1	New age constraints support a K/Pg boundary interval on Vega Island, Antarctica:
2	implications for latest Cretaceous vertebrates and paleoenvironments
3	
4	Roberts, Eric M. ^{*a,b} , O'Connor, Patrick M. ^{c,d} , Clarke, Julia A. ^e , Slotznick, Sarah P. ^f ,
5	Placzek, Christa J. ^b , Tobin, Thomas S. ^g , Hannaford, Carey ^h , Orr, Theresa ^a , Jinnah, Zubair
6	A. ⁱ , Claeson, Kerin M. ^j , Salisbury, Steven ^k , Kirschvink, Joseph L. ¹ , Pirrie, Duncan ^m and
7	Lamanna, Matthew C. ⁿ
8	
9	^a Earth and Environmental Sciences, James Cook University, Townsville, QLD 4811,
10	Australia, eric.roberts@jcu.edu.au; ^b Economic Geology Research Centre, James
11	Cook University, Townsville, QLD 4811 Australia; ^c Department of Biomedical
12	Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens,
13	OH 45701, USA; ^d Ohio Center for Ecological and Evolutionary Studies, Ohio
14	University, Athens, OH 45701, USA; ^e Department of Geological Sciences,
15	University of Texas at Austin, 1 University Station, C1100, Austin, TX 78712,
16	USA; ^f Department of Earth Sciences, Dartmouth College, Hanover, NH USA;
17	⁸ Department of Geological Sciences, University of Alabama, Tuscaloosa, Al,
18	USA; ^h MGPalaeo, Malaga WA 6090; ⁱ School of Geosciences, University of the
19	Witwatersrand, Johannesburg, South Africa; ^j Department of Biomedical
20	Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131,
21	USA; ^k School of Biological Sciences, The University of Queensland, Brisbane,
22	Queensland 4072, Australia; ¹ Division of Geological and Planetary Sciences,
23	California Institute of Technology, Pasadena, CA, USA; ^m School of Applied

24	Science, University of South Wales, Pontypridd C37 4BD, UK; ⁿ Section of
25	Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes
26	Ave., Pittsburgh, PA 15213, USA.
27	*Corresponding author
28	Keywords: Antarctica, Vega Island, Sr-isotope stratigraphy, magnetostratigraphy
29	
30	

31 ABSTRACT

32 A second K/Pg boundary interval in the northern sector of the Antarctic Peninsula on 33 Vega Island has been proposed, yet current temporal resolution for these strata prohibits 34 direct testing of this hypothesis. In order to not only test for the existence of a K/Pg 35 boundary on Vega Island, but to provide increased age resolution for the associated 36 vertebrate fauna (e.g., marine reptiles, non-avian and avian dinosaurs), the Vega Island 37 succession was intensively re-sampled. Stratigraphic investigation of the Cape Lamb 38 Member of the Snow Hill Island Formation, and in particular, the overlying Sandwich 39 Bluff Member of the López de Bertodano Formation, was conducted using 40 biostratigraphy, strontium isotope stratigraphy, magnetostratigraphy and detrital zircon 41 geochronology. These data indicate a late Campanian-early Maastrichtian age for the 42 Cape Lamb Member and present three possible correlations to the global polarity time 43 scale (GPTS) for the overlying Sandwich Bluff Member. The most plausible correlation, 44 which is consistent with biostratigraphy, detrital zircon geochronology, sequence 45 stratigraphy, and all but one of the Sr-isotope ages, correlates the base of the section to 46 C31N and the top of the section with C29N, indicating that the K/Pg boundary passes 47 through the top of the unit. A second, less plausible option conflicts with the 48 biostratigraphy and depends on a series of poorly-defined magnetic reversals in the upper 49 part of the stratigraphy that also correlates the section between C31N and C29R, again 50 indicating an inclusive K/Pg boundary interval. The least likely correlation, one 51 dependent on favoring only a single Sr-isotope age at the top of the section over 52 biostratigraphy, correlates the section between C31N and C30N and is inconsistent with 53 an included K/Pg boundary interval. Although our preferred correlation is well supported, we failed to identify an Ir-anomaly, spherules/impact ejecta, or other direct evidence typically used to define the precise position of a K/Pg boundary on Vega Island. This study does however confirm that *Vegavis*, from the base of the Sandwich Bluff Member, is the oldest (69.2-68.4 Ma) phylogenetically-placed representative of the avian crown clade, and that marine vertebrates and non-avian dinosaurs persisted in Antarctica up to the terminal Cretaceous.

60

61 **INTRODUCTION**

62 Upper Cretaceous sedimentary rocks exposed in the Antarctic Peninsula region 63 preserve one of the most important and continuous high latitude records of faunal 64 evolution and paleoclimatic change leading up to and through the Cretaceous/Paleogene 65 (K/Pg) extinction event. These strata, deposited within the James Ross Basin (JRB), 66 preserve an extensive record of marine invertebrate and vertebrate fossils, along with rare 67 continental vertebrates, including birds and non-avian dinosaurs (e.g., Chatterjee, 1989, 68 2002; Case et al., 2000; Clarke et al., 2005, 2016; Salgado and Gasparini, 2006; 69 Tambussi and Acosta Hospitaleche, 2007; Cerda et al., 2012; Coria et al., 2013; Reguero 70 et al., 2013a,b; Razadilla et al., 2016; Acosta Hospitaleche et al., 2019; Ely and Case, 71 2019; Lamanna et al., 2019; Tambussi et al., 2019; Cordes-Person et al., 2020). 72 Significant stratigraphic and paleontological efforts (e.g., Macellari, 1988; Elliot et al., 73 1994; Tobin et al., 2012) in the basin have focused on the well-documented K/Pg 74 boundary section on Seymour Island in the southeastern and more distal part of the basin. 75 A wealth of recent work has also focused on the Cretaceous units on James Ross Island, 76 leading to the discovery of important vertebrate fossil localities. Work to constrain both

8 particula

77

the age and depositional setting of these localities has also improved basin stratigraphy,

78 particularly for the Coniacian to lower Campanian Hidden Lake, Santa Marta, and lower

79 Snow Hill Island formations (Milanese et al., 2017, 2019, 2020).

80 The northwestern part of the basin includes Humps Island and Vega Island, both 81 of which also expose Upper Cretaceous strata (del Valle and Medina, 1980; Pirrie et al.,

82 1991; Olivero et al., 1992; Pirrie, 1994; Marenssi et al., 2001; Smith, 2004). Although the

83 fossil record from Humps Island is quite limited, Vega Island has produced important

84 continental vertebrate fossils, combined with the possibility that the K/Pg boundary

85 occurs at the top of the exposed section (Roberts et al., 2014). Unfortunately, strata across

the basin have proven difficult to precisely correlate, particularly among the various

87 islands due to both cover and accessibility. Additionally, correlation with better dated

88 K/Pg sections in the Northern Hemisphere has also been challenging (e.g., Crame et al.,

89 1999; McArthur et al., 2000). Invertebrate biostratigraphy has been utilized to establish a

90 basic stratigraphic framework across the basin (e.g. Olivero, 2012), but issues related to

91 the interpretation of localized extinction and endemism have proven problematic,

92 particularly for any extra-basinal correlative inferences (Macellari, 1987; Olivero and

93 Medina, 2000; Milanese et al., 2017).

Recent efforts utilizing magnetostratigraphy have been more successful at resolving stratigraphic uncertainties in selected parts of the basin (Tobin et al., 2012, 2020; Milanese et al., 2017, 2018, 2020), but to date, attempts at radiometric dating and strontium isotope stratigraphy have been limited. Crame et al. (1999, 2004) and McArthur et al. (1998, 2000) first utilized strontium isotope stratigraphy to establish a number of key control points in the basin, including an important temporal calibration

100	within the Gunnarites antarcticus faunal assemblage in the Cape Lamb Member of the
101	Snow Hill Island Formation on Vega Island (Ammonite Assemblage 10 of Olivero,
102	2012). Although devitrified volcanic ash beds (bentonites) have been reported throughout
103	the stratigraphy (e.g., Bowman et al., 2016), few published radiometric ages exist.
104	However, Tobin et al. (2020) recently highlighted the potential for utilizing detrital zircon
105	geochronology to establish better age control for poorly dated Upper Cretaceous strata on
106	Robertson Island in the southern JRB through the identification of the youngest
107	populations of syndepositionally derived volcanic grains in the abundant volcanolithic
108	sandstone units within the basin.
109	Reconstructions of the regional Upper Cretaceous stratigraphy,
110	paleoenvironments and paleogeography of the JRB are complicated by the long distances
111	between the islands and the variability in thickness and quality of exposures, which
112	ranges from exquisite to poor. The best-characterized and most continuous exposures are
113	recorded on Seymour Island and the regularly exposed portion of Snow Hill Island in the
114	southern, distal portion of the basin. In contrast, deposits in the northern, proximal part of
115	the basin (e.g., particularly those on Vega Island) are patchier in nature and complicated
116	by faulting, intrusive sills and dykes, and overlying volcanics, rendering them generally
117	less well-constrained from a temporal viewpoint. This is problematic because the Upper
118	Cretaceous section on Vega Island preserves a unique lithostratigraphic unit known as the
119	Sandwich Bluff Member of the López de Bertodano Formation, a nearshore marine to
120	potentially non-marine (near the top) succession that preserves the richest continental
121	fossil vertebrate assemblage from the Antarctic Peninsula region (Lamanna et al., 2019).
122	This unit is best known for its important avian fossils, including some hypothesized to be

123 the geologically earliest representative (e.g., Vegavis iaai; Clarke et al., 2005, 2016) of 124 the avian crown clade. However, poor age control at the top of the Vega Island 125 succession limits our understanding of these and other vertebrate fossils, including the 126 only indisputable hadrosaur from Antarctica (Case et al., 2000) and a suite of other non-127 avian and avian dinosaur remains (reviewed in Tambussi and Acosta Hospitaleche, 2007; 128 Reguero et al., 2013a, Ksepka and Clarke, 2015; Acosta Hospitaleche et al. 2019; 129 Lamanna et al., 2019). 130 This study integrates Sr-isotope stratigraphy, palynology, macrofossil 131 biostratigraphy, magnetostratigraphy, and U-Pb detrital zircon geochronology to refine 132 the age(s) of Upper Cretaceous strata on Vega Island. The aims are threefold and include: 133 (1) establishing a robust chronostratigraphy for the stratigraphic succession on Vega 134 Island; (2) testing the hypothesis that a K/Pg boundary interval is preserved at the top of 135 the Sandwich Bluff Member of the López de Bertodano Formation; and (3) refining the 136 age of strata that yield the marine vertebrate, non-avian dinosaur, and bird fossils, 137 including Vegavis iaai, a taxon that represents one of the oldest-known records of the

138 avian crown group.

139

140 GEOLOGIC BACKGROUND

141 Strata in the JRB comprise only the exposed portion of the much larger Larsen 142 Basin (Macdonald et al., 1988), which developed in a back-arc basin framework behind 143 the Graham Land magmatic arc during the Cretaceous and Paleogene (Fig. 1A). The 144 Graham Land arc developed on what is now the Antarctic Peninsula due to southeast-145 directed subduction of the proto-Pacific Plate (Hathway, 2000). Nearly 7,000 m of

146	Cretaceous-Paleogene clastic strata were deposited in the JRB and represent three major
147	depositional cycles: the Aptian-Coniacian Gustav Group, the overlying Santonian-
148	Danian Marambio Group, and the Selandian-Priabonian? Seymour Island Group (Rinaldi
149	et al., 1978; Olivero et al., 1986; Pirrie, 1989; Crame et al., 1991; Pirrie et al., 1991;
150	Olivero, 2012; Crame, 2019). The succession reveals deeper-water facies in the Gustav
151	Group, followed by shallowing up of the Marambio Group, associated with some
152	combination of basin filling, uplift and sea-level change during the terminal Cretaceous
153	and early-mid Paleogene (Hathway, 2000). Deposition took place across a broad shelf
154	that extended >100 km from shore to slope (Pirrie et al., 1991; Hathway, 2000). Sea level
155	fluctuations had a significant influence on the depositional patterns and geometry of the
156	succession, and these are generally linked to third-order eustatic sea level cycles that can
157	be traced across the basin (Olivero, 2012).
158	Over the last 100+ years, Cretaceous and Paleogene strata of the JRB have been
159	subject to considerable attention from paleontologists interested in high-latitude
160	paleoenvironments, paleoclimate, and evolutionary patterns (e.g., Kilian and Reboul,
161	1909; Wilckens, 1910; Spath, 1953; Zinsmeister, 1982, 2001; Olivero et al., 1986, 1992,
162	2008; Askin, 1988; Zinsmeister et al., 1989; Crame et al., 1991, 2004; Pirrie et al., 1991;
163	Marenssi et al., 1992, 2001; Riding et al., 1992; Bowman et al., 2012, 2013, 2016;
164	Olivero, 2012; di Pasquo and Martin, 2013; Witts et al., 2015, 2016, 2018; Petersen et al.,
165	2016; Schoepfer et al., 2017; Tobin, 2017, Hall et al., 2018; Crame, 2019; Whittle et al.,
166	2019; Mohr et al., 2020). To date, much of this work has been focused on the Marambio
167	Group, involving paleontological exploration coupled with detailed sedimentological
168	investigations of the deposits that are exposed principally on Seymour, Snow Hill, James

169	Ross, Humps, Cockburn, and Vega islands. Exposures range from exceptional and
170	extensive, as on Seymour and northern Snow Hill islands, to isolated and variably
171	covered by ice and younger volcanic rocks, as on James Ross and Vega islands.
172	
173	Vega Island
174	Cretaceous outcrops on Vega Island are concentrated on Cape Lamb (Fig. 1B).
175	Here, a partial section of the Campanian Gamma Member (~Herbert Sound Member) of
176	the Snow Hill Island Formation (~50 m thick) forms the base of the section and is
177	overlain by the upper Campanian to lower Maastrichtian Cape Lamb Member of the
178	Snow Hill Island Formation (~330 m thick). These are in turn capped by the ~100–110
179	m-thick Maastrichtian Sandwich Bluff Member of the López de Bertodano Formation
180	(Pirrie et al., 1991; Olivero et al., 1992; Marenssi et al., 2001; Roberts et al., 2014). The
181	Sandwich Bluff Member is widely recognized for its unique sample of high-latitude latest
182	Cretaceous terrestrial vertebrate fossils from the Southern Hemisphere (e.g., Case et al.,
183	2000; Clarke et al., 2005, 2016; Tambussi and Acosta Hospitaleche, 2007; Cerda et al.,
184	2012; Coria et al., 2013; Reguero et al., 2013a, b; Razadilla et al., 2016; Acosta
185	Hospitaleche et al., 2019; Lamanna et al., 2019). In particular, the holotype and referred
186	partial skeletons of Vegavis (Clarke et al., 2005, 2016) and other significant bird
187	specimens (Acosta Hospitaleche et al., 2019; West et al., 2019), as well as rare non-avian
188	dinosaur material have been discovered from the Sandwich Bluff Member (Lamanna et
189	al., 2019). The holotype and referred skeletons of Vegavis and other, as-yet undescribed
190	avian fossils, were collected from the basal unit of the Sandwich Bluff Member (Clarke
191	et al., 2005, 2016; SBM 1 of Roberts et al., 2014). Most estimates of the age of the

192 Sandwich Bluff Member on Vega Island are based on biostratigraphic data and long-193 distance correlations with better-studied exposures of the López de Bertodano Formation 194 on Seymour Island (Pirrie et al., 1991; Bowman et al., 2012, 2014). 195 Biostratigraphic refinement and taxonomic revision of Antarctic records of the 196 dinoflagellate cyst *Manumiella* described the new species *M. bertodano* (Thorn et al., 197 2009; Bowman et al., 2012, 2014), which as originally identified as "Manumiella n.sp. 2" 198 by Pirrie et al. (1991) from the Sandwich Bluff Member of Vega Island. On Seymour 199 Island, this species is restricted to near the top of the upper Maastrichtian López de 200 Bertodano Formation (upper Unit 9; ~67.7–66.3 Ma) with a range terminating below the 201 boundary (Bowman et al., 2012, 2014). Although most previous workers conclude that 202 the section exposed on Vega Island terminated prior to the K/Pg boundary, Roberts et al. 203 (2014) identified a rapid proximal shoreline shift recorded by an erosional, channel-filled 204 alluvial conglomerate 20 m below the top of the section. This was succeeded by rapid 205 facies deepening and a return to marine conditions in the top 10 m of the section. These 206 features were interpreted as evidence of a previously unrecognized sequence boundary in 207 the northern portion of the basin and compare favorably with a notable sequence 208 boundary between at the top of the López de Bertodano and Paleogene-age Sobral 209 formations on Seymour Island. The conceptual early Paleocene sequence boundary on 210 Seymour Island caps the *Maorites* and *Grossouvrites* (MG) sequence of Olivero (2012; 211 but also see Olivero and Medina, 2000). 212 Previous biostratigraphic work on Vega Island by Pirrie et al. (1991) and Riding 213 (1997, unpublished report) regarded the occurrence of *M. bertodano* (their "*M.* n. species 214 2") as extending from near the base of the Sandwich Bluff Member to \sim 8.4 m below the

215 top unit. Thorn et al. (2009) and Bowman et al. (2012, 2014) considered the upper limit 216 of *M. bertodano* on Seymour Island to terminate ~50–100 m below the K/Pg boundary in 217 their composite section. However, since the Sandwich Bluff Member on Vega Island is 218 proximal to the Cretaceous shoreline and considerably condensed relative to the López de 219 Bertodano Formation on Seymour Island (Olivero, 2012). Roberts et al. (2014) suggested 220 the possibility that a thin interval of Paleogene strata may be exposed on Vega Island. 221 These workers had no biostratigraphic, geochronologic, or geochemical evidence to 222 support the hypothesized K/Pg boundary on this island. However, recognition of a 223 possible sequence boundary near the top of the Sandwich Bluff Member was suggested to 224 correlate to a post-Cretaceous sea level fall elsewhere in the basin. Hence, this presents 225 tantalizing evidence to suggest that this important event in Earth History may be recorded 226 on Vega Island, or perhaps that the tectonic/eustatic history of the JRB is more complex 227 than previously considered, and an undocumented sea-level fall occurred just prior to the K/Pg boundary in the northern part of the basin. 228

229

230 METHODS

The research presented herein was based on field observations and sampling conducted during two cruises to the JRB sponsored by the United States National Science Foundation aboard the United States Antarctic Program vessels *R/V Lawrence M. Gould* and *R/V Nathaniel B. Palmer* during the austral summers of 2011 and 2016, respectively. Fieldwork was carried out primarily from base camps on Vega Island, with the addition of USAP-mediated helicopter support in 2016. Data used in different analyses (e.g., detrital zircon and Sr-Isotope geochronology, etc.) were collected from strata exposed on Vega Island, with specific stratigraphic intervals for a given analysis detailed in thesections below.

240

241 Sedimentology

242 Over three days during the 2016 field season, a detailed stratigraphic section was 243 re-measured through the upper portion of the Sandwich Bluff section. This section began 244 at the base of Unit SBM14 and extended through the interval that Roberts et al. (2014) 245 hypothesized could be correlative with the Sobral Formation (SF1 and SF2) on Seymour 246 Island. To minimize confusion, strata above SBM15 are collectively referred to in the 247 present study as SBM16 (instead of SF1 and SF2 as in Roberts et al., 2014), but have 248 been broken down into ten discrete subunits within that interval (SBM16a-j). A Jacob's 249 staff and Brunton compass were used to measure this interval at the decimeter scale. 250 Particular attention was paid to searching for evidence of the K/Pg boundary interval 251 through this section, including evidence of a fish kill horizon or glauconite layer as 252 observed on Seymour Island (Elliot et al., 1994; Zinsmeister, 1998). Sediment sampling 253 for geochemistry, detrital zircon geochronology, and palynology was conducted, with 254 detailed descriptions of the sedimentology, ichnology, and paleontology recorded (Fig. 255 2).

256

257 Sr-Isotope Analysis

A total of 26 aragonitic ammonite, nautiloid, and bivalve shells, along with two calcitic pycnodont oyster shells, identified and collected during 2016 were selected and sampled for *in situ* Sr-isotope analysis. The shells were selected from a large collection of

261	fossils sampled throughout the stratigraphic succession on Vega Island. Only those shells
262	in the best condition were initially selected, with the least visually altered portions of
263	these shells imaged using scanning electron microscopy (SEM) and evaluated for
264	preservation and diagenesis based on the methods described by Cochran et al. (2010) and
265	Knoll et al. (2016) (see Supplementary Materials). Due to the typically small amount of
266	well-preserved shell (or regions of shell) associated with the samples, repeat analyses
267	could only be performed on nine of the 28, resulting in 37 total Sr-isotope analyses
268	(Table 1). Detailed sampling, taphonomic filtering, sample preparation and analytical
269	methods are further outlined in the Supplementary Materials.
270	Due to the thickness of the section and the patchy nature of well-preserved fossils
271	in the Cape Lamb and Sandwich Bluff members, this study focused on fossil collections
272	from seven different stratigraphic intervals (see Table 1; Fig. 3 for details). Analyses of
273	the fossils within each of these major stratigraphic intervals were binned together to
274	obtain a mean ⁸⁷ Sr/ ⁸⁶ Sr ratio. Note that both benthic and nekto-benthic forms and calcitic
275	and aragonitic shells were binned together due to the limited number of samples
276	available. These values were used to determine a numerical age for the eight intervals and
277	the uncertainty limits on each age, using the newest version (V5, provided by J.
278	McArthur, pers. Comm., 3/2014 and 2017) of the LOWESS look-up table (McArthur and
279	Howarth, 1998; Howarth and McArthur, 1997). Following Crame et al. (1999), the
280	uncertainty on each age includes the uncertainty inherent in the reference curve of
281	McArthur and Howarth (1998) using updated Version 5 paired with the GTS2012 in
282	McArthur et al. (2012) (Table 1; Fig. 3). This approach follows that used by Crame et al.
283	(1999) in their seminal work on the Sr-isotope stratigraphy of the Upper Cretaceous

succession in the JRB. We also recalibrated the robust ⁸⁷Sr/⁸⁶Sr age published by Crame 284 285 et al. (1999) for the lower Cape Lamb Member using the updated (v.5) LOWESS curve 286 (Fig. 3).

- 287
- 288

U-Pb Detrital Zircon Geochronology

289 Two detrital zircon samples were collected from the Sandwich Bluff Member of 290 the López de Bertodano Formation on Vega Island and analyzed via U-Pb laser ablation 291 inductively coupled mass spectrometry (LA-ICP-MS). The lower sample (3-5-11-1) is 292 from a calcareous sandstone concretion collected from the Vegavis-bearing Unit SBM1 at 293 the base of the Sandwich Bluff Member (see Roberts et al., 2014). The other sample (2-294 25-16-9) was collected from the top of the Sandwich Bluff Member (SBM 16j) from 295 muddy sandstone beds 2.75 m below the unconformably overlying Pliocene Hobbs 296 Glacier Formation. Only one of these two samples (2-25-19-9 from SBM 16) yielded a 297 population (n=3+) of potential syndepositional zircons. Mineral separation and additional 298 details on the U-Pb LA-ICP-MS methods following those of Todd et al. (2019) and Foley 299 et al. (2021) are detailed in the Supplementary Materials.

300 The results were processed using the Iolite package (https://iolite-software.com/), 301 which corrected for downhole fractionation, instrumental drift, and propagated error 302 estimation (Paton et al., 2011). Probability density plots and weighted mean ages were 303 calculated using Isoplot for SBM16 sample (Ludwig, 2008). The focus of the detrital 304 zircon analysis in this study was on the youngest zircon populations in the samples in 305 order to calculate maximum depositional ages (MDAs) to help refine the age of the 306 Sandwich Bluff Member and to test the K/Pg boundary hypothesis (Fig. 4). Individual

zircon grain ages younger than 300 Ma with >10% discordance between the 206 Pb/ 238 U 307 age and the 207 Pb/ 235 U age were not included in the study. MDAs were calculated by 308 309 determining the weighted mean of the youngest cluster of concordant grains (where $n \ge 3$) 310 with overlapping ages (within 2σ error) for each sample (Dickinson and Gehrels, 2009; 311 Tucker et al., 2013, 2016). In the lower sample, a population was not identified, so the 312 youngest single grain age is discussed. All syndepositional zircons (younger than 70 Ma) 313 are considered to be derived from nearby volcanic sources; however, a more detailed 314 sedimentary provenance analysis of the detrital zircon populations is beyond the scope of 315 the current investigation. 316

317 Macrofossil Biostratigraphy

Marine macrofossils are uncommon in the Sandwich Bluff Member compared with many other exposures in the JRB, but we recovered several ammonites that could be placed within our section, both as geochemical targets and as biostratigraphic markers. When recognizable or well-preserved specimens were observed in the field, they were either collected or photographed *in situ*. Stratigraphic locality information and GPS locations were recorded. In the lab, specimens were photographed, and taxonomic diagnoses were established by coauthor TT.

325

326 Palynology

Four palynology samples from the top of the Sandwich Bluff Member were
collected and analyzed. Palynological processing was carried out by one of us (CH) at the
MGPalaeo palynology laboratory in Malaga, Western Australia. Standard palynological

preparatory techniques, as outlined by Phipps and Playford (1984), Wood et al. (1996),

and Brown (2008) were used. Additional description of sample processing and images ofthe specimens are provided in the Supplementary Materials.

333 Samples were analyzed quantitatively using the first 150 recovered specimens in 334 each sample, with any subsequent species simply recorded as present. Key data and 335 interpretations for each sample are provided in Table 2. Details of the palynomorph 336 assemblages are recorded on the StrataBugs distribution chart, with each taxon expressed 337 as a percentage of the entire assemblage (Supplementary Materials, Supplementary Fig. 338 5). From this information assignments are made to the Australian palynostratigraphic 339 scheme of MGPalaeo (2014), as shown in Table 2, and based on the schemes of Partridge 340 (2006) and Askin (1988a). Finally, the results are also interpreted in terms of the late 341 Maastrichtian dinoflagellate cyst zonation scheme of Bowman et al. (2012) for Seymour 342 Island.

343

344 *Magnetostratigraphy*

345 Twenty concretions/concretionary horizons were sampled through the ~ 100 m 346 thick Sandwich Bluff Member of the López de Bertodano Formation and the thin 347 overlying interval of possible Sobral Formation equivalent (Unit SBM16 in this 348 contribution) published by Roberts et al. (2014). Each sample was subdivided into 349 specimens, one of which was measured for paleomagnetism on a 2G Enterprises SQuID 350 magnetometer in the Caltech Paleomagnetics Laboratory using the RAPID consortium's 351 automatic changer (Kirschvink et al., 2008). For each specimen, natural remanent 352 magnetization was measured, followed by three low-temperature cycling steps in liquid

- nitrogen, low alternating field demagnetization up to 7 mT, and then thermal
 demagnetization up to 575° C in 29 steps of 5° to 20° C in a controlled nitrogen
- demagnetization up to 575° C in 29 steps of 5° to 20° C in a controlled nitrogen
- 355 atmosphere. Paleomagnetic directions were calculated using the least squares method
- 356 with anchored lines and planes (Kirschvink, 1980) combined with Fisher statistics (e.g.
- 357 McFadden and McElhinny, 1990) using the PmagPy software (Tauxe et al., 2016) (Figs.
- 358 5–6). Beds at Sandwich Bluff were nearly flat-lying with dips of $< 03^{\circ}$ (strike $\sim 140^{\circ}$);
- 359 due to the low-degree of post-depositional tilting and the difficulty of determining strike
- 360 in such a situation, no tilt-correction was applied to the data. The measurement level data
- 361 (with specimen coordinates and stratigraphic position) as well as the interpreted
- 362 directions for each specimen with temperature range and maximum angular deviation can
- 363 be accessed at the MagIC database (for purpose of review:
- 364 <u>https://earthref.org/MagIC/19479/e3658eff-8192-49ff-ba58-669c1fad53da</u> final URL
- 365 TBD). Additional rock magnetic measurements were performed on selected sister
- 366 specimens (i.e., taken from the same drill core) of samples representing a range of
- 367 demagnetization behaviors using a 2G Enterprises SQuID magnetometer following the
- 368 RAPID protocols, and analyzed using the RAPID Matlab scripts (Kirschvink et al., 2008)
- 369 (see Supplementary Materials, Supplementary Fig. 6).
- 370

371 **RESULTS**

372 Sedimentology through Potential K/Pg Interval on Sandwich Bluff

- A detailed sedimentological investigation of the top 24 m of the Sandwich Bluff
- 374 Member (units SBM14–SF2 of Roberts et al., 2014, with SF1–2 herein referred to as
- 375 SBM16a-j) was conducted based on fieldwork performed during this study. Rather than a

376 single erosional discontinuity within this interval as originally proposed, there are a series 377 of closely spaced erosional boundaries overlain by upward-fining coarse sandstone to 378 pebble and cobble conglomerates between the base of Unit SBM15 and the top of Unit 379 SBM16a (= possible Sobral Formation equivalent or unit 10 of the López de Bertodano 380 Formation on Seymour Island) (Fig. 2C, G). The first of these disconformities is an 381 erosional contact incised into shallow marine sandstones at the top of SBM14, above 382 which a distinctive change in the sedimentology of the section is observed that is 383 characterized by a marked increase in grain size (coarse pebbly sandstone to 384 conglomerate) with abundant intraformational and extraformational pebbles and cobbles. 385 Rounded, intermediate volcanic pebbles and cobbles up to 35 cm in diameter are most 386 common and are typically matrix-supported within coarse sandstones to granulestones 387 (Fig. 2B–C). This interval has a distinctly alluvial character and the basal erosional 388 disconformity at the base of SBM15 is herein interpreted to record the initial base level 389 fall (sequence boundary), which is 2.5 m lower in the section than originally suggested by 390 Roberts et al. (2014). However, the three-meter interval between the base of units SBM15 391 and SBM16a is characterized by what appears to be a significant basin-ward facies shift 392 above a series of disconformities, suggesting a forced regression succeeded by a period of 393 low accommodation and either channel migration/avulsion or minor base level 394 adjustments. 395 The section fines upward from here through units SBM16b-c, which are

395 The section lines upward from here unough units 5DM100 °C, which are 396 characterized by abundant plant hash, and fragmentary leaf material (including isolated 397 whole leaves) within reddish-orange sandstone to siltstone. The top of SBM16c is 398 erosionally incised into by a distinctive 30 cm-thick, cobble-pebble conglomerate of unit

399	SBM16d, which preserves a number of indeterminate bone fragments. This unit is
400	sharply overlain by a dark gray organic-rich siltstone unit (SBM16e) with alternating
401	dark gray sandstone and siltstone units above (SBM16f-i). The sedimentology of units
402	SBM16e-i is very similar and is distinctive for its high abundance but low diversity of
403	trace fossils, dominated by Thalassinoides, Teichichnus and Planolites. This suite of trace
404	fossils suggests a return to marine conditions, most likely a nearshore tidal environment
405	based on the abundance of Teichichnus and Thalassinoides and alternating grain size
406	(Gingras et al., 2012; Knaust, 2018). The capping unit SBM16j has a tuffaceous
407	appearance, with a series of clayey intervals that appear to be bentonitic (Fig. 2D). A
408	sample of this bed was collected for detrital zircon geochronology and is discussed
409	below. Unit SBM16j is unconformably overlain by the Neogene Hobbs Glacier
410	Formation. We interpret the entire interval between units SBM16d-j to represent a
411	shallow, likely tidal marine environment associated with a bay or estuary system
412	(Gingras et al., 2012).
413	The second objective associated with studying the sedimentology of this part of
414	the stratigraphy on Vega Island in greater detail was to search for physical evidence of a
415	K/Pg boundary interval. No obvious evidence of impact ejecta or a proposed post-event

416 mass mortality horizon (e.g., 'fish kill horizon' on Seymour Island; Elliot et al., 1994;

417 Witts et al., 2016) was identified. In addition, we found no evidence of a glauconitic

418 interval in the section similar that observed on Seymour Island, though such a layer

419 would be unlikely given the much shallower water depths estimated for this location.

420 Although there are no obvious physical indications of the boundary, we resampled this

421 interval with the goal of refining the age of the top of the Sandwich Bluff succession, the422 results of which are presented below.

423

424 Sr-Isotope Stratigraphy

425 Elemental compositional evaluations identified well-preserved shell samples for 426 age analysis in each stratigraphic member. Elemental concentrations in shells are often 427 used to assess samples for alteration following initial macroscopic and/or microscopic 428 examinations (e.g. Brand, 1989; McArthur et al 1994; Pagani and Arthur, 1998; Cochran 429 et al., 2010), with a loss of Sr and an increase in Fe and Mn expected following 430 diagenetic recrystallization (e.g. Brand and Veizer, 1980; Van Geldern et al. 2006). 431 Elemental analysis of our selected samples identified no clear trend in element 432 concentrations or element/Ca ratios with preservation (Table 1; Supplementary Fig. 1). 433 We found no indication of an increase in Sr concentrations with decreasing preservation, 434 as found by Cochran et al. (2010) and Knoll et al. (2016), and thought to be due to the 435 addition of strontianite to the original shell (Supplementary Fig. 2). Considering these 436 results, and the careful selection of shell material with a preservation index (PI) of 3 or 437 greater (good to excellent preservation), the samples analyzed in this study are considered 438 to be mostly unaltered, and hence, viable for use in Sr-isotope stratigraphy. 439 The lowest stratigraphic interval on Vega Island that was identified to have well-440 preserved fossils was an interval \sim 30–40 m above the base of the Cape Lamb Member. 441 After diagenetic evaluation, six different samples were chosen for analysis, three of 442 which were analyzed in duplicate. The mean age for the nine analyses from this interval

443 is 73.1 +0.6/-1.1 Ma (all errors reported as 2 s.e.) (Table 1; Fig. 3).

444	Fossil preservation above this level is patchy, and a suite of six well preserved
445	shells (plus two duplicate analyses) from between 60–130 m above the base of the Cape
446	Lamb Member were binned together to determine an age for this interval. The mean age
447	for the eight analyses for this stratigraphic interval is $72.8 + 0.30/-0.55$ Ma (Table 1; Fig.
448	3). Crame et al. (1999) published a robust Sr-isotope age from the lower Cape Lamb
449	Member based on six shell samples (plus 11 duplicate analyses) from an interval \sim 130–
450	145 m above the base of this unit. They calculated a mean age of 71.0 ± 0.2 Ma using
451	Version 2 of the LOWESS curve. Here, we recalibrated this age using the most recent
452	version of the LOWESS curve (Version 5, provided by J. McArthur, pers. comm., 2017)
453	to 72.0 +0.10/-0.15 Ma (Table 1; Fig. 3, yellow circle). This age is stratigraphically
454	consistent with ages that we have determined for the intervals below and above this level.
455	In addition, we collected a single well-preserved bivalve from the interval above this (at
456	184 m above the base of the Cape Lamb Member) and analyzed it in duplicate. This
457	resulted in a mean age of 71.9 +0.35/-0.55 Ma (Table 1; Fig. 3), which is also
458	stratigraphically consistent with the recalibrated age of Crame et al. (1999). Two
459	additional shells with excellent preservation were collected from 234 m above the base of
460	the Cape Lamb Member. These yielded an identical age of 71.9 +0.10/-0.10 Ma for this
461	interval, suggesting a relatively rapid phase of deposition for the upper portion of the
462	lower Cape Lamb Member, making it difficult to more precisely resolve the age of this
463	interval.
464	Only a single interval (between 270–280 m) from the upper unit of the Cape

466 analyzed from this interval, yielding a mean age of 71.0 + 0.15/-0.10 Ma (Table 1; Fig.

Lamb Member was identified with well-preserved shell material. Two samples were

465

467	3). The lowest unit (SBM1) of the overlying Sandwich Bluff Member of the López de
468	Bertodano Formation preserves comparatively well-preserved shells within the lowest 6
469	m of the section. Three analyzed shells, each with a duplicate analysis, yielded a mean
470	age of 69.7 +0.45/-1.0 Ma consistent with existing macrofossil biostratigraphy (Table 1;
471	Fig. 3). Above this, an assortment of very poorly preserved to quite well preserved shells
472	was collected between 48-82 m (i.e., from units SBM 10-13) above the base of this
473	member. Based on the eight shells that did pass the PI test from this interval, a mean age
474	of 68.5 +1.45/-1.90 Ma (2 s.e.) (Table 1; Fig. 3). This age has a relatively higher
475	uncertainty associated with it and it is more difficult to reconcile when paired with the
476	microbiostratigraphy and magnetostratigraphy, both of which suggest a younger age for
477	the sampled interval. Moreover, this part of the stratigraphy rapidly shallows, and has
478	considerable evidence of greater continental influence (e.g., abundant leaves and
479	increasing terrestrial vertebrate fossils). Hence, this stratrigraphically highest age within
480	the SMB must be treated with caution.

481

482 U-Pb Detrital Zircon Geochronology

483 The detrital zircon sample analyzed in this study from Unit SBM1 (sample 3-5-

484 11-1) at the base of the Sandwich Bluff Member produced 53 concordant analyses out of

485 56 total analyses. The youngest single zircon grain age was 68.9±0.68 Ma

486 (Supplementary Table 1). No other potentially syndepositional latest Cretaceous grains

487 were identified, though, which limits the conclusions that can be drawn from this sample.

488 The MDA provided by this single analysis is consistent with the Sr-isotope results

489 reported above for this stratigraphic interval, and with the magnetostratigraphic results

491 Jurassic ages, with a secondary latest Paleozoic to Neoproterozoic population of grains492 (see also Pirrie, 1994).

493 For the highest detrital zircon sample (2-25-16-9), from a tuffaceous interval 2.75 494 m below the top of the Sandwich Bluff Member or Sobral Formation (Unit SBM16j in 495 Fig. 2), a coherent population of four young grains defined by a prominent peak on the 496 frequency distribution curve was documented. This young zircon population yields a 497 robust weighted mean of 66.3 ± 1.1 Ma for the MDA (Fig. 4; Supplementary Table 2), 498 meaning that this part of the stratigraphy is latest Maastrichtian in age to earliest 499 Paleogene (Danian). The majority of other zircon grains in this sample are Early 500 Cretaceous to Triassic in age, with a secondary latest Paleozoic-Neoproterozoic 501 population, similar to what was documented in the detrital zircon sample from the base of 502 the Sandwich Bluff Member (Supplementary Table 2).

503

504 Macrofossil Biostratigraphy

505 Broadly, the few fossils recovered as part of this work do not change previously 506 published interpretations regarding the biostratigraphic relationships of Vega Island with 507 other parts of the James Ross Basin. The Cape Lamb Member of the Snow Hill Island 508 Formation contains abundant examples of the ammonite *Gunnarites*, including those 509 sampled here. Gunnarites is part of Ammonite Assemblages 9 and 10 of Olivero (2012) 510 and is found throughout the James Ross Basin, particularly the eastern half. Invertebrate 511 macrofossils are much less common and are typically poorly preserved in the Sandwich 512 Bluff Member of the López de Bertodano Formation. Early work in this area did not

differentiate the Cape Lamb and Sandwich Bluff units, which makes use of their reported
occurrences more challenging for biostratigraphy (del Valle and Medina, 1980). Pirrie et
al. (1991) report a non-specific *Maorites* assemblage from the Sandwich Bluff Member,
consistent with our observations on this unit. Olivero et al. (1992) provide a more
detailed faunal analysis but did not sample most or all of what is now the Sandwich Bluff
Member.

519 All ammonite fossils recovered from the Sandwich Bluff Member are most 520 likely *Maorites densicostatus*, consistent with all previous findings. The highest 521 recovered *M. densicostatus* specimen was from Sandwich Bluff Member unit SBM14. As 522 in Olivero et al. (1992) and Olivero (2012) we correlate the Sandwich Bluff Member (at 523 least up to unit SBM14) with the upper part (Units Klb7-9/10?) of the López de 524 Bertodano Formation on Seymour Island. Though we did not recover any of the formal 525 zonal markers from this interval (e.g., Pachydiscus spp.), their absence is likely due to the 526 paucity and poor preservation of material from the Sandwich Bluff Member more 527 generally. Additionally, based on their occurrence on Seymour Island, *Pachydiscus* likely 528 prefers a deeper water habitat, making their recovery from the Sandwich Bluff Member 529 unlikely, as it represents an overall shallower marine environment that further shallows 530 significantly from Unit SBM14 upwards.

531

532 Palynology

533 The four samples analyzed for palynology each showed excellent preservation 534 and high yields. Paleoenvironmental assessment based on the proportions of marine 535 microplankton (saline algae) to non-marine spores and pollen and freshwater algae,

536	combined with an evaluation of marine microplankton diversity, enable refined
537	environmental subdivision of the top of the Sandwich Bluff Member (Table 2; Fig. 2;
538	Supplementary Materials). The results from these four samples confirm a general
539	shallowing upward succession, transitional from marginal marine (22516-4) to non-
540	marine (170216-1) across the purported sequence-bounding unconformity suggested by
541	Roberts et al. (2014). This is supported by the low percentage (6% or less) and diversity
542	of dinoflagellates, coupled with the very high spore-pollen percentage and diversity in
543	each of the samples. Above this interval, the two highest palynology samples (22516-7,
544	3216-2) reveal an increase in dinoflagellate cyst content indicative of a return to very
545	near shore to near shore marine conditions (Fig. 2; Table 2; Supplementary Materials).
546	The biostratigraphic assessment of the samples suggests that the entire interval
547	(SBM 14-16) likely falls within the upper Maastrichtian Upper Subzone of the
548	Manumiella druggii Dinoflagellate Zone within the Australian palynostratigraphic
549	scheme, and the Manumiella druggii Range Zone for Antarctica of Bowman et al. (2012).
550	This assignment is indicated by the rare presence of <i>M. bertodano</i> with <i>M. druggi</i> in
551	sample 22516-4 (SBM 14), and the observation of <i>M. seelandica</i> in samples 22516-7 and
552	3216-1. These taxa also indicate zones 3–4 of Askin (1988), whereas the presence of the
553	pollen Tricolporites lilliei indicates that the samples fall into the Campanian to
554	Maastrichtian T. lilliei to Forcipites longus Spore Pollen Zones. In sample 22516-7 (SBM
555	16), the presence of the megaspore Grapnelispora cf. evansii suggests the F. longus
556	Spore Pollen Zone, providing further support for a latest Maastrichtian age (Table 2,
557	Supplementary Materials Figure 5). Samples 22516-7 and 3216-2 were both collected in
558	the thin interval of proposed Paleogene strata (LdB unit 10 or Sobral Formation

559	equivalent strata = Unit SBM16j; Fig. 2) at the top of Sandwich Bluff; however, no
560	unequivocally Paleogene restricted dinocysts were encountered in either sample. The
561	extremely low abundances of dinoflagellates (Manumiella sp.) noted from the top of the
562	Sandwich Bluff Member is in stark contrast to the relative abundances documented from
563	the latest Maastrichtian/early Danian López de Bertodano Formation on Seymour Island
564	by Bowman et al., (2012, 2016). This may be due to the rapidly shallowing to emergent
565	nature of the top of the section on Vega Island, which would have been located in a much
566	more proximal portion of the basin. However, reworking of Maastrichtian taxa into
567	Paleogene rocks cannot be ruled out, as an erosional sequence boundary has been
568	hypothesized to explain the distinct sedimentological shift noted at the contact between
569	the top of the Sandwich Bluff Member and the overlying Sobral Formation (or unit 10 of
570	López de Bertodano Formation) (Roberts et al., 2014).

571

572 Magnetostratigraphy

573 Based on coercivity spectra, backfield IRM measurements, and thermal 574 demagnetization data (Supplementary Fig. 3), the primary ferromagnetic mineral in the 575 Sandwich Bluff Member is (titano)magnetite. Additional rock magnetic measurements 576 suggest this is of detrital origin and falls in the single-domain to vortex state size-range 577 (Supplementary Fig. 3). A second component with high-coercivity ($H_{cr'} > 200 \text{ mT}$) is 578 noted and interpreted to be hematite (e.g. Peters and Dekkers, 2003). The presence of 579 hematite is distinct from previous rock magnetic analyses of older rocks from James Ross 580 Basin (e.g. Milanese et al., 2017, 2019; Tobin et al., 2020), but matches a trend toward 581 higher-coercivity and two-component coercivity spectra at the top of the López de

582 Bertodano Formation on Seymour Island (Tobin et al., 2012). Magnetostratigraphy 583 connected these upper 200-300 m of the Seymour section to Chron 30N to Chron 29N of 584 the global polarity time scale (GPTS) spanning the K-Pg boundary (Tobin et al., 2012). 585 The presence of the same mineralogical signal in the Sandwich Bluff Member suggests 586 this signal may represent a basin-wide shift in provenance or depositional/diagenetic 587 conditions. Although not explicitly tested in this work, magnetic iron sulfides have not 588 been identified in the James Ross Basin in previous rock magnetic experiments (Milanese 589 et al., 2017, 2019, Tobin et al., 2020).

590 All of the twenty samples analyzed for magnetostratigraphy contained a low-591 temperature component that demagnetized by $60-360^{\circ}$ C (Fig. 5). The direction (D = 592 334.5° , I = -72.9°, $\alpha 95 = 33.3^{\circ}$, N = 20) is interpreted to represent the local present field 593 overprint (Fig. 6). As a viscous remanent magnetization, low-thermal demagnetization 594 removes this overprint, although in some cases limestones carrying vortex state magnetite 595 need laboratory demagnetization in excess of 300°C (Borradaile 1999). Above this 596 temperature, coherent directions trending toward the origin were obtained from all but 597 one of the samples; three plane fits were used (Fig. 5). Samples became unstable with 598 irreproducible magnetization and directions at a wide range of temperatures spanning 599 300°C to above 575°C when measurements were halted as the three remaining stable 600 samples were all trending toward the origin. Samples similarly displayed a range in 601 magnetization strength and errors from directional fits that was not easily correlated to 602 stratigraphic height. Overall, the most reliable samples lost between 65–95% of their 603 original remanence before becoming unstable.

604	High-temperature directions suggest at least two reversals within the stratigraphic
605	sections with predominantly normal directions near the top and bottom with a reversed
606	interval in the middle (Fig. 6). There could be another normal and reversed magnetozone
607	in the upper part of the section (Fig. 6), but due to samples with high error and samples
608	with transitional inclinations (latitudes near zero) this assignment remains
609	provisional/tentative. The lowermost samples, in Sandwich Bluff Member (SBM1) are
610	also noisy with inclinations/latitudes around 0, but due to a single good quality sample
611	we tentatively interpret as a normal magnetozone (with a "?").
612	Connecting these polarity intervals to the GPTS in the context of this study
613	presents several different plausible options for interpreting the results. The normal
614	polarity interval(s) at the base of the Sandwich Bluff Member must correlate to either
615	C31N or C30N (or both) based on the biostratigraphic and geochronologic constraints
616	presented above. If the normal polarity zone in the lower Sandwich Bluff Member
617	correlates to C31N through C30N (with C30R undetected), an interpretation we consider
618	most likely, then the two clearly defined reversals above this level indicate that the upper
619	part of the member passes through C29R and into C29N (Fig. 7). Alternatively, if the
620	lower part of the stratigraphy correlates solely with C31N, then the reversed interval
621	above would correlate to C30R and the normal polarity zone at the top to C30N. It is also
622	possible that the two poorly defined normal and reversed magnetozones higher in the
623	stratigraphy are authentic reversals; meaning that the base of the section may begin in
624	C31N, with the top extending into C29N (Fig. 7).
625	

DISCUSSION

627 Chronostratigraphy of the Cape Lamb Member

628	The Cape Lamb Member of the Snow Hill Island Formation on Vega Island has
629	traditionally been interpreted as latest Campanian to early Maastrichtian in age based on
630	a combination of biostratigraphy and a single reported Sr-isotope age (Fig. 8) (Pirrie et
631	al., 1991; Crame et al., 1999; McArthur et al., 2000; Olivero, 2012). Herein we present a
632	significantly expanded Sr-isotope stratigraphy for the Cape Lamb Member based on
633	samples collected from five intervals through this unit, plus a recalibration of the Sr-
634	isotope age for the middle of the lower unit presented by Crame et al. (1999) and
635	McArthur et al. (2000). The results are stratigraphically consistent with one another and
636	with the recalibrated age from Crame et al. (1999), confirming a late Campanian to early
637	Maastrichtian age (Figs. 3, 8). The 71.0 \pm 0.3 Ma Sr-isotope age of Crame et al. (1999)
638	recalibrates to 72.0 +0.10/-0.15 Ma using the updated LOWESS lookup curve (V.5),
639	consistent with the original interpretation that this level corresponds roughly to the
640	Campanian–Maastrichtian junction, a boundary that has also since been revised to \sim 72.1
641	±0.2 Ma (e.g., Walker et al., 2018).
642	With the new Sr-isotope age data presented here, we can also estimate an
643	undecompacted sediment accumulation rate of \sim 11.4 cm/ka between the lowest (73.1
644	Ma) and highest (71.0 Ma) Cape Lamb Member binned Sr-isotope results and during a
645	time in which ~240 m of rock accumulated (Supplementary Fig. 7). Using this rate, we
646	estimate an additional 0.3 Ma was required to accumulate \sim 35 m of section below the
647	lowest Cape Lamb Member age locality (i.e., below the 73.1 Ma estimate), providing an
648	age estimate of 73.4 Ma for the boundary between the Cape Lamb Member and the
649	underlying Gamma Member. However, a significant slowdown in the sediment

650	accumulation rate is recorded for the upper Cape Lamb Member of \sim 3.2 cm/ka
651	(Supplementary Fig. 7). The entire ~330 m-thick Cape Lamb Member on Vega Island
652	would have been deposited over a maximum span of ~4.2 million years, between 73.4-
653	69.3 Ma, with an average undecompacted sediment accumulation rate of \sim 7.9 cm/ka
654	(Supplementary Fig. 7). This is quite different from recent magnetostratigraphic age
655	models for the same interval within the southeast portion of the JRB, where
656	undecompacted sediment accumulation rates are 6-7 times higher (~50.9 cm/ka) for
657	nearly the same time interval (Milanese et al., 2020). However, a phenomenon of
658	differential sediment accumulation rates across the basin is certainly possible and likely
659	suggested by the sedimentology, as a period of considerable erosion in the NE part of the
660	basin is indicated by the sequence bounding unconformity (cobble layer) at the contact
661	between the lower and upper Cape Lamb Members. This effect was likely compounded
662	by later stratigraphic condensation and sediment starvation on the proximal shelf (NW
663	JRB) during the subsequent maximum transgression at the contact between the Cape
664	Lamb and Sandwich Bluff members as has been suggested (Olivero, 2012; Roberts et al.,
665	2014). Alternatively, there may be an unconformity and missing time at the contact
666	between the Cape Lamb and Sandwich Bluff Members. This concept was suggested as a
667	possibility by Pirrie et al. (1991), however both Marnessi et al. (2001) and Olivero (2012)
668	consider this interval to be conformable.
660	

669

670 Chronostratigraphy of the Sandwich Bluff Member

Roberts et al. (2014) noted the difficulty of identifying a clear contact betweenthe Cape Lamb and Sandwich Bluff members. They placed the contact of their SBM 1, as

673	followed in this study, at the base of a distinctive unit characterized by a rich
674	concentration of carbonate concretions, many of which contain well preserved fossils and
675	that are reminiscent of similar concretionary horizons in the Cape Lamb Member. Based
676	on recent discussions and comparison of field notes between the authors of this study and
677	previous studies (Pirrie et al., 1991), it appears likely that the beginning of the Sandwich
678	Bluff Member as diagnosed in Pirrie et al. (1991) began above the concretionary level
679	where the section becomes more recessive at the start of SBM 2 of Roberts et al. (2014).
680	This is relevant for discussion of the age of SBM 1, which yielded a normal(?) polarity
681	signal, a single young detrital zircon with an age of 68.7+-0.7 Ma, and a Sr-isotope age of
682	69.7+0.45/-1 Ma, suggesting that this unit falls within the lower part of C31N.
683	However, the normal polarity interval above this level (SBM 2-4) preserves the
684	first appearance of the temporally diagnostic dinocyst Manumiella bertodano (Pirrie et
685	al., 1991; Riding, 1997, unpublished report), which is well-documented to have its first
686	appearance in the upper part of C30N on Seymour Island (broadly between 68-67 Ma;
687	Bowman et al., 2014). This strongly suggests that SBM 2-4 correlates to C30N, and
688	indicates that there is either an unconformity/hiatus between SBM1 and SBM2 or that the
689	short duration reversal (C30R) between C31N and C30N was simply not
690	captured/identified due to sampling limitations (see Preferred Correlation in Figs. 7, 8).
691	Pirrie et al. (1991) indicated that an unconformity may exist between these two units (i.e.,
692	at the top of our SBM1), supporting the former interpretation. Alternatively, it is
693	conceivable that the temporal range of <i>M. bertodano</i> on Vega Island extends
694	considerably farther back in time than it does on Seymour Island and that the entire

normal polarity interval between SBM 1–4 correlates to C31N (see Options 2–3 in Fig.
7). This interpretation is unlikely, but remains a possibility.

697 At the top of SBM 4 is a distinct reversed polarity interval that most likely 698 remains reversed polarity (although the samples are ambiguous) until SBM16, where it 699 clearly switches to normal polarity through to the top of the section. Following our 700 preferred interpretation that SBM 2-4 correlates to C30N (Option 1; Figure 7); the 701 distinct reversed polarity interval from the top of SBM 4 to the base of SBM 16 is 702 interpreted to correlate to C29R (consistent with the biostratigraphy on Seymour Island) 703 and the overlying normal polarity interval (upper SBM 16) correlates to C29N. This 704 interpretation supports the hypothesis of Roberts et al. (2014) for a K/Pg boundary 705 interval at the top of the Sandwich Bluff Member on Vega Island, an inference previously 706 based on the interpretation of a sequence bounding unconformity and a return to marine 707 conditions with Sobral Formation-like facies at the top of the section. The single 708 questionable Sr-isotope age from the upper Sandwich Bluff Member (SBM-16) recovered 709 in this study is too old to support this interpretation and is also inconsistent with the 710 biostratigraphy. The mean age for this sample has high uncertainty and is based on a suite 711 of shells collected across a fairly broad and increasingly continentally influenced 30 m 712 interval, and as such, is considered dubious. The robust detrital zircon MDA of 66.3 +-1.1 Ma from the top of SBM 16, which includes several concordant grains younger than 713 714 66 Ma, supports the possibility of the section extending into the early Paleogene. In 715 addition, the new palynological samples from the upper 20 m of the Sandwich Bluff 716 section indicates that the top of the unit passes at least into the very latest Maastrichtian 717 Manumiella druggi zone, based on the identification of both M. druggi and M.

718 seelandica. However, these samples and those from the 8.4 m below the top of this unit 719 reported by Pirrie et al. (1991) and Riding (1997, unpublished report) also preserve the 720 taxon *M. bertodano*, which was not recovered from the highest samples on Seymour 721 Island. Additionally, no Paleogene taxa were found, except *M. druggi*, which extends into 722 the early Danian (Bowman et al., 2012). Although the Vega Island succession is much 723 more condensed and proximal to the basin margin, the new samples do suggest that the 724 top of the stratigraphy minimally approaches the K-Pg boundary (66.0 Ma; Walker et al., 725 2018) as observed on Seymour Island (Bowman et al., 2012). In addition, the palynology 726 supports the sequence stratigraphic interpretation for a transition from marine to non-727 marine and back to marine conditions at the top of the Sandwich Bluff Member, which is 728 potentially correlative with an earliest Paleocene sequence boundary recorded in 729 Seymour Island.

730 Two alternative interpretations of the stratigraphy are also conceivable; one that 731 also supports the presence of a K/Pg boundary and another that does not. If the normal 732 interval (i.e., SBM 1–4) at the base of the section instead correlates exclusively to C31N 733 (Option 2; Fig. 7), it would mean that the reversed polarity interval in the middle of the 734 member (i.e., above SBM 4) correlates with C30R and the upper normal polarity interval 735 at the top of Sandwich Bluff to C30N. This interpretation is incongruent with existing 736 interpretations for the age of the base of the *M. bertodano* IZ. This is also inconsistent 737 with the top of the section aligning with the *M. druggi* zone. Nonetheless, this 738 interpretation could explain the anomalous (and poor quality) age of the highest Sr-739 isotope age at 68.5 Ma.

740	Building on Option 2, another possible correlation exists that includes the
741	paleomagnetic samples in the upper part of the section with high error and samples with
742	transitional inclinations (Fig. 6). If these transitional inclinations represent poorly
743	captured reversals, then the Sandwich Bluff Member passes through five polarity
744	changes, with the base of the section beginning in C31N and the top of the section
745	extending into C29N (shown as Option 3 in Fig. 7). Although this interpretation still
746	suffers from the lack of correspondence between the biostratigraphy (M. bertodano IZ) at
747	the base (similar to Option 2), it could explain the other data sets (i.e., the Sr-isotope
748	stratigraphy, detrital zircon geochronology) and support the sequence stratigraphic
749	interpretation that a K/Pg boundary is present at the top of the Sandwich Bluff
750	succession.
751	
752	Implications for Paleogeography, Paleoenvironments and Sequence Stratigraphy
753	The new results presented here also have implications for testing sequence
754	stratigraphic and paleogeographic questions concerning the Sandwich Bluff Member. The
755	more detailed sedimentary logging and palynology presented here for the top 24 m of the
756	stratigraphy on Sandwich Bluff provide crucial support for a sequence boundary and the
757	brief transition to a non-marine depositional system, followed by a rapid return to
758	shallow, possibly estuarine marine conditions (Fig. 2). Roberts et al. (2014) suggested
759	that this putative sequence boundary may correlate to that which caps the MG Sequence
760	of Olivero (2012) at 66.0 Ma between the top of the López de Bertodano Formation and
761	the base of the Sobral Formation on Seymour Island. In this scenario, the sequence
762	bounding unconformity would be better developed in the more proximal Vega section,

763 than on Seymour Island, which might explain the lack (i.e., erosion) of the post-764 Cretaceous portion of the López de Bertodano Formation (LdB unit 10) on Sandwich 765 Bluff. Indeed, the conglomeratic interval at this boundary marks a brief period of 766 subaerial exposure and continental deposition ~ 20 m below the top of the Sandwich Bluff 767 Member and supports the existence of a rapid shallowing event near or after the end of 768 the Cretaceous. This is consistent with observations by Pirrie et al. (1991) for what they 769 believed were rootlets near the top of this member, and would explain the rapid 770 shallowing event suggested by Macellari (1988) and/or biological change (pre-K/Pg 771 extinction event of primarily benthic invertebrates) recognized near the same interval by 772 Tobin et al. (2012), Tobin (2017) and Mohr et al. (2020) on Seymour Island (although see 773 Witts et al. (2016) and Whittle et al. (2019) for alternative interpretations). The lack of 774 clear sedimentological evidence recording an earlier (pre-K/Pg) sequence boundary on 775 Seymour Island (sensu Tobin, 2017) could be explained by the down-dip relationship 776 between the two localities (see Olivero, 2012; Fig.2), where the subaerial sequence 777 bounding unconformity on Vega Island has passed into a correlative conformity in the 778 distal part of the basin on Seymour Island (e.g., Catuneanu et al., 2009). Alternatively, 779 the correlative conformity on Seymour Island may pass through the K/Pg boundary, and 780 the base of Zinsmeister e al.'s (1989) lower Glauconite horizon, which has been 781 described as slightly transgressive, may correlate to the overlying transgressive facies on 782 Vega Island. This may indicate an alternate linkage between the transgressive unit 783 SBM16 and the Paleogene portion of the López de Bertodano Formation (LdB unit 10) 784 on Seymour Island, instead of with the Sobral Formation (e.g., Montes et al., 2019).

785	Regardless of interpretation, conspicuous differences in sedimentological
786	character, particularly grain size, of correlative strata of the López de Bertodano
787	Formation on the two islands strongly support existing basin models that the basin
788	depocenter was to the SE and that proximal source areas were to the NW (Pirrie et al.,
789	1991; Pirrie, 1994; Hathway, 2000; Olivero, 2012). Sediment supply in the basin most
790	likely outstripped accommodation space, continually shifting the center of deposition to
791	the SE. It is difficult to determine whether the observed sequence boundary and
792	associated landward facies shifts are related to eustatic vs. local, tectonically driven sea-
793	level changes; however the latter is likely given the tectonically active back-arc setting of

the JRB.

795

796 Age of Vegavis and the Antiquity of the Avian Crown Clade

797 The holotype and referred specimens of Vegavis iaai, recovered from the base of 798 the Sandwich Bluff Member (unit SBM 1) on Vega Island, represent the most complete 799 skeletal material of a Mesozoic representative of the avian crown clade (referred to 800 Anseriformes; Clarke et al., 2005, 2016). Recently, the discovery of an intriguing skull 801 and partial postcranial skeleton of Asteriornis maastrichtensis was referred to the avian 802 crown (Field et al. 2020; Torres et al., 2021) from the late Maastrichtian of Belgium. 803 Field et al. (2020) interpreted Asteriornis, dated to 66.8-66.7 Ma, to be some 200 ka 804 older than Vegavis, which they regarded as 66.5 Ma in age citing Ksepka and Clarke 805 (2015). Ksepka and Clarke (2015) actually advocated 66.5 as only the most-conservative 806 minimum calibration age. They noted the unit containing the holotype was previously 807 identified as near the base of the dinoflagellate *M. bertodano* zone (Clarke et al. 2005),
809 Bowman et al. 2012, 2014; reviewed Ksepka and Clarke, 2015) making it likely older

810 than Asteriornis and the hard minimum bound on calibration given.

811 Based on refined chronostratigraphy presented herein for the Sandwich Bluff 812 Member, the likely placement of the Vegavis horizon (unit SBM 1) is $\sim 2-3$ Ma older than 813 the referenced date of Vegavis in Field et al. (2020). We interpret the Vegavis locality to 814 lie within C31N (Fig. 7), which equates to a numerical age between ~69.2 and 68.4 Ma 815 following chron boundary ages in Gradstein et al. (2012). Vegavis based on our best 816 supported age estimates is still considered among the oldest phylogenetically-placed 817 representative of the avian crown clade. It is consistent with previous hypotheses of a 818 Gondwanan (= Southern Hemisphere) origin of Aves during the Late Cretaceous (e.g., 819 Claramunt and Cracraft, 2015); a hypothesis that does not explain European finds of 820 approximately the same age (Field et al. 2019). These latest Cretaceous fossils, and better 821 constrained dates on containing units have the potential to further refine such hypotheses 822 and to better evaluate potential survivorship in the high southern latitudes (Bono et al. 823 2016; Clarke et al., 2016; Torres et al. 2021). 824

825 Age of non-avian dinosaur localities in the Cape Lamb and Sandwich Bluff

826 members

In addition to the avifauna from Vega Island, the revised ages reported here also constrain a number of important non-avian dinosaur specimens recovered from the Sandwich Bluff and Cape Lamb members on Vega, James Ross and Humps islands. Arguably the most important interval for preserving diagnostic dinosaur material from 831 the Cape Lamb Member is within the middle portion of this unit ($\sim 100-175$ above the 832 base), including type localities for Imperobator antarcticus, Morrosaurus antarcticus and 833 the 'BAS ornithopod' (see Lamanna et al., 2019 for full discussion of the stratigraphy). 834 The Sr-isotope results indicate that these specimens are around 72 Ma (Figs. 3, 8). 835 Refinement of the base of the Cape Lamb Member to roughly 73.4 Ma, also places an 836 upper boundary on the age of the Gamma Member of the Snow Hill Island Formation, 837 indicating that the Santa Marta Cove dinosaur fauna (e.g., the anklylosaur Antarctopelta 838 oliveroi and the early-diverging ornithopod Trinisaura santamartaensis) is late 839 Campanian rather than early Maastrichtian. Higher in the stratigraphy, the fossiliferous 840 "reptile horizon" on Sandwich Bluff has produced a suite of important dinosaur fossils 841 indicating the presence of ankylosaurs, early diverging ornithopods, hadrosaurs and 842 possibly non-avian theropod dinosaurs. The "reptile horizon", characterized by a 843 deflation surface of mostly isolated bones is spread out between the top of SBM11 and 844 the bottom of SMB12 (see Lamanna et al., 2019). However, more generally, there is a 845 major increase in vertebrate fossil concentration encompassing the interval between units 846 SBM10–12. Following dinocyst biostratigraphy of Bowman et al. (2016), this entire 847 interval falls within the late Maastrichtian *M. bertodano* zone (Zone 3 of Askin, 1988). 848 Also, this interval is best interpreted to fall within the reversed polarity zone assigned to 849 C29R (see our Preferred Correlation, Figs. 7, 8), however a single paleomagnetic sample 850 from the top of SBM12 yielded a VGP close to zero, making it difficult to assign this 851 transitional interval to either normal or reversed polarity. A latest Maastrichtian age for 852 this important fauna at no older than 66.3 Ma is strongly supported by the presence of M. 853 bertodano throughout the clearly reversed magnetozone (C29R) that spans the top of

854 SBM4 to the middle of SBM11, and presumably all the way through SBM15 (Fig. 7).

However, the alternative, less parsimonious correlations to the GPTS (Options 2 and 3)

that would place the "reptile horizon" at boundary between C30R and C30N (Fig. 8),

annot be completely ruled out.

858

859 CONCLUSIONS

860 New chronostratigraphic and biostratigraphic results provide an improved 861 characterization of the age of the rocks and fossils preserved on Vega Island in the 862 northwestern portion of the James Ross Basin. All results confirm that the Sandwich 863 Bluff Member is mid- to late Maastrichtian in age, with a strong likelihood that the upper 864 part of the unit extends into the earliest Paleocene. Sedimentologic and 865 micropaleontologic data point to at least one sequence boundary and subsequent 866 transgression at the top of the Sandwich Bluff Member, likely correlating with either the 867 Sobral unconformity, or a cryptic unconformity through the K/Pg boundary as suggested 868 by Zinsmeister et al. (1989) below the lower Glauconite unit on Seymour Island. 869 Moreover, the age of the reptile horizon at \sim 66.3 Ma indicates that marine reptiles and 870 non-avian dinosaurs persisted in Antarctica until the terminal Cretaceous. Finally, the 871 revised chronostratigraphy in the lower part of the Sandwich Bluff Member provides 872 crucial age-constraint (~68.4 to 69.2 Ma) for fossils assigned to the bird Vegavis iaai and 873 informing divergence estimates for the avian crown, rendering Vegavis as the most 874 ancient member of the group. As with other recent studies of the basin, our results were 875 likely facilitated by increasing melting of ice cover that has exposed a greater proportion 876 of the stratigraphy.

877 ACKNOWLEGEMENTS

878 We grateful to the editor, Dr. Brad Singer, the Associate Editor, and two 879 anonymous reviewers, who provided exceptionally insightful feedback. We thank the 880 crews of the United States Antarctic Program vessels R/V Lawrence M. Gould and R/V 881 Nathaniel B. Palmer for field and other logistical assistance during the 2011 and 2016 882 field seasons. Harry Gardner and Jodie Kilpatrick provided substantial assistance with 883 initial testing of Sr-isotope techniques and diagenesis filtering on samples from Vega 884 Island. C. Thissen, K. Hillbun, S. Schoepfer, S. Alesandrini, P. Ward, D. Smith, J. Meng, 885 E. Gorscak, J. Sertich, C. Torres, A. West, R; D. E. MacPhee and Air Center Helicopter 886 staff and pilots are thanked for field assistance during the 2011 and 2016 field seasons. 887 Field work and stratigraphic analysis benefited from discussions with D. Barbeau 888 (University of South Carolina, Columbia, SC, USA). This research was supported by 889 National Science Foundation grants ANT-0636639 and ANT-1142052 to Ross D. E. 890 MacPhee, ANT-1142129 to MCL, ANT-1142104 to PMO, ANT-1141820 to JAC, and 891 ANT-1341729 to JLK. Sr-isotope, palynological, and U-Pb detrital zircon data are 892 available in the supplementary materials. Rock magnetic data are available on Zenodo 893 (https://doi.org/10.5281/zenodo.6301037) and paleomagnetic data are available in the 894 MagIC database (https://www.earthref.org/MagIC/xxx). 895

896 **REFERENCES**

Acosta Hospitaleche, C., Jadwiszczak, P., Clarke, J.A. and Cenizo, M., 2019, The fossil
record of birds from the James Ross Basin, West Antarctica: Advances in Polar
Science, v. 30, p. 251–273.

900	Askin, R.A., 1988, Campanian to Paleocene palynological succession of Seymour and
901	adjacent islands, northeastern Antarctic Peninsula, in Feldmann, R.M.,
902	Woodburne, M.O., eds., Geology and Paleontology of Seymour Island, Antarctic
903	Peninsula: Boulder, Colorado, Geological Society of America Memoir 169, p.
904	131–153.
905	Bono, R.K., Clarke, J., Tarduno, J.A. and Brinkman, D., 2016, A large ornithurine bird
906	(Tingmiatornis arctica) from the Turonian High Arctic: climatic and evolutionary
907	implications: Scientific Reports, v. 6, p.1–8.
908	Borradaile, G. J. (1999). Viscous remanent magnetization of high thermal stability in
909	limestone. Geological Society, London, Special Publications, v. 151, p. 27-42.
910	Bowman, V.C., Francis, J.E., Riding, J.B., 2013, Late Cretaceous winter sea ice in
911	Antarctica?: Geology, v. 41, p. 1227–1230.
912	Bowman, V.C., Francis, J.E., Riding, J.B., Hunter, S.J., Haywood, A.M., 2012, A latest
913	Cretaceous to earliest Paleogene dinoflagellate cyst zonation from Antarctica, and
914	implications for phytoprovincialism in the high southern latitudes: Review of
915	Paleobotany and Palynology, v. 171, p. 40–56.
916	Bowman, V.C., Francis, J.E., Askin, R.A., Riding, J.B. and Swindles, G.T., 2014, Latest
917	Cretaceous-earliest Paleogene vegetation and climate change at the high southern
918	latitudes: palynological evidence from Seymour Island, Antarctic Peninsula:
919	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 408, p.26-47.
920	Bowman, V., Ineson, J., Riding, J., Crame, J., Francis, J., Condon, D., Whittle, R.,
921	Ferraccioli, F., 2016, The Paleocene of Antarctica: Dinoflagellate cyst
922	biostratigraphy, chronostratigraphy and implications for the palaeo-Pacific margin

- 923 of Gondwana: Gondwana Research, v.38, p.132–148. https://doi.org/10.1016 924 /j.gr.2015.10.018 925 Brand, U., 1989, Aragonite-calcite transformation based on Pennsylvanian 926 molluscs: Geological Society of America Bulletin, v. 101, p. 377-390. 927 Brand, U., Veizer, J., 1980, Chemical diagenesis of a multicomponent carbonate system; 928 1, Trace elements: Journal of Sedimentary Research, v. 50, p. 1219–1236. 929 Caldwell, M.W., 2005, The squamates: origins, phylogeny, and paleoecology, in Currie, 930 P.J., Koppelhus, E.B., eds., Dinosaur Provincial Park: a Spectacular Ancient 931 Ecosystem Revealed. Indiana University Press, Bloomington, pp. 235–248. 932 Case, J.A., Martin, J.E., Chaney, D.S., Reguero, M., Marenssi, S.A., Santillana, S.M., 933 Woodburne, M.O., 2000, The first duck-billed dinosaur (Family Hadrosauridae) 934 from Antarctica: Journal of Vertebrate Paleontology, v. 20, p. 612–614. 935 Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M.D., Dalrymple, R.W., Eriksson, 936 P.G., Fielding, C.R., Fisher, W.L.; Galloway, W.E.; Gibling, M.R.; Giles, K.A.; 937 Holbrook, J.M.; Jordan, R., Kendall, C.G. St.C., Macurda, B., Martinsen, O. J., 938 Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B., 939 R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., Winker, C., 940 2009, Towards the Standardization of Sequence Stratigraphy: Earth-Science 941 Reviews, v. 9, p. 1–33. 942 Cerda, I.A., Paulina Carabajal, A., Salgado, L., Coria, R.A., Reguero, M.A., Tambussi, 943 C.P., Moly, J.J., 2012, The first record of a sauropod dinosaur from Antarctica:
- 944 Naturwissenschaften, v. 99, p. 83–87.

945	Chatterjee, S., 2002, The morphology and systematics of <i>Polarornis</i> , a Cretaceous loon
946	(Aves: Gaviidae) from Antarctica, in Zhou, Z., Zhang, F., eds., Proceedings of the
947	5 th Symposium of the Society of Avian Paleontology and Evolution, Beijing, 1–4
948	June 2000. Science Press, Beijing, pp. 125–155.
949	Claramunt, S. and Cracraft, J., 2015, A new time tree reveals Earth history's imprint on
950	the evolution of modern birds: Science Advances, v. 1, p.e1501005.
951	Clarke, J.A., 2004, Morphology, phylogenetic taxonomy, and systematics of Ichthyornis
952	and Apatornis (Avialae: Ornithurae): Bulletin of the American Museum of
953	Natural History, v. 286, p. 1–179.
954	Clarke, J.A., Chatterjee, S., Li, Z., Riede, T., Agnolín, F., Goller, F., Isasi, M.P.,
955	Martinioni, D.R., Mussel, F.J., Novas, F.E., 2016, Fossil evidence of the avian
956	vocal organ from the Mesozoic: Nature, v. 538, p. 502-505.
957	Clarke, J.A., Tambussi, C.P., Noriega, J.I., Erickson, G.M., Ketchum, R.A., 2005,
958	Definitive fossil evidence for the extant avian radiation in the Cretaceous: Nature,
959	v. 433, p. 305–309.
960	Cochran, J.K., Kallenberg, K., Landman, N.H., Harries, P.L., Weinreb, D., Turekian,
961	K.K., Beck, A.J., and Cobban, W.A., 2010, Effect of diagenesis on the Sr, O and
962	C isotope composition of Late Cretaceous mollusks from the Western Interior
963	Seaway of North America: American Journal of Science, v. 310, p. 69-88.
964	Cordes-Person, A., Acosta Hospitaleche, C., Case, J. and Martin, J., 2020. An enigmatic
965	bird from the lower Maastrichtian of Vega Island, Antarctica: Cretaceous
966	Research, v. 108, p.104314.

967	Coria R A, Moly J J, Reguero M, et al., 2013, A new ornithopod (Dinosauria:
968	Ornithischia) from Antarctica: Cretaceous Research, v. 41, p. 186-193
969	Crame, J.A., 2019, Paleobiological significance of the James Ross Basin 30, Advances in
970	Polar Research, v. 30, p. 186–198.
971	Crame, J.A., Francis, J.E., Cantrill, D.J., Pirrie, D., 2004, Maastrichtian stratigraphy of
972	Antarctica: Cretaceous Research, v. 25, 411-423.
973	Crame, J.A., McArthur, J.M, Pirrie, D., Riding, J.B., 1999, Strontium isotope correlation
974	of the basal Maastrichtian Stage in Antarctica to the European and US
975	biostratigraphic schemes: Journal of the Geological Society, London, v. 156, p.
976	957–964.
977	Crame, J.A., Pirrie, D., Riding, J.B., Thomson, M.R.A., 1991. Campanian–Maastrichtian
978	(Cretaceous) stratigraphy of the James Ross Island area, Antarctica: Journal of the
979	Geological Society, London, v. 148, 1125-1140.
980	del Valle, R.A., Elliot, D.H., MacDonald, D.I.M., 1992. Sedimentary basins on the east
981	flank of the Antarctic Peninsula: proposed nomenclature: Antarctic Science, v. 4,
982	477–478.
983	del Valle, R.A., Medina, F.A., 1980. Nuevos invertebrados fosiles de Cabo Lamb (Isla
984	Vega) y Cabo Morro (Isla James Ross): Contribuciones científicas del Instituto
985	Antártico Argentino, v. 228, 51–67.
986	di Pasquo, M., Martin, J.E., 2013, Palynoassemblages associated with a theropod
987	dinosaur from the Snow Hill Island Formation (lower Maastrichtian) at the Naze,
988	James Ross Island, Antarctica: Cretaceous Research, v. 45, p. 135–154.

989	Elliot, D.H., Askin, R.A., Kyte, F.T., Zinsmeister, W.J., 1994, Iridium and dinocysts at
990	the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for
991	the K-T event: Geology, v. 22, p. 675–678.
992	Ely, R.C. and Case, J.A., 2019, Phylogeny of a new gigantic paravian (Theropoda;
993	Coelurosauria; Maniraptora) from the Upper Cretaceous of James Ross Island,
994	Antarctica: Cretaceous Research, v. 101, p.1–16.
995	Foley, E.K., Henderson, R.A., Roberts, E.M., Kemp, A.I.S, Todd, C.N., Knutsen, E.M.,
996	Fisher, C., Wainman, C.C., Spandler, C., 2021, Jurassic Arc: Reconstructing the
997	lost world of eastern Australia: Geology, v. 49, p. 1391-1396.
998	Gingras, M.K., MacEachern, J.A., Dashtgard, S.E., 2012, The potential of trace fossils as
999	tidal indicators in bays and estuaries: Sedimentary Geology, v. 279, p. 97-106.
1000	Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G. (Eds.), 2012. The geologic time scale
1001	2012. Elsevier.
1002	Hall, J.L.O., Newton, R.J., Witts, J.D., Francis, J.E., Hunter, S.J., Jamieson, R.A., Harper,
1003	E.M., Crame, J.A., Haywood, A.M., 2018, High benthic methane flux in low
1004	sulfate oceans: Evidence from carbon isotopes in Late Cretaceous Antarctic
1005	bivalves: Earth and Planetary Science Letters, v. 497, p. 113-122.
1006	https://doi.org/10.1016/j.epsl.2018.06.014
1007	Hathway, B., 2000, Continental rift to back-arc basin: Jurassic-Cretaceous stratigraphical
1008	and structural evolution of the Larsen Basin, Antarctic Peninsula: Journal of the
1009	Geological Society, London, v. 157, p. 417-432.
1010	Kilian, W., Reboul, P., 1909, Les Céphalopodes néocrétacés des îles Seymour et Snow-
1011	Hill. Lithographisches Institut des Generalstabs.

1012	Kirschvink, J.L., 1980, The least-squares line and plane and the analysis of
1013	paleomagnetic data: Geoph. J. Royal Astr. Soc., v. 62, p. 699-718.
1014	Kirschvink, J.L., Kopp, R.E., Raub, T.D., Baumgartner, C., Holt, J.W., 2008, Rapid,
1015	precise, and high-sensitivity acquisition of paleomagnetic and rock-magnetic data:
1016	Development of a low-noise automatic sample changing system for
1017	superconducting rock magnetometers: Geochemistry, Geophysics, Geosystems, v.
1018	9, 1e18. https://doi.org/10.1029/2007GC001856.
1019	Knaust, D., 2018, The ichnogenus Teichichnus Seilacher, 1955: Earth-Science Reviews,
1020	v. 177, p. 386–403.
1021	Knoll, K., Landman, N.H, Cochran, J.K., Macleod, K.G., and Sessa, J.A., 2016,
1022	Microstructural preservation of diagenesis on the carbon and oxygen isotope
1023	composition of Late Cretaceous aragonitic mollusks from the Gulf Coastal Plain
1024	and the Western Interior Seaway: American Journal of Science, v. 316, p. 591-
1025	613.
1026	Ksepka D T, Clarke J A. 2015. Phylogenetic vetted and stratigraphically constrained
1027	fossil calibrations for Aves: Paleontologica Electronica, v. 18, 1-25.
1028	Lamanna, M.A., Case, J., Roberts, E.M., Arbour, V., Ely, R., Salisbury, S., Clark, J.,
1029	Malinzak, D., West, A., O'Connor, P.M., 2019, Late Cretaceous non-avian
1030	dinosaurs from the James Ross Basin, Antarctica: description of new material,
1031	updated synthesis, biostratigraphy, and paleobiology: Advances in Polar Sciences,
1032	v. 30, p. 228–250.
1033	Loutit, T.S., Hardenbol, J., Vail, P.R., Baum, G.R., 1988. Condensed sections: the key to
1034	age-dating and correlation of continental margin sequences, in Wilgus, C.K.,

1035	Hastings, B.S., Posamentier, H.W., Van Wagoner, J.C., Ross, C.A., Kendall,
1036	C.G.St.C., eds., Sea-Level Changes—An Integrated Approach. SEPM Special
1037	Publication 42, pp. 183–213.
1038	Ludwig, K.R., 2008, User's Manual for Isoplot 3.70. A Geochronological Toolkit for
1039	Microsoft Excel: Berkley Geochronology Centre Special Publication No.4.
1040	Macellari, C.E., 1988, Stratigraphy, sedimentology, and paleoecology of Upper
1041	Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island (Antarctic
1042	Peninsula), in Feldmann, R.M., Woodburne, M.O., eds., Geology and
1043	Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of
1044	America Memoir, v. 169, p. 25–53.
1045	Marenssi, S.A., Lirio, J.M., Santillana, S.N., 1992, The Upper Cretaceous of southern
1046	James Ross Island, Antarctica, in Rinaldi, C.A., ed., Geología de la Isla James
1047	Ross. Instituto Antártico Argentino, Buenos Aires, p. 89-99.
1048	Marenssi, S.A., Salani, F.M., Santillana, S.N., 2001, Geología de cabo Lamb, Isla Vega,
1049	Península Antártica: Contribuciones Cientificas del Instituto Antártico Argentino,
1050	v. 530, 1–43.
1051	McArthur, J.M., Crame, J.A., Thirlwall, M.F., 2000, Definition of Late Cretaceous stage
1052	boundaries in Antarctica using strontium isotope stratigraph: The Journal of
1053	Geology, v. 108, p. 623–640.
1054	McArthur, J.M., Howarth, R.J., Shields, G.A., 2012, Strontium isotope stratigraphy, in
1055	Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G., eds., The Geologic Time Scale
1056	2012. Elsevier, Amsterdam, p. 127–144.

1057	McArthur, J. M., Kennedy, W. J., Chen, M., Thirlwall, M. F., & Gale, A. S., 1994,
1058	Strontium isotope stratigraphy for Late Cretaceous time: direct numerical
1059	calibration of the Sr isotope curve based on the US Western
1060	Interior: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 108, p. 95-119.
1061	McArthur, J.M., Thirlwall, M.F., Engkilde, M., Zinsmeister, W.J., Howarth, R.J., 1998,
1062	Strontium isotope profiles across K/T boundary sequences in Denmark and
1063	Antarctica: Earth and Planetary Science Letters, v. 160, p. 179–192.
1064	McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001, Strontium isotope stratigraphy:
1065	LOWESS Version 3. Best-fit line to the marine Sr-isotope curve for 0 to 509 Ma
1066	and accompanying look-up table for deriving numerical age: Journal of Geology,
1067	v. 109, p. 155–169.
1068	McArthur, J.M., Howarth, R.J., 1998, Strontium isotope stratigraphy: LOWESS version
1069	2. A revised best-fit line to the marine Sr-isotope curve for 0 to 206 Ma, with a
1070	revised look-up table for derivation of numerical age, in Annual Meeting of the
1071	American Association of Petroleum Geologists, Salt Lake City. American
1072	Association of Petroleum Geologists, Salt Lake City, p. 17–20.
1073	Milanese, F.N., Olivero, E.B., Kirschvink, J.L., Rapalini, A.E., 2017,
1074	Magnetostratigraphy of the Rabot Formation, Upper Cretaceous, James Ross
1075	Basin, Antarctic Peninsula: Cretaceous Research, v. 72, 172e187.
1076	https://doi.org/10.1016/j.cretres.2016.12.016.
1077	Milanese, F.N., Olivero, E.B., Raffi, M.E., Franceschinis, P.R., Gallo, L.C., Skinner,
1078	S.M., Mitchell, R.N., Kirschvink, J.L., Rapalini, A.E., 2019, Mid Campanian-
1079	lower Maastrichtian magnetostratigraphy of the James Ross Basin, Antarctica:

- 1080 Chronostratigraphical implications: Basin Research, v. 31, 562e583.
- 1081 <u>https://doi.org/</u>10.1111/bre.12334.
- 1082 Milanese, F.N., Olivero, E.B., Slotznick, S.P., Tobin, T.S., Raffi, M.E., Skinner, S.M.,
- 1083 Kirschvink, J.L., Rapalini, A.E., 2020, Coniacian-Campanian
- 1084 magnetostratigraphy of the Marambio Group: The Santonian-Campanian
- 1085 boundary in the Antarctic Peninsula and the complete Upper Cretaceous –
- Lowermost Paleogene chronostratigraphical framework for the James Ross Basin:
 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 555, 109871.
- 1088 Montes, M., Beamud, E., Nozal, F., Santillana, S., 2019, Late Maastrichtian-Paleocene
- 1089 chronostratigraphy from Seymour Island, James Ross Basin, Antarctic Peninsula:
- 1090 Eustatic controls on sedimentation: Advances in Polar Sciences, v. 30, p. 303–
- 1091 327.
- 1092 Mohr, R.C., Tobin, T.S., Petersen, S.V., Dutton, A., and Oliphant, E., 2020, Subannual
- 1093 stable isotope records reveal climate warming and seasonal anoxia associated with
- 1094 two extinction intervals across the Cretaceous-Paleogene boundary on Seymour
- 1095 Island, Antarctica: Geology, v. 48, p. 1131–1136, doi:<u>10.1130/G47758.1</u>.
- 1096 Ogg, J.G., 2012, Geomagnetic Polarity Time Scale, in: The Geologic Time Scale.
- 1097 Elsevier, pp. 85–113.
- Olivero, E.B., 2012, Sedimentary cycles, ammonite diversity and palaeoenvironmental
 changes in the Upper Cretaceous Marambio Group, Antarctica: Cretaceous
- 1100 Research, v. 34, p. 348–366.

1101	Olivero, E.B., Medina, F.A., 2000, Patterns of Late Cretaceous ammonite biogeography
1102	in southern high latitudes: the Family Kossmaticeratidae in Antarctica:
1103	Cretaceous Research, v. 21, p. 269–279.
1104	Olivero, E.B., Gasparini, Z., Rinaldi, C.A., Scasso, R., 1991, First record of dinosaurs in
1105	Antarctica (Upper Cretaceous, James Ross Island): palaeogeographical
1106	implications, in Thomson, M.R.A., Crame, J.A., Thomson, J.W., eds., Geological
1107	Evolution of Antarctica. Cambridge University Press, Cambridge, pp. 617-622.
1108	Olivero, E.B., Martinioni, D.R., Mussel, F.J., 1992, Upper Cretaceous sedimentology and
1109	biostratigraphy of western Cape Lamb (Vega Island, Antarctica). Implications on
1110	sedimentary cycles and evolution of the basin, in Rinaldi, C.A., ed., Geología de
1111	la Isla James Ross. Instituto Antártico Argentino, Buenos Aires, pp. 147-166.
1112	Olivero, E.B., Ponce, J.J., Martinioni, D.R., 2008, Sedimentology and architecture of
1113	sharp-based tidal sandstones in the upper Marambio Group, Maastrichtian of
1114	Antarctica: Sedimentary Geology, v. 210, p. 11-26.
1115	Olivero, E.B., Scasso, R.A., Rinaldi, C.A., 1986, Revision of the Marambio Group,
1116	James Ross Island, Antarctica: Contribuciones Científicas del Instituto Antártico
1117	Argentino v. 331, p. 1–28.
1118	Pagani, M., Arthur, M. A., 1998, Stable isotopic studies of Cenomanian-Turonian
1119	proximal marine fauna from the US Western Interior Seaway. In
1120	W.E Dean, M.A Arthur (Eds.), Concepts in Sedimentology and Paleontology, v.

1121 6, SEPM, USA (1999), pp. 201-225.

1122	Peters, C., & Dekkers, M. J., 2003, Selected room temperature magnetic parameters as a
1123	function of mineralogy, concentration and grain size: Physics and Chemistry of
1124	the Earth, Parts A/B/C, v. 28(16-19), p. 659-667.
1125	Petersen, S.V., Dutton, A., Lohmann, K.C., 2016. End-Cretaceous extinction in
1126	Antarctica linked to both Deccan volcanism and meteorite impact via climate
1127	change: Nature Communications, v. 7, 12079.
1128	Pirrie, D., 1989. Shallow marine sedimentation within an active margin basin, James
1129	Ross Island, Antarctica: Sedimentary Geology, v. 63, 61-82.
1130	Pirrie, D., 1994. Petrography and provenance of the Marambio Group, Vega Island,
1131	Antarctica: Antarctic Science, v. 6, p. 517–527.
1132	Pirrie, D., Marshall, J.D., 1991. Field relationships and stable isotope geochemistry of
1133	concretions from James Ross Island, Antarctica: Sedimentary Geology, v. 71, p.
1134	137–150.
1135	Pirrie, D., Crame, J.A., Lomas, S.A., Riding, J.B., 1997. Late Cretaceous stratigraphy of
1136	the Admiralty Sound region, James Ross Basin, Antarctica: Cretaceous Research,
1137	v. 18, p.109–137.
1138	Pirrie, D., Crame, J.A., Riding, J.B., 1991. Late Cretaceous stratigraphy and
1139	sedimentology of Cape Lamb, Vega Island, Antarctica: Cretaceous Research,
1140	v.12, p. 227–258.
1141	Reguero, M.A., Gasparini, Z., 2006. Late Cretaceous-early Tertiary marine and terrestrial
1142	vertebrates from James Ross Basin, Antarctic Peninsula: a review, in Rabassa, J.,
1143	Borla, M.L., eds., Antarctic Peninsula and Tierra del Fuego: 100 Years of

- Swedish-Argentine Scientific Cooperation at the End of the World. Taylor andFrancis, London, pp. 55–76.
- 1146 Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T., Marenssi, S., 2013a. Late
- Cretaceous/Paleogene West Antarctica Terrestrial Biota and its Intercontinental
 Affinities: Dordrecht, Springer Netherlands, 120 p.
- 1149 Reguero, M.A., Tambussi, C.P., Coria, R.A. and Marenssi, S.A., 2013b. Late Cretaceous
- dinosaurs from the James Ross Basin, West Antarctica: Geological Society,
 London, Special Publications, v. 381(1), p.99–116.
- 1152 Riding, J.B., 1997, A palynological investigation of the Sandwich Bluff Member (Lopez
- 1153 de Bertodano Formation) from Cape Lamb, Vega Island, Antarctic Peninsula:
- 1154 Unpublished Technical Report British Geological Survey, WH/97/79R, 7pp.
- 1155 Riding, J.B., Keating, J.M., Snape, M.G., Newham, S., Pirrie, D., 1992, Preliminary
- Jurassic and Cretaceous dinoflagellate cyst stratigraphy of the James Ross Island
 Area, Antarctic Peninsula: Newsletters on Stratigraphy, v. 26, p. 19–39.
- 1158 Rinaldi, C.A., Massabie, A., Morelli, J., Rosenman, H.L., del Valle, R., 1978, Geologia
- de la isla Vicecomodoro Marambio: Contribuciones Científicas del Instituto
 Antártico Argentino, v. 217, p. 1–44.
- 1161 Roberts, E.M., Lamanna, M.C., Clarke, J.C., Meng, J., Gorscak, E., Sertich, J.J.W.,
- 1162 O'Connor, P.M., Claeson, K.M., MacPhee, R.D.E., 2014, Stratigraphy and
- 1163 vertebrate paleoecology of Upper Cretaceous-?lowest Paleogene strata on Vega
- 1164 Island, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 402,
- 1165 p. 55–72.

1166	Rozadilla, S., Agnolín, F.L., Novas, F.E., Aranciaga Rolando, A.M., Motta, M.J., Lirio,
1167	J.M. and Isasi, M.P., 2016, A new ornithopod (Dinosauria, Ornithischia) from the
1168	Upper Cretaceous of Antarctica and its palaeobiogeographical implications.
1169	Cretaceous Research, v. 57, p.311-324.
1170	Schoepfer, S.D., Tobin, T.S., Witts, J.D., Newton, R.J., 2017, Intermittent euxinia in the
1171	high-latitude James Ross Basin during the latest Cretaceous and earliest
1172	Paleocene.: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 477, p. 40-
1173	54. https://doi.org/10.1016/j.palaeo.2017.04.013
1174	Smith, S.W., 2004, Microplankton from the Cape Lamb Member, López de Bertodano
1175	Formation (Upper Cretaceous), Cape Lamb, Vega Island: Antarctic Science, v. 4,
1176	p. 337–353.
1177	Tambussi, C.P., Acosta Hospitaleche, C.I., 2007, Antarctic birds (Neornithes) during the
1178	Cretaceous-Eocene times: Revista de la Asociación Geológica Argentina, v. 62, p.
1179	604–617.
1180	Tambussi, C.P., Degrange, F.J., De Mendoza, R.S., Sferco, E. and Santillana, S., 2019, A
1181	stem anseriform from the early Palaeocene of Antarctica provides new key
1182	evidence in the early evolution of waterfowl: Zoological Journal of the Linnean
1183	Society, v. 186(3), p.673-700.
1184	Thorn, V.C., Riding, J.B., Francis, J.E., 2009, The Late Cretaceous dinoflagellate cyst
1185	Manumiella—biostratigraphy, systematics and palaeoecological signals in
1186	Antarctica: Review of Palaeobotany and Palynology, v. 156, p. 436-448.
1187	Tobin, T.S., 2017, Recognition of a likely two phased extinction at the K-Pg boundary in
1188	Antarctica: Scientific Reports, v. 7. https://doi.org/10.1038/s41598-017-16515-x

1189	Tobin, T.S., Roberts, E.M, Slotznick, S.P., Biasi, J.A., Clarke, J.A., O'Connor, P.M.,
1190	Skinner, S.M., West, A.R., Snyderman, L.S., Kirschvink, J.L., and Lamanna,
1191	M.C., 2020, New evidence of a Campanian age for the Cretaceous fossil-bearing
1192	strata of Cape Marsh, Robertson Island, Antarctica: Cretaceous Research, v. 108,
1193	104313.
1194	Tobin, T.S., Ward, P.D., Steig, E.J., Olivero, E.B., Hilburn, I.A., Mitchell, R.N.,
1195	Diamond, M.R., Raub, T.D., Kirschvink, J.L., 2012, Extinction patterns, 8180
1196	trends, and magnetostratigraphy from a southern high-latitude Cretaceous-
1197	Paleogene section: links with Deccan volcanism: Palaeogeography,
1198	Palaeoclimatology, Palaeoecology, v. 350-352, p. 180-188.
1199	Todd, C.N., Roberts, E.M., Spandler, C., Huang, H., Knutsen, E., Rozefels, A., 2019,
1200	Refined age and geological context of two of Australia's most important Jurassic
1201	vertebrate taxa (Rhoetosaurus brownei and Siderops kehli), Queensland:
1202	Gondwana Research, v. 76, 19-25.
1203	Torres, C.R., Norell, M.A. and Clarke, J.A., 2021, Bird neurocranial and body mass
1204	evolution across the end-Cretaceous mass extinction: The avian brain shape left
1205	other dinosaurs behind. Science Advances, v. 7(31), p.eabg7099.
1206	Tucker, R.T., Roberts, E.M., Hu, Y., Kemp, A.I.S., and Salisbury, S.W., 2013, Detrital
1207	zircon age constraints for the Winton Formation, Queensland: Contextualizing
1208	Australia's Late Cretaceous dinosaur faunas: Gondwana Research, v. 24, 767-
1209	779.
1210	Tucker, R.T., Roberts, E.M., Kemp, A.A., Henderson, B., 2016, Large igneous province

1211 or long-lived magmatic arc along the eastern margin of Australia during the

- 1214 Vail, P.R., Hardenbol, J., Todd, R.G., 1984, Jurassic unconformities, chronostratigraphy, 1215 and sea-level changes from seismic stratigraphy and biostratigraphy, in Schlee, 1216 J.S., ed., Interregional Unconformities and Hydrocarbon Accumulation: American 1217 Association of Petroleum Geologists Memoir, v. 36, p. 129–144. 1218 Van Geldern, R., Joachimski, M. M., Day, J., Jansen, U., Alvarez, F., Yolkin, E. A., & 1219 Ma, X. P., 2006, Carbon, oxygen and strontium isotope records of Devonian 1220 brachiopod shell calcite: Palaeogeography, Palaeoclimatology, Palaeoecology, 1221 v. 240, p. 47–67 1222 West, A.R., Torres, C.R., Case, J.A., Clarke, J.A., O'Connor, P.M. and Lamanna, M.C., 1223 2019, An avian femur from the Late Cretaceous of Vega Island, Antarctic 1224 Peninsula: removing the record of cursorial landbirds from the Mesozoic of
- 1225 Antarctica: PeerJ, v. 7, p.e7231.
- 1226 Whittle, R.J., Witts, J.D., Bowman, V.C., Crame, J.A., Francis, J.E., Ineson, J., 2019,
- 1227 Nature and timing of biotic recovery in Antarctic benthic marine ecosystems
- following the Cretaceous-Palaeogene mass extinction: Palaeontology, v. 16, p.919–934.
- Wilckens, O., 1910, Die Anneliden, Bivalven, und Gastropoden der Antarktischen
 Kreideformationen: Wissenschaftliche Ergebnisse der Schwedischen SüdpolarExpedition, 1901–1903. 3, pp. 1–132.
- 1233 Witts, J.D., Bowman, V.C., Wignall, P.B., Alistair Crame, J., Francis, J.E., Newton, R.J.,
- 1234 2015, Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods

1235	from the López de Bertodano Formation, Seymour Island, Antarctica:
1236	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 418, p. 193-212.
1237	https://doi.org/10.1016/j.palaeo.2014.11.002
1238	Witts, J.D., Newton, R.J., Mills, B.J.W., Wignall, P.B., Bottrell, S.H., Hall, J.L.O.,
1239	Francis, J.E., Alistair Crame, J., 2018, The impact of the Cretaceous-Paleogene
1240	(K-Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour
1241	Island, Antarctica: Geochimica et Cosmochimica Acta, v. 230, p. 17-45.
1242	https://doi.org/10.1016/j.gca.2018.02.037
1243	Witts, J.D., Whittle, R.J., Wignall, P.B., Crame, J.A., Francis, J.E., Newton, R.J.,
1244	Bowman, V.C., 2016, Macrofossil evidence for a rapid and severe Cretaceous-
1245	Paleogene mass extinction in Antarctica: Nature Communications, v.7, 11738.
1246	https://doi.org/10.1038/ncomms11738
1247	Wood, S.A., Askin, R.A., 1992, Dinoflagellate cysts from the Marambio Group (Upper
1248	Cretaceous) of Humps Island: Antarctic Science, v. 4, p. 327-336.
1249	Zinsmeister, W.J., 1979, Biogeographic significance of the late Mesozoic and early
1250	Tertiary molluscan faunas of Seymour Island (Antarctic Peninsula) to the final
1251	breakup of Gondwanaland, in Gray, J., Boucot, A., eds., Historical Biogeography,
1252	Plate Tectonics and the Changing Environment. Proceedings of the 37th Annual
1253	Biology Colloquium and Selected Papers: Oregon State University Press,
1254	Corvallis, pp. 349–355.
1255	Zinsmeister, W.J., 1982, Review of the Upper Cretaceous-Lower Tertiary sequence on
1256	Seymour Island, Antarctica: Journal of the Geological Society, v. 139, p. 779-
1257	785.

1258	Zinsmeister, W.J., 1998, Discovery of fish mortality horizon at the KT boundary on
1259	Seymour Island: re-evaluation of events at the end of the Cretaceous: Journal of
1260	Paleontology, v. 72, p. 556–571.
1261	Zinsmeister, W.J., 2001, Late Maastrichtian short-term biotic events on Seymour Island,
1262	Antarctic Peninsula: The Journal of Geology, v. 109, p. 213-229.
1263	Zinsmeister, W.J., Feldmann, R.M., Woodburne, M.O., Elliot, D.H., 1989. Latest
1264	Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica: Journal of
1265	Paleontology, v. 63, p. 731–738.
1266	Zinsmeister, W.J., Feldmann, R.M., 1996, Late Cretaceous faunal changes in the high
1267	southern latitudes: a harbinger of global biotic catastrophe?, in MacLeod, N.,
1268	Keller, G., eds., Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental
1269	Changes: Norton, New York, pp. 303-325.

1	2	7	1
T	7	1	T

FIGURE CAPTIONS

1272 Fig. 1. Location and stratigraphy of main study area (modified after Crame et al., 2004; 1273 Roberts et al., 2014; Tobin et al., 2020, and references therein). (A) Map of northern 1274 Antarctic Peninsula (white) indicating islands (light gray) with Upper Cretaceous 1275 exposures in James Ross Basin. Note that the main study location, Vega Island, is dark 1276 gray. Fine dashed line through islands indicates cross section trace for correlation chart 1277 in B; thick dashed curved line indicates hypothesized margins of Larsen Basin (which 1278 includes James Ross Basin) (modified from del Valle et al., 1992); Arcuate dashed line 1279 through peninsula represents highly generalized location of Graham Land magmatic arc. 1280 (B) Simplified correlation chart of Upper Cretaceous to basal Paleogene stratigraphic 1281 units within the James Ross Basin. Formation and member names follow Olivero (2012a), though the Alpha and Beta members of the Santa Marta Formation are roughly 1282 1283 equivalent to the Lachman Crags Member of Pirrie et al. (1997), and the Gamma Member 1284 of the Snow Hill Island Formation is roughly equivalent to the Herbert Sound Member of 1285 Crame et al. (1991). Abbreviations: Fm, Formation; I, island; Mbr, Member; Pg, 1286 Paleogene; Ss, Sandstone.

1287

1289 Member of the López de Bertodano Formation on Vega Island. (A) Photomosaic showing

1290 key stratigraphic units through Sandwich Bluff Member (Modified from Roberts et al.,

1291 2014). Dashed white box shows location of B. (B) View of contacts between Unit

1292 SBM14/15 and SBM16 (~Sobral Formation-equivalent unit?). Dashed white boxes show

1293 locations of photo C and photos D-F. (C) Erosional contact between SBM14/15 and

1294	SBM16?/Sobral Formation equivalent? at top of Sandwich Bluff. Black arrows indicate
1295	contact. (D) Photo of bentonitic siltstone units at base of Unit SBM16j. (E) Intensely
1296	bioturbated siltstone (Units SBM16e) with coarse sand infilling from overlying unit
1297	(SBM16f). Te- Teichichnus, indicating a return to marine conditions. (F) Thalassinoides
1298	(Th) and <i>Planolites</i> (Pl) burrows at the base of Unit SBM16e supporting a return to
1299	marine conditions. (G) Measured section with sequence stratigraphic interpretations, unit
1300	nomenclature, and sample location throughout the upper portion of the Sandwich Bluff
1301	Member on Vega Island. Dashed boxes labelled 2B-F next to section show location of
1302	those images in the measured section. Abbreviations: DZ, detrital zircon sample; HST,
1303	highstand systems tract; LST, lowstand systems tract; PS, pollen sample; TST,
1304	transgressive systems tract. See inset legend for lithologies and sedimentologic features
1305	and both trace and actual fossils.

1307 Fig. 3. Composite stratigraphic section of Upper Cretaceous succession on Vega Island (bottom), with strontium isotope curve (LOWESS V.5) (top) showing mean ⁸⁷Sr/⁸⁶Sr 1308 1309 results (black dots, 2-sigma error bars) for each of seven binned stratigraphic intervals investigated in this study. Open circle on curve is recalibrated ⁸⁷Sr/⁸⁶Sr result from Crame 1310 1311 et al. (1999). Brackets/stars show stratigraphic location of each sample in section and 1312 arrows show where results plot on LOWESS V.5 curve. Upper Cape Lamb Member and 1313 Sandwich Bluff Member sections from Roberts et al. (2014); lower Cape Lamb Member 1314 and Gamma Member sections measured on Cape Lamb in type areas of Pirrie et al. 1315 (1991). Abbreviation: FM, formation; JRIVG, James Ross Island Volcanic Group. 1316

1317 Fig. 4. (A) Relative probability plot of detrital zircon sample 22516-9 from Unit

1318 SBM16j/Sobral Fm?, with expanded view of Mesozoic grain ages in (B). Note that the

1319 youngest graphical peak age is 66.3 Ma. (C) Weighted mean age of 66.3 ± 1.1 Ma (2σ) for

1320 the youngest coherent detrital zircon population composed of four latest Maastrichtian- to

1321 Paleogene grains. Note the arrow is pointing to the youngest single grain (YSG) at

1322 65.7±1.2 Ma. (D) U-Pb Concordia diagram youngest four grains used to calculate the

1323 weighted mean age, which is interpreted to be the maximum depositional age for this

1324 horizon.

1325

1326 Fig. 5. Paleomagnetic data and directional fits. Vector component, equal area and 1327 magnetization/natural remanent magnetization (NRM) plots are shown for four example 1328 specimens in in-situ coordinates. (A) SBV-9.1 and (B) SBV-21.1 represent two good 1329 samples with well-defined origin-reaching high temperature components; the former 1330 exemplifying the recorded reversed polarity directions with the latter displaying normal 1331 polarity directions that are clearly distinct from a low-temperature component interpreted 1332 to be a present local field overprint; SBV-21.1 is also highest sample stratigraphically in 1333 this study. (C) SBV-17.1 was one of the three samples that was not fully demagnetized 1334 by 575° C; this sample's rock magnetic properties point to slightly different magnetic 1335 mineralogy (Supplementary Fig. 3); SBV-17.1 displayed transitional latitudes. (D) SBV-1336 3.1 is an example of a noisy sample that could still be fit with two components including 1337 an origin trending high-temperature component.

1338

1339	Fig. 6. Paleomagnetic results for the Sandwich Bluff Member presented stratigraphically
1340	and in stereographic projection. Polarity interpretations based on Virtual Geomagnetic
1341	Pole (VGP) latitude are noted as Normal (N) or Reverse (R) with sections of uncertain
1342	polarity noted with a "?". High-temperature lines are directional fits using an anchored
1343	line while low-temperature lines are unanchored. In green on the left-most stereograph,
1344	present local field directions of all specimens had a Fisher mean direction ($D = 334.5^{\circ}$, I
1345	= -72.9°, $\alpha 95 = 33.3^{\circ}$, N = 20 lines) whose $\alpha 95$ encompasses the present local field when
1346	samples were collected (D = 11.4° , I = -56.5°). In purple in the middle stereograph,
1347	Fisher means were calculated for normal and reversed polarities excluding samples in the
1348	"?" magnetozones. Normal: $D = 20.0^{\circ}$, $I = -63.7^{\circ}$, $\alpha 95 = 28.3^{\circ}$, $N = 11$ lines, 2 planes
1349	Reversed: $D = 63.9^{\circ}$, $I = 80.7^{\circ}$, $\alpha 95 = 56.3^{\circ}$, $N = 2$ lines, 1 plane. In the right
1350	stereograph, directions were all flipped to the lower hemisphere to calculate a Fisher
1351	mean with robust directions (maximum angular deviation/MAD $< 10^{\circ}$ for lines and $< 15^{\circ}$
1352	for planes): $D = 153.0^{\circ}$, $I = -83.0^{\circ}$, $\alpha 95 = 33.8^{\circ}$, $N = 10$ lines. This mean colored in blue
1353	has an $\alpha 95$, which encompasses the mean direction calculated from coeval sediments of
1354	Seymour Island (Tobin et al., 2012) colored in red. Additional abbreviation: Plane BF,
1355	best fit from plane directional fit.

1357 Fig. 7. Summary of the stratigraphy of the Upper Cretaceous (middle–upper

1358 Maastrichtian) Sandwich Bluff Member of the López de Bertodano Formation and

1359 overlying units on Vega Island integrating sequence stratigraphy, lithostratigraphy,

1360 palynology, Sr-isotope stratigraphy, U-Pb detrital zircon maximum depositional age

1361 control, and magnetostratigraphy. Polarity interpretations noted as Normal (N) or Reverse

1362	(R) with sections of uncertain polarity noted with a "?". Three distinct correlations to the
1363	global polarity timescale (GPTS) can be made with the section spanning either: Option 1:
1364	Chron 31N (C31N) with a hiatus between at the top of SBM1, followed by renewed
1365	deposition spanning C30N to C29N; Option 2a: C31N to C30N; or Option 3, which
1366	includes an interpretation for the sections with uncertain polarity, suggests deposition
1367	spanning C31N to C29R. JRIVG, James Ross Island Volcanic Group; SBM, Sandwich
1368	Bluff Member. Figure follows the Geomagnetic Polarity Time Scale of Gradstein et al.
1369	(2012).

- 1370
- 1371 **Fig. 8.** Composite stratigraphic section for Vega Island showing a summary of the

1372 updated and legacy biostratigraphy, Sr-isotope stratigraphy, U-Pb age control, interpreted

1373 magnetostratigraphy (the preferred correlation in this study) and lithostratigraphy.

	FEATURES	S PALEO	DENVIRON	MENT
	-	PS 3216-2 PS 2516-7 DZ 22516-9	Very Near Shore- Marine	UNIT SBM16j
	PTh,Te			UNIT SBM16i
	PTh (
TST	گTh, Pl			UNIT SBM16h
	Te			UNIT SBM16g
				UNIT SBM16f
	ул ул			UNIT SBM16e
	23			UNIT SBM16d
				UNIT SBM16c
				UNIT SBM16b
	33			
LS	8			UNIT SBM16a
	20 2 C	PS 170216-1	Non- Marine	UNIT SBM15
HST	C.S.	PS 22516-4	Marginal- Marine	UNIT SBM14
-pebb siltstone	oly sandstor	ne -mas oss-bedded san	sive sandst dstone	one
s &D.	non-avian	dinosaurs?	-isolated	pebbles
les isp.	Te -Teich	ichnus isp.	-Planolit	es isp.
ified wo	- Do	oivalves	-gastropods	
nity	++++-tuff	aceous		

Specimen	Sample	87Sr/86Sr	Error	Age	Error	SEM	Ba/Ca	Fe/Ca	Mg/Ca	Mn/Ca	Sr/Ca
1	ID		2σ	0		Ы	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol
Can daniah Dhaff Mhar II			20			11	minormor	mmormor	minormor	minor mor	minormor
Trigoniid biyalve indet	nit 10-14 니5	0 707796	0.000072			ΝA	0.01	0.33	0.35	0.12	23
Maoritas sp	H22	0.707790	0.0000072			4.5	0.01	3.84	2.83	3.09	2.5
Trigoniid biyalye indet	FV1	0.707829	0.0000033			4.5	0.01	6.63	6.15	11.0	1 20
Esclamitriconia en		0.707750	0.000003			4	0.07	0.03	1.05	0.77	1.29
Eselaeviirigonia sp.		0.707739	0.0000030			4.5	0.01	2.20	2.75	0.17	1.01
Eseideviirigonia sp.	EVS	0.707821	0.0000038			4	0.01	5.41	2.75	0.14	2
I rigoniid bivalve indet.	EV5	0.707836	0.0000048			3.5	0.01	1.43	1.67	1.97	3.74
Eselaevitrigonia sp.	EV10	0.707833	0.000005			4	-	-	-	-	-
Eselaevitrigonia sp.	EVII	0.707817	0.0000026	<0 -	1 454 1 00	4	0	0.06	0.3	0.09	1.46
Average		0.707806	0.000021	68.5	1.45/-1.90						
Sandwich Bluff Mbr -U	nit 1										
Australoneilo sp.	EV21	0.707807	0.0000047			3.5	0.04	7.71	5.64	2.63	3.49
- replicate	EV21	0.707794	0.0000036								
Maorites sp.	EV23	0.707778	0.0000034			3.5	0.03	7.16	3.16	1.04	3.58
- replicate	EV23	0.707762	0.0000043								
Bivalve indet.	EV24	0.707775	0.0000041			NA	0.02	10	5.99	1.39	3.2
- replicate	EV24	0.707792	0.0000034								
Average		0.707785	0.000012	69.7	0.45/-1.00						
U. Cape Lamb Mbr – 27	0-280m										
Eutrephoceras sp.	H10	0.707758	0.0000048			-	-	-	-	-	-
Trigoniid bivalve indet.	EV29	0.707764	0.0000051			5	0.03	1.65	1.35	0.26	3.34
Average		0.707761	0.0000064	71	0.15/-0.10						
L. Cane Lamb Mbr – 23	4m										
Trigoniid bivalve indet.	H11	0.707743	0.0000081			3.5	0.01	0.97	1.41	1.02	2.68
Pinna sn	EV38	0.707737	0.0000076			4.5	0.01	4.82	1.07	0.68	4.33
1 unu sp.	1,20	0.70774	0.0000070	71.0	0 10/ 0 10	1.5	0.01	1.02	1.07	0.00	1.55
Average		0.70774	0.0000001	/1.9	0.10/-0.10						
L. Cape Lamb Mbr –184	4m										
Pinna sp.	EV32	0.70775	0.0000046			3	0.06	2.25	2.13	1.34	6.65
- replicate	EV32	0.70774	0.0000028								
Average		0.70774	0.000013	71.9	0.35/-0.55						
L. Cape Lamb Mbr – 13	0-140m										
Crame et al. (2000)	n=17	0.707737	0.0000015	72	0.10/-0.15	-	-	-	-	-	-
L. Cane Lamb Mbr – 60	-130m										
Eutrephoceras sp.	H14	0.707699	0.0000068			4	0.16	11.81	1.44	7.07	5.77
Pinna sp.	H15	0.707742	0.0000032			4	0.07	4.46	2.28	0.7	4.39
Gunnarites sp.	EV15	0.707737	0.0000026			NA	0.02	1.18	0.99	0.39	3.77
Pyncnodont oyster	EV30	0.707741	0.0000039			NA	0.01	6.99	5.45	1.24	0.98
- replicate	EV30	0.707725	0.0000025								
Pinna sp.	EV31	0.707732	0.0000033			3	0.03	1.11	0.62	0.28	3.74
- replicate	EV31	0.707696	0.0000039								
Pinna sp.	EV39	0.707696	0.0000038			3.5	0.03	13.89	9.73	1.5	3.99
Average		0.70772	0.000015	72.8	0.30/-0.55						
L Cana Lamb Mbr 20	10										
L. Cape Lamb Mor – 30	-40111 H16	0 707749	0.0000056			4	0.04	0.16	0.55	0.09	5 16
- replicate	H16	0.707719	0.0000050			7	0.04	0.10	0.55	0.07	5.10
Gunnarites sp	H17	0.707733	0.0000002			4	0.05	3	0.69	0.51	4.01
Futranhocaras sn	EV25	0.707701	0.00000037			4	0.03	0.41	0.69	0.24	4.57
Trigoniid bivalva indat	EV40	0 707712	0.0000071			2	0.05	2 22	1 02	1.54	1.87
replicate	E V40 EV40	0.707712	0.0000023			5	0.02	5.22	1.05	1.34	1.0/
- repricate	E V 40 E V 41	0.707602	0.0000039			NTA	0.01	0.02	0.4	0.0	0.71
r ynchodont oyster	EV41	0.707678	0.0000115			INA	0.01	0.83	0.4	0.6	0.71
- replicate	EV41 EV425	0.707629	0.0000083			NIA					
Gunnarnes sp.	E V 420	0.707078	0.000008	72 1	0 (0/ 1 10	INA	-	-	-	-	-
Average		0.70771	0.000029	/3.1	0.00/-1.10	_					
a			0.00000								
Standard - NBS-987	n=13	0.710233	0.000021								

TABLE 2: PALYNOLOGICAL DATA SUMMARY

		Microfossil		Percentage				Divers	ity (*1)	Dinoflagellate	Spore Pollen	Askin		
Sample #	Sample Level	Yield	Preservation	Microplankton		n	Spore-Pollen	Microplankton	Spore-Pollen	Zone (Partridge,	Zone (Partridge,	(1988)	Environment *2	Key Datums
				Dinoflag.	Spiny Ac.	Other	Spore-r onen	moropiamaon	opore i onen	2006)	2006)	Biozones		
3216-2	SBM16j (top)	High	Excellent	6	<1	2	92	2	32	M. druggii, Upper	F. longus-T. lilliei	Biozone 3-4	V. Nearshore Marine	T. lilliei, T. waipawaense, M. bertodano, M. seelandica
22516-7	SBM16j (base)	Moderate	Excellent	6	<1	5	89	5	25	M. druggii, Upper	F. longus	Biozone 3-4	V. Nearshore Marine	T. lillei, C. ohaiensis, M. seelandica, G. cf evansii, P. golzowense, M. bertodano
170216-1	SBM15	High	Excellent	0	<1	0	100	0	23		F. longus-T. lilliei		Non-marine	T. lilliei, T. waipawaense
22516-4	SBM14	High	Excellent	1	0	2	97	2	23	M. druggii, Upper	F. longus-T. lilliei	Biozone 4	Marginal Marine	M. bertodano, M. druggii, T. lillei

*1: Diversity		*2: Environment	Dinoflagellate Content %	Dinoflagellate Diversity	Freshwater Algae Content %
V. High	30+ species	Shelfal Marine	34 to 66	High	
High	20-29 species	Nearshore Marine	11 to 33	Moderate	-
Moderate	10-19 species	Very Nearshore Marine	5 to 10	Moderate-Low	
Low	5-9 species	Marginal Marine	<1 to 4	Low-Very Low	
Very Low	1-4 species	Brackish	0, Spiny Acritarchs only	Extremely Low	
		Non-Marine (undiff.)	0, no Spiny Acritarchs	Nil	Low <3