectorizing operation (𝑣𝑒𝑐) to both sides, then  

𝑣𝑒𝑐 𝜞(0) = 𝑣𝑒𝑐 𝚽 𝜞(0)𝚽 + 𝑣𝑒𝑐(𝚺) 

𝑣𝑒𝑐 𝜞(0) = (𝚽 ⊗ 𝚽 )𝑣𝑒𝑐 𝜞(0) + 𝑣𝑒𝑐(𝚺) 

𝑣𝑒𝑐 𝜞(0) − (𝚽 ⊗ 𝚽 )𝑣𝑒𝑐 𝜞(0) = 𝑣𝑒𝑐(𝚺) 

𝑣𝑒𝑐 𝜞(0) 𝑰 − (𝚽 ⊗ 𝚽 ) = 𝑣𝑒𝑐(𝚺) 

 𝑣𝑒𝑐 𝜞(0) = 𝑰 − (𝚽 ⊗ 𝚽 ) 𝑣𝑒𝑐(𝚺) (3.22) 

where ⊗ is a Kronecker product, which multiplies each element of matrix 𝑪  by the whole 

of matrix A to create a new matrix. 

Note, 𝑣𝑒𝑐 is a linear vector operator that is used to transform a matrix to a vector, and it 

has the following vectorizing operation property, (Neudecker, 1969). 

For matrices A, B and C   

𝑣𝑒𝑐(𝑨𝑩𝑪) = (𝑪 ⊗ 𝑨)𝑣𝑒𝑐(𝑩) 

The Equation 3.22 can be used to find 𝜞(0) when 𝚽  and 𝚺 are known. 

The 𝚽  and 𝚺  can be obtained from the parameters 𝜞(0) and 𝜞(1) 

𝜞(𝑘) = 𝜞(𝑘 − 1)𝚽 ,        for 𝑘 = 1,2, … 

When 𝑘 = 1 

 𝜞(1) = 𝜞(0)𝚽    (3.23) 
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 𝚽 = 𝜞(0) 𝜞(1) (3.24) 

By applying the matrix transpose rule to Equation 3.23 

 𝜞(1) = 𝚽 𝜞(0) (3.25) 

Equation 3.21 gives 

𝜞(0) = 𝚽 𝜞(0)𝚽 + 𝚺 

By substituting Equations 3.24 and 3.25 in Equation 3.21 

 𝚺 = 𝜞(0) − 𝜞(1) 𝜞(0) 𝜞(1) (3.26) 

Hence, 𝜞(𝑘) is a covariance matrix function. The 𝚽  can be obtained from Equation 3.19 

and the 𝚺 can be obtained from Equation 3.26. 

3.6 The vector moving average process 

The general form of the vector moving average process of order 𝑞, VMA(𝑞), can be written 

as 

 𝒛 = 𝚯 𝒆 + 𝚯 𝒆 + ⋯ + 𝚯 𝒆 + 𝒆  (3.27) 

where 𝒛 = (𝑧 , 𝑧 , … , 𝑧 ) , is a 𝑑 × 1 vector of time series observed at 𝑡, 𝒆 =

(𝑒 , 𝑒 , … , 𝑒 ) , is a 𝑑 × 1 zero mean white noise process with a covariance matrix 𝜮 =

𝐸[𝒆 𝒆 ] and 𝚯  is a 𝑑 × 𝑑 matrix of coefficients, for (𝑗 = 1, 2, … , 𝑞). Using the backshift 

operator, the vector moving average process of order 𝑞 can be written as    

𝑰 − 𝚯 𝐵 − ⋯ − 𝚯 𝐵 𝒆 = 𝚯(𝐵)𝒆 = 𝒛  

where 𝚯(𝐵) is a matrix polynomial of the backshift operator 𝐵 of order 𝑞. 

 

The invertibility condition of VMA(𝒒) process  

The VMA(𝑞) process is invertible if all roots of  
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‖𝚯(𝐵)‖ = 𝐼 − 𝚯 𝐵 − ⋯ − 𝚯 𝐵 = 0, 

are greater than one in absolute value, where ‖. ‖ is the determinant of a matrix. 

3.6.1 Covariance matrix function of vector moving average process of order 𝒒 

The covariance matrix function of VMA(𝑞) process can be obtained by 

 𝜞(𝑘) = cov(𝐳 , 𝐳 ) 

          = 𝐸 𝒆 − 𝚯 𝒆 − ⋯ + 𝚯 𝒆 𝒆 − 𝚯 𝒆 − ⋯ + 𝚯 𝒆  

          = −𝜮 𝚯 + 𝚯 𝜮 𝚯 + ⋯ + 𝚯 𝜮 𝚯  

 = 𝚯 𝜮 𝚯  (3.28) 

for 𝑘 = 1, 2, … , 𝑞 with 𝚯 = −𝐼, and 𝜞(𝑘) = 0 for 𝑘 > 𝑞.  

When 𝑘 = 0 

𝜞(0) = 𝜮 + 𝚯 𝜮 𝚯  

3.6.2 The first-order of the vector moving average process 

The first-order of vector moving average can be written as 

 𝒛 = 𝒆 − 𝚯 𝒆  (3.29) 

or 

(𝑰 − 𝚯 𝐵)𝒆 = 𝒛  

For 𝑘 = 2 

 
𝒛 ,

𝒛 ,
=

1     0
0     1

𝒆 ,

𝒆 ,
−

𝚯     𝚯  
𝚯     𝚯

𝒆 ,

𝒆 ,
 (3.30) 

or equivalently 

𝒛 , = 𝒆 , − 𝚯 , 𝒆 , − 𝚯 , 𝒆 ,  

𝒛 , = 𝒆 , − 𝚯 , 𝒆 , − 𝚯 , 𝒆 ,  
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It is clear that each element of 𝒛  is a function of each element of 𝒆 . 

The first-order of vector moving average process satisfies the invertible condition if all 

roots of ‖𝑰 − 𝚯 𝐵‖ = 0, are greater than one in absolute value. This is equivalent to the 

condition that all eigenvalues of 𝚯 , that is, all roots 𝜆 of det{𝜆𝑰 − 𝚯 } = 0, are less than 

one in absolute value.  

The covariance matrix of the first-order of vector moving average process can be obtained 

by 

                                  𝜞(0) = cov(𝐳 , 𝐳 ) 

= 𝐸[(𝒆 − 𝚯 𝒆 )(𝒆 − 𝚯 𝒆 ) ] 

                                         = 𝜮 + 𝚯 𝜮 𝚯 ,  (3.31) 

 

 𝜞(1) = −𝜮 𝚯    (3.32) 

and 

 𝜞(𝑘) = 0, for |𝑘| > 1 (3.33) 

3.7 The vector autoregressive moving average (VARMA) process 

The general form of the vector autoregressive moving average of order (𝑝, 𝑞) can be 

defined as  

 𝒛 = 𝚽 𝒛 + ⋯ + 𝚽 𝒛 + 𝒆 + 𝚯 𝒆 + 𝚯 𝒆 + ⋯ + 𝚯 𝒆  (3.34) 

where 𝒛 = (𝑧 , 𝑧 , … , 𝑧 )  is a 𝑑 × 1 vector of variables observed at 𝑡, 𝒆 =

(𝑒 , 𝑒 , … , 𝑒 ) , is a 𝑑 × 1 zero mean white noise process with covariance matrix 𝜮 =

𝐸[𝒆 𝒆 ], 𝚽  (𝑖 = 1, 2, … , 𝑝) are 𝑑 × 𝑑 parameter matrices and 𝚯  is a 𝑑 × 𝑑 matrix of 

coefficients, for (𝑗 = 1, 2, … , 𝑞). The vector autoregressive moving average process of 

order (𝑝, 𝑞)  can also be written using the backshift operator:   

𝑰 − 𝚽 𝐵 − ⋯ − 𝚽 𝐵 𝒛 = 𝑰 − 𝚯 𝐵 − ⋯ − 𝚯 𝐵 𝒆  
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𝚽(𝐵)𝒛 = 𝚯(𝐵)𝒆  

where 𝚽(𝐵) and 𝚯(𝐵) are matrix polynomials of the backshift operator 𝐵 of order 𝑝 and 

𝑞. The vector autoregressive moving average process VARMA(𝑝, 𝑞) has been discussed 

by researchers, such as, Hannan (1970, 1981), Reinsel (1993), Lütkepohl (2005), and Box 

et al., (2015).  

The vector autoregressive moving average processes is stationary if the roots of 

𝑰 − 𝚽 𝐵 − ⋯ − 𝚽 𝐵  lie outside the unit circle, and if the roots of  

‖𝚽(𝐵)‖ = 𝑰 − 𝚽 𝐵 − ⋯ − 𝚽 𝐵 = 0, 

are all greater than one in absolute value.  

 

3.7.1 The covariance matrix function of the vector autoregressive moving average 

process 

The covariance matrix function of the vector ARMA process can be obtained from the 

infinite MA representation 

𝐳 = 𝝁 + 𝜳 𝐞 = 𝝁 + 𝜳(𝐵)𝐞  

Hence  

𝐸[𝐳 𝒆 ] = 𝜳 𝜮, for 𝑖 ≥ 𝑘 

The covariance matrix function of the vector ARMA process is 𝜞(𝑘) = 𝐶𝑜𝑣{𝒛 , 𝒛 } =

𝐸[(𝒛 − 𝝁)(𝒛 − 𝝁) ] of 𝒛 , which satisfies the relation 

 𝜞(𝑘) = 𝐶𝑜𝑣{𝒛 , 𝒛 } = 𝜞(𝑘 − 𝑖) 𝚽 − 𝜳 𝜮 𝚯  (3.35) 

with 𝚯 = −𝑰 and 𝜞(𝑘) = ∑ 𝜞(𝑘 − 𝑖) 𝚽  for 𝑘 = 1,2, … , 𝑞. The lag 𝑘 cross-correlation 

matrix is given by 
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 𝝆(𝑘) = 𝐷 𝜞(𝑘)𝐷 = 𝜌 (𝑘) (3.36) 

for 𝑖, 𝑗 = 1, 2, … , 𝑑, where 𝐷 is the diagonal matrix, in which the 𝑖th diagonal element is 

the variance of the 𝑖th process. Hence 

𝐷 = diag 𝛾 (0), 𝛾 (0), ⋯ , 𝛾 (0) . 

3.7.2 The first-order vector autoregressive moving average (VARMA) process 

The first-order of vector autoregressive moving average process VARMA(1,1) can be 

written as 

 𝒛 = 𝚽 𝒛 + 𝒆 − 𝚯 𝒆     (3.37) 

or 

(𝑰 − 𝚽 𝐵)𝒛 = (𝑰 − 𝚯 𝐵)𝒆  

The VARMA(1,1) process satisfies the stationarity condition, if the solutions of the 

determinant equation ‖𝑰 − 𝚽 𝐵‖ = 0 are all greater than one in modulus and lie outside 

the unit circle, or if all the eigenvalues of 𝚽  are inside the unit circle. The MA 

representation of VARMA(1,1) process can be written as 

(𝑰 − 𝚽 𝐵)(𝑰 + 𝚽 𝐵 + 𝚽 𝐵 + ⋯ ) = 𝑰 

hence (𝑰 − 𝚽 𝐵) = 𝑰 + 𝚽 𝐵 + 𝚽 𝐵 + ⋯, consequently, giving   

                           𝒛 = (𝑰 − 𝚽 𝐵) (𝑰 − 𝚯 𝐵)𝒆  

= 𝒆 + (𝚽 − 𝚯 )𝒆 + 𝚽 (𝚽 − 𝚯 )𝒆 + ⋯ 

= 𝜳 𝒆                                                                   

where 𝜳 = 𝑰 and 𝜳 = 𝚽 (𝚽 − 𝚯 ) for 𝑖 ≥ 1. 

The VARMA(1,1) process satisfies the invertible condition, if the solutions of the 

determinant equation |𝑰 − 𝚯 𝐵| = 0 are all outside the unit circle, or if all the eigenvalues 

of 𝚯  are inside the unit circle.  
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The covariance matrix function of the vector ARMA(1,1) process can be obtained by post-

multiplying Equation 3.37 by 𝒛  and taking the expectation, giving 

𝐸 𝒛 𝒛  = 𝚽 𝐸 𝒛 𝒛  + 𝐸 𝒆 𝒛  − 𝚯 𝐸 𝒆 𝒛  

From the infinite MA representation   

𝐸[𝐳 𝒆 ] = 𝜳 𝜮, for 𝑖 ≥ 𝑘 

Hence, for 𝑘 = 0 

𝜞(0) = 𝚽 𝜞(−1) + 𝜮 − 𝜳 𝜮 𝚯  

Then, 𝜳 = 𝚽 − 𝚯  and 𝜞(−1) = 𝜞(1)  

 𝜞(0) = 𝚽 𝜞(1) + 𝜮 − (𝚽 − 𝚯 )𝜮 𝚯    (3.38) 

For 𝑘 = 1 

                                             𝜞(1) = 𝚽 𝜞(0) − 𝚯 𝜮 

Taking the transpose for both sides  

                                           𝜞(1) = 𝚽 𝜞(0) − (𝚯 𝜮)  

 = 𝜞(0)𝚽 − 𝜮𝚯  (3.39) 

Substituting Equation 3.39 in Equation 3.38, gives 

𝜞(0) = 𝚽 𝜞(0)𝚽 − 𝜮𝚯 + 𝜮 − (𝚽 − 𝚯 )𝜮 𝚯  

                                       = 𝚽 𝜞(0)𝚽 − 𝚯 𝜮𝚽 + 𝜮 − (𝚽 − 𝚯 )𝜮 𝚯  

 𝜞(0) − 𝚽 𝜞(0)𝚽 = 𝜮 − 𝚯 𝜮𝚽 − (𝚽 − 𝚯 )𝜮 𝚯  (3.40) 

Applying the vectorizing operation 𝑣𝑒𝑐 to both sides, gives 

 𝑣𝑒𝑐 𝜞(0) = 𝑰 − (𝚽 ⊗ 𝚽 ) 𝑣𝑒𝑐 𝜮 − 𝚯 𝜮𝚽 − (𝚽 − 𝚯 )𝜮 𝚯  (3.41) 

For 𝑘 > 1 
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 𝜞(𝑘) = 𝚽 𝜞(𝑘 − 1), for 𝑘 > 1 (3.42) 

The Equation 3.42 is useful to find 𝜞(𝑘) when 𝑘 > 1. 

3.8 Model building VARMA models 

The model building stages, such as, identification, estimation and diagnostic checking will 

be discussed for the vector of autoregressive moving average situation. For instance, 

identifying the VARMA process by using the sample covariance and correlation matrices. 

The maximum likelihood function will be used to estimate the VARMA processes. 

3.8.1 Model identification of a vector time series 

The procedure of model identification of a vector ARMA process follows the model 

building procedure in the univariate situation. In the univariate case, identification of a time 

series model of an ARMA process is based on the sample autocorrelation and the sample 

partial autocorrelation functions. In the case of a vector autoregressive process the 

identification is based on the covariance matrix function. Model identification can help to 

determine the order of a vector ARMA process; this method has been developed by 

researchers, such as, Zellner and Palm (1974), Wallis (1977) and Tiao, and Tsay (1989). 

Identification of a vector autoregressive process of order 𝒑 

There are two methods to identify the vector autoregressive process of order 𝑝, which are 

the likelihood ratio test and the information criterion. The likelihood ratio test is used to 

determine the order of the VAR model, which is based on the estimates of the residual 

covariance matrices in the fitted models. The parameters of vector autoregressive process 

𝚽  will be zero at lag 𝑘. This gives null hypothesis statistics at lag 𝑘, (Tiao and Box, 1981)  

𝐻 : 𝚽 = 0 

𝐻 : 𝚽 ≠ 0 

when the VAR has been fitted to the series. Then, the likelihood ratio test is given by 
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 𝐿𝑅(𝑘) = −(𝑛 − 𝑝 − 𝑘𝑘 − 1.5) ln
|𝑆 |

|𝑆 |
  (3.43) 

where 𝑛 is the number of observations of the vector of data and 𝑆  is the residual sum of 

the square matrix, obtained by fitting the AR model of order 𝑘 − 1. The 𝐿𝑅(𝑘) test 

asymptotically follows a chi square distribution with 𝑑  degree of freedom.  

Another method to identify the VAR of order 𝑝 is the information criterion, which can be 

defined in three different ways, namely   

                                           𝐴𝐼𝐶(𝑘) = ln 𝜮 + 2𝑟 𝑛⁄  

                                           𝐵𝐼𝐶(𝑘) = ln 𝜮 + ln(𝑛)𝑟 𝑛⁄  

𝐻𝑄(𝑘) = ln 𝜮 + 2 ln(ln 𝑛) 𝑟 𝑛⁄  

where 𝑟 denotes the number of parameters estimated by maximum likelihood in the 

VARMA model and 𝜮 is the maximum likelihood estimates of 𝜮. 𝐴𝐼𝐶 is the Akaike 

information criterion proposed by Akaike (1973), 𝐵𝐼𝐶 stands for Bayesian information 

criterion (Schwarz 1978) and 𝐻𝑄 is the criterion proposed by Hanna and Quinn (1979), 

(Quinn, 1980). 

Identification of a vector moving average process of order 𝒒 

The vector moving average process of order 𝑞 can be identified by using the cross-

correlation matrices, which was suggested by Tiao and Box (1981). The cross-correlation 

matrices satisfy 𝝆 = 0 for 𝑖 > 𝑞. The elements of the sample cross correlation matrix at 

lag  𝑘 is given by 

 𝝆 (𝑘) =
∑ 𝑧 , − 𝑧̅ 𝑧 , − 𝑧̅

∑ 𝑧 , − 𝑧̅ ∑ 𝑧 , − 𝑧̅
⁄

     for 𝑖, 𝑗 = 1,2, … , 𝑑 (3.44) 

where 𝑛 is the number of the observations, 𝑧̅  is the sample mean and 𝝆 (𝑘) is the lag 𝑘 

sample cross correlation matrix of 𝒛 . The cross-correlation matrix is zero if 𝒛  follows 

vector moving average process of order 𝑞 and 𝑖 > 𝑞. 
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Identification of a vector autoregressive moving average process of order 𝒑 and 𝒒 

The parameters of vector autoregressive moving average of order 𝑝 and 𝑞   

𝚽(𝐵)𝒛 = 𝚯(𝐵)𝒆  

can be identified by the patterns in the cross correlations of the residuals after a low order 

AR model has been fitted. For example, consider the case of a stationary ARMA(1,1) 

model 

 (𝑰 − 𝚽𝐵)𝒛 = (𝑰 − 𝚯𝐵)𝒆  (3.45) 

If an AR(1) model has been fitted to the series 𝐳 , then the estimate is 

𝚽 = 𝛤(1) 𝛤(0)  

Thus, the residuals after the AR(1) model has been fitted will be 

𝐞 = 𝐳 − 𝚽 𝐳  

  = 𝑰 − 𝚽 𝐵  

These will approximately follow the model, from Equation 3.45.   

𝐞 = 𝑰 − 𝚽 𝐵 (𝑰 − 𝚽𝐵) (𝑰 − 𝚯𝐵)𝒆  

The residuals 𝐞  of the sample correlations will behave approximately like a MA(1) model. 

Therefore, the correct identification of a vector autoregressive moving average process can 

be found by the examination of the residual cross correlation matrix after a AR(1) model 

has been fitted to the process (Tiao and Box, 1981).       

3.8.2 Model estimation of a vector time series 

The next step of model building is model estimation. The parameters of a vector ARMA 

process can be estimated by using the maximum likelihood function, the least square and 

Bayesian methods. These methods of estimation of a vector ARMA process of order 𝑝 and 

𝑞 have been derived and developed by researchers, such as, Hillmer and Tiao (1979) and 

Nicholls and Hall (1979). 
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Estimate of a vector autoregressive process of order 𝒑 

Consider the vector autoregressive process of order 𝑝 VAR(𝑝)  

𝒛 = 𝚽 𝒛 + 𝚽 𝒛 + ⋯ + 𝚽 𝒛 + 𝒆  

where 𝒛  is a 𝑑-dimensional vector valued time series and 𝒆  is white noise. The log 

likelihood function of a VAR process of order 𝑝 can be written as 

𝑙(𝚽, 𝜮) = −
(𝑛 − 𝑝)

2
log(|𝜮|) −

1

2
𝑡𝑟 𝒆 𝜮 𝒆  

By using the trace rules for a matrix, namely, 𝑡𝑟(𝐴𝐵) =  𝑡𝑟(𝐵𝐴) and 𝑡𝑟(𝐴 + 𝐵) =

𝑡𝑟(𝐴) + 𝑡𝑟(𝐵), then    

 = −
(𝑛 − 𝑝)

2
log(|𝜮|) −

1

2
 𝑡𝑟 𝜮  𝒆 𝒆  (3.46) 

where 

𝒆 = 𝒛 − 𝚽 𝒛 − 𝚽 𝒛 − ⋯ − 𝚽 𝒛  

and  

𝜮 =
1

𝑛 − 𝑝
𝒆 𝒆  

Estimate of a vector moving average process of order 𝒒 

Consider the vector moving average process of order 𝑞 VMA(𝑞)  

𝒛 = 𝚯 𝒆 + 𝚯 𝒆 + ⋯ + 𝚯 𝒆 + 𝒆  

where 𝒛 = (𝑧 , 𝑧 , … , 𝑧 ) , is a 𝑑 × 1 vector of variables observed at time 𝑡, 𝒆 =

(𝑒 , 𝑒 , … , 𝑒 ) , is a 𝑑 × 1 vector white noise process with zero mean, covariance matrix 

𝜮 = 𝐸[𝒆 𝒆 ] and 𝚯  is a 𝑑 × 𝑑 matrix of coefficients (𝑗 = 1, 2, … , 𝑞). 

The exact likelihood estimation of the vector moving average can be written as  
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𝑓(𝒛) = (2𝜋) ⁄ |𝜮| ⁄ 𝑨 𝜮 𝑨

⁄
exp

−1

2
(𝑩𝒛 + 𝑨𝒆∗) 𝜮 (𝑩𝒛

+ 𝑨𝒆∗)  

(3.47) 

where   

𝒆 = 𝑩𝒛 + 𝑨𝒆∗, 

𝒆∗ = 𝒆 , 𝒆 , … , 𝒆 , 

𝑨 is a matrix of dimension  𝑑(𝑛 + 𝑞) × 𝑑𝑞 and 𝑩 is a matrix of dimension 𝑑(𝑛 + 𝑞) × 𝑑𝑛, 

which are only determined by 𝚯 , 𝚯 , … , 𝚯 , (Osborn, 1977). 

Estimate vector autoregressive moving average process of order 𝒑 and 𝒒  

Consider the vector autoregressive moving average process of order 𝑝 and 𝑞 VARMA(𝑝, 𝑞)  

 𝒛 = 𝚽 𝒛 + ⋯ + 𝚽 𝒛 + 𝒆 − 𝚯 𝒆 − 𝚯 𝒆 − ⋯ − 𝚯 𝒆  (3.48) 

where 𝒛 = (𝑧 , 𝑧 , … , 𝑧 )  is a 𝑑 × 1 vector of variables observed at time 𝑡, 𝒆  is zero 

mean white noise process with covariance matrix 𝜮, 𝚽  (𝑖 = 1, 2, … , 𝑝) are 𝑑 × 𝑑 

parameter matrices and 𝚯  is a 𝑑 × 𝑑 matrix of coefficients, for (𝑗 = 1, 2, … , 𝑞). There are 

two methods to estimate the parameters of the VARMA model, which are the conditional 

likelihood method and the exact likelihood method. 

The conditional likelihood method of vector ARMA process can be obtained by 

 𝑙(𝚽, 𝚯, 𝜮) = −
𝑛

2
log(|𝜮|) −

1

2
𝒆 𝜮 𝒆  (3.49) 

From Equation 3.48  

𝚽𝒛 = 𝚯𝒆  

𝒆 = 𝚯 𝚽𝒛  

Therefore, the conditional likelihood method for vector ARMA can be written as 
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 = −
𝑛

2
log(|𝜮|) −

1

2
𝒆 (𝐼 ⊗ 𝜮 )𝒆  (3.50) 

The conditional likelihood method has been derived by Tunnicliffe (1973), Reinsel (1979) 

and Anderson (1980). 

The exact likelihood function of a stationary vector ARMA in Equation 3.48 has been 

derived by Hillmer and Tiao (1979) and Nicholls and Hall (1979). Further information for 

the exact likelihood function is detailed in Reinsel (1993).  

3.9 Diagnostic checking of vector ARMA models 

Diagnostic checking ensures the adequacy of a model in time series analysis, which can be 

conducted by using portmanteau tests.  The portmanteau testing of VARMA models is 

based on the residual covariance matrices at several lags, this approach was developed by 

Hosking (1980). The existing portmanteau test used to examine VARMA models can be 

defined as (Hosking, 1980): 

 𝒬 = 𝑛 (𝑛 − 𝑖) tr (𝜞(𝑖)𝚺 𝜞(𝑖) 𝚺 ),   (3.51) 

where   

𝜞(𝑘) = 𝑛 𝒆 𝒆     𝑘 = 1,2, . . . , 𝑚, 

It has been shown by Hosking (1980) that the test statistic 𝒬  is approximately distributed 

as chi-square with 𝑑 (𝑚 − 𝑝 − 𝑞) degree of freedom. 

The next chapter will investigate how the new portmanteau test 𝒬  can be used with 

vector autoregressive moving average models. Monte Carlo experiments will be conducted 

to find the empirical size and power level to compare the new portmanteau test with the 

existing portmanteau test. 
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3.10 Summary 

This chapter briefly discussed the extension of the Box and Jenkins methodology to a 

vector setting (VARMA models). An outline of the mean vector, the covariance and 

correlation matrix functions, the vector white noise process, the linear process of vector 

time series, the vector autoregressive, vector moving average, the vector autoregressive 

moving average processes and model building of vector ARMA time series have been 

provided.  
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Chapter 4 - The Influence Of Data Length On Testing 

Stationarity Of Univariate Time Series 

The aim of this chapter is to examine how the number of available observations of a time 

series can influence its apparent stationarity (that is, its identification as being either 

stationary or non-stationary) as measured by two standard tests. The univariate time series 

case is examined. To explore this issue, time series are generated from a known statistical 

model, a first-order autoregressive process. Parameters are chosen that ensure that the 

series are theoretically stationary. The standard Dickey-Fuller test and the Augmented 

Dickey-Fuller test are used to determine whether the series of observations produced are 

stationary or non-stationary. Monte Carlo experiments are undertaken using the R 

program for various model parameters and lengths of series, and each simulation is 

repeated 10,000 times. 

4.1 Introduction 

A critical factor in fitting a model to a time series, using the Box and Jenkins methodology 

(1970), is identifying whether or not the time series is stationary or non-stationary. In the 

case of the data being non-stationary, extra steps need to be undertaken to make the data 

stationary, typically, by differencing the data or by some transformation of the data. The 

consequence of incorrectly identifying a stationary time series as being non-stationary is 

that it will lead to the data being altered inappropriately and the wrong model being fitted. 

One factor that has a strong influence on the ability to identify a time series as being 

stationary or non-stationary is the length of data available. Note that, a process is 

stationary when its joint probability distribution does not change with time (Box and 

Jenkins methodology, 1970). A non-stationary process would be expected to exhibit 

deterministic trends, random walks and other non-stationary behaviour. The difficulty in 

identification arises from the fact that a stationary process may, for a short period, exhibit 

non-stationary behaviour, and conversely, a non-stationary process may exhibit stationary 

behaviour for a short period. Identification of stationarity can be achieved by the 

application of standard tests.  



Chapter 4 - The influence of data length on testing stationarity of univariate time series 

 

78 

 

To examine the relationship between the length of a series of data and the reliability of the 

identification of its stationarity a simulation study was conducted. In outline, the procedure 

was as follows. First, stationary data were generated from a known statistical process of a 

univariate time series, that is, an autoregressive process. Next, different lengths of the 

simulated data were tested using the standard tests of stationarity to examine the apparent 

stationarity of the time series. The standard tests employed were; the Dickey-Fuller test 

(DF) and the Augmented Dickey-Fuller test (ADF).  

When data are generated by a known statistical model (or collected from a real-world 

process), the length of data available may affect the apparent stationarity of the time series 

produced. For example, when considering a first-order autoregressive process, a short 

series of data with a value of parameter, such as 0.9, may produce a non-stationary time 

series, whereas a long series of data with the same parameter value may pass a test for 

stationarity. 

4.2 Testing of non-stationary time series  

There are many tests that have been developed to identify whether a time series is stationary 

or non-stationary. Unit root tests are widely used to test for stationarity in time series for 

different kinds of data, such as, stationary data, stationary data with a drift term, and 

stationary data with drift and trend terms. The null hypothesis of a unit root test for a first-

order autoregressive process is, 𝐻 : |𝜙 | =1, the time series is non-stationary (has a unit 

root). The alternative hypothesis is, 𝐻 : |𝜙 | < 1, the series is stationary (does not have a 

unit root).  

Phillips and Perron in 1988 introduced a non-parametric modification to the standard 

Dickey-Fuller test of a unit root that they used to test for stationary behaviour in a time 

series analysis. The Phillips-Perron (PP) test deals with serial correlation. One advantage 

of the PP test is that the user does not have to specific the lag length, (Phillips and 

Perron,1988). Kwiatkowski, Phillips, Schmidt and Shin (KPSS) in 1992 derived another 

form of the null hypothesis test in time series analysis versus alternative of unit root. The 

series of observations of the KPSS test is expressed as the sum of the deterministic trend, 

a random walk and a stationary error term (Kwiatkowski, Phillips, Schmidt and Shin, 
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1992). Eliot, Rothenberg and Stock in 1996 introduced another modification of the 

Augmented Dickey-Fuller test in which the data are detrended so that explanatory variables 

are “taken out” of the data prior to running the test regression, it is known as the ERS test. 

One advantage of this test statistic is that it improves the power when the time series has 

unknown mean or trend, (Eliot, Rothenberg and Stock,1996). Perron and Ng in 1996 used 

the ADF-GLS detrended procedure data to create efficient versions of the modified form 

of Phillips and Perron, (Perron and Ng, 1996). Ng and Perron (2001) suggested the 

modified information criteria MIC for selecting the max lag. It is based on the Akaike 

information criteria AIC (Akaike, 1973) and the Schwarz information criteria BIC 

(Schwarz, 1978). Nason in 2013 introduces a new test for second-order stationarity that 

detects different kinds of departures from stationarity. The new test is also computationally 

fast, designed to work with Gaussian and a wide range of non-Gaussian time series, and 

can locate non-stationarities in time series, (Nason, 2013). 

4.2.1  The Dickey-Fuller (DF) test 

The Dickey-Fuller test (Dickey, Fuller, 1979) is a unit root test for non-stationarity of a 

time series. In 1979, Dickey and Fuller considered three different regression equations 

that are based on a first-order autoregressive process, which can be used to test a non-

stationary time series, namely the test for a unit root, the test for a unit root with drift, and 

the test for a unit root with drift and a deterministic time trend. The first-order 

autoregressive process may be written as 

 𝑧 = 𝜙 𝑧 + 𝑒  (4.1) 

where z  is a value of a time series at time 𝑡, 𝜙  is a real number and 𝑒  is a white noise of 

mean zero and constant variance σ . Equation 4.1 can be transformed to  

𝛻𝑧 = (𝜙 − 1)𝑧 + 𝑒  

where ∇ is the differencing operator. 

Dickey and Fuller constructed a statistic by analogy to the t-ratio test for the estimate of 

𝜙 , which is estimated by the least squared method, 

𝜙 =
∑ 𝑧 𝑧

∑ 𝑧
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 then, 

 𝐷𝐹 =
𝜙 − 1

𝑆𝐸 𝜙
 (4.2) 

where SE 𝜙  is the standard error of the estimated parameter 𝜙 . The null and alternative 

hypotheses of the DF test are 

H : |𝜙 | = 1 

                                                              H : |𝜙 | < 1 

 

The distribution of the DF test statistic was investigated by Dickey (1976), as an analytical 

description was not possible, he used simulations to calculate the critical values, see 

Appendix E for an outline of the method employed. He provided tables of the critical values 

of the DF test statistic’s distribution for the three cases of: stationary, stationary with drift, 

and stationary with drift and trend time series.  

 

The first-order autoregressive process with drift can be written as 

 𝑧 = 𝜇 + 𝜙 𝑧 + 𝑒  (4.3) 

then, the unit root test with drift can be written as  

𝛻𝑧 = 𝜇 + (𝜙 − 1)𝑧 + 𝑒  

The first-order autoregressive process with drift and a deterministic time trend can be 

written as 

 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙 𝑧 + 𝑒  (4.4) 

So, the unit root test with drift and a deterministic time trend is 

𝛻𝑧 = 𝜇 + 𝜇 𝑡 + (𝜙 − 1)𝑧 + 𝑒  

where 𝜇 + 𝜇 𝑡 is a deterministic linear trend. 

This provides three tests for data, for the cases where they are either stationary, stationary 

with drift, or stationary with a linear trend. In the rest of the chapter these three tests will 

be referred to as the DF test, the DF drift test and the DF trend test.  
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4.2.2 Augmented Dickey-Fuller test (ADF) 

Dickey and Fuller (1981) generalized the DF test and applied it to the AR (p) process. This 

is named the Augmented Dickey-Fuller test (ADF). Equation 1.1 can be written using 

summation notation as  

𝑧 = 𝜙 𝑧 + 𝑒  

this can be transformed (Dickey and Fuller (1981) to 

𝑧 = 𝜏𝑧 + 𝜙 ∇𝑧 + 𝑒  

hence,  

 ∇𝑧 = (𝜏 − 1)𝑧 + 𝜙 ∇𝑧 + 𝑒  (4.5) 

where 𝜏 is the sum of the autoregressive coefficients, that is 

𝜏 = 𝜙  

The test statistic for the Augmented Dickey-Fuller test (ADF) is 

 𝐴𝐷𝐹 =
�̂� − 1

𝑆𝐸(�̂�)
 (4.6) 

where 𝑆𝐸(�̂�. ) is the standard error of the estimated parameter �̂�. The null and alternative 

hypotheses of the ADF test is  

𝐻 : |�̂�| = 1     

                                                               𝐻 : |�̂�| < 1 

where 𝐻  is the null hypothesis (has unit root and non-stationary) and 𝐻  is the alternative 

hypothesis (stationary). 
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The distribution of the ADF test statistic was investigated by Dickey and Fuller (1981), 

they used simulations to calculate the critical values following the method of Dickey 

(1976), see Appendix E. They provided tables of the critical values of the ADF test 

statistic’s distribution for the three cases of: stationary, stationary with drift, and stationary 

with drift and trend time series. 

The autoregressive process of order 𝑝 with drift 𝜇  can be written as 

 𝑧 = 𝜇 + 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒  (4.7) 

then, the unit root test with drift can be written as 

∇𝑧 = 𝜇 + (𝜏 − 1)𝑧 + 𝜙 ∇𝑧 + 𝑒  

The autoregressive process of order 𝑝 with a deterministic time linear trend 𝜇 + 𝜇 𝑡 can 

be written as 

 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙 𝑧 + 𝜙 𝑧 + ⋯ + 𝜙 𝑧 + 𝑒  (4.8) 

So, the unit root test with deterministic time linear trend is 

∇𝑧 = 𝜇 + 𝜇 𝑡 + (𝜏 − 1)𝑧 + 𝜙 ∇𝑧 + 𝑒  

The critical values of this test statistic were calculated by simulation and can be obtained 

in Dickey (1976) and Fuller (1976). If the test statistic value is greater than the critical 

value, then the null hypothesis will be accepted, it means that the time series has a unit root 

and is non-stationary. If this is the case, the data will need to be transformed to obtain a 

stationary series. 

 

An important issue of the ADF test is the specification of the lag length. If the lag length 

is too small then the remaining serial correlation in the error will bias the test, if the lag 

length is too large the power of the test will suffer (Schwert, 1989). A useful equation for 

determining the lag length that gives the test with the most power, as suggested by Schwert, 

is  
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 𝑙12 = 12
𝑛

100

⁄

 (4.9) 

This gives three further tests for data that are either stationary, stationary with drift, or 

stationary with a linear trend. In the rest of this thesis these will be referred to as the ADF 

test, the ADF drift test, and ADF trend test respectively. In each case, the lag length 

employed is determined by Equation 4.9 as recommended by Schwert.  

4.3 Monte Carlo experiment 

The aim of this simulation is to show how the length of the series of observations will affect 

the apparent stationarity of the time series produced. A Monte Carlo experiment was 

conducted with 10,000 replications to simulate different lengths of series, namely, n = 25, 

50, 75, 100, 250, 500, 750 and 1000 observations. The series were produced using the R 

language. Normally distributed N(0,1) pseudo random numbers were generated using the 

Mersenne-Twister generator (Matsumoto and Nishimura 1998). Then an AR(1) process 

z − ϕ  z = e  was used to generate the data to be tested, using different positive and 

negative values of parameter 𝜙 = ±0.1, ±0.2, ±0.3, ±0.4, ±0.5, ±0.6, ±0.7, ±0.8, ±0.9, and  

±0.99. Versions of the AR(1) process with drift 𝑧 = 𝜇 + 𝜙  𝑧 + 𝑒  and with drift and 

trend 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙  𝑧 + 𝑒   were also produced using the values 𝜇 = 𝜇 = 0.5 

The DF and ADF tests were then used to determine whether the time series produced were 

stationary or non-stationary. 

4.3.1 The steps of the Monte Carlo experiment to test the length of series 

observations 

The steps of the Monte Carlo experiment using the DF and ADF tests to examine the 

stationarity of an AR(1) process, are: 

1. Generate 1000 points of data from a Normal distribution (𝑒  white noise). 

2. Use the 𝑒  values to generate observations from an AR(1) process with parameter 𝜙 = 

±0.1, ±0.2, ±0.3, ±0.4, ±0.5, ±0.6, ±0.7, ±0.8, ±0.9, and  ±0.99. 
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3. Use the AR(1) data to produce three versions of the time series that are, stationary, 

stationary with drift 𝜇 = 0.5, and stationary with drift and a deterministic trend 𝜇 =

𝜇 = 0.5. 

4. For each of the 3 time series in step 3, select the first n data points, where n = 25, 50, 

75, 100, 250, 500, 750, 1000. 

5. Test, at the 0.05 significance level, all the time series in step 4 using the DF and ADF 

tests, using the appropriate version of the tests (stationary, stationary with drift, or 

stationary with drift and trend). 

6. Count the number of non-stationary series identified by both tests separately. 

7. Repeat 10,000 times from 1-6. 

Note, in the simulation result presented, values of 𝜇  and 𝜇 = 0.5 were used. Simulations 

using values of 𝜇  and 𝜇 = 0.1, 0.3, 0.7 and 0.9 were also conducted and gave the same 

results, but these not presented. 

4.3.2    Generated data under an AR(1) process with positive values of parameters 

Figure 4.1 gives the number of time series from an AR(1) process, identified as being non-

stationary by the DF test, where 𝜙  varies from 0.1 to 0.99 and different lengths of time 

series are examined. For the shortest time series (n = 25) the number identified as non-

stationary is about 6% when 𝜙 = 0.5 and increases markedly for larger values of 𝜙 . For 

the medium lengths of time series (n = 50, 75, 100) the number identified as non-stationary 

increases when the values of 𝜙  reaches 0.8, 0.9, and 0.9 respectively, with at least 20% 

identified as non-stationary in each case. For the longest lengths of data, such as n = 250, 

500, 750, 1000 the number of non-stationary time series identified is near zero for all values 

of 𝜙 < 0.99. 

For any given value of 𝜙  the number of time series identified as being non-stationary 

decreases as the length of the time series increases. In the case of values of the parameter 

𝜙  very near to 1, such as, 𝜙 = 0.99, most of the time series are identified by the DF test 

as non-stationary, even for the longest series examined, which is to be expected, as at 𝜙 =

1 the AR(1) process (Equation 4.2) is no longer stationary 
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Figure 4.1 The number of series identified as non-stationary by the DF test, data 
generated under an AR(1) process, 𝑧 = 𝜙 𝑧 + 𝑒 , using a range of positive 

parameters 𝜙  and different lengths of data. 

 

Figure 4.2 gives the number of time series from an AR(1) process identified as being non-

stationary by the ADF test. When the length of the times series is 100 or less, at least 20% 

of the series are identified as being non-stationary, irrespective of the value of 𝜙 . For the 

time series of length 250, the number of series identified is under 5% for all values of 𝜙  

below 0.9, at which point it is approximately 11%. When time series are generated with 

the longest lengths (n = 500, 750, and 1000) then all series produced are stationary except 

when the value of the parameter is very close to 1, i.e., 𝜙 = 0.99. 
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Figure 4.2 The number of series identified as non-stationary by the ADF test, data 
generated under an AR(1) process, 𝑧 = 𝜙 𝑧 + 𝑒 , using a range of positive 

parameters 𝜙  and different lengths of data. 

 

Figure 4.3 gives the number of time series from an AR(1) process with drift (drift parameter 

value 𝜇  = 0.5) identified as being non-stationary by the DF drift test. For the very shortest 

length of time series (n = 25) the number identified as non-stationary is above 5% for all 

values of 𝜙  larger than 0.1. For medium lengths of time series (n = 50, 75, and 100) the 

number of non-stationary time series is above 5% for values of 𝜙  above 0.6, 0.7 and 0.8 

respectively. For the longest lengths of data (n = 250, 500, 750 and 1000) the number of 

non-stationary time series is near zero for all values of 𝜙  below 0.99. 
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Figure 4.3 The number of series identified as non-stationary by the DF drift test, data 
generated under an AR(1) process with drift, 𝑧 = 𝜇 + 𝜙 𝑧 + 𝑒 , using a range of 

positive parameters 𝜙  and different lengths of data. 

 

Figure 4.4 gives the number of time series from an AR(1) process with drift (drift parameter 

value 𝜇  = 0.5) identified as being non-stationary by the ADF drift test. For the lengths of 

time series (n = 25, 50, 75, and 100) over 20% of the series are identified as being non-

stationary for all vales of 𝜙 . For data lengths 250 and 500 the number of non-stationary 

time series rises above 5% for values of  𝜙  above 0.1 and 0.8 respectively. For longer 

lengths of time series (n = 750, and 1000) the number of series identified as non-stationary 

is nearly zero for all vales of 𝜙  below 0.9. 
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Figure 4.4 The number of series identified as non-stationary by the ADF drift test, data 
generated under an AR(1) process with drift, 𝑧 = 𝜇 + 𝜙 𝑧 + 𝑒 , using a range of 

positive parameters 𝜙  and different lengths of data. 

 

Figure 4.5 gives the number of time series from an AR(1) process with drift and trend 

(parameter values 𝜇  = 0.5 and 𝜇  = 0.5) identified as being non-stationary by the DF trend 

test. For the shortest length of time series (n = 25) the number of non-stationary time series 

is above 5%, even for the lowest value of the parameter examined 𝜙 = 0.1. For time series 

of lengths 50, 75 100 and 250 the number of series identified as being non-stationary is 

below 5% for all values of 𝜙  up to 0.4, 0.6, 0.7, and 0.8 respectively. For the longest 

length series (n = 500, 750, and 1000) approximately zero percent of the series are 

identified as being non-stationary for all values of 𝜙  below 0.99.   

ADF DRIFT TEST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0

2000

4000

6000

8000

10000

12000

Parameter1

N
u

m
b

e
r 

o
f n

o
n

-s
ta

tio
n

a
ry

 ti
m

e
 s

e
ri

e
s

n=25
n=75
n=250
n=750

n=50
n=100
n=500
n=1000



Chapter 4 - The influence of data length on testing stationarity of univariate time series 

 

89 

 

 

Figure 4.5 The number of series identified as non-stationary by the DF trend test, data 
generated under an AR(1) process with drift and trend, 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙 𝑧 + 𝑒 , 

using a range of positive parameters 𝜙  and different lengths of data. 

 

Figure 4.6 gives the number of time series from an AR(1) process with drift and trend 

(parameter values 𝜇  = 0.5 and 𝜇  = 0.5) identified as being non-stationary by the ADF 

trend test. For time series of lengths 25, 50, 75, 100 and 250 the number of non-stationary 

time series is above 5% for all values of 𝜙 . When the length of the time series is 500 the 

number identified as non-stationary is below 5% for value of 𝜙  up to 0.9. For the series 

of longer lengths (n = 750, and 1000) the number of non-stationary time series is near zero 

for all values of 𝜙  below 0.99. 
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Figure 4.6 The number of series identified as non-stationary by the ADF trend test, data 
generated under an AR(1) process with drift and trend, 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙 𝑧 + 𝑒 , 

using a range of positive parameters 𝜙  and different lengths of data. 

 

4.3.3 Generated data under an AR(1) process with negative values of parameters 

When data are generated under an AR(1) process with negative values of parameter 𝜙 , 

then the DF test identifies all the time series as being stationary irrespective of the length 

of the series. Similarly, for an AR(1) process with drift, all cases are identified by the DF 

drift test as stationary. Also, in the case of the AR(1) process with drift and trend, all cases 

are identified as stationary by the DF trend test. 

Figure 4.7 gives the number of time series from an AR(1) process with negative values of 

parameter 𝜙  that have been identified as being non-stationary by the ADF test. For time 

series of lengths 25, 50, 75 and 100 the number of non-stationary series are not affected by 

the values of parameters, but instead remains approximately constant and dependent on the 
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length of the time series. The percentage of non-stationary series identified as non-

stationary decreases with increasing length of series, and for series of length 25, 50, 75 and 

100 it is approximately 87%, 63%, 33% and 15% respectively. For longer time series (n > 

100) all the series are identified as stationary.  

 

 

Figure 4.7 The number of series identified as non-stationary by the ADF test, data 
generated under an AR(1) process, 𝑧 = 𝜙 𝑧 + 𝑒 , using a range of negative 

parameters 𝜙  and different lengths of data. 

 

Figure 4.8 gives the number of time series from an AR(1) process with drift (drift parameter 

value 𝜇  = 0.5) and with negative values of parameter 𝜙  that have been identified as being 

non-stationary by the ADF drift test. For time series of lengths 25, 50, 75 and 100 the 

number of non-stationary series are not affected by the values of the parameter, but instead 

remains approximately constant and dependent on the length of the time series. The 
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percentage of non-stationary series identified as non-stationary decreases with increasing 

length of series, and for series of lengths 25, 50 75 and 100 it is approximately 95%, 90%, 

78% and 60% respectively. For longer time series (n > 100) all the series are identified as 

stationary. 

 

 

Figure 4.8 The number of series identified as non-stationary by the ADF drift test, data 
generated under an AR(1) process with drift, 𝑧 = 𝜇 + 𝜙 𝑧 + 𝑒 , using a range of 

negative parameters 𝜙  and different lengths of data. 

 

Figure 4.9 gives the number of time series from an AR(1) process with drift and trend 

(parameter values 𝜇  = 0.5 and 𝜇  = 0.5), and with negative values of parameter 𝜙  that 

have been identified as being non-stationary by the ADF trend test. For time series of 

lengths 25, 50, 75, 100 and 250 the number of non-stationary series are not affected by the 

values of the parameter, but instead remains approximately constant and dependent on the 
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length of the time series. The percentage of non-stationary series identified as non-

stationary decreases with increasing length of series, and for series of lengths 25, 50 75, 

100 and 250, it is approximately 95%, 95%, 88%, 79% and 13% respectively. For longer 

time series (n > 250) all the series are identified as stationary. 

 

 

Figure 4.9 The number of series identified as non-stationary by the ADF trend test, data 
generated under an AR(1) process with drift and trend, 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙 𝑧 + 𝑒 , 

using a range of negative parameters 𝜙  and different lengths of data. 

 
 

4.4 Data generated under an AR(2) process with different values of parameters 

A Monte Carlo experiment was conducted with 10,000 replications to simulate different 

lengths of series, namely, n = 25, 50, 75, 100, 250, 500, 750 and 1000 observations. Then 

an AR(2) process 𝑧 − 𝜙  𝑧 − 𝜙  𝑧 = 𝑒  was used to generate the data to be tested, 

using different positive values of parameters 𝜙  and 𝜙 . All combinations of parameters 

𝜙 = 0.1, 0.2, …, 0.9 and 𝜙 = 0.1, 0.2, …, 0.9 were simulated, subject to the stationarity 
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condition of an AR(2) process, namely, 𝜙 + 𝜙 < 1. Versions of the AR(2) process with 

drift 𝑧 = 𝜇 + 𝜙  𝑧 + ϕ  z + 𝑒  and with drift and trend 𝑧 = 𝜇 + 𝜇 𝑡 +

𝜙  𝑧 + 𝜙  𝑧 + 𝑒   were also produced using the values 𝜇 = 𝜇 = 0.5, and the above 

combinations of parameters 𝜙  and 𝜙 . All the time series were then tested by the DF tests 

and the ADF tests.  

 

4.4.1 AR(2) processes  tested for stationarity by the DF tests.  

The DF tests was used to determine whether the time series produced were stationary or 

non-stationary. Figure 4.10 shows the simulation results for two representative values of 

𝜙 , namely, 0.1 and 0.5, full results can be found in Appendix D. 

Figure 4.10a gives the number of  non-stationary time series when data are generated by 

the AR(2) process 𝑧 = 𝜙  𝑧 + ϕ  z + 𝑒 , with 𝜙  = 0.1 and where 𝜙  takes the 

values 0.1 to 0.9, tested by the DF test. For data lengths 25 most of the series are non-

stationary when the values of 𝜙  are greater than 0.6. For the data lengths equal or greater 

than 75, all series are non-stationary when the values of parameter 𝜙  equal or greater than 

0.8. Figure 4.10b, gives the number of non-stationary time series when 𝜙 = 0.5, and 𝜙  

varies. For the data lengths 50 to 75 most of the series are stationary when the values of 𝜙  

are less than or equal to 0.2. For data lengths equal or greater than 100 the number of non-

stationary series start to increase rapidly when the values of parameter 𝜙  reaches 0.5 or 

greater. 

Figure 4.10c, shows data generated by the AR(2) process 𝑧 = 𝜇 + 𝜙  𝑧 + ϕ  z +

𝑒 , with 𝜙  = 0.1 and where 𝜙  varies, tested by the DF drift test. For the data lengths 25 

most of the series are stationary when the values of 𝜙  are less than or equal to 0.2. For 

data lengths 50 to 100 the number of non-stationary series start to increase rapidly when 

the values of parameter 𝜙  reaches 0.9. Figure 4.10d presents data generated by the AR(2) 

process with 𝜙 = 0.5, and where 𝜙  varies. For the data lengths equal to 75 most of the 

series are non-stationary when the values of 𝜙  greater than 0.2. For the data lengths equal 

to 100 majority of the series are non-stationary when the values of 𝜙  greater than 0.3. For 
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the data lengths equal or greater to 250 the number of non-stationary series start to increase 

rapidly for values of parameter 𝜙  of 0.5 or greater. 

Figure 4.10e, provides data generated by the AR(2) process 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙  𝑧 +

𝜙  𝑧 + 𝑒 , with 𝜙  = 0.1 and where 𝜙  varies, tested by the DF trend test. For the data 

lengths less than or equal 100, most of the series are non-stationary. For the data lengths 

25 most of the series non-stationary with different values of 𝜙 . For the data lengths equal 

or greater than 50 most of the series are stationary with different values of 𝜙 . Figure 4.10f, 

presents data generated by the AR(2) process, with 𝜙  = 0.5 and where 𝜙  varies. For the 

data lengths equal to 75 most of the series are non-stationary when the values of 𝜙  greater 

than 0.2. For the data lengths equal to 100 majority of the series are non-stationary when 

the values of 𝜙  greater than 0.3. For the data lengths equal or greater to 250 the number 

of non-stationary series start to increase rapidly for values of parameter 𝜙  0.5 or greater. 
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Figure 4.10 The number of series identified as non-stationary by the DF test, DF drift test 
and DF trend test, data generated under AR(2) process. 
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4.4.2 AR(2) processes  tested for stationarity by the ADF tests.  

The ADF tests was used to determine whether the time series produced were stationary or 

non-stationary. Figure 4.11 shows the simulation results for two representative values of 

𝜙 , namely, 0.1 and 0.5, full results can be found in Appendix D. 

Figure 4.11a gives the number of non-stationary time series when data generated by the 

AR(2) process 𝑧 − 𝜙  𝑧 − 𝜙  𝑧 = 𝑒 , with 𝜙  = 0.1 and where 𝜙  takes the values 

0.1 to 0.9, tested by the ADF test. For data lengths less than or equal to 50 most of the 

series are non-stationary. For the data lengths equal or greater than 250, virtually all the 

series are stationary until the parameter 𝜙  reaches to 0.6, with the number of non-

stationary series increasing rapidly after this point. Figure 4.11b, gives the number of non-

stationary time series when 𝜙 = 0.5, and 𝜙  varies. For the data lengths less than or equal 

to 75 the majority of the series are non-stationary. For data lengths equal or greater than 

250 the number of non-stationary series start to increase rapidly when the values of 

parameter 𝜙  reaches 0.4 or greater. 

Figure 4.11c, shows data generated by the AR(2) process 𝑧 = 𝜇 + 𝜙  𝑧 + ϕ  z +

𝑒 , with 𝜙  = 0.1 and where 𝜙  varies, tested by the ADF drift test. For data lengths less 

than or equal to 100, most of the series are non-stationary. For data lengths equal or greater 

than 250, the number of non-stationary series start to increase for values of parameter 𝜙  

= 0.7 or greater. Figure 4.11d, presents data generated by the AR (2) process with 𝜙 =

0.5, and where 𝜙  varies. For the data lengths less than 250, most of the series are non-

stationary. For the data lengths greater than 250, the number of non-stationary series start 

to increase rapidly for values of parameter 𝜙  of 0.4 or greater. 

Figure 4.11e, provides data generated by the AR(2) process 𝑧 = 𝜇 + 𝜇 𝑡 + 𝜙  𝑧 +

𝜙  𝑧 + 𝑒 , with 𝜙  = 0.1 and where 𝜙  varies, tested by the ADF trend test. For the data 

lengths less than or equal 100, most of the series are non-stationary. For data lengths greater 

than 500, the number of non-stationary series start to increase rapidly for values of 

parameter 𝜙  = 0.6 or greater. Figure 4.11f, presents data generated by the AR(2) process, 

with 𝜙  = 0.5 and where 𝜙  varies. For data lengths less than or equal to 100, most of the 
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series are non-stationary. For the data lengths greater then 250, the number of non-

stationary series start to increase rapidly for values of parameter 𝜙  = 0.3 or greater. 
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Figure 4.11 The number of series identified as non-stationary by the ADF test, ADF drift 
test and ADF trend test, data generated under AR(2) process. 
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4.5 Variability of DF tests and ADF tests 

To discover the variability of the DF tests and the ADF tests a Monte-Carlo experiment 

was conducted with 1000 replications of the experiment carried out in Section 4.3.1. As 

this experiment involved 1000 replications of a simulation involving 10,000 replications 

this is only conducted 𝜙  = 0.5. The aim was to calculate the mean and standard deviation 

for the DF test, the DF drift test, the DF trend test, the ADF test, the ADF drift test and the 

ADF trend test, when n = 100 observations under an AR(1) process. The DF tests and the 

ADF tests were calculated by using the steps of the previous Monte-Carlo experiment. 

 

 n = 100 

𝜙  = 0.5 DF DF drift DF trend ADF ADF drift 
ADF 
trend 

Mean 0 0 0.15 2784.95 7256.425 8588.7 

Standard 
deviation 

0 0 0.36162 38.66155 40.26189 35.13943 

Table 4.1 The mean and standard deviation for the test DF tests and ADF tests, data gen-
erated under an AR(1) process with 𝜙  = 0.5 and n = 100. 

 

As can be seen from Table 4.1 the results of this experiment show that for the parameter 

value 𝜙  = 0.5 the DF and DF drift tests have the standard deviation equal to zero and the 

DF trend with standard deviation 0.36162. These results are as expected as the DF tests are 

the appropriate tests for this situation and almost all the time series are identified as sta-

tionary. In the case of the ADF test, the ADF drift test and the ADF trend test most time 

series are identified as non-stationary, which is to be expected as these are not the appro-

priate tests (this assumes prior knowledge that the process is an AR(1)). 

The standard deviations for the ADF tests are around 1 percent of the associated mean. 
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4.6 Summary 

The simulations undertaken show that the length of a time series critically affects the 

number of series identified as being non-stationary by standard tests (for example, the DF 

test and the ADF test).   

A stationary time series was generated from an AR(1) process with positive values of the 

parameter and examined by the DF test, the DF drift test, and the DF trend test, see Figures 

4.1, 4.3, and 4.5. It was found to be reliable to examine the series for stationarity by using 

the DF test, when n = 25 and the values of the parameter 𝜙 < 0.5, when n = 50 and for 

values of the parameter 𝜙 < 0.8, when n = 75 or 100 and for values of the parameter 𝜙 <

0.9, and when 𝑛 ≥ 250 with the values of the parameter 𝜙 < 0.99.  

It is dependable to examine a time series for stationarity when data is examined by the DF 

test with drift, when n = 25 and for values of the parameter 𝜙 < 0.2, when 𝑛 = 50 and 

for values of the parameter 𝜙 < 0.6, when n = 75 or 100 and for values of the parameter 

𝜙 < 0.8, and when n > 250 and for values of the parameter 𝜙 < 0.99.  

It is reliable to examine the series for stationarity by using the DF test with trend, when 

𝑛 = 50 and for values of the parameter 𝜙 < 0.5, when n = 75 and for values of the 

parameter 𝜙 < 0.7, when 𝑛 = 100 and for values of the parameter 𝜙 < 0.8, and when n 

= 250 and for values of the parameter 𝜙 < 0.9, when n > 500 and for values of the 

parameter 𝜙 < 0.99. 

A time series was generated from an AR(1) process with positive values of the parameter 

and examined by the ADF test, the ADF drift test, and the ADF trend test, see Figures 4.2, 

4.4, and 4.6.  

It is reliable to examine for stationarity by using the ADF test, when n = 250 and the values 

of parameter 𝜙 < 0.9, and when n > 250 with values of the parameter 𝜙 < 0.99, see 

Figures 4.2.  

It was found to be reliable to examine for stationarity by using of the ADF test with drift, 

when 𝑛 = 250 with values of the parameter 𝜙 < 0.2, see Figures 4.4.  
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It is dependable to examine for stationarity by the ADF test with trend, when 𝑛 = 500 and 

values of the parameter 𝜙 < 0.9, and when n > 500 for values of the parameter 𝜙 < 0.99, 

see Figures 4.4. 

Table 4.2 gives a summary of the findings from the Monte Carlo experiments conducted 

in Section 4.5, broken down by the DF, DF drift, DF trend, ADF, ADF drift and ADF trend 

tests. For each length of data examined in the experiments, the maximum value of 𝜙  is 

given that ensures the series will be correctly identified as stationary (a cut-off of no more 

than 5% of the time series incorrectly identified is used, since the tests in the Monte Carlo 

experiments were conducted at the 0.05 significance level). The symbol (-) in Table 4.2 

means all time series are non-stationary. 

 

 Maximum positive values of 𝜙  

Length 𝑛 25 50 75 100 250 500 750 1000 

DF 0.4 0.7 0.8 0.8 0.9 0.9 0.9 0.9 

DF Drift 0.2 0.5 0.6 0.7 0.9 0.9 0.9 0.9 

DF Trend - 0.4 0.6 0.7 0.9 0.9 0.9 0.9 

ADF - - - - 0.8 0.9 0.9 0.9 

ADF Drift - - - - 0.3 0.8 0.9 0.9 

ADF Trend - - - - - 0.8 0.9 0.9 

Table 4.2 The maximum positive value of 𝜙  that ensures that the series are correctly 
identified as stationary by the DF and ADF tests, the DF drift and ADF drift tests, and the 

DF trend and ADF trend tests, for positive values of 𝜙  and different lengths of data. 

 

For an AR(1) process generated using negative values of the parameter 𝜙 and examined 

by the ADF tests, the ADF drift test, and the ADF trend test (see Figures 4.7, 4.8, and 4.9) 

the number of stationary series identified as non-stationary does not depend on the 

parameter 𝜙 , instead it is dependent only on the number of data points in the time series. 

As the number of data points increase the number of stationary time series identified as 
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being non-stationary decreases. Table 4.3 gives the minimum number of data points 

required to ensure that the ADF, the ADF drift and the ADF trend tests correctly identify 

the time series as stationary for negative values of 𝜙  (again using a 5% cut-off). 

 

 Minimum number of data points 

ADF 250 

ADF Drift 250 

ADF Trend 500 

Table 4.3 The minimum number of data points in a time series generated from an AR(1) 

process (with negative 𝜙 ) that ensures that the series is correctly identified as stationary 

by the ADF test, the ADF drift test, and the ADF trend test. 

 

A time series was generated from an AR(2) process with a range of positives values of the 

parameters 𝜙  and 𝜙 , and examined by the ADF test, the ADF drift test, and the ADF 

trend test, see Figure 4.10 and Appendix D. 

 

Tables 4.4 and 4.5 give a summary of the findings from the Monte Carlo experiments 

conducted in Section 4.4, broken down by DF, DF drift, DF trend, ADF, ADF drift and 

ADF trend tests. For each length of data examined in the experiments, the maximum value 

of 𝜙  is given that ensures the series will be correctly identified as stationary (a cut-off of 

no more than 5% of the time series incorrectly identified is used, since the tests in the 

Monte Carlo experiments were conducted at the 0.05 significance level). The symbol (-) in 

Tables 4.4 and 4.5 mean all time series are non-stationary. 
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𝜙 = 0.1 Maximum positive values of 𝜙  

Length 𝑛 25 50 75 100 250 500 750 1000 

DF 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

DF Drift 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

DF Trend - 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

ADF - - - - 0.6 0.8 0.8 0.8 

ADF Drift - - - - - 0.7 0.8 0.8 

ADF Trend - - - - - 0.6 0.7 0.8 

 

Table 4.4 The maximum positive value of 𝜙 , when  𝜙 = 0.1 that ensures that the series 
are correctly identified as stationary by the DF tests, the DF drift tests, the DF trend tests, 
the ADF tests, the ADF drift tests, and the ADF trend tests, for positive values of 𝜙  and 

different lengths of data. 

 

𝜙 = 0.5 Maximum positive values of 𝜙  

Length 𝑛 25 50 75 100 250 500 750 1000 

DF - 0.2 0.3 0.4 0.4 0.4 0.4 0.4 

DF Drift - - 0.2 0.3 0.4 0.4 0.4 0.4 

DF Trend - - 0.2 0.3 0.4 0.4 0.4 0.4 

ADF - - - - 0.3 0.4 0.4 0.4 

ADF Drift - - - - - 0.3 0.4 0.4 

ADF Trend - - - - - 0.2 0.3 0.4 

 

Table 4.5 The maximum positive value of 𝜙 , when  𝜙  = 0.5 that ensures that the series 
are correctly identified as stationary by the DF tests, the DF drift tests, the DF trend tests, 
ADF tests, the ADF drift tests, and the ADF trend tests, for positive values of 𝜙  and dif-

ferent lengths of data 
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Table 4.4 shows that it is reliable to examine an AR(2) process for stationarity by using the 

DF test, the DF drift test, and the DF trend test, when  n = 50 and 𝜙 = 0.1, with 𝜙  less 

than or equal 0.8. It is dependable to examine an AR(2) process for stationarity by using 

the ADF test, the ADF drift test, and the ADF trend test, when n = 750 and 𝜙 = 0.1, with 

𝜙  less than or equal 0.8. It can be seen from Table 4.5 that it is reliable to examine an 

AR(2) process for stationarity by using the DF test, the DF drift test, and the DF trend test, 

when  n = 50 and 𝜙 = 0.5, with 𝜙  less than or equal 04. For the ADF test, the ADF drift 

test, and the ADF trend test, when n = 750 and 𝜙 = 0.5, then 𝜙  must be less or equal 0.4 

for stationarity to be correctly identified. From Appendix D it can be seen that for values 

of 𝜙  larger than 0.5 all the ADF tests are unreliable even for large values of n (e.g., 1000) 

and for small values of 𝜙  (i.e., less than or equal 0.4).    
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Chapter 5 - Portmanteau Tests 

The aim of this chapter is to review previous studies in the area of portmanteau tests, which 

have been developed by several researchers. The chapter also presents a new portmanteau 

test, which is based on exponential weights of the residual partial autocorrelation function. 

Monte Carlo experiments are used to compare the performance of the new portmanteau 

test to existing tests.  

5.1 Introduction 

Diagnostic checking is the third stage of the Box and Jenkins methodology. The adequacy 

of a statistical model is examined, by considering the model’s residuals, then the 

autocorrelation and partial autocorrelation functions are used as diagnostic tools to test the 

goodness of fit of the model. A portmanteau test is an important method of diagnostic 

checking, which is used to test the goodness of fit of an ARMA model of a time series, 

which has been studied by both Box and Pierce (1970) and Ljung and Box (1978). 

A portmanteau test is calculated by summing the residuals of the autocorrelation or partial 

autocorrelation function of the fitted model. Then the value of the portmanteau test is 

compared with a critical value. If the value of the portmanteau test is less than the critical 

value, it means the model is appropriate for the data. Alternatively, if the value of the 

portmanteau test is bigger than the critical value, it means the model is inappropriate for 

the data.     

Suppose that a time series {𝑧 } is generated by a stationary and invertible ARMA(𝑝, 𝑞) 

process  

𝜙(𝐵)𝑧 = 𝜃(𝐵)𝑒  

where {𝑒 } is a white noise process of mean zero and constant variance 𝜎 , and 𝜙(𝐵) 

and 𝜃(𝐵) are polynomials given by 𝜙(𝐵) = 1 − 𝜙 𝐵 − ⋯ − 𝜙 𝐵  and 𝜃(𝐵) = 1 −

𝜃 𝐵 − ⋯ − 𝜃 𝐵 , has been fitted by maximum likelihood estimates 𝜙, 𝜃  obtained for the 

parameters, then it is possible to identify the residuals as  



Chapter 5 - Portmanteau Tests 

107 

 

 �̂� = 𝜃 (𝐵)𝜙(𝐵)𝑧 , (5.1) 

The residuals are computed recursively using Equation 1.3 in the following form 

 
�̂� = 𝑧 − 𝜙 𝑧 + 𝜃 �̂�        𝑡 = 1,2, ⋯ , 𝑛 (5.2) 

These residuals �̂�  from the ARMA model will be random if the model is correct, this 

means that the autocorrelation of the residuals 𝜌  will be zero at all lags 𝑘. This gives the    

null hypothesis for all lags 𝑘 

𝐻 : 𝜌 = 0 

𝐻 : 𝜌 ≠ 0 

When considering the partial autocorrelation 𝜙  of the residuals at lags 𝑘 the hypothesis 

test can be given in the equivalent form 

𝐻 : 𝜙 = 0 

𝐻 : 𝜙 ≠ 0 

All the following tests will use one of these forms of the hypothesis, depending on whether 

the statistic relies on 𝜌  or 𝜙 .  

5.1.1 Box and Pierce test 

Box and Pierce (1970) showed that if the fitted model is appropriate then the portmanteau 

test statistic  

 
𝒬 = 𝑛 𝜌 (�̂�) (5.3) 

is approximately distributed as 𝜒 (𝑚 − 𝑝 − 𝑞), where 𝜌  is the sample autocorrelation 

function, and 𝑛 is the number of observations and 𝑚 is the maximum lag taken into account. 
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5.1.2 Ljung and Box test 

Ljung and Box (1978) showed that the chi-squared distribution does not provide a 

sufficiently accurate approximation to the distribution of the statistic 𝒬  under the null 

hypothesis, with 𝒬  tending to the smaller values than expected under the chi-squared 

distribution. Empirical evidence to support this was presented by Davies, Triggs and 

Newbold (1977). Consequently, Ljung and Box (1978) proposed a modified form of the 

portmanteau test statistic given by 

 
𝒬 = 𝑛(𝑛 + 2) (𝑛 − 𝑘) 𝜌 (�̂�) (5.4) 

where  

𝜌 (�̂�) = 𝑒 𝑒 𝑒  

The modified statistic has, approximately, a mean of 𝐸 𝒬 ≈ 𝑚 − 𝑝 − 𝑞 of the 

𝜒 (𝑚 − 𝑝 − 𝑞) distribution, where 𝑛 is the number of observations and 𝑚 is the maximum 

lag taken into account. 

5.1.3 Monti test 

Monti (1994) showed that the statistic 𝒬  in Equation 5.5 is asymptotically distributed as 

𝜒 (𝑚 − 𝑝 − 𝑞), analogous to the asymptotic distribution of the statistic 𝒬  in Equation 

5.4. The portmanteau test 𝒬  is based on the autocorrelation functions. Monti (1994) 

suggested a portmanteau test statistic 

 
𝒬  = 𝑛(𝑛 + 2) (𝑛 − 𝑘) 𝜙 (�̂�) (5.5) 

where 𝜙 (�̂�) is the residual partial autocorrelation at lag 𝑘, 𝑛 is the number of 

observations and 𝑚 is the maximum lag taken into account.  Hence a test of model 

adequacy can be based on referring the value of 𝒬  to the upper critical value of the 

𝜒 (𝑚 − 𝑝 − 𝑞) distribution. If the model is correct, 𝜙 (�̂�) is approximately distributed 
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as a normal random variable with mean zero and variance (𝑛 − 𝑘) 𝑛(𝑛 + 2)⁄ . The test 

based on 𝒬  has been found to be typically at least as powerful as 𝒬  (Monti, 1994).  

5.1.4 Peña and Rodríguez 2002 test  

Peña and Rodríguez (2002) showed that the portmanteau goodness-of-fit test statistic is 

based on a general measure of multivariate dependence. Denote the correlation matrix up 

to order lag 𝑚 of residual �̂�  from the fitted ARMA(𝑝, 𝑞) model by 

𝑅 (�̂�) =

⎝

⎜
⎛

1          𝜌 (�̂�)        𝜌 (�̂�)       ⋯     𝜌 (�̂�)

𝜌 (�̂�)        1             𝜌 (�̂�)       ⋯   𝜌 (�̂�)

𝜌 (�̂�)     𝜌 (�̂�)           1            ⋯   𝜌 (�̂�)
  ⋮            ⋮                  ⋮             ⋯        ⋮      

𝜌 (�̂�)    𝜌 (�̂�)   𝜌 (�̂�)   ⋯        1       ⎠

⎟
⎞

 

The proposed portmanteau test statistic is based on the determinant of this correlation 

matrix, a general measure of a dependence in multivariate analysis, and is given by  

 𝐷 = 𝑛 1 − 𝑅 (�̂�)
⁄

  (5.6) 

where 𝑛 is the length of the time series. If the model is correctly identified, 𝐷  is 

asymptotically distributed as a linear combination of Chi-squared random variables and is 

approximately a Gamma distribution random variable for large values of 𝑚 with parameter 

𝛼 and 𝛽. 

The distribution of 𝐷  can be approximated by the Gamma distribution (Peña and 

Rodríguez, 2002), where the parameters are defined by  

𝛼 =
3𝑚[(𝑚 + 1) − 2(𝑝 + 𝑞)]

2[2(𝑚 + 1)(2𝑚 + 1) − 12𝑚(𝑝 + 𝑞)]
 

and 

𝛽 =
3𝑚[(𝑚 + 1) − 2(𝑝 + 𝑞)]

2(𝑚 + 1)(2𝑚 + 1) − 12𝑚(𝑝 + 𝑞)
 

and the distribution has a mean of  

𝛼

𝛽
=

𝑚 + 1

2
− (𝑝 + 𝑞) 
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and a variance of  

𝛼

𝛽
=

(𝑚 + 1)(2𝑚 + 1)

3𝑚
− 2(𝑝 + 𝑞) 

5.1.5 Peña and Rodríguez 2006 test 

Peña and Rodríguez (2006) gave a new portmanteau test statistic, which is the log of the 

determinant of the 𝑚th autocorrelation matrix  

 𝐷∗ = −
𝑛

𝑚 + 1
log 𝑅  (5.7) 

where 𝑅  is the residual correlation matrix of order 𝑚 and |. | is the absolute value of the 

constant. There are two approximations to the asymptotic distribution, which are based on 

the Gamma and Normal distribution. The Gamma distribution is the approximation 

distribution of 𝐷∗ , where the parameters are defined by 

 
𝛼 =

3(𝑚 + 1)[𝑚 − 2(𝑝 + 𝑞)]

2[2𝑚(2𝑚 + 1) − 12(𝑚 + 1)(𝑝 + 𝑞)]
 (5.8) 

 and 

 
𝛽 =

3(𝑚 + 1)[𝑚 − 2(𝑝 + 𝑞)]

2𝑚(2𝑚 + 1) − 12(𝑚 + 1)(𝑝 + 𝑞)
 (5.9) 

and the distribution has a mean of  

𝛼

𝛽
=

𝑚

2
− (𝑝 + 𝑞) 

and a variance of  

𝛼

𝛽
=

𝑚(2𝑚 + 1)

3(𝑚 + 1)
− 2(𝑝 + 𝑞) 

Peña and Rodríguez (2006) suggested a power transformation which reduces the skewness 

in order to improve the normal approximation. The test statistic is  



Chapter 5 - Portmanteau Tests 

111 

 

𝑁𝐷∗ =
𝛼

𝛽

⁄ 𝜆

√𝛼
(𝐷∗ ) ⁄ −

𝛼

𝛽

⁄

1 −
1

2𝛼

𝜆 − 1

𝜆
 

and  

𝜆 = 1 −
2 𝑚 2⁄ − (𝑝 + 𝑞) 𝑚 / 4(𝑚 + 1) − (𝑝 + 𝑞)

3 𝑚(2𝑚 + 1) 6(𝑚 + 1) − (𝑝 + 𝑞)⁄
 

where 𝑚 is moderately large 𝜆 ≃ 4, 𝛼 and 𝛽 are the values obtained in Equations (5.8) and 

(5.9). The statistic 𝑁𝐷∗  is distributed as N(0,1). 

5.1.6 Mahdi and McLeod test 

Mahdi and McLeod (2011) showed that for large 𝑛, the portmanteau test statistic 

 
𝒬 = −

3𝑛

2𝑚 + 1
log 𝑅  (5.10) 

is approximately distributed as a chi squared random variable with  

1.5𝑚(𝑚 + 1)

2𝑚 + 1
− (𝑝 + 𝑞), 

and 𝜒 (𝑚 − 𝑝 − 𝑞) degrees of freedom. In their paper the simulation study compared 

performance of their test with the 𝒬  and 𝒬  tests.  

5.1.7 Fisher and Gallagher test 

Fisher and Gallagher (2012) introduced a new portmanteau test statistic 𝒬  that is based 

on the square of the 𝑚th-order autocorrelation matrix 

 
𝒬 = 𝑛(𝑛 + 2)

(𝑚 − 𝑘 + 1)

𝑚

𝜌

𝑛 − 𝑘
  (5.11) 

where 𝜌  is the autocorrelation at lag 𝑘.The statistic is a weighted sum of the squares of 

the sample autocorrelation coefficients, where the weights consist of a convolution of the 

Ljung-Box standardizing weights with the sequence 
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1

𝑚
,

2

𝑚
, … ,

𝑚 − 1

𝑚
, 1 . 

The 𝒬  is approximately distributed as a Gamma distribution with shape 

𝛼 =
3𝑚(𝑚 + 1)

8𝑚 + 4
 

and scale 

𝛽 =
2(2𝑚 + 1)

3𝑚
 

 

The simulation study indicates that 𝒬  is more powerful than 𝒬 , 𝒬  and 𝒬  (Fisher 

and Gallagher, 2012).  

5.1.8 Gallagher and Fisher tests 

Gallagher and Fisher (2015) introduced three portmanteau test statistics, created by taking 

general weighted sums of the first 𝑚 = 𝑚(𝑛) squared sample autocorrelations: 

 
𝑄 = 𝑛 𝑤 𝜌   (5.12) 

where 𝑛 is the number of observations, 𝑘 is the number of lags taken into account and 𝑚 

is the maximum lag. In addition to the weight given in Equation 5.12 they consider three 

additional weighting schemes: 

1 - Kernel-based weights: The weights are based on the square of a kernel function and 

blended with the Ljung-Box standardizing terms to construct a sequence of weights     

𝑤 = (𝑛 + 2)/(𝑛 − 𝑘) [𝒦(𝑘 𝑚⁄ )]         

where 𝒦(∙) is the Daniell Kernel function, which is defined as  

𝒦(𝑘 𝑚⁄ ) =
√ ( ⁄ )

√ ( ⁄ )
    ∶   |𝑘 𝑚⁄ | < 1

      0                   ∶   |𝑘 𝑚⁄ | ≥ 1

. 

The theoretical asymptotic distributions of the weighting scheme is given by 
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𝑄 − ∑ 𝑤

2𝑤
⇒ 𝑁(0,1), 

where ⇒ denotes convergence in the distribution. The asymptotic distribution of this test 

is the normal distribution (Gallagher and Fisher, 2015). 

2 - Geometrically Decaying Weights: For ARMA models autocorrelations decay 

exponentially with respect to the lag. It seems intuitive then that the weights in Equation 

5.12 be selected to decay quickly as well, since even under the alternative hypothesis of an 

underfitted model, the correlations at large lags should still be relatively small. They 

consider weights of the sum of the form  

𝑤 = (𝑝 + 𝑞)𝑎 , 

for some user-specified ratio 0 < 𝑎 < 1. This weighting will be   

𝑤 =
(𝑝 + 𝑞)(1 − 𝑎 )

(1 − 𝑎)
 

and 

𝑤 =
(𝑝 + 𝑞) (1 − 𝑎 )

1 − 𝑎
 

The simulation studies used a value of 𝑎 = 0.9 (Gallagher and Fisher, 2015). 

3 - Data Adaptive Weights: In this portmanteau test they used the sample autocorrelation 

𝜌 and the sample partial autocorrelation 𝜙 . The test is defined as     

𝒬 = 𝑛
𝑛 + 2

𝑛 − 𝑘
𝜌 + 𝑛 𝑤 𝜌 , 

The first 𝑚  terms use the standardizing weight (𝑛 + 2)/(𝑛 − 𝑘) from the Ljung-Box 

statistics, and the remaining terms use the weights  

𝑤 = − log 1 − 𝜙  

where 𝑚 = min (log(𝑛), 𝑀), and 𝑀 is a finite bound. The simulation studies indicate 

that using data adaptive weights is more powerful that all the previous portmanteau tests 

(Gallagher and Fisher, 2015).   
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4 - Asymptotic distribution of Gallagher and Fisher (2015) 

Gallagher and Fisher (2015) considered the asymptotic behaviour of general weighted 

portmanteau statistics satisfying Equation 5.12. The gamma approximation is used for 

geometrically decaying weights and data adaptive weights similar to Pena and Rodrı́guez 

(2002-2006) and Fisher and Gallagher (2012), which is based on the work of Satterthwaite 

(1941-1946) and Box (1954). That is 𝑄 ~𝛤(𝛼, 𝛽) with shape and scale 

 
𝛼 =

(∑ 𝑤 )

2(∑ 𝑤 − 𝑝 − 𝑞)
  (5.13) 

and  

 
𝛽 =

2(∑ 𝑤 − 𝑝 − 𝑞)

∑ 𝑤
 (5.14) 

respectively (Gallagher and Fisher, 2015). 

5.2 A new weighted portmanteau test 

5.2.1 Exponential weighted portmanteau test  

This thesis introduces two new portmanteau tests that are based on exponential weights. 

The first new test is a development of Ljung and Box’s test (1978) and the second test is a 

development of Monti’s test (1994). These new portmanteau test statistics are defined as  

 
𝒬 = 𝑛(𝑛 + 2) 𝑤

𝜌

𝑛 − 𝑘
.  (5.15) 

 
𝒬 = 𝑛(𝑛 + 2) 𝑤

𝜙

𝑛 − 𝑘
, (5.16) 

where 𝜌   is the sample autocorrelation and 𝜙  is the sample partial autocorrelation at lag 

𝑚, and 𝑤  is an exponential weight.    
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5.2.2 Derivation of the exponential weight 𝒘𝒌 

Consider an exponential function of the form  

𝑓(𝑥) = 𝑎 ,    0 < 𝑎 < 1,    0 ≤ 𝑥 < 1 

where 𝑎 is the base and 𝑥 is the exponent.  

Constrain 𝑥 to the values (𝑘 − 1)/𝑚, that is, terms from {0, 1/𝑚, 2/𝑚, … , (𝑚 − 1)/m }, 

where 𝑘 is the length of lag used in the autocorrelation function and the partial 

autocorrelation function, and 𝑚 is the maximum lag. 

Also, constrain 𝑎 to take the value  . 

The exponential function now takes the form  

𝑓
𝑘 − 1

𝑚
=

1

𝑚
 

Then, this can be rearranged as,   

      = 𝑒  

       = 𝑒  

      = 𝑒  

Since, 𝑓  is now only a function of the variable 𝑘, and 𝑚 is a constant it can be 

rewritten as a function of the lag 𝑘, 𝑤(𝑘), which can be written as the exponential weight 

𝑤 .  

So that 

 
𝑤 = 𝑒      𝑘 = 1,2, … , 𝑚 (5.17) 

This exponential weight has similar distribution behaviour to the weights employed by 

Fisher and Gallagher (2012), and Gallagher and Fisher (2015). 
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5.2.3 Asymptotic distribution of the new univariate portmanteau test 

Theorem 5.1 Suppose that a univariate time series {𝑧 } is generated by a stationary and 

invertible ARMA(𝑝, 𝑞) process with mean zero and constant variance (see Equation 5.1). 

Then, the new univariate portmanteau test statistic is asymptotically distributed as  

𝜆 𝜒 ,  

where 𝑚 is the maximum lag, 𝜒 ,  (𝑘 = 1, 2, … , 𝑚) are independent 𝜒  random variables 

and 𝜆  (𝜆 , 𝜆 , … , 𝜆 ) are the eigenvalues of (𝑰 − 𝑸∗)𝑮, where 𝑮 is a 𝑚 × 𝑚 diagonal 

matrix  

𝑮 =

𝑤 𝐼          0           ⋯            0
   0          𝑤 𝐼        ⋯            0
  ⋮               ⋮             ⋱              ⋮

     0              0             ⋯    𝑤 𝐼 

 

where  𝑤  (𝑘 = 1, 2, ⋯ , 𝑚) are weights that satisfy 0 <  𝑤 ≤ 1, and 𝑸∗ is an idempotent 

matrix of univariate, which is define as 𝑸∗ = 𝒀𝑽 𝒀 , 𝑽 is the information matrix for the 

parameters 𝜙 and  𝜃 and 𝒀 is a 𝑚 × (𝑝 + 𝑞) matrix with elements 𝜙  and 𝜃 define d by  

𝟏

𝜙(𝐵)
= 𝜙 𝐵  

and 

𝟏

𝜃(𝐵)
= 𝜃 𝐵  

The form of the idempotent matrix 𝑸∗ was first derived by Box and Pierce (1970) in the 

development of their univariate portmanteau tests. 

Proof of Theorem 5.1:  

Let, 𝜒 ,  (𝑘 = 1, 2, … , 𝑚) be independent 𝜒  random variables. By using the idempotent 

matrix form Box and Pierce (1970) and multiplying the exponential weight with 

(𝑰 − 𝑸∗), then  
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(𝑰 − 𝑸∗)𝑮 

the 𝜆  (𝜆 , 𝜆 , … , 𝜆 ) are the eigenvalues of (𝑰 − 𝑸∗)𝑮. 

Summing the eigenvalues and applying the 𝑡𝑟 matrix to the idempotent matrix, it gives  

𝜆 = 𝑡𝑟 (𝑰 − 𝑸∗)𝑮  

= 𝑡𝑟(𝑮) − 𝑡𝑟(𝑸∗) + (1 𝑚⁄ )𝑡𝑟(𝑸∗𝑭) 

where 𝑭 is a diagonal matrix with elements 𝑓 = 𝑘, where  𝑘 = 0,1, … , (𝑚 − 1), and  

𝜆 = 𝑡𝑟 (𝑰 − 𝑸∗)𝑮(𝑰 − 𝑸∗)𝑮  

= 𝑡𝑟(𝑮) − 𝑡𝑟(𝑸∗) + (2 𝑚⁄ )𝑡𝑟(𝑸∗𝑭) − (2 (𝑚 )⁄ )𝑡𝑟(𝑸∗𝑭𝟐)

+ (1 (𝑚 )⁄ )𝑡𝑟(𝑸∗𝑭𝑸∗𝑭) 

As 𝑸∗ is the idempotent matrix with rank (𝑝 + 𝑞), then  

𝜆 = 𝑤 − (𝑝 + 𝑞) + (1 𝑚⁄ ) (𝑘 − 1) 𝑞  

𝜆 = 𝑤 − (𝑝 + 𝑞) + (2 𝑚⁄ ) (𝑘 − 1) 𝑞 − (2 (𝑚 )⁄ ) (𝑘 − 1) 𝑞

+ (1 𝑚⁄ ) (𝑖 − 1)(𝑗 − 1)𝑞  

where 𝑞  are the elements of 𝑸∗.  

Using Kronecker’s lemma (Davidson, 1994), as 𝑚 → ∞, then  

(1 𝑚⁄ ) (𝑘 − 1) 𝑞 → 0  

(2 𝑚⁄ ) (𝑘 − 1) 𝑞 → 0  
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(2 (𝑚 )⁄ ) (𝑖 − 1) 𝑞  → 0 

and  

(1 𝑚⁄ ) (𝑖 − 1)(𝑗 − 1)𝑞 → 0 

Thus, 

 
𝜆 = 𝑤  as 𝑚 → ∞ (5.18) 

 
𝜆 = 𝑤 − (𝑝 + 𝑞)  as 𝑚 → ∞ (5.19) 

From the result of Box (1954), as a vector 𝒛  having mean zero and constant covariance 

matrix, then the asymptotic distribution of portmanteau test statistic in Equations 5.18 and 

5.19 distributed as  

𝜆 𝜒 ,  

5.2.4 Approximation distribution of the new univariate portmanteau test  

The two new portmanteau tests are based on exponential weights of the autocorrelation 

function or the partial autocorrelation function. By using the results of the Hong (1996 a, 

b), the Hong test statistic can be defined as 

𝑄∗ =
𝑛 ∑ 𝜅

𝑗
𝑀

𝜌(𝑗) − 𝑀𝑆(𝜅)

(2𝑀𝐷(𝜅)) /
 

𝑀 is a sequence of truncation values. If the smoothing parameter 𝑀 = 𝑛(𝑀) → ∞ and 

𝑀 𝑛⁄ → 0, then 

𝑆(𝜅) = ∫ 𝜅 𝑑𝑧, 𝐷(𝜅) = ∫ 𝜅 𝑑𝑧 
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where 𝜌(𝑗) is the correlation function, 𝑛 is number of observations and 𝜅 is the Kernel 

function. From Equation 5.18 and 5.19 the normalize terms are ∑ 𝑤  and ∑ 𝑤 , then 

these two normalize terms could be replaced by 𝑆(𝜅) and 𝐷(𝜅). The approximation 

distribution of the new portmanteau test statistics of ARMA models can be written as 

𝒬 ~𝛤(𝛼, 𝛽) and 𝒬 ~𝛤(𝛼, 𝛽) with shape  

𝛼 =
(∑ 𝑤 )

2(∑ 𝑤 − 𝑝 − 𝑞)
 

and scale, 

𝛽 =
2(∑ 𝑤 − 𝑝 − 𝑞)

∑ 𝑤
 

 

5.3 Monte Carlo experiment  

5.3.1 Simulation studies 

The aim of the simulation study is to compare the new exponential portmanteau test with 

the portmanteau tests used in previous studies. The new test is compared with the other 

tests, which were developed by Ljung and Box (1978) 𝒬 , Monti (1994) 𝒬 , Mahdi and 

McLeod (2011) 𝒬 , Fisher and Gallagher (2012) 𝒬 , Gallagher and Fisher (2015) 

Kernel-based weights 𝒬  and Data Adaptive Weights 𝒬 . The empirical size and the 

power level of the tests were investigated by conducting simulations studies using the R 

program.  

5.3.2 Empirical size 

A Monte-Carlo experiment was conducted with 10,000 replications. The aim was to 

simulate n = 100 observations under an AR(1) process 𝑧 − 𝜙 𝑧 = 𝑒  with different 

parameters 𝜙 = 0.1, 0.3, 0.5, 0.7 and 0.9. Next, an AR(1) model was fitted to the generated 

data producing an estimate 𝜙 of the underlying parameter 𝜙. The method employed to 

achieve the fitted model uses the maximum likelihood function, using approximation 2 

from Box, Jenkins and Reinsel, (2008, p. 321). 
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(𝑛 − 2)(𝑛 − 1) 𝑧 𝑧 𝑧  (5.20) 

Next, the autocorrelations of the fitted model were calculated using the residuals �̂� = 𝑧 −

𝜙 𝑧  (𝑡 = 2 , … , 𝑛). The test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  

𝒬  were calculated. This was repeated for lags of autocorrelations and partial 

autocorrelations for maximum lags m = 10, 20 and 30.  

 

Method of a Monte-Carlo experiment to calculate the empirical size of a range of 

portmanteau tests. 

Below are the steps of a Monte-Carlo experiment where data are generated by an AR(1) 

process, 𝑧 = 𝜙 𝑧 + 𝑒 , then fitted under an AR(1) model to find the empirical size of 

the following portmanteau tests 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  𝒬 . 

1. Select the value of the process parameter 𝜙 and maximum lag m. In this example, 𝜙 =

0.1 and m = 10. 

2. Generate n = 100 values from a Normal distribution (𝑒  white noise). 

3. Use the 𝑒  values to generate observations 𝑧  from an AR(1) process with parameter 𝜙. 

4. Fit an AR(1) model to the observations by estimating its parameters using the 

maximum likelihood function. 

5. Find the residuals �̂� .  

6. Find the residual autocorrelation and partial autocorrelation functions for the model. 

7. Calculate the various portmanteau test statistics. For example,  𝜙 = 0.1, gives 

𝜙 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

0.1 16.6580 17.0012 11.890 8.120 0.917 8.976 6.744 7.058 

 

8. Look up the 5 percentage point of the 𝜒  distribution and the gamma distribution. 
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Distributions 𝜒  Gamma 

Tests 𝒬   𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

𝑚 = 10  16.9 14.1 9.92 1.6 11.55 7.764 

9. Reject the fitted AR(1) model if the value of portmanteau test is bigger than the critical 

value in step 7 (using the appropriate distribution for each portmanteau test). 

𝜙 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

0.1 Accept Reject Accept Accept Accept Accept Accept Accept 

10. Repeat 10,000 times for steps 1-8. 

11. For each portmanteau test use the number of rejected AR(1) models (out of 10,000) to 

find the percentage rejected.         

Tables 5.1, 5.2 and 5.3 give the results of the Monte-Carlo experiment and show the 

proportion of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 ,  𝒬  and 𝒬  that 

are above the upper 5 percentage point of the 𝜒  distribution or gamma distribution. The 

tables show data fitted under the AR(1) with different parameters 𝜙 = 0.1, 0.3, 0.5, 0.7 and 

0.9 with n = 100, and lags of autocorrelations and partial autocorrelations are m = 10, 20 

and 30. 

 

Table 5.1 Empirical size of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  

and  𝒬  at 5% significance level for fitted AR(1) models, n = 100 and m = 10. 

 

𝜙 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

0.1 0.0531 0.0548 0.0294 0.0311 0.0122 0.0301 0.0292 0.0287 

0.3 0.0516 0.0541 0.0347 0.0352 0.0165 0.0336 0.0335 0.0355 

0.5 0.0574 0.0531 0.0312 0.0369 0.0167 0.0357 0.0369 0.0378 

0.7 0.0518 0.0514 0.0308 0.0343 0.0185 0.0317 0.0347 0.0349 

0.9 0.0605 0.0568 0.0429 0.0474 0.0364 0.0475 0.0535 0.0504 
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Table 5.1 shows the values of significant level when 𝛼 = 0.05, n = 100 and m = 10. The 

value of the 𝒬  test is closer to the 0.05 significance level in two cases, i.e., when 𝜙 =

0.1 and 0.3. The value of the 𝒬  test is closer to 0.05 in two cases, i.e., when 𝜙 = 0.5 and 

0.7. The value of the 𝒬  test is closer to 0.05 in one case, i.e., when 𝜙 = 0.9. Overall, 

the 𝒬  test is better than the other tests in most cases. 

 

𝜙 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

0.1 0.0616 0.0557 0.025 0.0412 0.0223 0.0385 0.0353 0.0316 

0.3 0.0616 0.0545 0.0255 0.0398 0.0232 0.0397 0.0344 0.0336 

0.5 0.0622 0.0513 0.0249 0.0438 0.0255 0.044 0.0404 0.0337 

0.7 0.0671 0.0555 0.0281 0.0504 0.0284 0.0465 0.0467 0.0404 

0.9 0.0706 0.0500 0.0284 0.0514 0.0318 0.0456 0.0491 0.0438 

Table 5.2 Empirical size of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  

and  𝒬  at 5% significance level for fitted AR(1) models, 𝑛 = 100 and 𝑚 = 20. 

 

Table 5.2 shows the values of significance level when 𝛼 = 0.05, n = 100 and m = 20. The 

value of the 𝒬  test is closest to 0.05 in four cases, i.e., when 𝜙 = 0.1, 0.3, 0.5 and 0.9. 

The values of the 𝒬  test is closest to 0.05 in one case, i.e., when 𝜙 = 0.7. Overall, the 

𝒬  test is better than the other tests in most cases. 

 

𝜙 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

0.1 0.0731 0.0450 0.0163 0.0507 0.0264 0.0451 0.0392 0.0348 

0.3 0.0721 0.0475 0.0202 0.0518 0.0262 0.0440 0.0424 0.0380 

0.5 0.0684 0.0419 0.0158 0.0504 0.0263 0.0458 0.0402 0.0327 

0.7 0.0768 0.0448 0.0165 0.0573 0.0300 0.0474 0.0481 0.0377 

0.9 0.0749 0.0405 0.0204 0.0569 0.0325 0.0557 0.0544 0.0444 

Table 5.3 Empirical size of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  

and  𝒬  at 5% significance level for fitted AR(1) models, 𝑛 = 100 and 𝑚 = 30.  
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Table 5.3 shows the values of significance level when 𝛼 = 0.05, n = 100 and m = 30. The 

value of the 𝒬  test is closest to 0.05 in three cases, i.e., when 𝜙 = 0.1, 0.3 and 0.5. The 

values of the 𝒬  test is closest to 0.05 in two cases, i.e., when 𝜙 = 0.7 and 0.9. No test 

stands out as the best over the range of 𝜙 values. 

As can be seen from the previous tables of the empirical size, the 𝒬  test is the best test in 

most cases, when m = 20. However, this is not the situation when m = 10 or m = 30.    

 

Figure 5.1 Empirical size for lags from 2 to 20 for a correctly fitted AR(1) model, data 
generated by an AR(1) process with 𝜙  = 0.5, at 5% significance level, series of length 

𝑛 = 150. 

 

Figure 5.1 shows the empirical size of lags from 2 to 20 of the 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 

𝒬 , 𝒬  and 𝒬  tests based on a 5% significance level, when data are generated by 

an AR(1) process 𝜙 = 0.5 and fitted under an AR(1) model with n = 150 and 10,000 

replications. The 𝒬 , 𝒬 , and 𝒬  tests increase as the lag increases. In addition, the 
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𝒬 , 𝒬  and 𝒬  tests slowly increase as the lag increases. The 𝒬  test rapidly 

decreases at lag 3, then increases as the lag increases. The 𝒬  test is not affected as the lag 

increases. The 𝒬  test always rejects the correct models at lags 2, 3, 4 and 5 (these points 

are off the scale in Figure 5.1), then from lag 6 the 𝒬  increases as the lag increases.      

 

Figure 5.2 Empirical size for maximum lags for a properly fitted AR(1) model, data 
generated by an AR(1) process with 𝜙 = 0.5, at 5% significance level, series of length 

𝑛 = 150. 

 

Figure 5.2 shows the empirical size of large lags based on a 5% significance level when 

data are generated by an AR(1) process with 𝜙 = 0.5 and fitted by an AR(1) model with n 

= 100 and 10,000 replications. The 𝒬 , 𝒬  and 𝒬  tests increase as the lag 

increases. Other tests such as, 𝒬 , 𝒬  and 𝒬  decrease when the lag increases and the 

𝒬  test initially increases with increasing lag but then decreases for larger lags. The 

𝒬  test remains approximately constant as the lag increases.   
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5.3.3 Power studies 

The aim of the power studies is to show which tests are the most powerful. The same 

processes and parameters were employed as those used in Monti (1994) to compare the 

portmanteau tests for the statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and 𝒬 . 

The approach taken was to generate data by a number of alternative ARMA(2,2) processes,  

𝑧 = 𝑒 + 𝜙 𝑧 + 𝜙 𝑧 − 𝜃 𝑒 − 𝜃 𝑒  

and to fit an AR(1) model and a MA(1) model to the data. Next the residual of the data was 

obtained, and the ACF and PACF were calculated. For each alternative set of parameters 

for the ARMA(2,2) process, 10,000 replications of 100 observations were generated. For 

each test the power was computed with lags m = 10, 20 and 30.  

In these experiments the AR(1) model parameter was estimated by using Equation 5.18. 

The MA(1) model parameter was estimated by using the maximum likelihood function, 

which is  

 
ln(𝜃) = −

𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎 ) −

𝑒

2𝜎
. (5.21) 

Method of a Monte-Carlo experiment to calculate the power level of a range of 

portmanteau tests. 

Below are the steps of a Monte-Carlo experiment (with an integrated example) where data 

are generated by an ARMA(2, 2) process 𝑧 = 𝑒 + 𝜙 𝑧 + 𝜙 𝑧 − 𝜃 𝑒 − 𝜃 𝑒  

then fitted under an AR(1) model to find the power level of the following portmanteau tests 

𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  𝒬 . 

1. Select the values of the process parameters  𝜙 ,  𝜙 , 𝜃 , 𝜃   and maximum lag m. In this 

example, 𝜃 = −0.5, 𝜃 = 0,  𝜙 = 0,  𝜙 = 0 and m = 10. 

2. Generate 100 values from a Normal distribution (𝑒  white noise). 

3. Use the 𝑒  values to generate observations from an ARMA(2,2) process with 

parameters 𝜙 and 𝜃. 
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4. Fit an AR(1) model to the observations by estimating its parameters using the maximum 

likelihood function. 

5. Find the residual �̂� .  

6. Find the residual autocorrelation and partial autocorrelation functions for the model. 

7. Calculate the portmanteau test(s). For example, with an ARMA(2, 2) process with 

parameter  𝜃 = −0.5, 𝜃 = 0,  𝜙 = 0,  𝜙 = 0, one randomly generated series gave 

𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

-0.5 18.3804 13.8646 12.220 10.310 0.489 10.550 7.705 6.782 

 

8. Look up the 5 percentage point of the 𝜒  distribution and gamma distribution. 

 

 

 

9. Reject the fitted AR(1) model if the value of portmanteau test is bigger than the critical 

value in step 7 (using the appropriate distribution for each portmanteau test). That is, 

with the example results from step 7 

𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

-0.5 Reject Accept Accept Reject Accept Accept Accept Accept 

 

10. Repeat 10,000 times for steps 1-8. 

11. For each portmanteau test use the number of rejected AR(1) models (out of 10,000) to 

find the proportion rejected. 

These steps can be used for data generated by ARMA(2,2) models and fitted under MA(1) 

model. 

 

 

 

Distributions 𝜒  Gamma 

Tests 𝒬   𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

𝑚 = 10  16.9 14.1 9.92 1.6 11.37 7.764 
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Table 5.4 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  

𝒬  where data are generated under various alternative ARMA(2,2) processes and fitted 

by an AR(1) model. 

 

Table 5.4 shows the power levels based on a 5% significance level when data are generated 

from an ARMA(2, 2) process and an AR(1) model is fitted, with n = 100 and m = 10. Table 

5.4 shows that the 𝒬  test is more powerful than other portmanteau tests in 8 cases, but 

the 𝒬  and 𝒬  tests are better than the other tests in one case, that is, for models 5 and 

9 respectively. The 𝒬 , 𝒬 , 𝒬 , 𝒬  and 𝒬  tests are jointly the most powerful 

in one case, that is, for model 7. The 𝒬  and 𝒬  tests are jointly the most powerful in 

one case, that is, model 8. The average value has been taken for each test when data are 

fitted under an AR(1) model with m = 10, it illustrates that overall the 𝒬  test is better 

than the other tests. It means that the new 𝒬  test, which is based on the partial 

autocorrelation function, is in general more powerful than other tests when data are fitted 

by an AR(1) model with m = 10. 

 

     𝑚 = 10 

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

1 --- --- -0.50 --- 0.2634 0.3081 0.3886 0.3314 0.3395 0.3266 0.3702 0.4326 

2 --- --- -0.80 --- 0.7444 0.9659 0.9872 0.8995 0.9392 0.9034 0.9336 0.9901 

3 --- --- -0.60 0.30 0.7792 0.9880 0.9935 0.9187 0.9300 0.9275 0.9431 0.9953 

4 0.10 0.30 --- --- 0.4283 0.4269 0.5239 0.5290 0.5424 0.5295 0.5612 0.5619 

5 1.30 -0.35 --- --- 0.7211 0.7088 0.8467 0.8454 0.9089 0.8238 0.8929 0.8972 

6 0.70 --- -0.40 --- 0.5541 0.6179 0.7605 0.6958 0.7821 0.6519 0.7713 0.8263 

7 0.70 --- -0.90 --- 0.9872 1 1 0.9997 1 0.9996 1 1 

8 0.40 --- -0.60 0.30 0.8414 0.9975 0.9992 0.9649 0.9813 0.9669 0.983 0.9992 

9 0.70 --- 0.70 -0.15 0.1742 0.1630 0.1822 0.1929 0.1395 0.2024 0.1999 0.1928 

10 0.70 0.20 0.50 --- 0.7506 0.7456 0.8150 0.8121 0.7543 0.8066 0.8258 0.8322 

11 0.70 0.20 -0.50 --- 0.3915 0.4801 0.6468 0.5482 0.6764 0.5012 0.6489 0.7268 

12 0.90 -0.40 1.20 -0.30 0.7201 0.9735 0.9800 0.8529 0.7698 0.8746 0.8713 0.9813 

 Average 0.6130 0.6979 0.7603 0.7159 0.7303 0.7095 0.7501 0.7863 
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Table 5.5 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  

𝒬  where data are generated under various alternative ARMA(2,2) processes and fitted 

by a MA (1) model. 

 

Table 5.5 shows the power levels based on a 5% significance level when data are generated 

from an ARMA(2, 2) process and a MA(1) model is fitted, with n = 100 and m = 10. As is 

apparent in Table 5.5 the 𝒬  test is more powerful than other portmanteau tests in 5 

cases, but the 𝒬  and 𝒬  tests are better than other tests in one case, that is, for models 

22 and 13 respectively. The 𝒬  is better in 5 cases. The average across all models has 

been calculated for each test, it illustrates that the 𝒬  test is better than other tests. This 

means that the new 𝒬  test is more powerful than other tests when data are fitted under 

a MA(1) model with m = 10.   

 

 

 

     𝑚 = 10 

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

13 0.50 --- --- --- 0.2836 0.2689 0.3215 0.3438 0.3552 0.3369 0.3765 0.3631 

14 0.80 --- --- --- 0.9823 0.9758 0.9903 0.9926 0.9942 0.9921 0.9940 0.9933 

15 1.10 -0.35 --- --- 0.9961 0.9957 0.9989 0.9989 0.9997 0.9989 0.9993 0.9995 

16 --- --- 0.80 -0.50 0.8389 0.9375 0.9734 0.9415 0.9487 0.9481 0.9584 0.9791 

17 --- --- -0.60 0.30 0.3868 0.4626 0.5940 0.5209 0.6002 0.4784 0.6001 0.6727 

18 0.50 --- -0.70 --- 0.8773 0.8606 0.9365 0.9405 0.9648 0.9338 0.9613 0.9575 

19 -0.50 --- 0.70 --- 0.8933 0.8763 0.9452 0.9516 0.9697 0.9458 0.9660 0.9633 

20 0.30 --- 0.80 -0.50 0.6265 0.7602 0.8378 0.7518 0.7323 0.7807 0.7857 0.8579 

21 0.80 --- -0.50 0.30 0.9786 0.9626 0.9847 0.9897 0.9931 0.9886 0.9928 0.9898 

22 1.20 -0.50 0.90 --- 0.4685 0.7108 0.6157 0.4761 0.1232 0.4932 0.4300 0.5735 

23 0.30 -0.20 -0.70 --- 0.2649 0.2852 0.3491 0.3268 0.3088 0.3237 0.3721 0.3962 

24 0.90 -0.40 1.20 -0.30 0.7888 0.9335 0.9571 0.8958 0.8121 0.9085 0.9076 0.9615 

 Average 0.6988 0.7525 0.7920 0.7608 0.7335 0.7607 0.7787 0.8090 
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Table 5.6 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  

𝒬  where data are generated under various alternative ARMA(2,2) processes and fitted 

by an AR(1) model. 

 

Table 5.6 shows power levels based on a 5% significance level when data are generated 

from an ARMA(2, 2) process and an AR(1) model is fitted, with n = 100 and m = 20. Table 

5.6 shows that the 𝒬  test is more powerful than other portmanteau tests in 8 cases, but 

the 𝒬  test is better in three cases. In addition, the 𝒬  and 𝒬  tests are jointly better 

in 1 case, that is, for model 7. The average value obtained by each test shows that the 𝒬  

test is better than other tests. This means that the new 𝒬  test is, in general, more 

powerful than other tests when data are fitted under an AR(1) model with m = 20. 

 

 

     𝑚 = 20  

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

1 --- --- -0.50 --- 0.2197 0.2038 0.2688 0.2614 0.3021 0.3434 0.3292 0.3859 

2 --- --- -0.80 --- 0.5932 0.8651 0.9636 0.7804 0.8928 0.9128 0.8919 0.9879 

3 --- --- -0.60 0.30 0.6239 0.9461 0.9838 0.8140 0.9138 0.9363 0.9109 0.9931 

4 0.10 0.30 --- --- 0.3624 0.2908 0.3951 0.4487 0.5105 0.5610 0.5272 0.5175 

5 1.30 -0.35 --- --- 0.6289 0.5488 0.7288 0.7604 0.8337 0.8392 0.8534 0.8537 

6 0.70 --- -0.40 --- 0.4765 0.4828 0.6347 0.6030 0.6810 0.6977 0.7204 0.7861 

7 0.70 --- -0.90 --- 0.9302 0.9992 1 0.9951 0.9998 0.9998 0.9998 1 

8 0.40 --- -0.60 0.30 0.6874 0.9764 0.9960 0.8748 0.9596 0.9682 0.9577 0.9988 

9 0.70 --- 0.70 -0.15 0.1596 0.1192 0.1248 0.1762 0.1770 0.2262 0.1955 0.1806 

10 0.70 0.20 0.50 --- 0.6378 0.5977 0.7210 0.7500 0.7931 0.8247 0.8038 0.8107 

11 0.70 0.20 -0.50 --- 0.3114 0.2987 0.4392 0.4045 0.4870 0.5102 0.5344 0.6194 

12 0.90 -0.40 1.20 -0.30 0.5661 0.8960 0.9604 0.7313 0.8379 0.8851 0.8320 0.9817 

 Average 0.5164 0.6021 0.6847 0.6333 0.6990 0.7254 0.7130 0.7596 
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     𝑚 = 20 

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

13 --- --- -0.50 --- 0.2468 0.1816 0.2192 0.2882 0.3194 0.3593 0.3465 0.3197 

14 --- --- -0.80 --- 0.9632 0.9310 0.9745 0.9841 0.9911 0.9925 0.9912 0.9891 

15 --- --- -0.60 0.30 0.9879 0.9840 0.9981 0.9979 0.9994 0.9993 0.9996 0.9994 

16 0.10 0.30 --- --- 0.7042 0.8146 0.9260 0.8611 0.9313 0.9522 0.9313 0.9678 

17 1.30 -0.35 --- --- 0.3168 0.3237 0.4425 0.4110 0.4883 0.5105 0.5340 0.6110 

18 0.70 --- -0.40 --- 0.7930 0.7223 0.8643 0.8933 0.9355 0.9405 0.9425 0.9363 

19 0.70 --- -0.90 --- 0.8187 0.7520 0.8831 0.9113 0.9463 0.9497 0.9512 0.9451 

20 0.40 --- -0.60 0.30 0.4959 0.5731 0.7214 0.6417 0.7273 0.7895 0.7385 0.8259 

21 0.70 --- 0.70 -0.15 0.9624 0.9124 0.9685 0.9826 0.9899 0.9906 0.9911 0.9864 

22 0.70 0.20 0.50 --- 0.3866 0.5803 0.6031 0.4463 0.4256 0.5129 0.4570 0.6371 

23 0.70 0.20 -0.50 --- 0.2260 0.1939 0.2366 0.2707 0.2964 0.3516 0.3307 0.3466 

24 0.90 -0.40 1.20 -0.30 0.6292 0.8283 0.9189 0.8007 0.8795 0.9141 0.8805 0.9582 

 Average 0.6276 0.6498 0.7297 0.7074 0.7442 0.7719 0.7578 0.7936 

Table 5.7 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  

𝒬  where data are generated under various alternative ARMA(2,2) processes and fitted 

by a MA(1) model. 

 

Table 5.7 shows the power levels based on a 5% significance level, when data are generated 

from an ARMA(2, 2) process and a MA(1) model is fitted, with n = 100 and m = 20. It is 

evident from Table 5.7 that the 𝒬  test is more powerful than other portmanteau tests in 

5 cases, while the 𝒬  test is better in 4 cases. The 𝒬  is better in three cases. The 

average value calculated for each test illustrates that the 𝒬  test is better than the others. 

It means that the new 𝒬  test is, in general, more powerful than other the tests when data 

are fitted under a MA(1) model with m = 20. 
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     𝑚 = 30 

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

1 --- --- -0.50 --- 0.2167 0.1628 0.1869 0.2493 0.2514 0.3668 0.3132 0.3571 

2 --- --- -0.80 --- 0.5426 0.7478 0.9060 0.7081 0.8107 0.9206 0.8621 0.9797 

3 --- --- -0.60 0.30 0.5747 0.8577 0.9522 0.7355 0.8307 0.9302 0.8736 0.9910 

4 0.10 0.30 --- --- 0.3442 0.2221 0.2939 0.4223 0.4510 0.5787 0.5066 0.4841 

5 1.30 -0.35 --- --- 0.5924 0.4335 0.6076 0.7145 0.7611 0.8342 0.8273 0.8228 

6 0.70 --- -0.40 --- 0.4215 0.3433 0.4760 0.5318 0.5804 0.6953 0.6685 0.7250 

7 0.70 --- -0.90 --- 0.8817 0.9957 0.9999 0.9816 0.9973 0.9994 0.9995 1 

8 0.40 --- -0.60 0.30 0.6307 0.9292 0.9887 0.8078 0.9043 0.9677 0.9379 0.9983 

9 0.70 --- 0.70 -0.15 0.1697 0.0932 0.0836 0.1723 0.1533 0.2367 0.1895 0.1675 

10 0.70 0.20 0.50 --- 0.5986 0.4971 0.6353 0.7183 0.7633 0.8336 0.7916 0.7916 

11 0.70 0.20 -0.50 --- 0.3303 0.2613 0.3392 0.3890 0.4108 0.5420 0.5158 0.5828 

12 0.90 -0.40 1.20 -0.30 0.5148 0.7824 0.9101 0.6634 0.7538 0.8861 0.7971 0.9731 

 Average 0.4848 0.5272 0.6150 0.5912 0.6390 0.7326 0.6902 0.7394 

Table 5.8 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  

𝒬  where data are generated under various alternative ARMA(2,2) processes and fitted 

by an AR(1) model. 

 

Table 5.8 shows the power levels based on a 5% significance level, when data are generated 

from an ARMA(2, 2) process and with an AR(1) model is fitted, with n = 100 and m = 30. 

Table 5.8 shows that the 𝒬  test is more powerful than other portmanteau tests in 7 cases, 

but the 𝒬  test is better in 5 cases. The average value calculated for each test illustrates 

that the 𝒬  test is better than other tests. It means that the new 𝒬  test is more 

powerful than other tests when data are fitted under an AR(1) model with m = 30. 
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Table 5.9 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  
𝒬  where data are generated under various alternative ARMA(2,2) processes and fitted 

by a MA(1) model.  

 

Table 5.9 shows the power levels based on a 5% significance level, when data are generated 

from an ARMA(2, 2) process and with a MA(1) model fitted, with n = 100 and m = 30. 

From Table 5.9 it is clear that the 𝒬  test is more powerful than other portmanteau tests 

in 8 cases, but the 𝒬  test is better in 4 cases. The average value has been taken for each 

test, which illustrates that the 𝒬  test is the best overall. This means that the new 𝒬  

test is more powerful than other tests when data are fitted under a MA(1) model with m = 

30. 

     𝑚 = 30 

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

13 0.50 --- --- --- 0.2394 0.1400 0.1535 0.2753 0.2854 0.3850 0.3394 0.2998 

14 0.80 --- --- --- 0.9487 0.8841 0.9549 0.9785 0.9857 0.9917 0.9889 0.9845 

15 1.10 -0.35 --- --- 0.9760 0.9606 0.9908 0.9939 0.9974 0.9989 0.9980 0.9982 

16 --- --- 0.80 -0.50 0.6528 0.6949 0.8509 0.8017 0.8735 0.9467 0.9055 0.9547 

17 --- --- -0.60 0.30 0.3097 0.2560 0.3349 0.3842 0.4072 0.5241 0.5007 0.5672 

18 0.50 --- -0.70 --- 0.7618 0.6188 0.7853 0.8670 0.9014 0.9423 0.9280 0.9154 

19 -0.50 --- 0.70 --- 0.7847 0.6501 0.8149 0.8860 0.9209 0.9571 0.9432 0.9311 

20 0.30 --- 0.80 -0.50 0.4599 0.4460 0.6012 0.5847 0.6551 0.7985 0.7132 0.7963 

21 0.80 --- -0.50 0.30 0.9487 0.8642 0.9418 0.9757 0.9824 0.9900 0.9875 0.9800 

22 1.20 -0.50 0.90 --- 0.3553 0.4514 0.5073 0.4200 0.4300 0.5257 0.4608 0.6497 

23 0.30 -0.20 -0.70 --- 0.2230 0.1515 0.1618 0.2523 0.2515 0.3620 0.3141 0.3184 

24 0.90 -0.40 1.20 -0.30 0.5758 0.7016 0.8448 0.7261 0.8174 0.9150 0.8485 0.9474 

 Average  0.6030 0.5683 0.6618 0.6788 0.7090 0.7781 0.7440 0.7786 
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Figure 5.3 Power level for lags from 2 to 20 for a correctly fitted AR(1) model, data 
generated by a MA(1) process with 𝜃 = −0.8, at 5% significance level, series of length 

𝑛 = 85. 

 

Figure 5.3 shows the power level for lags from 2 to 20 based on a 5% significance level, 

when data are generated by a MA(1) process with 𝜃 = −0.8 and fitted under an AR(1) 

model with n = 85 (following the simulation of Gallagher and Fisher (2015)) and 10,000 

replications. The power of the 𝒬 , 𝒬  and 𝒬  tests decreases as the lag increases. The 

𝒬  and 𝒬  tests slowly decrease as the lag increases. The 𝒬  test rapidly decreases 

at lags 3 and 4, then slowly increases as the lag increases. The 𝒬  test rapidly decreases 

at lag 5, then slowly increases as the lag increases. From Figure 5.3 it is apparent that this 

test rejects all models, even correct ones, for the lags examined. The 𝒬  test remains 

constant as the lag increases. In most cases, the 𝒬  is the most powerful tests. 
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Figure 5.4 Power level for maximum lags for a correctly fitted AR(1) model, data 
generated by a MA(1) process with 𝜃 = −0.8, at 5% significance level, series of length 

𝑛 = 85. 

 

Figure 5.4 shows the power level of large lags based on a 5% significance level, when data 

are generated by a MA(1) process with 𝜃 = −0.8 and fitted under an AR(1) model with n 

= 85 and 10,000 replications. The power of the 𝒬 , 𝒬  and 𝒬  tests slowly 

decreases as the lag increases. The 𝒬  and 𝒬  tests have similar behaviour to each 

other, initially slowly decreasing and then remaining constant as the lag increases further. 

The power of the 𝒬 , 𝒬  and 𝒬  tests decreases as the lag increases. In all cases, the 

𝒬  is the most powerful test. 

 

The next study is similar to Gallagher and Fisher (2015), where data are generated under 

an ARMA(2,2) process and are fitted by an ARMA(1,1) model, see Tables 5.10 and 5.11. 
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Following on from previously published research in this area, m was set at 10 and 20, and 

n was set at 100, and in each case, the critical value was determined from the corresponding 

asymptotic distribution.  

Table 5.10 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  
and  𝒬  where data are generated under various alternative ARMA(2,2) processes, and 

fitted by an ARMA(1,1) model 𝑚 = 10. 

  

Table 5.10 shows the power levels based on a 5% significance level, when data are 

generated from an ARMA(2, 2) process and an ARMA(1,1) model is fitted, with n = 100 

and m = 10. Table 5.10 demonstrates that the 𝒬  test is more powerful than other 

portmanteau tests in 7 cases, but the 𝒬  test is better in 4 cases, and the 𝒬  and  𝒬  

tests are best in 1 case each. The average value has been taken for each test, which 

illustrates that the 𝒬  test is better than other tests. This means that the new 𝒬  test is 

more powerful than other tests when data are fitted under an ARMA(1,1) model with 𝑚 =

10. 

 

     𝑚 = 10 

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

4 0.10 0.30 --- --- 0.2988 0.2681 0.3252 0.3497 0.2951 0.3310 0.4343 0.4148 

5 1.30 -0.35 --- --- 0.1183 0.1292 0.123 0.1105 0.0659 0.1001 0.1552 0.1651 

9 0.70 --- 0.70 -0.15 0.1180 0.1121 0.1032 0.1107 0.0534 0.1068 0.1483 0.1446 

10 0.70 0.20 0.50 --- 0.1663 0.1538 0.1737 0.1863 0.1528 0.1715 0.2490 0.2407 

12 0.90 -0.40 1.20 -0.30 0.3856 0.3902 0.4289 0.4338 0.2873 0.4325 0.5132 0.5032 

15 1.10 -0.35 --- --- 0.1428 0.1460 0.1193 0.1168 0.0201 0.097 0.1383 0.1459 

16 --- --- 0.80 -0.50 0.3664 0.4477 0.4691 0.3859 0.1234 0.4323 0.4412 0.5085 

17 --- --- -0.60 0.30 0.1194 0.1179 0.1188 0.1151 0.0598 0.1033 0.1565 0.1679 

20 0.30 --- 0.80 -0.50 0.3986 0.4626 0.4941 0.4332 0.1756 0.4683 0.4867 0.5383 

21 0.80 --- -0.50 0.30 0.1195 0.1329 0.1241 0.1062 0.0364 0.0955 0.1421 0.1619 

22 1.20 -0.50 0.90 --- 0.4549 0.7459 0.6585 0.4605 0.0500 0.4703 0.4895 0.6768 

23 0.30 -0.20 -0.70 --- 0.1836 0.1829 0.1896 0.1948 0.0894 0.2044 0.2391 0.2412 

 Average 0.2339 0.2741 0.2773 0.2503 0.1174 0.2511 0.2995 0.3257 
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Table 5.11 Power level of the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  
and  𝒬  when data are generated under various alternative ARMA(2,2) processes, and 

fitted by an ARMA(1,1) model  𝑚 = 20. 

 

Table 5.11 shows the power levels based on a 5% significance level, when data are 

generated from an ARMA(2, 2) process and an ARMA(1,1) model is fitted, with n = 100 

and m = 20. Table 5.11 shows that the 𝒬  test is more powerful than other portmanteau 

tests in 5 cases, but the 𝒬  test is better in 7 cases. The average value calculated for each 

test illustrates that the 𝒬  test is better than other tests. Generally, the new 𝒬  test is 

more powerful than other tests in most cases when data fitted under an ARMA(1,1) model 

with m = 10 or 20. 

     𝑚 = 20 

Model 𝜙  𝜙  𝜃  𝜃  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

4 0.10 0.30 --- --- 0.2440 0.1774 0.2106 0.2724 0.2720 0.3615 0.3525 0.3247 

5 1.30 -0.35 --- --- 0.1105 0.0885 0.0704 0.0841 0.0595 0.1131 0.1110 0.1139 

9 0.70 --- 0.70 -0.15 0.1194 0.0899 0.0706 0.1026 0.0742 0.1294 0.1247 0.1078 

10 0.70 0.20 0.50 --- 0.1449 0.1053 0.1052 0.1409 0.1310 0.1954 0.1936 0.1795 

12 0.90 -0.40 1.20 -0.30 0.2996 0.3140 0.3320 0.3461 0.3472 0.4625 0.4367 0.4288 

15 1.10 -0.35 --- --- 0.1298 0.1141 0.0883 0.1119 0.0711 0.1185 0.1233 0.1211 

16 --- --- 0.80 -0.50 0.2940 0.3063 0.3569 0.3201 0.2812 0.4711 0.3888 0.4525 

17 --- --- -0.60 0.30 0.1451 0.1062 0.0999 0.1168 0.0840 0.1375 0.1448 0.1472 

20 0.30 --- 0.80 -0.50 0.3143 0.3168 0.3699 0.3422 0.3120 0.4997 0.4138 0.4635 

21 0.80 --- -0.50 0.30 0.1125 0.0999 0.0795 0.0907 0.0600 0.1115 0.1119 0.1217 

22 1.20 -0.50 0.90 --- 0.3466 0.6033 0.6279 0.3828 0.3069 0.4911 0.4428 0.6838 

23 0.30 -0.20 -0.70 --- 0.1641 0.1307 0.1295 0.1624 0.1384 0.2365 0.2005 0.1938 

 Average 0.2021 0.2044 0.2117 0.2061 0.1781 0.2773 0.2537 0.2782 
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Figure 5.5 Power level for lags from 5 to 20 for a correctly fitted ARMA(1,1) model, data 
generated by an ARMA(2,1) process with 𝜙 =1.2, 𝜙 = -0.5 and 𝜃 = -0.9, at 5% 

significance level, series of length 𝑛 = 150. 

 

Figure 5.5 shows the power level for lags from 5 to 20 based on a 5% significance level, 

when data are generated by an ARMA(2,1) process with 𝜙 = 1.2, 𝜙 =−0.5 and 𝜃 =

−0.9, and fitted under an ARMA(1,1) model with n = 150 and 10,000 replications. The 

power of the 𝒬 , 𝒬  and 𝒬  tests decreases as the lag increases. The 𝒬  test 

increases up to lag 10, then it slowly decreases as the lag increases. The 𝒬  test increases 

as the lag increases. The 𝒬  test is stable at lags 5, 6 and 7, then rapidly increases as the 

lag increases. The 𝒬  test rapidly decreases at lag 6, then slowly increases as the lag 

increases further. The power level of the 𝒬  test is approximately constant as the lag 

increases. In general, the 𝒬  is the most powerful test. 
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Figure 5.6 Power level for maximum lags for a correctly fitted ARMA(1,1) model, data 
generated by an ARMA(2,1) process with 𝜙 =1.2, 𝜙 = -0.5 and 𝜃 = -0.9, at 5% 

significance level, series of length 𝑛 = 150. 

 

Figure 5.6 shows the power level for large lags based on a 5% significance level, when 

data are generated by an ARMA(2,1) process with 𝜙 = 1.2, 𝜙 =−0.5 and 𝜃 = −0.9, and 

fitted under an ARMA(1,1) model with n = 150 and 10,000 replications. The results of 

Figure 5.6 are similar to the results of Figure 5.4, except in the case of the 𝒬  test. The 

value of the 𝒬  test is less than 0.2 at lag 10, rapidly increasing at lag 20 and then 

decreasing as lag increases further.  
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5.4 Variability of the univariate portmanteau test 

To find out  the variability of the new univariate portmanteau test statistics a Monte-Carlo 

experiment was conducted with 1000 replications of the experiment to determine the 

empirical size carried out in Section 5.3.3. As this experiment involved 1000 replications 

of a simulations involving 10,000 replications this is only conducted for one value of 𝜙 . 

The aim was to calculate the mean and standard deviation for the test statistics 𝒬 , 𝒬 , 

𝒬 , 𝒬 , 𝒬 , 𝒬  and  𝒬 , when n = 100 observations under an AR(1) process 

𝑧 − 𝜙 𝑧 = 𝑒  with parameter 𝜙 = 0.5 and maximum lags m = 10. The test statistics 

𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and  𝒬  were calculated by using the steps of the 

previous Monte-Carlo experiment. 

 

 m =10 

𝜙 = 0.5 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

Mean 0.052669 0.053590 0.034766 0.015218 0.031812 0.033215 0.032987 

Standard 

deviation 
0.00231 0.002312 0.001943 0.001163 0.001684 0.001818 0.001884 

 

Table 5.12 The mean and standard deviation for the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 
𝒬 , 𝒬  and  𝒬 , data generated under an AR(1) process with parameter 𝜙 = 0.5, 

and fitted under AR(1) with n = 100 and maximum lags m = 10. 

 

As can be seen from Table 5.12 the results of this experiment are consistent with those 

from Table 5.1. The standard deviations for the new tests and previous tests are around 5 

percent of their associate mean, in most cases.    

 

 



Chapter 5 - Portmanteau Tests 

140 

 

A second experiment was conducted to examine the variability of the new test when applied 

to the power study in Section 5.3.4. Again 1000 replications of the original experiment 

were undertaken for a single choice of  𝜃  (i.e. -0.8). 

 m =10 

𝜃
= −0.8 

𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

Mean 0.75297 0.964627 0.905353 0.938861 0.850433 0.939353 0.990351 

Standard 

deviation 
0.002310 0.002312 0.001943 0.001163 0.001684 0.001818 0.001884 

Table 5.13 The mean and standard deviation for the test statistics 𝒬 , 𝒬 , 𝒬 , 𝒬 , 
𝒬 , 𝒬  and  𝒬 , data generated under an MA(1) process with parameter 𝜃 =

−0.8, and fitted under AR(1) with n = 100 and maximum lags m = 10. 

 

As can be seen in Table 5.13 the standard deviations are less than 1 percent of the associate 

mean for the new tests and almost all the previous tests.  

 

5.5 Summary 

The empirical size simulations (see Tables 5.1, 5.2 and 5.3) show that the Monti 𝒬  test 

is better than other tests when data are generated from an AR(1) process and fitted by an 

AR(1) model with n = 100 and 𝑚 =10, 20 and 30. The empirical size Figure 5.1 shows that 

portmanteau tests from previous studies do not have significant levels that are stable with 

respect to lag length. Figure 5.2, the exponential weighted portmanteau test is not affected 

by lag length, which means the 𝒬  test is stable with respect to lag length.  

The power level simulations (see Tables 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9) show that the new 

portmanteau 𝒬  test is more powerful than previous tests, when data are generated from 

an ARMA(2,2) process and fitted under either an AR(1) model or a MA(1) model with n 

= 100 and m = 10, 20 and 30. The average power level for each portmanteau test given in 
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these tables shows that the new test 𝒬  is the best. When data are fitted under an AR(1) 

model and m = 30 the new test 𝒬  is better than the previous tests in 7 cases, while data 

fitted under a MA(1) model with m = 30, the 𝒬  test is better in 8 cases. The power level 

Figures 5.3 and 5.4 show that the 𝒬  test is more powerful than those from the previous 

studies in both cases of small and large lags.    

Furthermore, when data are generated from an ARMA(2,2) process and fitted under an 

ARMA(1,1) model with m = 10, the results of the power level simulations given in Tables 

5.10 and 5.11 show that the new test 𝒬  is better in 6 cases. When m = 20 the new test 

is better in 5 cases. So the new 𝒬  test is more powerful in the power levels when m = 

10 and the 𝒬  test when m = 10. The average value of the power level tables for each 

portmanteau test shows that the new test 𝒬  is better than the previous tests. The power 

level experiments given in Figures 5.5 and 5.6 show that the 𝒬  test is more powerful 

than previous portmanteau tests with small and large lags.   

Monte-Carlo studies of the variability of the new portmanteau tests show the standard 

deviations to be low in comparison to their associated means, and also low in comparison 

to the standard deviation of some of the previous tests.     
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Chapter 6 - Portmanteau Tests Of Vector Time Series 

The aim of this chapter is to review previous studies in the area of portmanteau tests of 

vector autoregressive moving average models, which have been developed by several 

researchers. This chapter will focus on developing a new portmanteau test, which is based 

on exponential weights of the residual covariance matrix. The performance of the new 

portmanteau test is then compared with previous studies by the use of Monte Carlo 

experiments using the R program. 

6.1 Introduction  

A major extension of portmanteau tests has been the application to vector autoregressive 

moving average (VARMA) time series models. In the univariate time series case, 

portmanteau tests are based on the residual of the autocorrelation and partial 

autocorrelation functions. In the vector time series case, portmanteau tests are based on the 

residual of the covariance matrices and the cross correlation matrices. The first application 

of a portmanteau test to multivariate autoregressive models was by Chitturi (1974). Since 

then, Portmanteau tests for VARMA(𝑝, 𝑞) models have been developed by many 

researchers, such as, Hosking (1980), Poskitt and Tremayne (1982) and Li and McLeod 

(1981). 

A portmanteau test of a vector autoregressive moving average model is calculated by 

summing the residuals of the covariance or autocorrelation matrix of the fitted model. Then 

the value of the portmanteau test is compared with a critical value. If the value of the 

portmanteau test is less than the critical value, it means the model is an appropriate one for 

the data. Alternatively, if the value of the portmanteau test is bigger than the critical value, 

it means that the model is inappropriate for the data. 

Consider a vector time series {𝒛 } generated by a stationary and invertible VARMA(𝑝, 𝑞) 

process given by 

𝒛 = 𝚽 𝒛 + 𝚽 𝒛 + ⋯ + 𝚽 𝒛 + 𝒆 − 𝚯 𝒆 − 𝚯 𝒆 − ⋯ − 𝚯 𝒆  

 𝑰 − 𝚽 𝐵 − ⋯ − 𝚽 𝐵 𝒛 = 𝑰 − 𝚯 𝐵 − ⋯ − 𝚯 𝐵 𝒆  (6.1) 



Chapter 6 – Portmanteau tests for vector time series 

143 

 

 𝚽(𝐵)𝒛 = 𝚯(𝐵)𝒆    (6.2) 

where 𝒛 = (𝑧 , 𝑧 , … , 𝑧 )  is a 𝑑 × 1 vector of variables observed at time 𝑡, 𝒆 =

(𝑒 , 𝑒 , … , 𝑒 ) , is a 𝑑 × 1 zero mean white noise process with covariance matrix 𝜮 =

𝐸[𝒆 𝒆 ], 𝚽  (𝑖 = 1, 2, … , 𝑝) are 𝑑 × 𝑑 parameter matrices and 𝚯  is a 𝑑 × 𝑑 matrix of 

coefficients, for (𝑗 = 1, 2, … , 𝑞) and 𝚽(𝐵) and 𝚯(𝐵) are matrix polynomials of the 

backshift operator 𝐵 of order 𝑝 and 𝑞 respectively.  

The parameters matrices 𝚽(𝐵) and 𝚯(𝐵) can be estimated fitted by use of the conditional 

likelihood method (see Equation 3.56) to obtain the fitted models  

 𝒆 = 𝚽(𝐵)𝒛 𝚯 (𝐵) (6.3) 

The residuals 𝒆  are computed by 

 𝒆 = 𝒛 − 𝚽 𝑧 + 𝚯 𝒆        𝑡 = 1,2, ⋯ , 𝑛 (6.4) 

 

For the VARMA(𝑝, 𝑞) model to be correct the residuals 𝒆  need to be approximately zero, 

this means the autocovariance matrix of the residuals 𝜞(𝒌) will be zero at all lags 𝑘. This 

gives the null hypothesis for all lags 𝑘 

𝐻 : 𝜞(𝒌) = 0 

𝐻 : 𝜞(𝒌) ≠ 0. 

6.1.1 Hosking vector portmanteau tests  

Hosking (1980, 1981) gave a general form of a multivariate portmanteau test statistic for 

VARMA(𝑝, 𝑞) models, which is based on the residual autocorrelation matrix, it can be 

written as  

 𝒬 = 𝑛 vec 𝑹 𝑹 ⊗ 𝑹 vec 𝑹  (6.5) 
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This is asymptotically chi-squared distributed with degrees of freedom 𝑑 (𝑚 − 𝑝 − 𝑞), 

where 𝑛 is the series length, 𝑚 is the maximum lag and 𝑹  is the sample autocorrelation 

matrix at lag 𝑘. The residual of the autocorrelation matrix can be found by 

 𝑹 = 𝑳 𝜞 𝑳 (6.6) 

where 

𝜞(𝒌) = 𝑛 𝒆 𝒆  

is a sample autocovariance matrix and 𝑳 is a lower triangular matrix such that 𝑳𝑳 =

𝜞(𝟎) . 

Hosking (1980) gave the modified multivariate portmanteau test statistic, which is based 

on the residual autocovariance matrix, it can be written as 

 𝒬∗ = 𝑛 (𝑛 − 𝑘) tr [𝜞(𝑘) 𝚺 𝜞(𝑘)𝚺 ] (6.7) 

where   

𝜞(𝑘) = 𝑛 𝒆 𝒆  

and tr (trace) is the sum of the diagonal matrix. This is asymptotically chi-squared 

distributed with degrees of freedom 𝑑 (𝑚 − 𝑝 − 𝑞). 

6.1.2 Li and McLeod vector portmanteau test 

Li and McLeod (1981) provided another multivariate portmanteau test statistic, which is 

based on the autocorrelation matrix, it can be written as 

 𝒬 = 𝑛 vec 𝑹
(∗)

𝑹 ⊗ 𝑹 vec 𝑹
(∗)  (6.8) 

which is asymptotically chi-squared distributed with degrees of freedom 𝑑 (𝑚 − 𝑝 − 𝑞), 

where 
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𝑹
(∗)

= �̂� , (𝑘)
×

 

and  �̂� , (𝑘) = 𝛾 , (𝑘) 𝛾 , (0)𝛾 , (0)⁄ , 𝑖, 𝑗 = 1,2, … , 𝑑, 𝛾 , (𝑘) = 𝑛 ∑ 𝒆 , 𝒆 ,  

Li and McLeod (1981) recommended a multivariate modified portmanteau test statistic, 

which is defined as 

 𝒬∗ = 𝒬 +
𝑑 𝑚(𝑚 + 1)

2𝑛
 (6.9) 

which is asymptotically chi-squared distributed with degrees of freedom 𝑑 (𝑚 − 𝑝 − 𝑞). 

6.1.3 Mahdi and McLeod vector portmanteau test 

Mahdi and McLeod (2011) proposed another multivariate portmanteau test statistic, which 

is based on the residual autocorrelation matrix as 

 𝒬 = −𝑛 log 𝕽  (6.10) 

where  

𝕽 =

⎝

⎜
⎛

𝐼        𝑹       ⋯      𝑹

𝑹        𝐼        ⋯   𝑹
⋮          ⋮         ⋯       ⋮   

𝑹       𝑹   ⋯     𝐼     
⎠

⎟
⎞

 

The 𝒬  test is approximately distributed as 𝑎𝜒 , where 

𝑎 =
2𝑚 + 1

3
 

𝑏 =
3𝑑 𝑚(𝑚 + 1)

2(2𝑚 + 1)
− 𝑑 (𝑝 + 𝑞). 

6.2 A new weighted portmanteau test of vector ARMA models 

The new weighted portmanteau test statistics of univariate time series models developed in 

Chapter 5 are based on the residual autocorrelation and partial autocorrelation functions 

with exponential weights. This chapter provides a new portmanteau test statistic for vector 

time series models, which is based on exponential weights of the residual covariance and 
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residual autocorrelation matrices. The approximate distribution of the test is derived. The 

test can be written as 

 𝒬 = 𝑛
𝑤

𝑛 − 𝑘
𝑡𝑟[𝜞(𝑘) 𝚺 𝜞(𝑘)𝚺 ] (6.11) 

 the modified portmanteau test is   

 𝒬 = 𝑛
𝑤

𝑛 − 𝑘
vec 𝑹 𝑹 ⊗ 𝑹 vec 𝑹  (6.12) 

where 𝑛 is the number of observations, 𝑚 is the maximum lag taken into account, 𝜞(𝑘) is 

a covariance matrix at lag 𝑘, 𝑹  is an autocorrelation matrix at lag 𝑘 and 𝑤  is an 

exponential weight, given by 

𝑤 = 𝑒  

6.2.1 Asymptotic distribution of the new multivariate portmanteau test 

Theorem 6.1. Suppose that a vector time series {𝒛 } is generated by a stationary and 

invertible VARMA(𝑝, 𝑞) process with mean zero and constant covariance matrix (see 

Equation 6.2). Then, the new portmanteau test statistic is asymptotically distributed as  

𝜆 𝜒 ,  

where 𝑚 is the maximum lag, 𝑑 is the number of vector components, 𝜒 ,  

(𝑘 = 1, 2, … , 𝑑 𝑚) are independent 𝜒  random variables and 𝜆  (𝜆 , 𝜆 , … , 𝜆 ) are the 

eigenvalues of (𝑰 − 𝑸)𝑾, where 𝑾 is a 𝑑 𝑚 × 𝑑 𝑚 diagonal matrix  

𝑾 =

𝑤 𝐼           0           ⋯            0
   0          𝑤 𝐼         ⋯            0
   ⋮               ⋮              ⋱              ⋮

     0              0             ⋯    𝑤 𝐼  

 

where  𝑤  (𝑘 = 1, 2, ⋯ , 𝑚) are weights that satisfy 0 <  𝑤 ≤ 1, and 𝑸 is an idempotent 

matrix, which is define as  
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 𝑸 = 𝑿(𝑿 𝑴 𝑿) 𝑿 𝑴  (6.13) 

and 𝑿 is a 𝑑 𝑚 × 𝑑 (𝑝 + 𝑞) matrix with elements 𝜳 and П defined by  

𝜳(𝐵) = 𝚽(𝐵) = 𝜳 𝐵  

and 

П(𝐵) = 𝑰 − П 𝐵 = 𝚯(𝐵)  

and 𝑴 = 𝑰 ⊗ 𝜞 ⊗ 𝜞  is a positive-definite symmetric. 

The form of the idempotent matrix 𝑸 was first derived by Box and Pierce (1970), and has 

been subsequently used by McLeod (1978), Hosking (1980), and Mahdi and McLeod 

(2011) in the development of their multivariate portmanteau tests. 

Proof of Theorem 6.1:  

Let, 𝜒 ,  (𝑘 = 1, 2, … , 𝑑 𝑚) be independent 𝜒  random variables. By using the idempotent 

matrix form Hosking (1980) and multiplying the exponential weight with (𝑰 − 𝑸), then  

(𝑰 − 𝑸)𝑾 

the 𝜆  (𝜆 , 𝜆 , … , 𝜆 ) are the eigenvalues of (𝑰 − 𝑸)𝑾. 

Summing the eigenvalues and applying the 𝑡𝑟 matrix to the idempotent matrix, it gives  

𝜆 = 𝑡𝑟 (𝑰 − 𝑸)𝑾  

= 𝑡𝑟(𝑾) − 𝑡𝑟(𝑸) + (1 𝑑 𝑚⁄ )𝑡𝑟(𝑸𝑪) 

where 𝑪 is a diagonal matrix with elements 𝑐 = 𝑘, where  𝑘 = 0,1, … , (𝑑 𝑚 − 1), and  

𝜆 = 𝑡𝑟 (𝑰 − 𝑸)𝑾(𝑰 − 𝑸)𝑾  

= 𝑡𝑟(𝑾) − 𝑡𝑟(𝑸) + (2 𝑑 𝑚⁄ )𝑡𝑟(𝑸𝑪) − (2 (𝑑 𝑚 )⁄ )𝑡𝑟(𝑸𝑪𝟐)

+ (1 (𝑑 𝑚 )⁄ )𝑡𝑟(𝑸𝑪𝑸𝑪) 
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As 𝑸 is the idempotent matrix with rank 𝑑 (𝑝 + 𝑞), then  

𝜆 = 𝑤 − 𝑑 (𝑝 + 𝑞) + (1 𝑑 𝑚⁄ ) (𝑘 − 1) 𝑞  

𝜆 = 𝑤 − 𝑑 (𝑝 + 𝑞) + (2 𝑑 𝑚⁄ ) (𝑘 − 1) 𝑞

− (2 (𝑑 𝑚 )⁄ ) (𝑘 − 1) 𝑞

+ (1 𝑑 𝑚⁄ ) (𝑖 − 1)(𝑗 − 1)𝑞  

where 𝑞  are the elements of 𝑸.  

Using Kronecker’s lemma (Davidson, 1994), as 𝑑 𝑚 → ∞, then  

(1 𝑑 𝑚⁄ ) (𝑘 − 1) 𝑞 → 0  

(2 𝑑 𝑚⁄ ) (𝑘 − 1) 𝑞 → 0  

(2 (𝑑 𝑚 )⁄ ) (𝑖 − 1) 𝑞  → 0 

and  

(1 𝑑 𝑚⁄ ) (𝑖 − 1)(𝑗 − 1)𝑞 → 0 

Thus, 

 𝜆 = 𝑤  as 𝑑 𝑚 → ∞ (6.14) 
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 𝜆 = 𝑑 𝑤 − 𝑑 (𝑝 + 𝑞)  as 𝑑 𝑚 → ∞ (6.15) 

From the result of Box (1954), as a vector 𝒛  having mean zero and constant covariance 

matrix, then the asymptotic distribution of portmanteau test statistic in Equation 6.11 

distributed as  

𝜆 𝜒 ,  

6.2.2 Approximation distribution of the new multivariate portmanteau test  

Duchesne and Roy (2004) proposed a test statistic for checking the hypothesis of non-

correlation or independence in the Gaussian case. The test statistic is  

𝑇 =
𝒬 − 𝑑 𝑀 (Қ)

2𝑑 𝑉 (Қ)
⁄

 

where 𝒬  is the Hosking multivariate portmanteau test, Қ is a Kernel function, 

𝑀 (Қ) = 1 −
𝑘

𝑛
Қ

𝑘

𝑃
, 

𝑉 (Қ) = 1 −
𝑘

𝑛
1 −

(𝑘 + 1)

𝑛
Қ

𝑘

𝑃
, 

and 𝑃  is a sequence of truncation values. If 𝑃 → ∞ and 𝑃 𝑛⁄ → 0, then 𝑀 (Қ) = ∫ Қ  

and 𝑉 (Қ) = ∫ Қ . From Equation 6.14 and 6.15 the normalize terms are ∑ 𝑤  and 

∑ 𝑤 , then these two normalize terms could be replaced by 𝑀 (Қ) and 𝑉 (Қ). 

Duchesne and Roy (2004) proved that 𝑇 → 𝑁 (0,1) and 𝑇 → 𝑇  is 𝑂 (1), where 𝑂 ( . ) 

is “order in probability”. By using the result of Duchesne and Roy (2004) then the 

approximation distribution of the new portmanteau test statistic of vector ARMA models 

can be written as 𝑄 ~𝛤(𝛼, 𝛽) with shape and scale 
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 𝛼 =
∑ 𝑤

2𝑑 ∑ 𝑤 − 𝑝 − 𝑞
 (6.16) 

and 

 𝛽 =
2𝑑 ∑ 𝑤 − 𝑝 − 𝑞

∑ 𝑤
 (6.17) 

6.3 Monte Carlo experiment with vector time series  

6.3.1 Simulation studies 

The aim of this simulation study is to examine the effectiveness of the new exponential 

portmanteau test 𝒬  compared with the portmanteau tests used in previous studies. 

Specifically, the new test is compared with tests developed by Hosking (1980) 

𝒬 , and Mahdi and McLeod (2011) 𝒬 . The empirical size and the power level of the 

tests were investigated by conducting simulations studies using the R program. 

6.3.2 Empirical size 

A Monte-Carlo experiment was conducted with 10,000 replications. The procedure used 

was the same as that outlined in Section 5.3.3, with the exception of step 5 in which the 

calculation of the autocorrelation and partial autocorrelation function is replaced by the 

calculated covariance matrices. The aim was to simulate 100 and 200 observations under 

the VAR(1) process. 

One model was taken from Hosking (1980) (𝑗 = 1)  

Model 1 

𝚽 =
   0.9      0.1
−0.6      0.4

, 𝜮 =
1.0       0.4
0.4      1.0

 

and three models were taken from Li and McLeod (1981) (𝑗 = 2, 3, 4).  

Model 2 

𝚽 =
−1.5      1.2
−0.9      0.5

, 𝜮 =
1.0       0.5
0.5      1.0
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Model 3 

𝚽 =
   0.4    0.1
−1.0    0.5

, 𝜮 =
1.0       0.5
0.5      1.0

 

Model 4 

𝚽 =
−0.2     0.3
−0.6    1.1

, 𝜮 =
1.0       0.5
0.5      1.0

 

All models are a Gaussian bivariate VAR(1) model of the form 𝒛 = 𝚽 𝒛 + 𝒆 , 𝑗 =

1, 2, … , 4. The coefficients matrices and the covariance matrices are taken from Hosking 

(1980) (𝚽 , 𝜮 ), and Li and McLeod (1981) {(𝚽 , 𝜮 ), (𝚽 , 𝜮 ), (𝚽 , 𝜮 ) } 

 

Tables 6.1 and 6.2 show the proportion of 𝒬 , 𝒬  and 𝒬  values that are above the 

upper 5 percentage point of the appropriate distribution, 𝜒 ( ) for the 𝒬  and 𝒬  

tests, and the gamma distribution for the 𝒬  test. The data fitted under the VAR(1) with 

different coefficients matrices 𝚽 and covariance matrices 𝜮 with n = 100 and 200, and lags 

of covariance matrices of  m = 10, 20 and 30. 

 

 𝑚 = 10 𝑚 = 20 𝑚 = 30 
Model 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

1 0.0570 0.0559 0.0701 0.0637 0.0692 0.0823 0.0706 0.0968 0.0908 
2 0.0522 0.0518 0.0544 0.0638 0.0688 0.0633 0.0665 0.0916 0.0786 
3 0.0521 0.0448 0.0503 0.0615 0.0659 0.0606 0.0677 0.0921 0.0737 
4 0.0579 0.0609 0.0655 0.0595 0.0702 0.0768 0.0712 0.1036 0.0928 

Table 6.1 Empirical size of 𝒬 , 𝒬  and 𝒬  at 5% significance level for fitted 
VAR(1) models, 𝑛 = 100 and 𝑚 = 10, 20 and 30. 

 

Table 6.1 shows the values of significance level when 𝛼 = 0.05, n = 100 and m = 10, 20 

and 30. When m = 10, the value of 𝒬  test is also closer to 0.05 in one case with model 4, 

the 𝒬  test is closer to 0.05 significance level than any other tests in two cases with 

models 1 and 2. The value of 𝒬  test is closer to 0.05 in one case with model 3. When 

m = 20, the value of 𝒬  test is close to 0.05 in two cases with models 2 and 3. The value 

of 𝒬  test is also closer to 0.05 in two cases with models 1 and 4. When m = 30, the value 

of 𝒬  test is close to 0.05 in four cases with models 1, 2, 3 and 4. 
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 𝑚 = 10 𝑚 = 20 𝑚 = 30 

Model  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

1 0.0509 0.0474 0.0688 0.0592 0.0533 0.0754 0.0599 0.0646 0.0876 

2 0.0532 0.0407 0.0508 0.0593 0.052 0.0633 0.0606 0.0611 0.0708 

3 0.0530 0.0386 0.0453 0.0548 0.0490 0.0573 0.0590 0.0619 0.0733 

4 0.0549 0.0519 0.0706 0.0562 0.056 0.0753 0.0647 0.0653 0.0900 

Table 6.2 Empirical size of 𝒬 , 𝒬  and 𝒬  at 5% significance level for fitted 
VAR(1) models, 𝑛 = 200 and 𝑚 = 10, 20 and 30. 

Table 6.2 shows the values of significance level when 𝛼 = 0.05, n = 200 and m = 10, 20 

and 30. When m = 10, the value of 𝒬  and 𝒬  tests are closer to 0.05 significance level 

in two cases with models 1, 3 and 2, 4 respectively. When m = 20, the value of  𝒬  test 

is closer to 0.05 significance level than any other test in all cases. When m = 30, the value 

of 𝒬  test is closer to 0.05 in all cases.  

 

Figure 6.1 Empirical size for maximum lags of 𝒬 , 𝒬  and 𝒬  tests at 5% 
significance level fitted VAR(1),  and data generated by model 2, series of length 𝑛 =

150. 
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Figure 6.1 shows the empirical size for maximum lags of the 𝒬 , 𝒬  and 𝒬  tests 

at 5% significance level fitted under a VAR(1) model, with data generated by Model 2 with 

n = 150. The 𝒬  test is stable as the lag increases, and the 𝒬  test rapidly increases as 

the lag increases, whereas the 𝒬  test slowly increases as the lag increases. This means 

the 𝒬  test is more stable with respect to lag length than other tests as the lag increases.  

 

Figure 6.2 Empirical size for lags from 2 to 20 of the 𝒬 , 𝒬  and 𝒬  tests at 5% 
significance level  fitted VAR(1),  and data generated by model 2, series of length 𝑛 =

150. 

 

Figure 6.2 shows the empirical size for lags from 2 to 20 of the 𝒬 , 𝒬  and 𝒬  tests 

at 5% significance level fitted under a VAR(1) model, and data generated by Model 2 with 

n = 150. The 𝒬  test is close to 0.05 at lags 6, 8, 9 and 10, then slowly increases as lag 

size increases, whereas the 𝒬  test is close to 0.05 at lag 4, then slowly decreases as the 

lag increases up to lag 6. From this point it becomes close to the significance level, 

thereafter it slowly increases as lag increase. The 𝒬  test decreases as the lag increases 
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and becomes close to 0.05 at lag 6. Then the 𝒬  test increases at lag 7, after that it 

becomes very close 0.05 at lag 8, thereafter it slowly increases as the lag increases. The 𝒬  

test is close to 0.05 at lags 5 ≤ 𝑚 ≤ 140. 

Figures 6.1 and 6.2 together show the effect of the choice of large lag size on the empirical 

size of the three tests. The 𝒬  test is effective when 5 ≤ 𝑚 ≤ 140, while the 𝒬  test is 

effective when 6 ≤ 𝑚 ≤ 25, and the 𝒬  test when 5 ≤ 𝑚 ≤ 25.  

6.3.3 Power studies 

The aim of the power studies is to show which tests are the most powerful. The data were 

generated by a number of different VARMA(2,2) processes. 

𝒛 = 𝚽 𝒛 + 𝚽 𝒛 + 𝒆 − 𝚯 𝒆 − 𝚯 𝒆  

For each alternative, 10,000 replications of 100 and 200 observations were generated. The 

procedure used was the same as that outlined in Section 5.3.4, with the exception of step 5 

in which the calculation of the autocorrelation and partial autocorrelation function is 

replaced by the calculated covariance matrices. For each test the power was computed with 

lags 𝑚 = 10, 20 and  30. The residuals of the data were obtained. 

The VARMA models below were used to compare the new method against the tests  of 

Mahdi and McLeod and Hoskings. These models were selected from the literature by 

Mahdi and McLeod (2011) to give a representative sample of models on which to test their 

methods.  

These Models have been fitted under the VAR(1) model to make comparisons among the 

three tests, the models are:  

Model 5  

Lütkepohl, (2005, p.17). 

𝑧 ,

𝑧 ,
−

0.5     0.1
0.4     0.5

𝑧 ,

𝑧 ,
−

0        0
0.3     0

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.71
0.71     1.00
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Model 6 

Brockwell and Davis (1991, p. 428). 

𝑧 ,

𝑧 ,
−

0.7     0.0
0.0     0.6

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
+

  0.5       0.6
−0.7      0.8

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.71
0.71     2.00

 

Model 7 

Reinsel (1993, p. 71). 

𝑧 ,

𝑧 ,
−

1.2  − 0.5
0.6       0.3

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
−

−0.6    0.3
   0.3    0.6

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.50
0.50     1.25

 

Model 8 

Tsay (2005, 2nd, p. 371). 

𝑧 ,

𝑧 ,
−

0.8  − 2.0
0.0       0.0

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
−

−0.5    0.0
   0.0    0.0

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.71
0.71     1.00

 

Model 9 

Reinsel (1993, p. 30). 

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
−

   0.8    0.7
−0.4    0.6

𝑒 ,

𝑒 ,
 

𝜮 =
4.00      1.00
1.00     2.00

 

Model 10 

Tsay (2005, 2nd, p. 350). 

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
−

   0.2    0.3
−0.6    1.1

𝑒 ,

𝑒 ,
 

𝜮 =
2.00      1.00
1.00     1.00
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Model 11 

Lütkepohl, (2005, p. 445). 

𝑧 ,

𝑧 ,
−

0.5     0.1
0.4     0.5

𝑧 ,

𝑧 ,
−

0        0
0.25   0

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
+

0.6    0.2
0.0    0.3

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.30
0.30     1.00

 

Model 12 

Reinsel et al. (1992, p. 141). 

𝑧 ,

𝑧 ,

𝑧 ,

−
0.4     0.3   − 0.6 
0.0     0.8        0.4 
0.3     0.0        0.0 

𝑧 ,

𝑧 ,

𝑧 ,

=

𝑒 ,

𝑒 ,

𝑒 ,

−
 0.7       0.0        0.0
 0.1       0.2        0.0
−0.4     0.5   − 0.1

𝑒 ,

𝑒 ,

𝑒 ,

 

𝜮 =
1.00      0.50     0.40
0.50     1.00     0.70
0.40     0.70     1.00

 

 

Tables 6.3 and 6.4 show the power level of 𝒬 , 𝒬  and 𝒬  values that are above the 

upper 5 percentage point of 𝜒 ( ) distribution and gamma distribution. The data was 

fitted under a VAR(1) model with different coefficients matrices and covariance matrices 

with 𝑛 = 100 and 200, and lags of covariance matrices of 𝑚 = 10, 20 and 30. 

 

 𝑚 = 10 𝑚 = 20 𝑚 = 30 
Model 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

5 0.3522 0.5569 0.7001 0.2518 0.4692 0.6554 0.2088 0.4428 0.6309 
6 0.7827 0.992 0.9814 0.6528 0.9748 0.9709 0.6062 0.9485 0.9625 
7 0.9921 1 1 0.8632 0.9998 0.9999 0.6952 0.9996 1 
8 0.5363 0.8845 0.933 0.4133 0.7743 0.8769 0.3696 0.7179 0.8433 
9 0.8892 1 0.9999 0.6629 0.9998 0.9994 0.5530 0.9993 0.9981 

10 0.6783 0.9972 0.9742 0.5118 0.9877 0.9495 0.4549 0.9703 0.9306 
11 0.3330 0.5725 0.6491 0.224 0.4725 0.6204 0.2073 0.4336 0.6011 
12 0.768 0.9975 0.9896 0.5921 0.9961 0.9779 0.5095 0.9958 0.9657 

Average 0.6664 0.8750 0.9034 0.5214 0.8342 0.8812 0.4505 0.8134 0.8665 

Table 6.3 Power level of 𝒬 , 𝒬  and 𝒬  at 5% significance level for fitted VAR(1) 

models, 𝑛 = 100 and 𝑚 = 10, 20 and 30. 
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Table 6.3 shows that the 𝒬  test is more powerful than other portmanteau tests in 5 

cases, and the 𝒬  test is more powerful than other portmanteau tests in 4 cases, when 

𝑚 = 10. In addition, when 𝑚 = 20, the 𝒬  test is the most powerful in 4 cases, and the 

𝒬  test is more powerful than other portmanteau tests in 4 cases. When 𝑚 = 30, the 

𝒬  test is more powerful than other portmanteau tests in 5 cases, and the 𝒬  test is 

more powerful in 3 cases. It means that the 𝒬  test is more powerful when 𝑚 = 30 and 

𝑛 = 100. 

 

 𝑚 = 10 𝑚 = 20 𝑚 = 30 
Model  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

5 0.7204 0.8820 0.9647 0.5198 0.8032 0.9457 0.4213 0.7358 0.9369 
6 0.9993 1 1 0.9798 1 1 0.9545 1 1 
7 1 1 1 1 1 1 0.9992 1 1 
8 0.9192 0.9987 0.9998 0.7709 0.9922 0.9988 0.6790 0.9791 0.9982 
9 1 1 1 0.9939 1 1 0.9586 1 1 
10 0.9916 1 1 0.9162 1 1 0.8302 1 1 
11 0.7373 0.9050 0.9562 0.5119 0.8381 0.9474 0.4144 0.7765 0.9363 
12 0.9967 1 1 0.9499 1 1 0.7586 1 1 

Average 0.9205 0.9732 0.9900 0.8303 0.9541 0.9864 0.7519 0.9364 0.9839 

Table 6.4 Power level of 𝒬 , 𝒬  and 𝒬  at 5% significance level for fitted VAR(1) 

models, 𝑛 = 200 and 𝑚 = 10, 20 and 30. 

 

Table 6.4 shows that the 𝒬  test is more powerful in all cases than other portmanteau 

tests, when 𝑚 = 10, 20 and 30. The 𝒬  test is more powerful than other tests in 5 cases, 

when 𝑚 = 10, 20 and 30. The 𝒬  test is more powerful in 2 cases when 𝑚 = 10, and 1 

case when 𝑚 = 20. This means that the 𝒬  test is more powerful than other tests when 

𝑚 = 30 and 𝑛 = 200.  
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Figure 6.3 Power level for maximum lags of 𝒬 , 𝒬  and 𝒬  at 5% significance 
level fitted VAR(1),  and data generated by model 5, series of length 𝑛 = 150. 

 

Figure 6.3 shows the power level for maximum lags of the 𝒬 , 𝒬  and 𝒬  tests at 

5% significance level fitted under a VAR(1) model, with data generated by model 5 with 

𝑛 = 150. The 𝒬  test decreases as the lag increases, and the 𝒬  test decreases till lag 

50, then it increases as the lag increases. The 𝒬  test decreases only slightly as the lag 

increases. This means the 𝒬  test is more stable and powerful than other tests as the lag 

increases. 
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Figure 6.4 Power level for lags from 2 to 20 of 𝒬 , 𝒬  and 𝒬  at 5% significance 
level fitted VAR(1),  and data generated by model 5, series of length 𝑛 = 150.. 

 

Figure 6.4 shows the power level for lags from 2 to 20 of the 𝒬 , 𝒬  and 𝒬  tests 

at 5% significance level fitted under a VAR(1) model, with data generated by model 5 with 

𝑛 = 150. The 𝒬  and 𝒬  tests decrease as the lag increases, and the 𝒬  test slowly 

decreases as the lag increases. As can be seen from Figure 6.4 the 𝒬  test is more stable 

and powerful than other tests as the lag increases. 

Figures 6.3 and 6.4 together show the effect of the choice of large lag size on the power 

level of all three tests. For a power level of 75%, the 𝒬  test is effective when 𝑚 ≤ 5, while 

the 𝒬  test is effective when 𝑚 ≤ 11, and the 𝒬  test when 𝑚 ≤ 140.  

Next, a VMA(1) model is fitted to the data to compare the portmanteau tests 𝒬 , 𝒬  

and 𝒬 . The data are generated by a number of alternative VARMA(2,2) processes, 

which have been selected from the literature (Lütkepohl, (2005).  
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𝒛 = 𝚽 𝒛 + 𝚽 𝒛 + 𝒆 − 𝚯 𝒆 − 𝚯 𝒆  

For each alternative, 10,000 replications of 100 and 200 observations were generated. The 

coefficients matrices were estimated by using the conditional maximum likelihood 

function. For each test the power was computed with lags 𝑚 = 10, 20 and  30. The 

residual of the data was obtained. 

There is no published empirical research on fitting a VAM(1) model to non-VAM(1) 

processes. Consequently, the VARMA processes below were selected from the literature 

to give a representative sample of processes on which to test the new method. As a 

comparison, the methods of Mahdi and McLeod, and Hoskings were also used to evaluated 

the fitted models   

Model 13  

Lütkepohl, (2005, p.17). 

𝑧 ,

𝑧 ,
−

0.5     0.1
0.4     0.5

𝑧 ,

𝑧 ,
−

0        0
0.3     0

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.71
0.71     1.00

 

Note that this is the same as Model 5 as used in the power studies experiments in Section 

6.3.3. 

Model 14 

Brockwell and Davis (1991, p. 428). 

𝑧 ,

𝑧 ,
−

0.7     0.0
0.0     0.6

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
+

  0.5       0.6
−0.7      0.8

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.71
0.71     2.00

 

Note that this is the same as Model 6 as used in the power studies experiments in Section 

6.3.3. 

Model 15  

Huong (2013, p. 113) 

𝑧 ,

𝑧 ,
−

0.4588     0.4390

−0.0299     0.5162

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
−

−0.0589    − 0.3047

0.0093       − 0.1212

𝑒 ,

𝑒 ,
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𝜮 =
1.00      0.20
0.20     1.00

 

Model 16  

Huong (2013 p. 112) 

𝑧 ,

𝑧 ,
−

0.5603     0.5361

−0.0366     0.6303

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.20
0.20     1.00

 

Model 17 

Lütkepohl, (2005, p. 445). 

𝑧 ,

𝑧 ,
−

0.5     0.1
0.4     0.5

𝑧 ,

𝑧 ,
−

0        0
0.25   0

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
+

0.6    0.2
0.0    0.3

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.30
0.30     1.00

 

Note that this is the same as Model 11 as used in the power studies experiments in Section 

6.3.3. 

Tables 6.5 and 6.6 show the power level of 𝒬 , 𝒬  and 𝒬  values that are above the 

upper 5 percentage point of 𝜒 ( ) distribution and gamma distribution. The data were 

fitted under the VMA(1) model with different coefficients matrices and covariance 

matrices with 𝑛 = 100 and 200, and with lags of covariance matrices of 𝑚 =

10, 20 and 30. 

 

 𝑚 = 10 𝑚 = 20 𝑚 = 30 
Model 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

13 0.9999 0.9999 1 0.9898 0.9996 1 0.9722 0.9983 1 
14 0.9228 0.9887 0.9918 0.8009 0.9775 0.9897 0.7314 0.9520 0.9859 
15 0.3962 0.4290 0.5781 0.3144 0.3961 0.5744 0.3064 0.3923 0.5748 
16 0.9766 0.9899 0.9972 0.9391 0.9791 0.9967 0.9001 0.9672 0.9959 
17 0.5585 0.7317 0.8371 0.3642 0.6673 0.8242 0.2918 0.6093 0.8056 

Average  0.7708 0.8278 0.8808 0.6816 0.8039 0.877 0.6403 0.7838 0.8724 

Table 6.5 Power level of 𝒬 , 𝒬  and 𝒬  at 5% significance level for fitted VMA(1) 
models, 𝑛 = 100 and 𝑚 = 10, 20 and 30. 

Table 6.5 shows that the 𝒬  test is more powerful than other portmanteau tests in all 

cases, and the 𝒬  test is also more powerful than the 𝒬  test in all cases, when  𝑛 = 100 

and 𝑚 = 10, 20 and 30.  
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 𝑚 = 10 𝑚 = 20 𝑚 = 30 
Model 𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  𝒬  

13 1 1 1 1 1 1 1 1 1 
14 1 1 1 0.9992 1 1 0.9924 1 1 
15 0.7680 0.8384 0.9300 0.6486 0.7740 0.9286 0.5784 0.7124 0.9180 
16 1 1 1 0.9996 1 1 0.9994 1 1 
17 0.9378 0.9800 0.9934 0.7874 0.9538 0.9928 0.6692 0.9212 0.9890 

Average  0.9411 0.9636 0.9846 0.8869 0.9455 0.9842 0.8478 0.9267 0.981 

Table 6.6 Power level of 𝒬 , 𝒬  and 𝒬  at 5% significance level for fitted VMA(1) 
models, 𝑛 = 200 and 𝑚 = 10, 20 and 30. 

 

Table 6.6 shows that the 𝒬  test is more powerful than other portmanteau tests in all 

cases, when 𝑚 = 10, 20 and 30. The 𝒬  and 𝒬  tests are more powerful in three cases, 

when 𝑚 = 10. When  𝑚 = 20 and 30, the 𝒬  test is more powerful in three cases, and 

the 𝒬  is more powerful in one case. 

6.4 Variability of the new multivariate portmanteau test 

To explore the variability of the new multivariate portmanteau test statistics a Monte-Carlo 

experiment was conducted with 1000 replications of the experiment to determine the 

empirical size carried out in Section 6.3.2. As this experiment involved 1000 replications 

of a simulations involving 10,000 replications this is only conducted for Model 3. The aim 

was to calculate the mean and standard deviation for the test statistics 𝒬  and 𝒬 , when 

n = 100 observations under an VAR(1) process by using Model 3 and maximum lags m = 

10. The test statistics 𝒬  and 𝒬  were calculated by using the steps of the previous 

Monte-Carlo experiment. 

 m = 10 

Model 3 𝒬  𝒬  

Mean 0.050165 0.054235 

Standard deviation 0.002192 0.002337 

Table 6.7 The mean and standard deviation for the test statistics 𝒬  and 𝒬 , data fit-
ted under an VAR(1) and generated by model 3, with n = 100 and maximum lags m = 10. 
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As can be seen from Table 6.7 the results of this experiment are consistent with those from 

Table 6.1. The standard deviations for the new test is less than 5 percent of the associate 

mean.    

A second experiment was conducted to examine the variability of the new test when applied 

to the power study in Section 6.3.3. Again 1000 replications of the original experiment 

were undertaken for a single choice of Model 8. 

 m = 10 

Model 8 𝒬  𝒬  

Mean 0.470114 0.9331 

Standard deviation 0.004848 0.002644 

Table 6.8 The mean and standard deviation for the test statistics 𝒬  and 𝒬 , data fit-
ted under an VAR(1) and generated by model 8, with n = 100 and maximum lags m = 10. 

 

As can be seen in Table 6.8 the standard deviations of the new multivariate test is less than 

1 percent of the associate mean for the new test.  

6.5 Summary  

The simulation of empirical size (see Tables 6.1 and 6.2) shows that none of the 𝒬 , 𝒬  

and 𝒬  tests are better than the others in all cases. The experiments have been conducted 

with 10,000 replications, and data generated by a range of VAR(1) processes, then fitted 

under the VAR(1) model.  

The results of the simulation studies of power level (see Tables 6.3, 6.4, 6.5 and 6.6) show 

that the new portmanteau 𝒬  test is more powerful than other tests. The experiments 

have been conducted with 10,000 replications, and data generated by a range of 

VARMA(2,2) processes, then fitted under a VAR(1) model and a VMA(1) model.  

The simulation of empirical size and power level (see Figures 6.1, 6.2, 6.3 and 6.4) show 

that the 𝒬 , 𝒬  𝒬  tests are close to 0.05 at lags 6, 3, and 7 respectively in the 

empirical size, whereas all three tests are the most powerful at lag 2 in the power level. 

Furthermore, the 𝒬  test slowly increases, while the 𝒬  test rapidly increases, and 
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the 𝒬  test is stable as lag increases in the empirical size. In comparison, the power level 

of the 𝒬  is the most stable and most powerful as lag increases. The 𝒬  test starts to 

increase at lag 70. Overall, the 𝒬  test is better than other tests for empirical size when 

the lag is small, and better for power level for all lags. 
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Chapter 7 - Conclusion 

The thesis has explored how the length of data of a univariate time series can influence its 

apparent stationarity as measured by two standard tests, namely, the Dickey-Fuller test and 

the Augmented Dickey-Fuller test.  

The research has examined the effectiveness of two new exponential portmanteau tests, for 

univariate time series. These new portmanteau test statistics developed in Chapter 5 are 

𝒬 = 𝑛(𝑛 + 2) 𝑤
𝜌

𝑛 − 𝑘
 

and 

𝒬 = 𝑛(𝑛 + 2) 𝑤
𝜙

𝑛 − 𝑘
 

where 𝜌   is the autocorrelation and 𝜙  is the partial autocorrelation at lag 𝑘, and 𝑤  is 

the exponential weight. 

Next, the thesis explored the effectiveness of a new exponential portmanteau test for 

multivariate time series. The new portmanteau test statistics of multivariate time series that 

is given in Chapter 6 is  

𝒬 = 𝑛
𝑤

𝑛 − 𝑘
𝑡𝑟[𝜞(𝑘) 𝚺 𝜞(𝑘)𝚺 ] 

or equivalently as  

𝒬 = 𝑛
𝑤

𝑛 − 𝑘
vec 𝑹 𝑹 ⊗ 𝑹 vec 𝑹  

where 𝑛 is the number of observations, 𝑚 is the maximum lag taken into account, 𝜞(𝑘) is 

a covariance matrix at lag 𝑘, 𝑹  is an autocorrelation matrix at lag 𝑘 and 𝑤  is an 

exponential weight. 
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7.1 The length of a time series 

Chapter 4 examined how the length of data in a time series affects the identification of its 

stationarity as identified by the standard tests (the DF test, the DF drift test and the DF 

trend test, the ADF test, the ADF drift test and the ADF trend test).   

A time series was generated from an AR(1) process with positive values of parameters with 

different lengths of series, namely, n = 25, 50, 75, 100, 250, 500, 750 and 1000 

observations. This was then tested by the DF test, the DF drift test, the DF trend test, the 

ADF test, the ADF drift test and the ADF trend test. As is evident in Figures 4.1, 4.2, 4.3, 

4.4, 4.5 and 4.6, the number of series identified as being non-stationary increases as the 

value of the AR(1) process parameter 𝜙  increases, and the number identified as being non-

stationary decreases as the length of data increases. The researcher proves that the length 

of data has a strong impact on the stationarity in time series when data are generated under 

an AR(1) process with positive values of parameter 𝜙 .      

For an AR(1) process generated using negative values of parameter 𝜙  and examined by 

the ADF test, the ADF drift test, and the ADF trend test, the number of series identified as 

non-stationary does not depend on the parameter 𝜙 , instead it depends only on the number 

of data points in the time series. As the number of data points increases the number of time 

series identified as non-stationary decreases, see Figures 4.7, 4.8, and 4.9. So, for negative 

values of parameter 𝜙  the stationarity of the time series depends only on the length of 

data.  

The minimum number of data points required to ensure that the ADF, the ADF drift and 

the ADF trend tests correctly identify the time series as being stationary, when data are 

generated from an AR(1) process using negative values of 𝜙  (using a 5% cut-off), is given 

in  Table 4.3. 

A time series was generated from an AR(2) process with positive values of parameters 𝜙  

and 𝜙 , with different lengths of series, namely, n = 25, 50, 75, 100, 250, 500, 750 and 

1000 observations. This was then tested by, the DF test, the DF drift test the DF trend test, 

the ADF test, the ADF drift test and the ADF trend test. As is evident in Figures 4.10 and 

4.11, the number of series identified as being non-stationary increases as the value of the 
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AR(2) process parameters  𝜙  and 𝜙  increase, and the number identified as being non-

stationary decreases as the length of data increases. The researcher proves that the length 

of data has a strong impact on the ADF tests’ ability to correct identify stationarity in time 

series when data are generated under an AR(2) process.      

7.2 New univariate portmanteau test 

The aim of the simulation studies in Chapter 5 was to compare the effectiveness of the new 

autocorrelation and partial autocorrelation portmanteau tests in relation to those 

portmanteau tests proposed in previous studies. Monte-Carlo experiments were conducted 

to examine the empirical size. The empirical size simulations (Section 5.3.3) of different 

lags, based on a 5% significance level, show that the 𝒬  test is not affected by the length 

of lag used, however, other portmanteau tests are affected. For example, the empirical size 

simulations based on a 5% significance level show that the values of the 𝒬 , 𝒬 , 𝒬  

and 𝒬  tests increase to 5% significance level as the lag increases and the values of the 

𝒬 , 𝒬  and 𝒬  tests decrease to 5% significance level when the lag increases, see 

Figures 5.1 and 5.2.  

In Section 5.3.4 the power level simulation study identified the most powerful portmanteau 

tests. Monte-Carlo experiments were conducted for 12 different ARMA(2,2) processes. 

These models were based on those from Monti (1994). An AR(1) model and a MA(1) 

model were fitted to the data generated from ARMA(2,2) processes. For each test the power 

was computed with lags 𝑚 = 10, 20 and  30. The residual of the fitted model was 

obtained. The power level simulations show that the new exponential portmanteau 𝒬  

test is more powerful than all previous tests used for this purpose, see Tables 5.4, 5.5, 5.6, 

5.7, 5.8 and 5.9. The power level simulations for different lags at the 5% significance show 

that the 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬 , 𝒬  and 𝒬  tests decrease as the lag increases, 

while the 𝒬  test slowly decreases as the lag increases, see Figures 5.3 and 5.4.  

Following the methodology of the simulation study conducted by Gallagher and Fisher 

(2015), the data were generated from a subset of the ARMA(2,2) process and fitted under 

an ARMA(1,1) model. The new 𝒬  test proved to be more powerful than all other tests 

proposed in previous studies. The power level simulations for different lags at the 5% 
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significance show that the 𝒬  test is not affected as the lag increases, while the 𝒬 , 𝒬 , 

𝒬 , 𝒬 , 𝒬 , 𝒬  and 𝒬  tests decrease or increase as the lag increases, see 

Figures 3.5 and 3.6. 

7.3 New multivariate portmanteau test. 

The aim of the VARMA simulation study in Chapter 6 was to compare the new exponential 

portmanteau test 𝒬  of vector autoregressive moving average models to those identified 

in previous studies of vector portmanteau tests, namely, Hosking’s 𝒬  test (1980), and 

Mahdi and McLeod’s 𝒬  test (2011). Monte-Carlo experiments were conducted for four 

different VAR(1) processes, then fitted under a VAR(1) model with n = 100 and 200, and 

with 𝑚 = 10, 20 and 30 in the simulation of the empirical size. The power level simulation 

study, which was conducted in Section 6.3.3, involved the generation of 12 different 

VARMA(2,2) processes, each of which were fitted under either a VAR(1) or a VMA(1) 

model (with n = 100 and 200, and with 𝑚 = 10, 20 and 30).  

The simulation study of empirical size shows that none of the 𝒬 , 𝒬  and 𝒬  tests 

are better than the others in all cases, see Tables 6.1 and 6.2. However, the power level 

simulation study shows that the new portmanteau 𝒬  test is more powerful compared 

with the 𝒬  and 𝒬  tests, for more details see Tables 6.3, 6.4, 6.5 and 6.6. 

A Monte-Carlo experiment of empirical size was conducted with data generated by  

𝚽 =
−1.5      1.2
−0.9      0.5

, 𝜮 =
1.0       0.5
0.5      1.0

 

in Section 6.3.2, with different number of lags and 𝑛 = 150, then fitted under a VAR(1) 

model.  

The data were generated by  

𝑧 ,

𝑧 ,
−

0.5     0.1
0.4     0.5

𝑧 ,

𝑧 ,
−

0        0
0.3     0

𝑧 ,

𝑧 ,
=

𝑒 ,

𝑒 ,
 

𝜮 =
1.00      0.71
0.71     1.00

 

in Section 6.3.3, with different number of lags and 𝑛 = 150, then fitted under VAR(1) 

model in the simulation of power level. This simulation study of different lags shows that 
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the 𝒬  test is more stable than the 𝒬  and 𝒬  tests, in that, the 𝒬  and 𝒬  tests 

decrease or increase as different length of lag are employed in both empirical size and 

power level simulation studies, see Figures 6.1, 6.2, 6.3 and 6.4. 

7.4 Summary and key findings 

The thesis has shown that the length of data has a strong impact on the apparent stationarity 

of a time series when data generated by AR(1) process and AR(2) process, and it has 

demonstrated how to select the appropriate estimated value of parameter for a 

corresponding length of time series.  

For a univariate time series the 𝒬  test has been presented and shown to be more 

powerful than the 𝒬  test and all the previous tests (namely, the 𝒬 , 𝒬 , 𝒬 , 

𝒬 , 𝒬  and 𝒬  tests). A new portmanteau test of a multivariate time series has been 

presented and proven to be better that the 𝒬  and 𝒬  tests. 

7.5 Future work 

Chapter 4 shows how the length of a time series affects its apparent stationarity when data 

are generated from a known statistical process of a univariate autoregressive process. 

Future work will examine how the length of a time series affects the apparent stationarity 

when data are generated from a moving average process of a univariate time series with 

positive and negative values of parameters. Another area that will be investigated is how 

the length of a time series affects the apparent stationarity when data are generated from 

ARMA(1,1) process with positive and negative values of parameters. Other types of unit 

root tests will be used to examine how the length of a time series affects the apparent 

stationarity, such as the tests of Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt 

and Shin (KPSS), and Eliot, Rothenberg and Stock (ADF-GLS). 

In Chapter 5 new portmanteau tests for univariate time series were developed. These new 

portmanteau test statistics assume the data is non-seasonal. Future work will aim to extend 

these tests to seasonal data and make a comparison with previous studies of seasonality 

portmanteau tests.  
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The Autoregressive Conditional Heteroscedastic (ARCH) model explicitly models the 

change in variance within a time series over time (Engle, 1982). Current practice is for the 

𝒬  portmanteau test to be used to test for remaining ARCH model effects in the variance 

equation and to check the specification of the variance equation. The new portmanteau test 

statistics will be extended in future work and applied to the (ARCH) model and compared 

with the existing 𝒬  test. 

Bollerslev (1986) extended the ARCH model to Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) models, in which the current conditional variance equation also 

includes the past conditional variance. Bollerslev (1986) already suggested a Lagrange 

multiplier (LM) test for testing a GARCH model against a higher order GARCH model, Li 

and Mak (1994). The new portmanteau test statistics will be extended in future work and 

applied to the (GARCH) model and compared with the existing LM test.   

In Chapter 6, the new multivariate portmanteau test statistic was applied to multivariate 

non-seasonal data. This equation will be extended in future work to cover seasonal data, 

and work will be undertaken to compare the new multivariate portmanteau test statistics 

with previous studies of seasonal portmanteau tests.  

Many researchers have extended the Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) model from the univariate to the multivariate case to create the 

Multivariate Generalized Autoregressive Conditional Heteroscedastic (MGARCH) model. 

For instance, Bollerslev (1990) studied the changing variance structure of the exchange 

rate regime in the European Monetary System, assuming the correlations to be time 

invariant. Ling and Li (1997) introduced a portmanteau test for testing the adequacy of the 

multivariate MGARCH model. The new multivariate portmanteau test statistic will be 

extended in future work to enable it to apply to the MGARCH model. 
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Appendix A 

R program for data length simulation  

ns<-10000    ### number of simulations  

n<-25           ### number of data 

a1<- list(mode="vector",length=ns) ## produce vector as same length of simulation 

ad1<- list(mode="vector",length=ns) 

a2<- list(mode="vector",length=ns) 

ad2<- list(mode="vector",length=ns) 

a3<- list(mode="vector",length=ns) 

ad3<- list(mode="vector",length=ns) 

for (i in 1:ns) 

{ 

fun<-rnorm(n)        ### generate data by using normal distribution 

y<- 0.5*seq(1,n)     ### the trend sequence  

sim<-arima.sim(list(ar=0.1),n=n,innov=fun) ### simulate AR(1)  

simd<-arima.sim(list(ar=0.1),n=n,innov=fun)+0.5  ### simulate AR(1) with drift  

simt<-arima.sim(list(ar=0.1),n=n,innov=fun)+0.5+y  ### simulate AR(1) with drift and 
trend  

adf1<-ur.df(sim,type="none",lags=0) ### DF test  

adf2<-ur.df(simd,type="drift",lags=0) ### DF test with drift  

adf3<-ur.df(simt,type="trend",lags=0)  ### DF test with drift and trend 

a1[[i]]<-adf1@teststat                          ### critical value of  DF test 

ad1[[i]]<-a1[[i]]<adf1@cval[2] 

a2[[i]]<-adf2@teststat[1,1]                 ### critical value of  DF test with drift 

ad2[[i]]<-a2[[i]]<adf2@cval[1,2] 

a3[[i]]<-adf3@teststat[1,1] 

ad3[[i]]<-a3[[i]]<adf3@cval[1,2]       ### critical value of  DF test with drift and trend 

} 

length(ad1[ad1 ==FALSE])   ### number of false for DF test 

length(ad2[ad2 ==FALSE])   ### number of false for DF test with drift  

length(ad3[ad3 ==FALSE])   ### number of false for DF test with drift and trend 
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Appendix B 

R program of simulate empirical size and power level for univariate 

portmanteau tests. 

 

n<-100                                ### number of observations  

ns<-1000                            ### number of simulations 

m<-10                                ### maximum lag 

round <- round(log(n))     ### indicating the number of decimal places 

round1<-round +1 

mmsd<-((3*m*(m+1))/(2*(2*m+1)))-1 

mmchi<-qchisq(.95, df=mmsd)  ### chi-squared critical value Mahdi and McLeod (2012) 

boxchi<- qchisq(.95, df=(m-1)) ### chi-squared critical value Ljung and Box (1978) 

w<- numeric(m) ### creates a real vector of the specified length 

wfg<- numeric(m) 

r<- numeric(m) 

p<- numeric(m) 

fg<- numeric(m)  

exacf<- numeric(m)  

expacf<- numeric(m)  

kernel<- numeric(m) 

ker <- numeric(m) 

rdaw<- numeric(round) 

ss<- numeric(round) 

ss1<- numeric(round) 

ln<- numeric(m) 

lnlagacf<- numeric(m) 

lnsquar<- numeric(m) 

newsd<- numeric(m) 

fgsd<- numeric(m) 

Qlb <- list(mode="vector",length=ns) ## produce vector as same length of simulation 

Qm <- list(mode="vector",length=ns) 
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Qlbe <- list(mode="vector",length=ns) 

Qme <- list(mode="vector",length=ns) 

Qfg<- list(mode="vector",length=ns) 

Qke<- list(mode="vector",length=ns) 

boxtest<- list(mode="vector",length=ns) 

montitest<- list(mode="vector",length=ns) 

boxnewtest<- list(mode="vector",length=ns) 

montinewtest<- list(mode="vector",length=ns) 

fgtest<- list(mode="vector",length=ns) 

ketest<- list(mode="vector",length=ns) 

MLtest<-list(mode="vector",length=ns) 

Qmm<- list(mode="vector",length=ns) 

matrixcolumn<- list(mode="vector",length=ns) 

dawtest<- list(mode="vector",length=ns) 

Qdaw<- list(mode="vector",length=ns) 

gammadaw<- list(mode="vector",length=ns) 

y<-c(1:m) 

for (j in 1:m){ 

newsd[j]<-(1/m)^((y[j]-1)/m) ### loop for weight new test  

fgsd[j]<- ((m- y[j]+1)/(m))     ### loop for weight Fisher and Gallagher (2012) test 

} 

squarnewsd<-(newsd^2)   ### square the weight of the new test 

sum1<-(sum(newsd))^2    ### sum the square weight  of the new test 

sum2<- 2*(sum(squarnewsd)-1) 

divd1<- sum1/sum2 

divd2<- sum2/sqrt(sum1) 

gamma<-qgamma(0.95,divd1,1/divd2) ### gamma distribution for new test 

squarfgsd<-(fgsd^2)       ##### square the weight of the FG (2012) test 

sumfg1<-(sum(fgsd))^2    ### sum the square weight  of the FG (2012) test 

sumfg2<- 2*(sum(squarfgsd)-1)  

divdfg1<- sumfg1/sumfg2     

divdfg2<- sumfg2/sqrt(sumfg1) 
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gammafg<-qgamma(0.95,divdfg1,1/divdfg2) ###gamma distribution for FG (2012) test 

set.seed(1234) 

for (i in 1:ns) 

{ 

fun<-rnorm(n) ### generate random number  

sim<-arima.sim(list(ar=(0.1)),n=n,innov=fun) ### simulate AR(1) process  

fit <- arima(sim, order = c(1,0,0))  ### fitted AR(1) model 

res<-residuals(fit) ### the residual of the fitted model 

acf<- acf(res, lag=m, plot=F)$acf  ### autocorrelation function  

pacf<- pacf(res, lag=m, plot=F)$acf  ### partial autocorrelation function  

for(l in 1:m) ### loop for the weight with maximum lag 

{ 

w[l]<-(1/m)^((y[l]-1)/m) ### for new test  

wfg[l]<- ((m- y[l]+1)/(m)) ### for FG (2012) test 

r[l]<-((acf[l+1])^2)/(n-l)  

p[l]<-((pacf[l])^2)/(n-l) 

fg[l]<- wfg[l]* r[l] 

exacf[l]<- w[l]* r[l] 

expacf[l]<- w[l]* p[l] 

kernel[l]<-((n+2)/(n-l))*((sin(sqrt(3)*pi*(l/m))/( sqrt (3)*pi*(l/m)))^2)*(r[l]*(n-l)) ## 
kernel test  

sumkernel<-n*sum( kernel) 

ker[l]<-(((sin(sqrt(3)*pi*(l/m)))/(sqrt(3)*pi*(l/m)))^2)*( (n+2)/(n-l)) 

sumk1<- sumkernel-sum(ker) 

sumk2<- sqrt(2*sum( (ker)^2)) 

} 

for (s in 1:round) ###critical value of data adaptive weight  

{ 

rdaw[s]<-((acf[s+1])^2)/(n-s) 

ss[s]<-((n+2)/(n-s)) 

ss1[s]<-((n+2)/(n-s))^2 

} 

for(t in round1:m) 
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{ 

ln[t]<- -(log(1-abs(pacf[t]))) 

lnlagacf[t]<-ln[t]*(acf[t+1])^2 

lnsquar[t]<-(ln[t])^2 

} 

Qlb[[i]]<-n*(n+2)*sum(r)  ### Ljung and Box 

Qm[[i]]<-(n*(n+2))*sum(p) ### Monti (1994) 

Qfg[[i]]<-(n*(n+2))*sum(fg) ### Fisher and Gallagher (2012) 

Qlbe[[i]]<-(n*(n+2))*sum(exacf) ### new test with autocorrelation function  

Qme[[i]]<-(n*(n+2))*sum(expacf)  ### new test with partial autocorrelation function 

Qmm[[i]]<-portest(res,lag=m,order=0,SquaredQ=FALSE,Kernel=FALSE)###Mahdi and 
McLeod (2012) 

matrixcolumn[[i]]<-Qmm[[i]][2] 

MLtest[[i]]<-matrixcolumn[[i]]<mmchi ###Look up the 5 percentage point 

boxtest[[i]]<- Qlb[[i]]< boxchi ###Look up the 5 percentage point 

montitest[[i]]<- Qm[[i]]< boxchi ###Look up the 5 percentage point 

boxnewtest[[i]]<- Qlbe[[i]]< gamma ###Look up the 5 percentage point 

montinewtest[[i]]<- Qme[[i]]< round(gamma,digits=2) 

fgtest[[i]]<- Qfg[[i]]< gammafg 

Qke[[i]]<- sumk1/sumk2 

ketest[[i]]<- Qke[[i]]< 1.6 

Qdaw[[i]]<-n*(n+2)*sum(rdaw)+n*sum(lnlagacf) ### data adaptive weight test 

sumsd1<-(sum(ln)+sum(ss))^2 

sumsd2<-2*((sum(lnsquar)+sum(ss1))-1) 

alpha<- sumsd1/ sumsd2 

beta<- sumsd2/sqrt(sumsd1) 

gammadaw[[i]]<-qgamma(0.95,alpha,1/beta) 

dawtest[[i]]<- Qdaw[[i]]< gammadaw[[i]] 

} 

length(boxtest[boxtest ==FALSE])/ns ### account number of rejection  

length(montitest[montitest ==FALSE])/ns 

length(MLtest[MLtest ==FALSE])/ns 

length(fgtest[fgtest ==FALSE])/ns 
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length(ketest[ketest ==FALSE])/ns 

length(dawtest[dawtest ==FALSE])/ns 

length(boxnewtest[boxnewtest ==FALSE])/ns 

length(montinewtest[montinewtest ==FALSE])/ns 
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Appendix C  

R program of simulate empirical size and power level for multivariate 

portmanteau tests. 

n<-150                   ### number of observations 

m<-20                   ### maximum lag 

k <- 2                    ### vector dimension  

ns<-10000            ### number of simulations 

lag<-k^2*m 

lag2<-k^4*m 

tracelag<- numeric(m)   ### creates a real vector of the specified length 

tracelagw<- numeric(m) 

w<- numeric(m) 

newsd<- numeric(lag) 

Qvho<- list(mode="vector",length=ns)  ### produce vector as same length of simulation 

Qve<- list(mode="vector",length=ns) 

hostest<- list(mode="vector",length=ns) 

newtest<- list(mode="vector",length=ns)  

MLtest<-list(mode="vector",length=ns) 

Qmm<- list(mode="vector",length=ns) 

matrixcolumn<- list(mode="vector",length=ns) 

mmsd<-(k^2)*((3*m*(m+1))/(2*(2*m+1)))-(k^2) 

mmchi<-qchisq(.95, df=mmsd) ### critical value for vector Mahdi and McLeod (2011) 
test 

hchi<- qchisq(.95, df=k^2*(m-1)) ### critical value for vector Hosking (1980) test 

y<-c(1:lag)  

for (j in 1:lag){ 

newsd[j]<-(1/(lag2))^((y[j]-1)/lag) ### loop for the weight new vector portmanteau test  

} 

squarnewsd<-(newsd^2) 

sum1<-sum(newsd)^2 

sum2<- k^2*(sum(squarnewsd)-1) 
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divd1<- sum1/sum2 

divd2<- sum2/sqrt(sum1) 

gamma<-qgamma(0.95,divd1,1/divd2) ## gamma distribution for new vector portmanteau 
test 

set.seed(1234) 

for (i in 1:ns) 

{ 

phi <- array(c(0.5,0.4,0.1,0.5,0,0.3,0,0),dim=c(k,k,2)) 

theta <- NULL 

d <- NA 

sigma <- matrix(c(1,0.71,0.71,1),k,k) 

sim1 <- varima.sim(phi, theta, d, sigma, n) ### generate data  

fitVAR <- VAR(sim1, p=1) ### fitted data 

res <- residuals(fitVAR)  ### residual of the fitted data 

cov <- acf(res[,1:k],lag.max=m,type="covariance",plot=F)$acf ## covariance matrix 

invclag0 <- solve(cov[1,,]) ### inverse matrix 

x<-c(1:m) 

for(l in 1:m) 

{ 

w[l]<-(1/((k^2)*m))^((x[l]-1)/m) ### loop for the weight of new vector portmanteau test 

clag<-cov[l+1,,] 

tclag<-t(clag)  ### trace of the covariance matrix 

mclag<- tclag%*% invclag0%*% clag%*% invclag0 

tracelag[l]<- tr(mclag)/(n-l) 

tracelagw[l]<- w[l]*tr(mclag)/(n-l) 

Qvho[[i]]<-(n*n)*sum(tracelag)  ### vector Hosking test 

Qve[[i]]<-(n*n)*sum(tracelagw) ### vector new test 

Qmm[[i]]<-gvtest(res,lag=m,order=0,SquaredQ=FALSE,Kernel=FALSE) ## vector 
Mahdi and McLeod (2011) 

matrixcolumn[[i]]<-Qmm[[i]][,2,drop=F] 

MLtest[[i]]<- matrixcolumn [[i]]< mmchi 

hostest[[i]]<-Qvho[[i]]<hchi 

newtest[[i]]<-Qve[[i]]<gamma 
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} 

} 

length(hostest[hostest==FALSE])/ns  ### account number of rejection 

length(MLtest [MLtest ==FALSE])/ns 

length(newtest[newtest==FALSE])/ns 
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Appendix D 

Simulation studies of data generated under an AR(2) process tested by the DF tests 

and the ADF tests.  

𝜙  and 𝜙  are given from 0.1 to 0.9 (subject to the stationarity condition of an AR(2) 

process, i.e. 𝜙  + 𝜙  < 1), and n = 25, 50, 75, 100, 250, 500, 750, and 1000. 
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Appendix E 

Dickeys’ method for calculating the critical values of the DF test and the ADF test.  

 

For example, for the DF test (similar procedure for the ADF test), (Dickey, 1976) 

1- Generate n points of data from a Normal distribution (𝑒  white noise). 

2- Use the 𝑒  values to generate observations from an AR(1) process with parameter 

𝜙. 

3- Estimate all parameters by least squared method using the data you have, and 

compute the t-test statistic.  

4- Fix all estimated parameters except 𝜏 which you set to zero.  

5- Using this sample re-estimate 𝜏 and then the t-test statistic using least squared 

method, which is a random number drawn from the sampling distribution under the 

null, say 𝑡 . 

6- Repeat steps (3) and (4) above 10,000 times, and produce a set 𝑡 , 𝑡 ⋯. 

7- Percentiles of this distribution give the critical values. 

 

 

 

 

 

 

 

 

 

 

 

 


