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Effects of continuous hypoxia 
on flow‑mediated dilation in the cerebral 
and systemic circulation: on the regulatory 
significance of shear rate phenotype
Shigehiko Ogoh1,2, Takuro Washio1,3†, Benjamin S. Stacey2†, Hayato Tsukamoto2,4, Angelo Iannetelli2, 
Thomas S. Owens2, Thomas A. Calverley2, Lewis Fall2, Christopher J. Marley2 and Damian M. Bailey2,3*    

Abstract 

Emergent evidence suggests that cyclic intermittent hypoxia increases cerebral arterial shear rate and endothelial 
function, whereas continuous exposure decreases anterior cerebral oxygen (O2) delivery. To examine to what extent 
continuous hypoxia impacts cerebral shear rate, cerebral endothelial function, and consequent cerebral O2 delivery 
(CDO2), eight healthy males were randomly assigned single-blind to 7 h passive exposure to both normoxia (21% O2) 
and hypoxia (12% O2). Blood flow in the brachial and internal carotid arteries were determined using Duplex ultra-
sound and included the combined assessment of systemic and cerebral endothelium-dependent flow-mediated 
dilatation. Systemic (brachial artery) flow-mediated dilatation was consistently lower during hypoxia (P = 0.013 vs. 
normoxia), whereas cerebral flow-mediated dilation remained preserved (P = 0.927 vs. normoxia) despite a reduction 
in internal carotid artery antegrade shear rate (P = 0.002 vs. normoxia) and CDO2 (P < 0.001 vs. normoxia). Collectively, 
these findings indicate that the reduction in CDO2 appears to be independent of cerebral endothelial function and 
contrasts with that observed during cyclic intermittent hypoxia, highlighting the regulatory importance of (hypoxia) 
dose duration and flow/shear rate phenotype.

Keywords:  Hypoxia, Cerebral blood flow, Flow-mediated dilation, Endothelial function, Antegrade shear rate, 
Retrograde shear rate
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Introduction
In peripheral conduit arteries, it is well established that 
an increase in antegrade shear rate (SR) stimulated by an 
acute elevation in blood flow improves systemic vascu-
lar endothelium-dependent vasodilatory function [1–3]. 
This provides the hemodynamic basis underlying the vas-
cular protective benefits of physical exercise to improve 

systemic endothelial function (EF) and decrease the risk 
of cardiovascular disease [4]. Equally, cerebrovascular 
endothelial dysfunction predisposes to stroke and neu-
rodegenerative diseases [5, 6] and can be countered by 
flow-mediated elevations in SR [6].

Recently, cyclic intermittent hypoxia, consisting of 
3–10  bouts of intermittent exposures (3–6  min) to 
moderate hypoxia (10–15%  O2), was shown to improve 
cerebral EF subsequent to cerebral blood flow (CBF)-
mediated sinusoidal elevations in cerebral SR, implying 
that intermittent hypoxia may be a useful non-pharma-
cological adjunct to optimize cerebrovascular health [7]. 
In further support, cyclic intermittent exercise increases 
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cerebral SR more effectively than continuous steady-state 
exercise [8]. Therefore, the improvement of EF may be 
dictated or subject to regulation by the specific flow/SR 
‘phenotype’. Given that continuous exposure to hypoxia 
is also useful as a clinical therapy [9, 10], further mecha-
nistic investigation is required. To what extent, if indeed 
any, continuous steady-state exposure to hypoxia, a stim-
ulus defined by an entirely different hemodynamic phe-
notype (i.e., non-cyclic/sinusoidal), impacts cerebral SR 
and consequent EF.

Our recent study [11] demonstrated that CDO2 
decreased in the anterior cerebral circulation during con-
tinuous exposure (7 h) to hypoxia, indicating that steady-
state exposure, unlike its cyclic intermittent counterpart, 
attenuates cerebral bioenergetic function. The physi-
ological mechanisms underlying these divergent find-
ings remain to be examined. Furthermore, there are no 
integrated studies to the best of our knowledge that have 
simultaneously examined changes in both local (cerebral) 
and systemic (brachial) EF during continuous hypoxia. 
This is surprising, given the controversial findings relat-
ing to systemic flow-mediated dilation (FMD) in hypoxia 
[12–22] combined with the observation that retrograde 
flow is confined to the systemic and not the cerebral arte-
rial circulation [11, 23, 24]. Specifically, the increase in 
retrograde flow [22, 25, 26], known to attenuate systemic 
EF [27], given its absence in the cerebral circulation [8, 
23, 24, 28] would result in preserved (i.e., maintained) EF.

In light of these knowledge gaps, we conducted a ran-
domized, cross-over, single-blind trial in normoxia and 
hypoxia to examine to what extent continuous steady-
state exposure to inspiratory hypoxia affects the inte-
grated CBF-mediated regulation of cerebral and systemic 
SR and consequent EF. We hypothesized that unlike 

cyclic intermittent exposure, continuous steady-state 
exposure to hypoxia would not alter cerebral SR or 
EF, and that the cerebral FMD response to continuous 
hypoxia would differ from that observed in the systemic 
circulation.

Materials and methods
Participants
Eight physically active males (age: 23 ± 2  y, stature: 
1.81 ± 0.04  m, mass: 80 ± 7  kg) were recruited from the 
local University student population by word-of-mouth, 
social media platforms and advertisements. All partic-
ipants lived close to sea level (90  m) and had not been 
exposed to simulated or terrestrial high-altitude in the 
previous 12  months. Following a medical examination, 
they were confirmed to be healthy and free of any known 
diseases. Furthermore, they were not taking any pre-
scribed or over-the-counter medications or supplements. 
They were instructed to refrain from physical activity, 
caffeine, and alcohol and to follow a low nitrate/nitrite 
diet 24 h prior to formal experimentation [29].

Design
The present study adopted a randomized, cross-over, 
single-blind design with select measurements (see below) 
performed throughout (Fig.  1). Participants completed 
two different experimental trials in a normobaric envi-
ronmental chamber (~ 120  m3) maintained at 21  °C and 
50% relative humidity (Design Environmental, Ebbw 
Vale, UK). They were randomly assigned single-blind to 
complete 7 h passive exposure to normoxia (FiO2 = 0.21) 
and 7  h of normobaric hypoxia (FiO2 = 0.12), separated 
by 7 days. Participants arrived at the laboratory (between 
8:00 and 9:00 A.M.) following a 12 h overnight fast and 
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Fig. 1  Experimental protocol
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consumed a standardized meal (30 g of oats with 180 mL 
water), 30  min before the experimental trials. They 
received the standardized meal again at 2 h, 4 h, and 6 h 
to maximize compliance and avoid hunger/dehydration 
[30]. Flow-mediated dilation (FMD), as an index of sys-
temic vascular EF, of the BA (systemic FMD) and FMD, 
as an index of cerebral EF, of the internal carotid artery 
(ICA, cerebral FMD) were determined every 2 h from the 
first (systemic FMD, 4 repeat measurements) or second 
hour (cerebral FMD, 3 repeat measurements) of experi-
mentation (Fig. 1).

Measurements
Cardiopulmonary function
Heart rate (HR) was monitored by ECG (lead II) and 
beat-to-beat arterial blood pressure (ABP) was moni-
tored continuously via finger photoplethysmography 
(Finometer PRO, Finapres Medical Systems, Amsterdam, 
The Netherlands). SpO2 was quantified via finger-pulse 
oximetry (WristOx2® 3150, Nonin, Minnesota, USA). 
The finometer blood pressure waveform was used to cal-
culate mean arterial blood pressure (MAP) after calibrat-
ing values to the average of two automated brachial blood 
pressure measurements (Life Source, A&D Medical, 
model: UA767FAM), taken over a 5-min resting baseline 
period. The end-tidal partial pressure of carbon dioxide 
(PETCO2) was measured via a mouthpiece and an auto-
matic breath-by-breath respiratory gas-analyzing system 
consisting of a differential pressure transducer, sampling 
tube, filter, suction pump, and mass spectrometer (ML 
206, ADInstruments, UK). All data were recorded con-
tinuously at 1 kHz.

Hemodynamic function
Diameter and blood velocity in the BA and ICA were 
determined using Duplex ultrasound (BA, Terason t3000, 
ICA; Vivid-i, GE Medical Systems, Tokyo, Japan). BA 
measurements were performed in the longitudinal sec-
tion ~ 3–5 cm above the antecubital fossa. ICA measure-
ments were performed ~ 1.0–1.5 cm distal to the carotid 
bifurcation with the participant’s chin slightly elevated. 
The steering angle was fixed to 60° and the sample vol-
ume was placed in the center of the vessel adjusted to 
cover the entire vascular lumen. We captured arterial 
images and associated velocity waveforms at 30  Hz and 
stored them in a computer for the subsequent assessment 
of systemic and cerebral FMD (see below).

Systemic FMD
BA FMD (as systemic FMD) was determined as the 
percent change in peak BA diameter during ischemia-
induced reactive hyperemia from (pre-ischemic) resting 
control baseline according to established methods [31]. 

We used an inflation/deflation pneumatic cuff to provide 
the ischemic stimulus. Specifically, we recorded base-
line scans assessing resting vessel diameter and velocity 
over 1 min. We then inflated the cuff to > 220 mmHg for 
5 min. We resumed diameter and blood velocity record-
ings 30  s before cuff deflation and continued recording 
for 3 min thereafter.

Cerebral FMD
ICA FMD (as cerebral FMD) was determined as the per-
cent change in peak ICA diameter during hypercapnia-
induced reactive hyperemia [7, 32, 33]. We recorded 
a 1  min baseline period followed by 3  min of breathing 
5%  CO2 in 21%  O2 (normoxic trial) or 12%  O2 (hypoxic 
trial) with balanced nitrogen (N2) balance from a 200L 
Douglas Bag via Falconia tubing (Cranleigh, UK) con-
nected to the inspiratory port of a two-way nonrebreath-
ing valve (Hans Rudolph, 2400 series).

Data analysis
HR, ABP and PETCO2 were continuously measured 
throughout and averaged over 30 s every 2 h and comple-
mented by the assessment of cerebral FMD. BA and ICA 
SR and FMD were analyzed during the hyperemic chal-
lenge (see above).

For systemic FMD, BA diameter and mean blood veloc-
ity during the FMD test were assessed at 30  Hz using 
custom-designed edge-detection and wall-tracking soft-
ware (Blood Flow Analysis, Version 5.1). BA parameters 
were derived using an algorithm reported previously [34, 
35]. One minute of baseline data were analysed to yield 
median baseline diameter (Dbase), peak (Dpeak), and time-
to-peak diameter, blood flow and SR characteristics [34, 
36].

In the cerebral FMD, similarly with systemic FMD, ICA 
diameter and blood velocity were analyzed at 30 Hz using 
custom-designed edge-detection and wall-tracking soft-
ware (version 2.0.1, S-13037, Takei Kiki Kogyo, Tokyo, 
Japan). We interpolated ICA parameters to 1 Hz prior to 
subjecting data to a two-stage filtering process (median 
filter and Savitzky–Golay finite impulse response 
smoothing filter). In brief, (Dbase) and SR were analysed 
during the last minute and peak diameter (Dpeak) were 
then assessed visually to ensure that: the detected peak 
SR preceded the detected Dpeak [7, 31–34]. BA and ICA 
SR were calculated using the equation; 4 × mean veloc-
ity/arterial diameter. In addition, the SR area under the 
curve (SRAUC​) was calculated for data up to the point 
of Dpeak using the trapezoid rule [3, 36]. FMD was cal-
culated using peak and baseline values [(Dpeak–Dbase)/
Dbase × 100]. Normalized FMD was calculated by dividing 
FMD by the SRAUC​.
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Cerebral oxygen delivery (CDO2) were determined as 
CDO2 (mL/min)  = ICA blood flow × (estimated) arterial O2 
content (CaO2), calculated as 

(

Hb(g/dL)× 1.39×
SaO2(%)

100

)

 
excluding (albeit minor) contributions from dissolved O2 
(0.003 × arterial PO2), since we did not perform arterial 
catheterization.

Statistical analysis
Power calculation
Data were analyzed using G∗ Power 3.1 software. Assum-
ing a comparable hypoxia-induced reduction (14%) 
and corresponding effect size (η2 = 1.267) for brachial 
(systemic) FMD previously observed by our group in a 
similar demographic [15], the present study required a 
(minimum) sample size of 6 participants (within groups, 
repeated measures) to achieve a (minimum) power of 
0.80 at p < 0.05. We chose to further inflate this to n = 8 
during recruitment given the potential for loss to follow-
up owing to technical failure/drop-out. We were not in 
a position to prospectively power against cerebral FMD 
given that this was the first study to investigate this 
metric.

Inferential statistics
All data were analyzed using SPSS (IBM SPSS Statistics 
Version 28.0) and expressed as mean ± standard devia-
tion (SD). A linear mixed model with fixed effects for 
Trial (normoxia vs. hypoxia) or Inspirate (eucapnia vs. 
hypercapnia) and Time (0–7  h) was used to compare 
acquired data. In addition, the change in hypercapnia 
on cardiopulmonary data from eupnea to hypercapnia 
during cerebral FMD assessment (i.e., ΔHR, MAP and 
PETCO2) were evaluated using a linear mixed model. To 
identify the effect of Dbase, corrected systemic and cer-
ebral FMD were calculated by using Dbase as covariates 
[37, 38]. Differences between means were located using 
Bonferroni-corrected paired samples t tests. Pearson 
correlation was used to analyze the statistical relation-
ship between CDO2 and cerebral FMD. Significance was 
determined at an alpha level of 0.05 for all two-tailed 
tests.

Results
Loss to follow‑up
Systemic FMD was determined in all participants, 
whereas ICA velocity and/or diameter data were lost in 
2 or 3 participants during hypercapnia. Thus, the cerebral 
FMD sample size reflects data obtained in 6 participants 
except for 4 h normoxia and 6 h hypoxia (n = 5, Fig. 3).

Cardiopulmonary function
MAP and PETCO2 were lower in hypoxia (P < 0.001 
vs. normoxia), whereas HR was higher (P = 0.001 vs. 

normoxia). The hypercapnia stimulation during cerebral 
FMD assessment did not affect cardiovascular variables 
(HR, MAP, and PETCO2, Table 1).

Blood flow
BA blood flow did not change during hypoxia (P = 0.359 
vs. normoxia, Fig.  2A). ICA blood flow was higher at 
2nd  h during hypoxia than that of the normoxia condi-
tion (P = 0.001), while ICA blood flow did not differ 
between both conditions from 4th h to the end of the 
hypoxia exposure.

Hypoxia did not alter BA antegrade SR (P = 0.336 vs. 
normoxia, Fig. 2B), whereas BA retrograde SR (absolute 
values) was consistently higher throughout (P < 0.001 vs. 
normoxia). In contrast, retrograde SR was not observed 
in the ICA, whereas ICA antegrade SR during hypoxia 
was lower than that of normoxia (P = 0.002 vs. normoxia).

Systemic FMD
Hypoxia did not alter BA Dbase, Dpeak or SRAUC​ (P > 0.05 
vs. normoxia; Table  2). Systemic FMD and normal-
ized systemic FMD were consistently lower (P = 0.013 
and P = 0.004 vs. normoxia, Fig.  3A). In addition, cor-
rected systemic FMD remained lower during hypoxia 
(P = 0.053).

Cerebral FMD
Both ICA Dbase and Dpeak were slightly higher during 
hypoxia (P < 0.001 vs. normoxia), whereas in contrast, 
ICA SRAUC​, cerebral FMD and normalized cerebral FMD 
were not altered (P = 0.927 and P = 0.228 vs. normoxia, 
Fig.  3B). In addition, corrected cerebral FMD remained 
unaltered during hypoxia (P = 0.480). While CDO2 was 
lower during hypoxia (P < 0.001 vs. normoxia), we failed 
to observe a relationship between CDO2 and cerebral 
FMD (r = 0.097, P = 0.586, Fig. 4).

Discussion
Extending prior research highlighting the cerebrovascu-
lar benefits associated with cyclic intermittent hypoxia, 
the present study examined to what extent continuous 
steady-state exposure impacts the integrated SR and 
FMD responses in the systemic and cerebral circulation. 
Our primary finding is that while continuous hypoxia was 
associated with a reduction in systemic FMD, it failed to 
impact cerebral FMD despite a reduction in ICA ante-
grade SR. These findings contrast with those observed 
during cyclic intermittent hypoxia [7], highlighting the 
regulatory importance of (hypoxia) dose duration and 
flow/SR phenotype. Furthermore, the reduction in ante-
rior CDO2 appears to be independent of local changes in 
EF.
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Systemic FMD
In the present study, systemic FMD was attenuated in 
hypoxia, whereas cerebral FMD remained preserved. 
The systemic FMD response to hypoxia remains con-
troversial with some studies demonstrating a reduc-
tion [12–18], whereas others have failed to document 
any change [19–22]. These inconsistent findings may 
be related to differences in the duration and sever-
ity of hypoxia [16] and protocol including the hyper-
emic stimulus [12, 14, 15, 19, 21]. A recent study [16] 
reported that systemic FMD was reduced during 
30  min of mild (SaO2 93%) and moderate (SaO2 83%) 
hypoxia. The reduction in systemic FMD was partly 

attributable to the observed (25%) reduction in SRAUC​
. In further support, Tremblay et  al. [17] identified a 
29% reduction in systemic FMD during acute hypoxia 
(20  min) and 25% reduction during sustained hypoxia 
(5–7 days) that correlated with changes in baseline BA 
mean and antegrade SR. However, these findings con-
trast with the present study given that hypoxia failed to 
alter BA antegrade SR, whereas the increase in BA ret-
rograde SR was more marked and sustained. Therefore, 
our findings suggest that it is the increase in BA ret-
rograde (P < 0.001, Fig.  2B) and not antegrade SR that 
underlies the hypoxia-induced reduction in systemic 
FMD (P = 0.239).
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Interestingly, a reduction in systemic FMD during 
imposed oscillatory shear stress was found to be pre-
sent even in normoxia, indicating that the shear stress 

phenotype may contribute to impaired vascular EF [17]. 
Indeed, the endothelium appears to be more suscep-
tible to oscillatory shear stress during hypoxia, as the 
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oscillatory shear stress intervention elicited an impair-
ment in FMD during hypoxia but not normoxia com-
bined with the observed dissociation between the change 
in SRAUC​ and FMD [21]. Moreover, acute and progressive 
increases in baseline BA retrograde SR have been shown 
to elicit a dose-dependent impairment in systemic FMD 
[27]. Collectively, it is conceivable that alterations in the 
SR phenotype rather than hypoxia per se is the underly-
ing stimulus regulating systemic FMD. The mechanism 
underlying the hypoxia-induced elevation in retrograde 
SR in the peripheral artery remains to be established. 
However, a previous study reported that classic sym-
pathetic stimuli, such as lower body negative pressure 
increased retrograde flow and SR along with increased 
muscle sympathetic nerve activity (MSNA), indicating 
that activation of the sympathetic nerve (i.e., MSNA) may 
increase the retrograde flow and SR in the BA [39]. Thus, 
the hypoxia-induced elevation in retrograde SR may be 
related to a hypoxia-induced elevation in MSNA [39, 40].

Cerebral FMD
In the present study, ICA blood flow increased at the 
2nd h timepoint in hypoxia before returning to normoxic 
control values by the 4th  h and thereonin (Fig.  2B). In 
contrast, no hypoxia-induced elevations were observed 
in BA flow (Fig.  2A) highlighting differential regulation 
across separate albeit functionally integrated vascular 
beds. While it was not our specific intent to focus on the 
precise mechanism(s) underlying this kinetic, it likely 
reflects some degree of initial ‘compensatory’ vasodila-
tion to offset the reduction in arterial O2 content (CaO2) 
followed by (CaO2) ‘restoration’ facilitated by complex 
interactions between the respiratory and autonomic 
nervous systems, as indicated in our prior research high-
lighting progressive and antagonistic changes in the end-
tidal partial pressure of oxygen (PETO2) and MAP [11].

In contrast to systemic FMD, hypoxia failed to alter 
cerebral FMD and this remained well preserved. Thus, 
the attenuated CDO2 in the anterior cerebral circula-
tion observed in our prior study [11], cannot be attrib-
uted to changes in local EF. Importantly, a dissociation 
between the systemic (reduction) and cerebral (pres-
ervation) FMD response has also been documented in 
young smokers [33]. These findings indicate that the 
mechanism(s) underlying vascular EF are clearly site-spe-
cific. Indeed, it is well established that compared to the 
systemic vasculature, the cerebrovasculature is more CO2 
sensitive to provide tighter coupling of O2 delivery via 
increased perfusion given its disproportionately high(er) 
bioenergetic demands to support resting synaptic trans-
mission. Equally, the cerebrovasculature needs to pro-
tect the blood–brain barrier from over-perfusion when 

the limits of autoregulation are potentially compromized 
[41].

One potential mechanism underlying the regional 
(FMD) heterogeneity during hypoxia may be due to the 
fact that retrograde SR is not observed in the cerebral 
circulation [8, 23, 24, 28]. Indeed, systemic FMD was 
reduced in the face of elevated retrograde SR during 
hypoxia. Previous studies [8, 28] have demonstrated that 
anterograde SR dominates in the cerebral circulation, yet 
the underlying mechanisms remain to be established. 
It is possible that the different hemodynamic proper-
ties between the cerebral and systemic vasculature may 
reflect the contrasting flow profiles to which these ana-
tomically distinct but functionally integrated vascular 
beds are exposed [41]. In contrast, cerebral (ICA) ante-
grade SR was lower relative to normoxia with no meas-
urable impact on the (cerebral) FMD response. These 
findings suggest that (lack of change in) retrograde SR is 
the primary stimulus underlying vascular EF. This reduc-
tion in cerebral antegrade SR may simply be the conse-
quence of hypoxia-induced vasodilation (Table  3, ICA 
Dbase, P < 0.001), an evolutionarily conserved response 
that strives to maintain CDO2 in the face of arterial 
hypoxemia, albeit inadequate in the present study.

Cerebral autoregulation can also modify the SR phe-
notype [42]. For example, continuous hypoxia decreases 
MAP [40, 43, 44] subsequent to hypoxia vasodilation 
and this can cause a reduction in cerebral antegrade SR 
subsequent to a decrease in blood flow velocity regard-
less of changes in blood flow. Another possible mecha-
nism may be related to underlying differences between 
cerebral and systemic vasculature in the SR phenotype, 
the consequence of site-specific differences in anatomi-
cal/histological characteristics including redox status, 
hypoxia-induced sympathetic activation and the vascular 
territories they each subserve [23]. Since acute hypoten-
sion modifies systemic EF [31] hypoxia-induced hypoten-
sion may equally impact cerebral EF. The same concept 
applies for hypoxia-induced alterations in hemostasis and 
redox-status given their differential impact on systemic 
(and potentially cerebral) EF [15, 45, 46].

Hypoxia stimulation related flow/SR phenotype 
for cerebral EF
Recently, the elevation in ICA antegrade SR during cyclic 
intermittent hypoxia has been reported [7]; however, the 
underlying mechanism remains unclear. The authors sug-
gested that a cyclic intermittent hypoxia-induced eleva-
tion in cardiac output increases anterograde SR without 
elevating sympathetic activity (arterial blood pressure). 
In contrast, continuous hypoxia increases sympathetic 
activation and arterial blood pressure [47]. Thus, we 
speculate that the differential hemodynamic responses 
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may contribute to the observed differences in cerebral 
FMD. Indeed, cyclic intermittent hypoxia was shown to 
improve cerebral FMD subsequent to a flow-mediated 
elevation in antegrade SR [7], in stark contrast to what 
we observed in the present study employing a continuous 
exposure paradigm. These findings suggest that oscilla-
tory stress imposed by the ‘intermittency’ of the stimu-
lus (e.g., high-intensity interval exercise and/or hypoxia) 
is the key stimulus underling vascular endothelial adap-
tation [48]. A previous study [49] clearly demonstrated 
that oscillatory shear stress improves EF in the systemic 
vasculature but this occurs via increased in both retro-
grade and anterograde SR. Some previous studies [17, 
27, 50, 51] reported that experimentally induced oscilla-
tory shear stress causes a transient reduction in systemic 
FMD, and demonstrate that an increase in retrograde 
SR contributes to this oscillatory shear stress-induced 
endothelial dysfunction. Importantly, retrograde SR is 
absent in the cerebral vasculature [28]. In the cerebral 
circulation, hypoxia stimulates oscillatory SR more mark-
edly relative to continuous hypoxia conditions due to the 
absence of retrograde SR which serves to reduce (total) 
SR and consequently, it may enhance cerebral EF. How-
ever, the brain appears more sensitive to structural per-
turbation/damage (e.g., increased blood–brain barrier 
permeability) compared to the systemic vasculature given 
its increased bioenergetic demands and limited aerobic/
glycolytic energy reserves [52].

A previous review proposed that hypoxic condition-
ing may be harmless and represent a promising adjunct 
therapy for stroke patients [53]. However, in the present 
study, continuous hypoxia’failed’ to improve cerebral 
FMD (i.e., it was simply maintained). In contrast, cyclic 
intermittent hypoxia may prove a useful non-pharma-
cological adjunct therapy for patients with brain disease 
(i.e., after the onset of stroke) given its impact on cerebral 
FMD is ‘superior’.

Limitations
There are a number of limitations to the present study 
that warrant careful consideration. First, larger scale 
follow-up studies are encouraged to confirm our find-
ings given the interpretive limitations associated with 
the relatively small sample sizes employed despite pro-
spective adequate (prospective) powering of our study 
(albeit only against systemic FMD), including caveats 
associated with a Type M error [54]. While technical fail-
ure constrained our assessment of cerebral FMD to 5–6 
participants, retrospective power calculations based on 
the observed effect size of 0.110 (calculated from partial 
η2 = 0.012), 1-β of 0.80, and α of 0.05, indicated that the 
sample size required to detect a treatment effect would 
be in excess of 200 participants, tentatively arguing 

against sample size inflation. Second, we chose to con-
strain our analyzes, focusing exclusively on men to (bet-
ter) control for the potential vascular confounds caused 
by sex androgens [55]. There is an evolving body of lit-
erature suggesting that lifelong adaptation to hypoxia 
(phenotypical responses observed in native highlanders) 
confers neuroprotective benefits linked to more efficient 
redox-regulation of systemic [56, 57] and cerebrovascular 
[58] function and consequent O2 transport. It is conceiv-
able that given such adaptations, highlanders may prove 
phenotypically less ‘responsive/sensitive’ to hypoxia 
although future studies are encouraged to better define 
the hypoxic dose stimulus (intensity/frequency/duration) 
and corresponding implications for integrated vascular 
endothelial function.

Conclusions
Our findings demonstrate that continuous steady-state 
exposure to hypoxia was associated with a reduction in 
systemic FMD, yet failed to impact cerebral FMD despite 
a reduction in ICA antegrade SR. These findings contrast 
with those observed during cyclic intermittent hypoxia 
[7], highlighting the regulatory importance of (hypoxia) 
dose duration and flow/SR phenotype. Understanding 
the latter is key to designing interventions to optimize 
integrated systemic and cerebrovascular function in 
patients suffering from circulatory disease and conse-
quent hypoxemia.
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