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Abstract: Disparities and their geospatial patterns exist in morbidity and mortality of COVID-19
patients. When it comes to the infection rate, there is a dearth of research with respect to the disparity
structure, its geospatial characteristics, and the pre-infection determinants of risk (PIDRs). This work
aimed to assess the temporal–geospatial associations between PIDRs and COVID-19 infection at the
county level in South Carolina. We used the spatial error model (SEM), spatial lag model (SLM),
and conditional autoregressive model (CAR) as global models and the geographically weighted
regression model (GWR) as a local model. The data were retrieved from multiple sources including
USAFacts, U.S. Census Bureau, and the Population Estimates Program. The percentage of males and
the unemployed population were positively associated with geodistributions of COVID-19 infection
(p values < 0.05) in global models throughout the time. The percentage of the white population
and the obesity rate showed divergent spatial correlations at different times of the pandemic. GWR
models fit better than global models, suggesting nonstationary correlations between a region and its
neighbors. Characterized by temporal–geospatial patterns, disparities in COVID-19 infection rate
and their PIDRs are different from the mortality and morbidity of COVID-19 patients. Our findings
suggest the importance of prioritizing different populations and developing tailored interventions at
different times of the pandemic.

Keywords: COVID-19; healthcare disparities; social determinants of health; spatial analysis; Post-
Acute Sequelae of SARS-CoV-2 infection

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), is a highly contagious disease that has caused
widespread panic and concern across the globe. COVID-19 was the third leading cause of
death in 2020. The death rate increased by 15.9% from 2019 to 2020 [1]. As of September
2020, there have been 41 million confirmed cases and 660 thousand deaths due to COVID-
19 in the USA [1–3]. Additionally, COVID-19 has had a profound impact on social life
and the economy, as closing businesses and social distancing have been common practices
to slow the spread of the disease. The U.S. real GDP decreased by 3.5% in 2020 and was
projected to lose at least $3.2 trillion due to COVID-19 in a two-year course [4,5].

The burdens of COVID-19 have not been borne equally. Some populations face
increased risk for COVID-19 morbidity and mortality [6]. Many studies have reported
disparities in the clinical outcomes of patients with COVID-19. For example, studies
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using inpatient data found severe disease progression and poor clinical outcomes of
COVID-19 patients to be associated with a set of underlying medical conditions (e.g.,
hypertension, diabetes, asthma, and heart, liver, and respiratory illnesses), demographics
(e.g., male, older age, race/ethnic minority), and social determinants of health (SDOHs)
(e.g., lower education and income) [7–11]. A study based on a large cohort in Louisiana
comprised of 3,481 COVID-19 patients reported that 76.9% of the hospitalized cases and
70.6% of the death cases were among black patients, whereas only 31% of the state’s
population is black [12]. While these studies have provided a critical evidence base of
disparities in COVID-19 clinical outcomes and implications for medical care for addressing
the disparities, they offered limited implications for disparities in the risk of exposure to
COVID-19 for the following reasons. First, the findings of these studies are applicable
for hospitalized patients but may not be generalizable for outpatients, individuals with
mild symptoms, and asymptomatic individuals since these studies are based on inpatient
data. The omission of outpatients and individuals with laboratory-confirmed COVID-19
infections but no clinic visits will harm the potential opportunity of exploring risk factors
for these populations [13]. Second, using disease severity as the outcome variable does not
provide information on SARS-CoV-2 infection and transmission. For example, SARS-CoV-2
transmits more easily in regions with a large proportion of younger people, yet the elderly
were found to be at a higher risk of developing poor clinical outcomes [14].

Therefore, it is equally important to curate an evidence base for disparities in the
risk of exposure to COVID-19 and the pre-infection determinants of risk (PIDRs) (e.g.,
demographics, socioeconomics, and prevalence of diseases related to COVID-19 infec-
tion) [15–20]. Such an evidence base can be used for understanding disease transmission
patterns, identifying vulnerable populations, and proactively mitigating disparities in
future pandemics [21]. Existing studies have reported demographic and socioeconomic fac-
tors to be related to disparities in the risk of exposure to COVID-19. Different combinations
of those determinants lead to different health attributes (e.g., health behaviors and physical
conditions), thus influencing the spread of the virus. For example, high-deprivation areas
have higher rates of hospitalization and testing [17]. People with a higher income are
more likely to engage in self-protecting behavior during the COVID-19 pandemic [18].
Another study reported that the behaviors of wearing masks and using hand hygiene
are associated with the female sex and a higher education level among students in the
Chinese population [19]. In a primary care cohort, researchers observed a higher risk of
COVID-19 infection among people aged 40–64 years, of the male sex, of the black race, and
living in urban areas [15]. Incorporating census tract level data with the COVID-19 dataset,
Hawkins and colleagues examined the association between socioeconomic indicators and
COVID-19 cases at the county level across the USA and found a lower education level and
a higher percentage of black residents to be risk factors for the infection [16].

To further explore the associations between PIDRs and COVID-19 transmission,
geospatial information is needed. Geographic differences exist across states, counties,
and communities in the timing of the SARS-CoV-2 introduction, which are further charac-
terized by population density, local policies, and population composition [14]. Particularly,
understanding PIDRs and their geospatial epidemiology is urgently needed for rural states,
such as South Carolina, that have a disproportionally low healthcare capacity and high
disease burden. It may also provide timely information for post-COVID-19 care, given
the emerging reports on the heterogeneity of symptoms in individuals with Post-Acute
Sequelae of SARS-CoV-2 infection (PASC) [22,23]. Although the spatially dynamic nature
of infectious diseases (e.g., different spatial patterns of transmission) makes geospatial
analysis a valuable tool to unveil the epidemiology [24–27], there have been limited studies
reporting the geospatial characteristics of PIDRs [14,28–31]. Several studies have reported
minority status, age, and other social vulnerabilities to be associated with a higher COVID-
19 infection, yet spatial patterns were generally not included in the statistical models as
independent variables [28,30,31]. Fortaleza and colleagues used multivariate regression
and found that population density and distance from the state capital are robust predictors
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of COVID-19 prevalence in Brazil [29]. However, the results should be interpreted carefully
since the association between population density and COVID-19 infection could be influ-
enced by factors such as different policies being applied to smaller regions [32]. Another
study built a correlation matrix between socioeconomic determinants and COVID-19 case
rates across the USA and found population density to be highly correlated with COVID-19
prevalence [14].

Although the above studies have collectively suggested possible geospatial charac-
teristics among the disparities in virus transmission, spatial autocorrelation is generally
excluded from their statistical models, which limits the statistical power of the findings.
The spatial autocorrelation, including global modeling and local modeling approaches, en-
ables the correlation measure of a variable (e.g., PIDRs) with itself across different regions.
Spatial global models assume a stationary correlation between a region and its neighbors,
whereas spatial local models assume nonstationary correlations between a region and
different neighbors. Among a few preliminary studies that adopted spatial autocorrela-
tion, Mollalo and colleagues examined the association between the COVID-19 incidence
rate and four county-level explanatory determinants including income inequality, median
household income, the percentage of nurse practitioners, and the proportion of the black
female population to the total female population across the USA [33]. The authors started
with a set of 35 socioeconomic, behavioral, topographic, and demographic explanatory
variables. After a stepwise forward procedure and correlation analysis, they choose to
keep four of these variables in their final model and found that geographically weighted
regression (GWR) models best explained the variations, suggesting the existence of spatial
autocorrelation and different vulnerabilities across the counties. Despite the application of
highly appropriate geospatial methods, the study could have better interpreted the dispar-
ity structure if demographic determinants such as age, sex, and race were included in the
analysis. Additionally, because these studies were based on analyses of cross-sectional data,
they did not specify whether and how observed relationships between COVID-19 outcomes
and PIDRs vary at different points in time as the pandemic evolved. Moreover, there is
increased endogeneity in these analyses because they focused on large geographic regions
within which different regional policies might have a greater impact on the COVID-19
prevalence as compared with the explanatory variables. Existing evidence suggests that
government responses and socioeconomic determinants have played an important role in
the transmission of SARS-CoV-2, which differs geographically [34]. Another similar study
included demographics but still suffered from the same endogeneity problem [35].

Building on these existing studies, we sought to assess the association between PIDRs
(including demographics, socioeconomics, and prevalence of diseases related to COVID-
19 infection) and COVID-19 infection at the county level in South Carolina at different
timepoints amid the pandemic. The heterogeneity in the virus spread in South Carolina
suggests that different PIDRs in certain areas could enhance or inhibit the transmission of
COVID-19. Within the smaller geographic scale of one state, the heterogeneous impacts of
different regional policies could be largely mitigated, and the multi-source South Carolina
surveillance data were sufficient for conducting geospatial analyses. Although there has
been no statewide mask mandate in South Carolina, regional mask ordinances covered
most of the regions by July 2021 [36]. The findings of this study form an evidence base
for temporal geospatial disparities in the risk of exposure to COVID-19 and the associated
PIDRs. The identified PIDRs may also shed light on the populations and regions vulnerable
to PASC in South Carolina during post-COVID-19 care.

2. Materials and Methods
2.1. Model Selection

We selected six time windows to represent COVID-19 cases at different times of the
pandemic. South Carolina began tracking COVID-19 cases in early March of 2020 and the
number of daily new cases began to rise until July 2020 when the daily number of new
cases began to fluctuate. We calculated the average cumulated case numbers in a sliding
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window of seven days (15th ± 3 days) for every month between July and December of
2020.

The US Centers for Disease Control and Prevention (CDC) have provided a list of risk
factors of COVID-19 severity such as age and existing medical conditions [37]. As discussed
in the introduction, the PIDRs for COVID-19 severity can be very different from the PIDRs
for COVID-19 infection. Based on previous studies, Snyder and Parks presented a well-
developed risk factor index framework for COVID-19 community vulnerability which was
defined as “the potential decrease in the wellbeing of a community before and during/after
the pandemic, taking into account health, social, and economic conditions” [38–40]. The
index is divided into four major sections (e.g., ecological, social, health, and economic) [39].
Inspired by their study and based on data availability in South Carolina, we began with
15 different variables related to the four sections of the index including sex, age, race,
median household income, population density, uninsured rate, poverty percentage, high
school degree rate, college degree rate, unemployment rate, physical inactivity rate, obesity
rate, smoking prevalence, medical doctors per 10,000 people, and nurse practitioners
per 10,000 people (Table 1). Among the candidate variables, age, sex, and population
density represent ecological variables; uninsured rate, education levels, race, medical
doctor abundance, and nurse practitioner abundance are social variables; obesity rate,
physical inactivity rate, and smoking prevalence are health variables; and income, poverty
rate, and unemployment rate are economic variables.

Table 1. Candidate explanatory variables and definitions.

Theme Variable Definition

Ecological

Age Median age

Sex Percentage of male population to the total population

Population density Population per square mile

Social

Uninsured rate Percentage of population under 65 years old without health insurance

High school degree rate Percentage of population with a high school or higher degree

College degree rate Percentage of population with a college or higher degree

Race Percentage of white population to the total population

Medical doctor abundance The number of medical doctors per 10,000 people

Nurse practitioner abundance The number of nurse practitioners per 10,000 people

Health

Obesity rate Percentage of obese population (i.e., individuals whose BMI is 30 or higher)

Physical inactivity rate Percentage of population not engaging in physical activity regularly

Smoking prevalence Percentage of population who smoke cigarettes regularly (i.e., have smoked at
least 100 cigarettes in their life and currently smoke at least one cigarette a day)

Economic

Income Median household income

Poverty rate Percentage of population in poverty

Unemployment rate Percentage of unemployment population

We then tested multicollinearity across the candidate variables and finetuned the final
model with variables including age, sex, race, and socioeconomic variables, unemployment
rate, uninsured rate, college degree rate, obesity rate, and nurse practitioner per 10,000
people. Specifically, we excluded the variables (e.g., median household income, population
density, poverty percentage, high school degree rate, physical inactivity rate, smoking
prevalence, medical doctors per 10,000 people) that were highly correlated with other
variables (correlation coefficient >0.7) in this step. We employed this relaxed criterion for
two reasons: (1) Because we used spatial regression afterward, multicollinearity would be
different after we incorporated spatial autocorrelation. (2) We intended to include as many
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variables as possible to better represent Snyder and Parks’ index, so that the results could
be intuitive and interpretable.

2.2. Data Sources

The data sources used in this work varied. The age variable was extracted from U.S.
Census Population and Housing Unit Estimates, 2010–2018. Sex, race, and college degree
rate were extracted from the U.S. Census Bureau, Population Estimates Program (PEP),
and American Community Survey (ACS), updated 1 July 2019. The unemployment rate
and poverty rate were retrieved from the U.S. Census Bureau, Small Area Income and
Poverty Estimates (SAIPE) Program (2019). The uninsured rate was retrieved from the
U.S. Census Bureau, Small Area Health Insurance Estimates (SAHIE) Program (2018). The
obesity rate was retrieved from U.S. CDC Diabetes County Data Indicators, 2006–2017. The
nurse practitioner number was retrieved from Health Resources & Services Administration
(HRSA) Area Health Resources Files, 2017 and 2018. The confirmed cases number of
COVID-19 from July 2020 to December 2020 was obtained from USAFacts, which is also
the data source that the U.S. CDC uses. Specifically, the case data of a certain date reflect
the cumulative totals of that date [41]. Log transformation was applied in the dependent
variable and the explanatory variables to normalize skewed data.

2.3. Spatial Regression Models

We calculated spatial weights using queen contiguity which defines neighbors by the
presence of shared edges and vertices. Figure 1 shows the county map of South Carolina
with the links between each neighbor (i.e., county). Spatial modeling was used to describe
the relationship between the COVID-19 cases and factors at the county level. The following
spatial models were used to fit our data: spatial error model (SEM), spatial lag model
(SLM), conditional autoregressive (CAR) model, and GWR model. We used SEM to observe
spatial autocorrelation between the residuals of neighboring counties, which incorporates
spatial effects through the error term. SLM applies spatial dependence by adding a spatially
lagged response variable as an additional predictor on the linear model equation. This
model assumes that the COVID-19 incidence rate in one county is directly influenced by
the COVID-19 incidence rates in its neighboring counties. If positive spatial lag is observed
in SLM, it would suggest that COVID-19 incidence rates in neighboring counties covary.
The CAR model relies on the conditional distribution of the spatial error terms and assumes
the region is a function of its neighbors but not the neighbors of neighbors (i.e., first-order
dependency). We used the GWR method to examine the local models, which is based on
kernel-weighted regression and allows for parameters to vary spatially [42].
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3. Results
3.1. Distribution of COVID-19 Cases and Covariates

After model selection, the final model contained eight explanatory variables, namely
sex, race, age, college degree rate, obesity rate, unemployment rate, uninsured rate, and
nursing practitioner abundance. We summarized and showed maps of distributions
for all the variables in the model (Figure 2). To make the descriptive map comparison
between variables easier, we held back the temporal dimension and used average COVID-
19 incidences per 1000 people around July 15th. In Figure 2, we observed some similarities
between the distribution of COVID-19 cases and certain demographic and socioeconomic
variables. For example, the maps of sex and age were congruent with the map of COVID-19
incidence rate. The map of the obesity rate showed a nearly opposite pattern compared to
the map of COVID-19 cases.
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3.2. Global Models for Spatial Correlation

When considering the temporal dimension, four geospatial models were built to
examine the spatial correlation of COVID-19 incidence across the counties in South Carolina
including the SEM, SLM, CAR model, and GWR model. The significant results from
Moran’s I test (p values < 0.05) suggested the existence of spatial autocorrelation. We
summarized the coefficients of the variables and corresponding p values for global models
in Tables 2–4 (i.e., SEM, SLM, and CAR model). All the models were significant at 0.05 level,
indicating that spatial autocorrelations did show within the error terms. The percentage
of residents who were male and the unemployment rate were statistically significant
(p values < 0.05) with positive coefficients in the three global models throughout the six
time windows, while other variables were not (Tables 2–4). Interestingly, the spatial
correlations between COVID-19 cases and the percent of residents who were white or
obese, respectively, flipped over the course of the pandemic. Earlier in the pandemic,
white race was not statistically correlated with COVID-19 cases. Later in the pandemic,
beginning in December, it was positively correlated with COVID-19 cases. The obesity
rate was negatively correlated with COVID-19 cases as early as July but became positively
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correlated during the months October through December in SEM and CAR, yet this pattern
did not show in SLM.

Table 2. Coefficients of the explanatory variables in SEM.

July 15 August 15 September 15

Coef. p Value Coef. p Value Coef. p Value

Male percentage 9.26 * 0.014 7.72 * 0.013 9.65 ** 0.002

White percentage 0.21 0.970 −0.06 0.910 −0.05 0.966

Median age −0.08 0.910 0.16 0.793 0.03 0.960

College degree rate 0.53 0.273 0.39 0.313 0.45 0.228

Obesity rate −2.17 0.198 −0.76 0.589 −0.25 0.846

Unemployment rate 2.88 ** 0.003 2.07 ** 0.009 2.19 ** 0.004

Uninsured rate 1.91 0.052 0.49 0.539 0.12 0.875

NP abundance 0.08 0.575 0.04 0.737 0.07 0.490

October 15 November 15 December 15

Coef. p Value Coef. p Value Coef. p Value

Male percentage 11.30 ** 0.000 11.92 ** 0.000 11.84 ** 0.000

White percentage 0.35 0.407 0.73 0.069 1.17 ** 0.003

Median age 0.09 0.855 −0.03 0.952 −0.19 0.694

College degree rate 0.35 0.263 0.34 0.243 0.38 0.198

Obesity rate 0.32 0.765 0.58 0.568 0.68 0.467

Unemployment rate 2.05 ** 0.001 2.10 ** 0.000 2.28 ** 0.000

Uninsured rate −0.25 0.689 −0.46 0.438 −0.67 0.260

NP abundance 0.12 0.160 0.13 0.111 0.13 0.106
NP: nurse practitioner; *: p < 0.05; **: p < 0.01.

Table 3. Coefficients of the explanatory variables in SLM.

July 15 August 15 September 15

Coef. p Value Coef. p Value Coef. p Value

Male percentage 10.70 * 0.015 9.28 ** 0.008 9.65 ** 0.002

White percentage −0.07 0.911 −0.48 0.348 −0.02 0.966

Median age 0.04 0.962 0.41 0.537 0.03 0.960

College degree rate 0.44 0.372 0.22 0.583 0.45 0.228

Obesity rate −3.16 0.076 −2.09 0.143 −0.25 0.846

Unemployment rate 2.83 ** 0.003 1.93 * 0.011 2.19 ** 0.004

Uninsured rate 1.75 0.081 0.64 0.419 0.12 0.875

NP abundance 0.07 0.640 0.03 0.801 0.07 0.490
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Table 3. Cont.

October 15 November 15 December 15

Coeff. p Value Coeff. p Value Coeff. p Value

Male percentage 12.81 ** 0.000 13.30 ** 0.000 13.16 ** 0.000

White percentage 0.18 0.646 0.66 0.077 1.21 ** 0.001

Median age 0.26 0.604 0.11 0.815 −0.10 0.840

College degree rate 0.15 0.608 0.14 0.611 0.19 0.522

Obesity rate −0.86 0.431 −0.52 0.618 −0.16 0.882

Unemployment rate 2.01 ** 0.001 2.09 ** 0.000 2.31 ** 0.000

Uninsured rate 0.09 0.882 −0.14 0.815 −0.37 0.528

NP abundance 0.11 0.213 0.12 0.149 0.13 0.124
NP: nurse practitioner; *: p < 0.05; **: p < 0.01.

Table 4. Coefficients of the explanatory variables in the CAR model.

July 15 August 15 September 15

Coef. p Value Coef. p Value Coef. p Value

Male percentage 9.59 * 0.012 8.10 ** 0.009 9.97 ** 0.001

White percentage 0.08 0.901 −0.10 0.849 0.01 0.988

Median age −0.04 0.953 0.23 0.700 0.07 0.908

College degree rate 0.32 0.500 0.00 0.568 0.30 0.422

Obesity rate −3.13 0.065 −1.61 0.242 −1.09 0.402

Unemployment rate 2.82 ** 0.002 1.99 ** 0.008 2.17 ** 0.003

Uninsured rate 2.16 * 0.026 0.79 0.317 0.43 0.568

NP abundance 0.08 0.565 0.03 0.784 0.05 0.613

October 15 November 15 December 15

Coeff. p Value Coeff. p Value Coeff. p Value

Male percentage 11.39 ** 0.000 12.01 ** 0.000 11.97 ** 0.000

White percentage 0.33 0.445 0.71 0.079 1.18 ** 0.003

Median age 0.12 0.813 0.00 0.996 −0.17 0.727

College degree rate 0.33 0.299 0.32 0.275 0.35 0.228

Obesity rate 0.24 0.821 0.53 0.598 0.66 0.512

Unemployment rate 2.02 ** 0.001 2.07 ** 0.000 2.27 ** 0.000

Uninsured rate −0.22 0.728 −0.44 0.461 −0.64 0.279

NP abundance 0.13 0.146 0.13 0.096 0.14 0.091
NP: nurse practitioner; *: p < 0.05; **: p < 0.01.

3.3. Local Models for Spatial Correlation

The results of the GWR model are summarized in Table 5. In the GWR models,
the calculated bandwidths were 60.87 km for July 15 and 154.41 km for the rest of the
time points. Taking July 15 as an example, the GWR model possessed the lowest Akaike
Information Criterion (AIC) value of 51.24, compared to the global models such as SEM
(AIC = 61.59), SLM (AIC = 58.72), and the CAR model (AIC = 59.39) (Table 6). A smaller
AIC indicates a better fit when compared with other models that were built on the same
data. These two findings collectively suggest highly localized spatial correlations at the
beginning of the pandemic, yet this effect started to decline as the pandemic evolved.
Figure 3 shows the geographic distribution of local coefficient estimates of GWR models for
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COVID-19 incidence rate associated with each explanatory variable. For each explanatory
variable, we can observe a clear trend suggesting that the heterogeneity among coefficients
became homogeneity throughout the time.

Table 5. Summary of the results from the GWR model fitting.

July 15th

Covariates Min. Q1. Median Q3 Max.

Male percentage 6.73 7.68 8.11 8.50 8.98

White percentage −0.59 −0.36 −0.20 −0.02 0.21

Median age −0.67 −0.15 0.09 0.34 0.71

College degree rate 0.64 0.71 0.75 0.80 0.83

Obesity rate −0.81 −0.49 −0.32 −0.10 0.22

Unemployment rate 1.82 2.15 2.36 2.66 3.18

Uninsured rate 0.48 0.76 0.93 1.20 1.58

NP abundance 0.17 0.20 0.21 0.23 0.24

August 15th

Covariates Min. Q1. Median Q3 Max.

Male percentage 7.11 7.33 7.44 7.60 7.85

White percentage −0.67 −0.65 −0.63 −0.61 −0.59

Median age 0.32 0.41 0.44 0.50 0.57

College degree rate 0.48 0.49 0.49 0.50 0.50

Obesity rate −0.06 −0.05 −0.03 −0.01 0.02

Unemployment rate 1.57 1.64 1.69 1.75 1.85

Uninsured rate −0.05 −0.01 0.01 0.05 0.10

NP abundance 0.12 0.12 0.12 0.12 0.13

September 15th

Covariates Min. Q1. Median Q3 Max.

Male percentage 9.28 9.44 9.55 9.69 9.90

White percentage −0.43 −0.38 −0.37 −0.35 −0.33

Median age 0.20 0.28 0.31 0.36 0.43

College degree rate 0.42 0.43 0.44 0.44 0.45

Obesity rate −0.07 −0.05 −0.04 −0.02 0.01

Unemployment rate 1.77 1.83 1.87 1.93 2.02

Uninsured rate −0.22 −0.17 −0.14 −0.11 −0.05

NP abundance 0.12 0.12 0.13 0.13 0.13

October 15th

Covariates Min. Q1. Median Q3 Max.

Male percentage 11.37 11.58 11.69 11.82 12.05

White percentage 0.07 0.11 0.13 015 0.17

Median age 0.20 0.24 0.27 0.29 0.35

College degree rate 0.30 0.31 0.32 0.33 0.33

Obesity rate 0.29 0.31 0.33 0.36 0.39

Unemployment rate 1.81 1.86 1.89 1.94 2.00

Uninsured rate −0.31 −0.27 −0.25 −0.22 −0.17

NP abundance 0.16 0.16 0.16 0.16 0.17
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Table 5. Cont.

November 15th

Covariates Min. Q1. Median Q3 Max.

Male percentage 11.96 12.15 12.24 12.37 12.57

White percentage 0.57 0.60 0.63 0.65 0.68

Median age 0.03 0.08 0.11 0.14 0.20

College degree rate 0.27 0.28 0.29 0.30 0.30

Obesity rate 0.53 0.55 0.57 0.59 0.64

Unemployment rate 1.91 1.95 1.98 2.03 2.09

Uninsured rate −0.51 −0.47 −0.45 −0.43 −0.39

NP abundance 0.16 0.17 0.17 0.17 0.17

December 15th

Covariates Min. Q1. Median Q3 Max.

Male percentage 12.03 12.19 12.29 12.43 12.62

White percentage 1.14 1.18 1.21 1.23 1.27

Median age −0.18 −0.13 −0.10 −0.07 −0.02

College degree rate 0.28 0.29 0.30 0.31 0.32

Obesity rate 0.68 0.70 0.72 0.74 0.79

Unemployment rate 2.16 2.20 2.23 2.27 2.33

Uninsured rate −0.69 −0.65 −0.63 −0.60 −0.57

NP abundance 0.16 0.17 0.17 0.17 0.17
NP: nurse practitioner.

Table 6. Summary of models’ AIC values over time.

SEM SLM CAR GWR

July 15 61.59 58.72 59.39 51.24

August 15 41.47 36.64 39.81 34.49

September 15 35.62 30.67 35.20 25.64

October 15 17.00 11.96 17.42 5.31

November 15 11.52 6.68 11.94 −0.54

December 15 10.74 8.31 11.13 −1.48
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2020.

4. Discussion

In this geospatial study, we adopted the socioecological vulnerability index from
Snyder and Parks and compiled 15 variables within four categories of the index which
could potentially explain the geographic patterns of COVID-19 transmission in SC [39].
Our study resulted in three principal findings. First, our study demonstrated the spatial
autocorrelations of COVID-19 incidence at the county level in SC. The results from global
models and local models were consistent with the initial observation of the distribution
maps of covariates. Second, some PIDRs (e.g., male percentage, unemployment rate)
had consistent spatial correlations with COVID-19 incidence over time while some other
PIDRs (e.g., percentage of the white population, obesity rate) showed divergent spatial
correlations at different times of the pandemic, suggesting a critical role of the temporal
dimension in the geospatial epidemiology of COVID-19 transmission. Third, the geospatial
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effect of PIDRs was strong at the beginning of the pandemic and started to decline as the
infection cases continued to surge, suggesting the importance of early identification of
critical PIDRs and timely intervention for possible future outbreaks of infectious diseases.

Aligned with existing studies [28,30], two PIDRs (e.g., male percentage and unem-
ployment rate) were found to be significantly associated with a higher risk of COVID-19
infection in global models (e.g., SEM, SLM, and CAR). The higher risk of COVID-19 in-
fection among the male population can be explained by several sex-related factors [43].
Genetically, males have a higher expression of angiotensin-converting enzyme-2 (ACE2),
which could be the receptor for SARS-CoV-2 [44,45]. The immunological response of SAR-
CoV-2 may be different between males and females [46,47]. In addition, females have been
found to have a more responsible attitude of health behaviors towards COVID-19 than
males [19,48]. A higher unemployment rate reflects a higher socioeconomic vulnerability
of COVID-19 infection. People with the ability to work from home are less likely to be
infected because of higher job security [49,50]. Interestingly, our results are different from
an existing study from Johnson et al. [51]. They found unemployment to be a protective
feature of COVID-19 infection and argued that it might be related to the lack of transporta-
tion among the unemployed. The role of unemployment in COVID-19 transmission needs
further investigation.

We found that the white population was not statistically correlated with COVID-19
incidence from July to October and became positively correlated with COVID-19 incidence
(all p < 0.01 for SEM, SLM, CAR) in December. To the best of our knowledge, this finding
has not been previously reported. We suspect that this finding is related to the fact that the
COVID-19 incidence rate was higher in large metropolitan areas (e.g., urban, suburban)
early on in the pandemic (i.e., March–May 2020) and diffused to small and nonmetropolitan
areas, where proportions of white people are higher, later [31]. Among the 26 counties that
are classified as metropolitan areas in South Carolina, only three have a white population of
less than 50%, and five have a white population of less than 60% [52,53]. Previous studies
found that racial minorities had a higher risk of COVID-19 infection [28,30,33], but these
findings have not been tested or interpreted by the temporal dimension of the pandemic.
Cunningham and Wigfall reported that racial attitudes towards COVID-19 had a significant
impact on the likelihood of infection and mitigated the effect of racial difference, which
also could explain our finding [54]. In addition, our result could be related to the finding
that a higher proportion of white people took COVID-19 tests than other races in the
latter months [55]. Median age, college degree rate, obesity rate, uninsured rate, and NP
abundance were not statistically correlated with the COVID-19 infection rate.

Our findings suggest that early measures could be related to the transmission of
COVID-19 since the geographic differences in COVID-19 infection reduced over time,
indicated by the decreasing AIC values across models longitudinally (Table 6). The de-
crease in AICs of local model (i.e., GWR model) over time indicated the persistence of the
nonstationary spatial autocorrelation. Although the GWR models have lower AIC values
compared with the global models, the coefficients of the variables in GWR models did not
vary substantially, indicating small nonstationary effects. The small ranges of the coeffi-
cients geographically could be related to the insufficient granularity of the county-level
data considering the study sample of South Carolina. Nevertheless, it is very interesting
that the regional variances were decreasing over time within the study time frame.

This study is among the first to examine geospatial patterns in COVID-19 infection as
well as PIDRs. Most studies have focused on patients with different levels of severity with
COVID-19, which limits opportunities for examining possible disparities and PIDRs in
COVID-19 infection [56]. For example, older adults, people with certain medical conditions,
and pregnant women were found to be associated with a higher risk of severe illnesses
of COVID-19, while our study found that the male population and unemployment rate
were risk factors of COVID-19 infection [56]. Intuitively, the PIDR set for severe illnesses of
COVID-19 is related to the physical condition of patients and the PIDR set for COVID-19
infection is jointly influenced by demographic and socioeconomic factors. Compared with
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PIDRs for severe illnesses, PIDRs for infection are highly sensitive to geographic regions
and temporal dynamics of the pandemic because the transmission of COVID-19 is related
to the activity of people. PIDRs for COVID-19 infection provide important information
for developing interventions on targeted populations who share the same PIDRs at the
beginning of the pandemic, which is imperative for containing the early-stage transmission
and potential consequences in future infectious disease outbreaks.

Our study has several limitations. First, we did not use longitudinal measures of
PIDRs due to limited surveillance data. Second, we used reported cases as a measure of
COVID-19 prevalence. This measure could be potentially biased because testing rate and
test positivity were not considered due to unavailable surveillance data. For example,
data for COVID-19 testing rates for each race were not available for examining the racial
differences [57–59]. Third, due to the limited data access, we used county-level data in this
study whereas using zip code-level data would have offered a better granularity of data
in the statistical models. Fourth, mobility patterns have been identified as an important
factor for COVID-19 transmission, which is not accounted for due to the limited data
availability [60]. Fifth, our methodology does not include the contrast between restrictions
and temporary spatial patterns. Thus, implications resulted from temporal patterns should
be discussed with caution. At last, variables used in this study may not be exhaustive in
terms of all possible contributing factors of COVID-19 infection as this work is based on
the framework from Snyder and Parks. Future studies could integrate variables such as the
Social Vulnerability Index (SVI) for exploring the negative effects in communities towards
hazardous events [61–63].

5. Conclusions

Our study found that the geospatial distribution of COVID-19 incidence was con-
stantly influenced by several key PIDRs including male percentage and unemployment.
PIRDs such as white percentage and obesity rate were negatively correlated with COVID-19
incidence at the beginning of the pandemic and then became positively correlated with
COVID-19 incidence. These identified PIDRs are different from those found to be associated
with poor clinical outcomes (e.g., severity and mortality) of patients who are engaged with
medical care. Our study found disparities in COVID-19 transmission and suggested newly
identified temporal dynamics in specific PIDRs such as white percentage and obesity rate.
These findings are subject to biases caused by limited data access and should be considered
provisional guidelines to the temporal geospatial epidemiology of COVID-19 transmission
and underlying PIDRs of the pandemic in South Carolina.
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