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Abstract

HERBAY, GERMAIN. Assessing Machine Learning Fairness via Dataset
Mutation. (Under the direction of Gilles Perrouin)
KEYWORDS: Fairness, Machine Learning, Mutation Analysis

Fairness is becoming a major concern in software engineering. As
machine learning (ML) systems are increasingly used in critical systems
(e.g., recruitment and lending), it is crucial to ensure that decisions com-
puted by such systems do not exhibit unfair behaviour against certain
social groups (e.g., those defined by gender, race, and age). Apart from
robustness and safety, fairness is therefore an important property that a
well-designed software should have. Previous works have been conducted
to ensure this property by exposing, diagnosing and mitigating bias in
ML systems. Although bias in data is a well-studied topic, software engi-
neering has not yet fully explored its impact. To this end, we propose an
approach relying on mutation testing to inject perturbations in the train-
ing data and analyse the impact of these perturbations on conventional
fairness metrics. To evaluate our approach, we design data mutation tech-
niques and use three popular datasets (i.e., Adult, COMPAS, Bank). The
first evaluation reveals that fairness measures highly differ depending on
the nature of the datasets and the perturbations used. This suggests
that the ML algorithms are very sensitive to injected perturbations in
the datasets. The second evaluation to better understand the impact of
data distributions on fairness leads to less conclusive results. In summary,
our results suggest that mutation analysis represents a potentially useful
approach for a further in-depth understanding of fairness in ML systems,
but requires further exploration.

L’équité devient une préoccupation majeure en ingénierie logicielle.
Les systèmes d’apprentissage automatique (ML) étant de plus en plus
utilisés dans des systèmes critiques (ex: le recrutement et l’octroi de
prêts), il est crucial de s’assurer que les décisions calculées par ces systèmes
ne présentent pas un comportement injuste envers certains groupes soci-
aux (ex: ceux définis par le genre, la race et l’âge). Outre la robustesse et
la sécurité, l’équité est donc une propriété importante que doit posséder
un logiciel bien conçu. Des travaux antérieurs ont été menés pour as-
surer cette propriété en exposant, diagnostiquant et atténuant les biais
dans les systèmes ML. Bien que le biais dans les données soit un sujet
bien étudié, l’ingénierie logicielle n’a pas encore pleinement exploré son
impact. À cette fin, nous proposons une approche reposant sur le test de
mutation pour injecter des perturbations dans les données d’entrâınement
et analyser l’impact de ces perturbations sur les mesures d’équité conven-
tionnelles. Pour évaluer notre approche, nous concevons des techniques de
mutation de données et utilisons trois jeux de données populaires (Adult,
COMPAS, Bank). La première évaluation révèle que les mesures d’équité
diffèrent fortement en fonction de la nature des jeux de données et des
perturbations utilisées. Ceci suggère que les algorithmes ML sont très
sensibles aux perturbations injectées dans les jeux de données. Une sec-
onde évaluation visant à mieux comprendre l’impact des distributions sur
l’équité conduit à des résultats moins concluants. En résumé, nos résultats
suggèrent que l’analyse par mutation représente une approche potentielle-
ment utile pour une meilleure compréhension de l’équité dans les systèmes
ML, mais nécessite une exploration plus approfondie.
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1 Introduction

1.1 Context

With the general use of artificial intelligence (AI) over the past decades, humans
are increasingly being replaced in critical systems, such as finance, hiring and
criminal justice. As AI algorithms drive these systems, we might think they are
objective and free from human biases.
However, they still exhibit unfair behaviours. Consider the following examples,
which illustrate a range of causes and effects in people’s lives.
Bias in online recruitment tools. In 2015, online retailer Amazon stopped
using a recruiting algorithm after discovering gender bias in evaluating appli-
cants for software developers and other technical positions. Actually, Amazon’s
recruiting tool penalised any resume containing the word ”women’s” and down-
graded women’s resumes who attended women’s colleges [9].
Bias in criminal justice algorithms. The COMPAS (Correctional Offender
Management Profiling for Alternative Sanctions) algorithm, used by U.S. courts
to assess the recidivism likelihood of a defendant, was found to be biased against
African-Americans. The algorithm assigns African-Americans a significantly
higher risk of criminal recidivism compared to Caucasian people, resulting in
racial bias [22].

Since these applications directly affect people’s lives, researchers and en-
gineers must think about their potentially harmful effects when modelling an
algorithm or a system. Numerous works have already been proposed to support
engineers in addressing the fairness problem. Based on these researches, bias in
data appears to be one of the leading underlying causes of unfairness. This can
be illustrated in the example of Amazon’s recruiting tool, by an algorithm that
learned from resumes submitted to the company over ten years, where males’
resumes are dominant.
Even though bias in data is a well-studied topic, the fairness research commu-
nity has not yet fully explored its impact. In particular, the sensitivity of the
algorithms to biased data is not yet a central topic in previous research. Each
algorithm has its procedure to learn rules and patterns from data examples,
resulting in different behaviours when confronted with data biases.

1.2 Research objectives

Therefore, the main objective of this master thesis is to propose a fairness-driven
sensitivity analysis of algorithms when potential changes arise in data. We rely
on mutation testing to automatically inject targeted biases in data and then
measure the sensitivity of various ML algorithms to these biases. This master
thesis involved the following activities:

• Develop mutation techniques for fairness assessment.
It refers to the definition of data modification operators, which can mimic
potential fairness issues/enhancements in the data, such as ethnic minori-
ties/equal representation of women and men.

• Develop altered data generation techniques for fairness assess-
ment.
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It includes the design of strategies that apply mutation techniques to au-
tomatically generate biased and unbiased sets of modified data to be used
for fairness assessment.

• Perform validation.
Because both mutation and generation techniques incorporate degrees of
randomness, it is essential to confront our fairness-driven sensitivity eval-
uation of algorithms on several datasets.

1.3 Research methodology

To inject changes into the datasets, generate a set of altered datasets and eval-
uate the impact of these alterations on the fairness of the algorithms, we follow
two scenarios :

• Blind mutation.
This scenario envisions naively modifying datasets and represents the first
manner to see data mutation-induced fairness changes without having to
prior-analyse distributions from datasets.

• Distribution-aware mutation.
Based on preliminary distributions analysis, this scenario envisions mod-
ifying datasets with targeted mutations towards a specific fairness goal.
This scenario represents a more promising technique for fairness analysis
and improvement with fewer and smarter mutations.

1.4 Thesis organisation

This thesis is structured as follows: Chapter 2 presents the Background with dif-
ferent theoretical concepts needed to understand the thesis. Chapter 3 presents
the approach, about the general process to implement our Fairness-driven Mu-
tation Analysis. Chapter 4 describes the subjects of our experiments and intro-
duces the research questions and experimental procedure. Chapter 5 presents
the results and answers the research questions. Chapter 6 identifies different
threats to the validity of our experiments and analyses. Finally, Chapter 7
concludes with the contributions and perspectives of this work.
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2 Background

Our fairness sensitivity analysis approach bridges the topics/areas of machine
learning, fairness and mutation testing. These concepts involve distinct commu-
nities in computer science, and their interactions remain challenging due to their
different theoretical underpinnings and viewpoints. In this section, we briefly
introduce the basic concepts of each domain to get an overview of how we can
bridge them.

2.1 Machine learning : basic concepts

Machine learning (ML) is an important component of the growing technical
fields, lying at the intersection of computer science and statistics and the core
of artificial intelligence and data science [12]. From advancing medicine to
optimizing business processes, machine learning is rapidly changing the face
of science, business, and everyday life. Herein are a few applications where
machine learning approach has been adopted :

• Finance : creditworthiness prediction [31].

• Justice : recidivism risk assessment [22].

• Hiring : resume screening [9].

Machine learning addresses the question of how to build algorithms that im-
prove their performance at some task through experience [13]. Therefore, one
major task of machine learning is to construct models from datasets.

A dataset is a collection of n instances which are objects of interest gener-
ated by some unknown process to be modelled, and characterised by a set of d
features x1, x2...xd and a target y.

Age Education ... Relationship Income
24 Some-college ... Unmarried <=50k
65 HS-grad ... Husband >50k
43 HS-grad ... Wife <=50k
... ... ... ... ...
34 Bachelors ... Husband <=50k
43 Masters ... Husband >50k
48 HS-grad ... Husband >50k
... ... ... ... ...
59 HS-grad ... Husband >50k
18 HS-grad ... Unmarried <=50k
55 Masters ... Other-

relative
<=50k

... ... ... ... ...

Table 1: Adult Census Income dataset

Table 1 presents an excerpt of the Adult Census Income dataset with 48,842
individuals for whom the income is below or above 50k$/year. Here, Adult Cen-
sus Income dataset consists of 48,842 instances described by 14 features (a.k.a
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attributes), including age, education, relationship, and income as target value.

A model may be predictive to make predictions from past experience or de-
scriptive to gain knowledge from the data. They are characterised by their
parameters θ0, θ1...θd (a.k.a weights), which are optimized by a learning al-
gorithm in order to get a good and useful approximation to the process which
generates data. Unlike model parameters, which are optimized and obtained af-
ter the learning procedure, hyperparameters are parameters that determine
the complexity/capacity/architecture of the model and are chosen before learn-
ing. Since hyperparameters drive the learning process and affect the ability of
the model to generalize for unseen data examples, choosing the optimal set of
hyperparameters is a challenging problem.
To address this challenge and perform machine learning, the dataset is split into
three datasets:

• The training dataset is the sample of data used to perform the learning
algorithm and fit the model’s parameters.

• The validation dataset is the unseen sample of data used to provide
an evaluation of a model fit on the training dataset while tuning model
hyperparameters.

• The test dataset is the unseen sample of data used to provide an evalu-
ation of a final model fit on the training dataset.

Machine learning can be grouped into two main learning tasks: Unsuper-
vised and Supervised Learning, which differ in the information given to the
models for training.

Unsupervised learning uses machine learning algorithms on unlabelled
datasets to discover hidden patterns or data groupings without the need for
human intervention (see Figure 1).

Figure 1: Unsupervised learning

In particular, we can use unsupervised machine learning to :

• Cluster datasets on similarities between features or segment data.

• Understand the relationship between data points such as automated music
recommendations.

• Perform initial data analysis.
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In Supervised learning, labelled datasets are used to train algorithms that
classify unseen data into established categories or forecast trends as a predictive
model. It is called ”supervised” because of the presence of the outcome variable
Y (a.k.a target vector) to guide the learning process (see Figure 2).

Figure 2: Supervised learning

In supervised learning, there are two categories of tasks: regression and classi-
fication.
A regression task in machine learning is when a model is used to identify pat-
terns and relationships within a labelled training dataset to predict continuous
outcomes. Herein are a few examples of regression tasks:

• Artificial pancreas controller (157.3/.../164.6 (mg/dL blood glucose))

• House price estimation (230,000/.../374,200 ($))

• Global cancer incidence analysis (334.9/.../356 (people per 100,000))

A classification task in machine learning is when a model is used to classify
whether a given sample belongs to a known group or class. While a regression
task seeks to predict a continuous output, classification tasks predict a discrete
output. Herein are a few examples of classification tasks:

• Spam filtering (spam/non-spam)

• Automated diagnosis (healthy/ill patient)

• Emotion recognition (neutral/happy/sad/fear)

In this thesis, we focus on classification problems to study the performance
and fairness of machine learning algorithms. Before presenting fairness assess-
ment in machine learning, we first need to understand how performance evalu-
ation works.
Performance defines the ability of a model to provide accurate and trust-
worthy predictions on unseen data. There are several performance metrics for
classification problems. In this thesis, we look at common performance metrics
which we can compute from the confusion matrix.

10



Figure 3: Confusion matrix

A confusion matrix is used to define a classification algorithm’s performance.
Based on the true labels (Y), it gives a summary of the correct and incorrect
classifications (Ŷ ) of each class (see Figure 3). For a binary classifier, predicted
and actual classes have two values: positive and negative. For instance, positive
and negative classes in the Adult Census Income dataset correspond to income
over and under 50k$/year respectively.

• True Positive (TP): a case when the predicted and actual outcome are
both in the positive class.
Example: ŷ is >50k$/year and y is >50k$/year

• False Positive (FP): a case predicted to be in the positive class when
the actual outcome belongs to the negative class.
Example: ŷ is >50k$/year and y is <=50k$/year

• False Negative (FN): a case predicted to be in the negative class when
the actual outcome belongs to the positive class.
Example: ŷ is <=50k$/year and y is >50k$/year

• True Negative (TN): a case when the predicted and actual outcome are
both in the positive class.
Example: ŷ is <=50k$/year and y is <=50k$/year

From this matrix, we can derive the following performance metrics :

• Recall: TP
(TP+FN)

• Accuracy: TP+TN
TP+FP+TN+FN

• Precision: TP
TP+FP

11



2.2 Fairness and bias

This section introduces the concepts of fairness and bias and how they manifest
themselves in data.

Machine learning bias occurs when an ML algorithm produces systemati-
cally unfair results due to wrong assumptions in the machine learning process.
From finance and criminal justice to hiring, biases may arise in many critical
systems. Depending on how machine learning systems are used, biases can lead
to unfair or possibly illegal actions to even potentially harmful conditions. Such
bias issues in these applications are certainly undesirable. As a result, it leads
machine learning researchers to consider: how do biases arise in machine learn-
ing models?
A central idea of machine learning is that the ML algorithm learns the rules and
patterns by itself from data examples. Therefore, its decision-making is really
sensitive to the data used for learning. If the data shows some kind of biases,
the algorithm may reproduce or amplify the same kind of biases by making
decisions on what it’s learned. Consequently, biases arise in the model through
the data.

Since biases in data can exist in many shapes and forms [20], we focus on
two of them: Historical bias and Sample bias.

Historical bias refers to the already existing bias and socio-technical is-
sues in the world [5]. It can seep into the data generation process even if the
data is perfectly measured and sampled. For instance, consider the COMPAS
algorithm. Suppose African-Americans are more likely to be arrested or incar-
cerated due to historical racism or disparities in policing practices. In that case,
these realities will be mirrored in the training data used by the COMPAS al-
gorithm to predict whether a defendant will be a recidivist or not. As a result,
the prejudices of the US criminal system will lead the model to make the same
wrong decisions.
Further, historical bias can be reinforced by the machine learning model itself.
For example, if a predictive recidivism model determines an area of the city to
be high-risk, more police officers will be deployed to that neighbourhood. Then,
the officers will prioritise this area, increasing the chance of arrest. The risk
of this area will therefore increase in a vicious feedback loop. The model will
be validated and retrained on data containing even more arrests in this area.
As a result, instead of becoming less detrimental, the model will be stuck in a
negative feedback loop and become increasingly biased over time. Such a neg-
ative feedback loop can lead to over-/under-representation of a population and
reinforce the following source of bias, sampling bias.

Sampling bias occurs when data examples are not representative of the
population due to non-random sampling of subgroups [20]. Some members of
a population are systematically more likely to be selected than others, leading
to imbalanced data. As a result, the estimated trends for one population may
not generalise to data collected from a new population. For example, consider
an elaborated dataset of photographs of humans of all ethnicities, without bias
towards any particular ethnicity. Suppose a specific face recognition system is
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mainly trained on pictures of white men. In that case, it won’t perform well
when identifying women and people of diverse ethnicities, even if the collected
data was not initially biased.

Many fairness definitions have been proposed to address such sources of al-
gorithmic bias. Before explaining some of the definitions used for fairness in
algorithmic classification problems, we need to understand the theoretical con-
cepts of fairness in the context of machine learning.
Machine learning fairness is defined in terms of protected attributes and
privileged/unprivileged groups. Protected attributes refer to the sensitive
characteristics/features that need to be protected against unfairness. For in-
stance, age, sex, race, religion, country of origin, marital status, etc., are typical
protected attributes. Protected attributes divide the population of a dataset
into privileged and unprivileged groups, where the privileged population group
would be more likely to receive favourable treatment than the unprivileged popu-
lation group. For instance, the sex attribute in the Adult Census Income dataset
is a protected attribute that splits the population into male/female as privi-
leged/unprivileged groups. Indeed, it is assumed that the Adult Census Income
predictive classification model will favour the male group over the female group
in its income prediction (i.e., predicting a higher income for males than females).

Based on these concepts, different definitions of fairness have been proposed
in the literature. They are two main types of fairness definitions: group fairness
and individual fairness.
A model has group fairness with regard to an input characteristic when the
privileged and unprivileged groups are treated equally (e.g., the distribution of
prediction outcomes for each group is similar)[10]. In this thesis, we focus on
two popular definitions for group fairness: SPD [16][4][19] and EOD[17]. We
define them via the predicted outcome of the classifier Ŷ , where Ŷ=1 is the
desired predicted outcome, and the protected attribute A, where A=1 is the
privileged group and A=0 is the unprivileged group.

Definition 2.1 (Stastical Parity Difference)

• SPD = |P(Ŷ=1|A=0)| - |P(Ŷ=1|A=1)|

Statistical Parity Difference is the difference in probability of being assigned
to the positive predicted class for the privileged and unprivileged groups. In
the Adult Census Income algorithm, the classifier would be fair regarding the
gender attribute if men and women would have the same probability of being
labelled as making more than 50k$ a year (i.e, SPD = 0).

Definition 2.2 (Equal Opportunity Difference)

• EOD = |P(Ŷ=1|A=0,Y=1)| - |P(Ŷ=1|A=1,Y=1)|

Equal Opportunity Difference is the difference of probability for a person in a
positive class being assigned to the positive predicted class for the privileged
and unprivileged group. In other words, the equal opportunity definition is the
difference of true positive rates for the protected and unprotected groups.

13



However, group fairness may fail to observe some discrimination by ignor-
ing all attributes of the classified subject except the sensitive attribute. In the
Adult Census Income algorithm, male and female individuals could have the
same probability of being assigned a positive outcome, but some individuals
who differ only in gender could get a different outcome. Even if the classifier
satisfies demographic parity, it may still produce gender discrimination.
Individual fairness addresses this problem by not marginalising insensitive
attributes and ensuring that any two individuals who only differ in the pro-
tected attributes should be classified similarly [28].
However, if group and individual fairness seem desirable in a system, they can-
not be satisfied simultaneously. Therefore, we decide to only focus on the previ-
ous definitions of group fairness since they are widely adopted in the literature
[8][11][23]. We can also automatically derive them from the confusion matrix.

2.3 Bias mitigation methods

Many attempts have been proposed to avoid model bias and ensure model fair-
ness. These methods fall under three categories:

• Pre-processing methods aim at modifying the training data to reduce
bias in the data.

• In-processing methods aim to change the learning procedure to reduce
training bias.

• Post-processing methods aim at changing the prediction outcomes to
mitigate the bias of a learned model.

Like pre-processing algorithms, our fairness testing approach aims to modify
the training data to evaluate fairness in machine learning algorithms. In this
section, we present the main methods in pre-processing algorithms.
Reweighing (RW) applies weights to different groups in the training data to
make a discrimination-free training dataset without having to change any of the
labels [4].
Optimised pre-processing (OP) learns a probabilistic transformation that
edits the features and labels in the data with discrimination control to limit the
dependence of the modified labels on sensitive attributes, distortion control to
avoid some important changes (e.g., a very low credit score is mapped to a very
high credit score in a loan approval decision algorithm), and utility preservation
to ensure that the distributions of the modified features and labels are close to
the original distributions of features and labels [3].
Learning fair representations (LFR) encodes data into an intermediate
representation to lose any information that can identify whether an individual
belongs to a protected subgroup while preserving as much information as pos-
sible about the individual’s attributes[24].
Disparate impact remover (DIR) edits values of non-protected attributes
to make the distributions for the unprivileged and privileged subgroups close to
each other and increase fairness [16].
As illustrated in Figure 4, Fair-SMOTE rebalances internal distributions such
that they are equal, based on class and sensitive attributes, to improve fairness
[7].
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Figure 4: Fair-SMOTE

Based on the previous techniques, we adapt the training data mutation per-
spective to evaluate fairness in ML algorithms.

2.4 Fairness testing

Even though developing a fairer machine learning model is a start, it cannot
be the entire solution. Apart from robustness and safety, fairness is also an
important property that a well-designed software should have. Good design and
proper algorithms are important, but so are quality control via, e.g., testing and
formal verification [32]. Therefore, several techniques have been proposed to
conduct fairness testing.

Themis is an automated test suite generator that randomly samples the
value of all attributes from the corresponding domain to determine whether a
given model prejudices individuals [25][2]. As Themis generates tests in a full
random way, it suffers from an absence of any systematic test case generation
technique.

Unlike Themis, Aequitas can be used as a directed test generation mod-
ule to uncover discriminatory inputs. Aequitas improves Themis by adopting
a two-phase generation framework combining a global and local search. In the
first step, it randomly samples the input space to discover the presence of dis-
criminatory inputs. In a second step, Aequitas searches in the neighbourhood
of the resulting discriminatory inputs to generate further inputs with similar
characteristics [27].

Even though Themis and Aequitas apply to any black-box system, they
miss many combinations of non-protected attribute values for the individual
discrimination that may exist. Symbolic Generation (SG) attempts to solve
this problem by generating a local explanation decision tree for approximating
the machine learning model and then performing symbolic execution based on
the decision tree to generate test cases automatically [1].

Since existing approaches are developed mostly for traditional machine learn-
ing models, Adversarial Discrimination Finder (ADF) is proposed as a scal-
able gradient-based approach for searching individual discriminatory instances
of Deep Neural Network (DNN) [21]. It generates individual discriminatory in-
stances through adversarial sampling with a two-phase generation framework.
ADF aims to identify individual discriminatory instances during global gener-
ation by iteratively perturbing the seed inputs towards the decision boundary
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from the original dataset. During local generation, ADF generates as many
individual discriminatory instances as possible by following the intuition that
instances nearby the seed data are likely to be individual discriminatory in-
stances.

Unlike previous fairness testing techniques, Fairea is proposed as a first
mutation analysis approach for fairness evaluation targeting machine learning
software [18]. It applies mutation on the labels to compose a baseline for eval-
uating bias mitigation methods.

Like Fairea, we want to adapt the mutation testing approach to fairness eval-
uation of machine learning models with a data perspective. However, instead of
mutating the labels, we want to mutate all dataset to assess how data mutation
can impact the fairness of models.

2.5 Mutation testing

Mutation testing is a fault-based testing technique where software program vari-
ations are subjected to the test set. Since software programmed by developers
could be a major source of defect introduction, mutation testing introduces small
faults (e.g., replacing the ’+’ operator in the program to the ’-’ operator) into
the source code to check whether the defined test cases can detect the resulting
errors when running the software. The key process of general mutation testing
is illustrated in Figure 5.

Figure 5: Classical mutation testing approach

Based on an original program P, a set of faulty programs P ′
1, P

′
2, . . . , P

′
n ∈

P ′ (mutants) are created based on predefined rules (mutation operators),
each of which slightly modifies the syntax of the program under analysis P
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[15]. In this case, mutants P ′ represent potential mistakes that programmers
could make, and mutation operators represent transformation rules designed to
modify variables and expressions by replacement, insertion or deletion. Before
starting the mutation analysis, a step of pre-processing is used to check the
correctness of the original program P for the test case. If P is incorrect, it has
to be fixed before running other mutants; otherwise, each mutant P ′

i ∈ P ′ will
then be run against this test suite T1, T2, . . . , Tn ∈ T . Afterwards, the complete
test set T is run against each mutant P ′

i ∈ P ′. If the result of running P ′
i ∈

P ′ is different from the result of P for any test case Ti ∈ T , then the mutant
P ′
i is said to be ”killed”, otherwise it is said to have ”survived”. When all the

mutants P ′ have been tested against T , a mutation score is calculated as the
ratio of the number of mutants killed over the total number of mutants. In
essence, the mutation score indicates the quality of the input test set by its
degree of achievement in fulfilling the test objectives (design test cases that kill
all the mutants). After all test cases have been executed, ”surviving” mutants
may remain. The developer can further enhance the quality of the test set by
adding more tests to kill these surviving mutants.
The general purpose of mutation testing is to raise the mutation score to evaluate
the quality of a test set, provide feedback and guide the test enhancement.

2.5.1 Mutation testing for machine learning

As mutation testing has empirically proven to be an effective software testing
method [26], it has recently been extended to machine learning systems. Ma et
al. [15] consider that a higher quality test dataset would provide more compre-
hensive feedback and guidance for further in-depth understanding of machine
learning systems. Therefore, they propose a mutation testing framework to
measure the quality of the test dataset. They adapt mutation testing tech-
niques to deep learning software development in two approaches: source-level
and model-level mutation testing (see Figures 6 and 7).

Figure 6: Source-level mutation testing workflow of DL systems
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Figure 7: Model-level mutation testing workflow of DL systems

In source-level mutation testing approaches, one targets training data
or training program to inject faults (e.g., add random perturbations to some
pixels of an image) that could be potentially introduced during the learning
process. After mutating sources of a deep learning system, which are the training
dataset and the learning algorithm, they obtain a mutated model M’. Then, they
execute and analyse M’ against the filtered test set T’ to evaluate the quality
of the test dataset. Note that T’ are the test data points in T that the original
deep learning model M correctly processes. In model-level mutation testing
approach, they follow the same workflow. However, instead of mutating the
sources of the deep learning systems, they directly inject faults (e.g., switching
two neurons within a layer to exchange their roles and influences for the next
layers) into the deep learning algorithm.

After obtaining a set of mutant deep learning models M’, each test data
point t’ ∈ T’ that the original deep learning model M correctly handles is evalu-
ated on the set of mutant models M’. Afterwards, they say that test data T’ kill
mutated model m’ if there exists a test input t’ ∈ T’ that m’ does not correctly
handle.

In the next section, we want to adapt the source-level mutation testing
workflow proposed by Ma et al. [15] to build a mutation analysis approach for
fairness evaluation targeting machine learning software.
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3 Approach

In this section, we introduce the main steps of our approach to evaluate the
fairness sensitivity of machine learning algorithms.

Based on the first assumption that fairness issues do not reside in the ML
code but are strongly linked to problems in the data, we want to adapt the per-
spective of the mutation testing approach to assess fairness in machine learning
algorithms from a data perspective. In such a vision, we consider modifying
the original dataset, training the ML algorithms on them and analysing the dif-
ference with the originally trained algorithm. This vision allows us to evaluate
the sensitivity of ML algorithms to several kinds of injected fairness issues. The
overall process is shown in Figure 8.

There are three primary steps in our approach to evaluating ML algorithms.

Step 1: Baseline creation
First, we create a baseline by training an ML algorithm on an original training
set (1), yielding an ML model and a set of performance and fairness scores (2).

Step 2: Mutant creation
Second, we apply data mutation operators to inject perturbations in the origi-
nal training dataset and create a set of mutated training datasets (3). Next, we
train the same ML algorithm (4) (with the same hyper-parameters as the origi-
nal) on each modified training dataset yielding a set of ML model variants and
a set of performance and fairness scores (5). Note that the ML model variants
and the original ML model are tested against the same test dataset.

Step 3: Sensitivity analysis
Third, we quantify the sensitivity of the ML algorithm by analysing dispersion
between the scores of the original ML model and ML model variants (6).

Through this approach, we aim to provide a tool for analysing the sensitiv-
ity of ML algorithms to data mutation and determine whether algorithms are
more sensitive than others. The following section explains how these steps are
implemented to achieve our research objectives.
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Figure 8: Fairness-driven Mutation Analysis Process
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4 Experimental setup

In this section, we describe our experiment design and setup. We first describe
the subjects of our experiments and then introduce our research questions and
experimental procedure.

4.1 Experimental subjects

4.1.1 Candidate algorithms

We select four machine learning classifiers to explore the sensitivity of ML al-
gorithm to data mutation:

• Logistic Regression (LR)

• Random Forest (RF)

• Support-Vector Machines (SVC)

• Multi-Layer Perceptron (MLPC)

As in previous work [7], we use the standard implementation found in Scikit-
learn1 machine learning library with the default configuration for each classifier.

4.1.2 Datasets

The experiments are conducted on three popular datasets, which are commonly
used in the literature of machine learning fairness research:

• Adult Census [30]

• COMPAS [22]

• Bank Marketing [14]

To be able to compare the performance and fairness of our candidate algorithms
in each dataset, we use the same data preprocessing strategy: the missing and
invalid values are removed, and categorical attributes are encoded by using
LabelEncoder2 transformer and each attribute is scaled between zero and one
by using MinMaxScaler3. We specify the protected attributes, the privileged
and unprivileged group and the favourable predicted label for fairness analysis.
Finally, each dataset uses the same train-test splitting (80% - 20%)4.

1https://scikit-learn.org/
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

LabelEncoder.html
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html
4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

train_test_split.html
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Figure 9: Data preprocessing

ADULT CENSUS INCOME:

The Adult Census Income dataset contains financial and demographic in-
formation about individuals from the 1994 U.S. Census. Based on census data,
the classification task is to predict whether a given adult makes over $50k a year.

Dataset characteristics: The dataset consists of 48,842 instances described
via 15 attributes (6 are numerical, 7 are categorical and 2 are binary). We
provide an overview of attribute characteristics in Table 2. As suggested in
previous work [29], we exclude the attribute fnlwgt from our experiments.

Missing values are present in 3,620 instances. As they can bias the results of
the machine learning models, we remove them to obtain a clean dataset with
45,222 instances.

Attributes Type Values #Missing values Description
age Numerical [17 - 90] 0 The age of the individual
workclass Categorical 7 2,799 The career status
fnlwgt Numerical [13,492 - 1,490,400] 0 The final weigth
education Categorical 16 0 The education level
education-num Numerical [1 - 16] 0 The education level in numerical form
marital-status Categorical 7 0 The marital status
occupation Categorical 14 2,809 The general type of occupation
relationship Categorical 6 0 The relationship with others
race Categorical 5 0 Race
sex Binary {Male, Female} 9 The gender
capital-gain Numerical [0 - 99,999] 0 The capital gains
captal-loss Numerical [0 - 4,356] 0 The capital loss for an individual
hours-per-week Numerical [1 - 99] 0 The hours an individual has reported to work
native-country Categorical 41 857 The country of origin for an individual
income Binary {<=50K, >50K} 0 Whether or not an individual

makes more than 50K$ a year

Table 2: Adult: attributes characteristics

Protected attributes:

• Sex, where male is the privileged group and female is the unprivileged
group.
The ratio of male and female is 67.5 - 32.5(%).

Class attribute: The class attribute is income ∈ {<=50K, >50K}indicating
whether the individual makes more than 50K$ a year, where >50K is the de-
sired predicted outcome.
The ratio of <=50K and >50K is 75.2 - 24.8(%).
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COMPAS:

The COMPAS (Correctional Offender Management Profiling for Alternative
Sanctions) contains criminal history, jail, prison time and demographic infor-
mation about defendants in Broward County, Florida. The classification task is
to predict the likelihood of a defendant to become a recidivist.

Dataset characteristics: The dataset consists of 7,214 instances described
via 51 attributes, as shown in Table 11 .

Missing values are present in 6,395 instances. Based on this work [6], we clean
the dataset by removing missing data, such as the violent recidivism attribute
that contains only NaN values or charge date cases that did not occur within 30
days of a COMPAS assessment. Finally, we consider a subset of the COMPAS
attributes previously used for fairness experiments [19], which comprises five
features (2 are categorical, 2 are binary and 1 is numerical). We provide an
overview of its attribute characteristics in Table 3.

Attributes Type Values #Missing values Description
age cat Categorical 3 0 Age in a categorical form
race Categorical 6 0 Race
priors count Numerical [0 - 38] 0 The prior offenses count
c charge degree Binary {F, M} 0 Charge degree of original crime
two year recid Binary {0, 1} 0 Whether the defendant is rearrested within two years

Table 3: Subset of COMPAS: attributes characteristics

Protected attributes:

• Race, where caucassian is the privileged group and non-caucassian is the
unprivileged group.
The ratio of caucassian and non-caucassian is 34.1 - 65.9(%).

Class attribute: The class attribute is two year recid ∈ {0, 1} indicating
whether the defendant re-offends within two years, where 0 is the desired pre-
dicted outcome.
The ratio of 0 and 1 is 54.5 - 45.5(%).
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BANK MARKETING:

The bank dataset contains data from a bank’s marketing campaign to Por-
tuguese individuals. The classification task is to predict whether a given client
will subscribe to a term deposit.

Dataset characteristics: The dataset consists of 11,162 instances described
via 17 attributes, as presented in Table 4.

Attributes Type Values #Missing values Description
age Numerical [18 - 95] 0 The age of the client
job Categorical 12 0 The type of job
marital Categorical 3 0 The marital status
education Categorical 4 0 The education level
default Binary {Yes, No} 0 Whether or not the client has credit default
balance Numerical [-8,019 - 102,127] 0 The balance of the client account
housing Binary {Yes, No} 0 Whether or not the client has a housing loan
loan Binary {Yes, No} 0 Whether or not the client has a personal loan
contact Categorical 3 0 The contact communication type
day Numerical [1 - 31] 0 The last contact day of the week
month Categorical 12 0 The last contact month of the year
duration Numerical [0 - 4,912] 0 The last contact duration (in seconds)
campaign Numerical [1 - 63] 0 The number of contacts performed

during this campaign and for the client
pdays Numerical [1 - 871] 0 The number of days that have passed

since the last contact with the client
previous Numerical [0 - 275] 0 The number of contacts performed

before this campaign and for the client
poutcome Categorical 4 0 The outcome of the previous marketing campaign
y Binary {Yes, No} 0 Whether or not the client has subscribed a term deposit

Table 4: Bank: attributes characteristics

Protected attributes:

• Age, where people, who are between the age of 25 to 60 years old, are
in the privileged group and people, who are less than 25 or more than 60
years old, are in the unprivileged group.
The ratio of 0 and 1 is 54.5 - 45.5(%).

Class attribute: The class attribute is y ∈ {Yes, No} presenting whether a
customer will subscribe to a term deposit or not, where Yes is the desired pre-
dicted outcome.
The ratio of Yes and No is 54.5 - 45.5(%).

4.1.3 Data Imbalance

Chakraborty et al.[7] postulate that the historical and sampling biases under-
lying these datasets, which result in imbalanced data, could be the cause of
unfairness.
As presented in Figure 10, these datasets have a class imbalance (i.e, the tar-
get class has an uneven distribution of observations). Further, the number of
observations per group is not equally distributed.
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Figure 10: Datasets distributions

For instance, the Adult dataset is highly dominated by people earning less than
50K$ per year but also by white males (see Figure 10). Such imbalance can be
critical as classification models trained on Adult may have difficulty predicting
the minority class or group. We need to consider datasets’ imbalances during
our data mutation process to critically assess ML algorithms’ sensitivity.

4.2 Research questions

The evaluation answers the following research questions.

RQ1: How sensitive are machine learning algorithms to mutations in
the training data regarding fairness?
We believe that fairness issues do not reside in the ML code but are strongly
linked to issues in the training data. Therefore, our purpose is to investigate
whether the fairness of an ML model is sensitive to mutations in the training
data, which can mimic certain biases such as the inadequate representation of
women or ethnic minorities. If so, it means ML algorithms acquire bias from the
training data, and we can already remove that bias by modifying the training
data before model training.
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RQ1.1: What is the impact of a few injected perturbations in the
training data on the fairness scores of a machine learning model?
To answer this first research sub-question, we first ask whether modifying the
training data (via mutations) can already lead to differences in the fairness
scores of an ML model. That is an important question because if confirmed,
then the chances of bias in the training data affecting the final decision are high.

RQ1.2: Which machine learning algorithms are the most sensitive
(or insensitive) to mutations in the training data regarding fairness?
We also ask whether some ML algorithms are more prone to data changes. Each
ML algorithm has its procedure to learn rules and patterns from data examples.
As a result, they might behave differently when bias occurs in the training data.

RQ2: What targeted mutations in training data can improve the fair-
ness of a machine learning model?
Our assumption is that we can remove bias by directly modifying the training
data. Therefore, RQ2 investigates some targeted data-mutation techniques to
improve the fairness of ML models.

RQ2.1: Can having the same proportions for each group (privi-
leged/unprivileged) in each class reduce the bias?
In section 2, we introduced Fair-SMOTE. This tool has already shown fairness
improvement. Fair-Smote makes proportions equal based on class and protected
attributes by rebalancing internal distributions. Similarly, we ask whether mod-
ifying the training data without creating new instances can significantly reduce
bias.

Figure 11: Adult: Gender and Income distributions
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The proportion of males in the high-income class is three times higher than
females showing an under-representation of highly paid women (see Figure 11).
In such a vision, we want to investigate whether having the same proportion of
females and males in each Income class can also improve fairness.
RQ2.2: Can making proportions equal based on class, protected at-
tributes and non-protected attributes reduce bias?
Although modifying the training data on the protected attribute can improve
fairness, bias may remain in other parts of the training data. Fair-SMOTE only
modifies distributions of the protected attributes. However, the initial over-
representation is also found in other attributes that affect the final decision.
For instance, it can be seen with the distribution for each group of the ”hours-
per-week” attributes in the Adult dataset (see Figure 12).

Figure 12: Adult: Gender, Hours-per-week and Income distributions

Highly paid people are more likely to work at least 40h/week. However, we
note that the proportion of males working a lot in the high-income class is
three times higher than that of females showing an under-representation of
highly paid, high-working women (see Figure 12). In such a vision, we want to
investigate whether having the same proportion of females and males in each
pair Hours-per-week -Income can further improve fairness than the last targeted
mutation strategy.

4.3 Experimentation protocol

We answer the research questions through our fairness-driven mutation analysis
approach (see Section 3). Depending on the research question, we use a spe-
cific mutation scenario. Therefore, our research procedure is divided into two
scenarios:

1. Blind mutation;

2. Distribution-aware mutation.

In the first scenario, we aim to answer our first research questions by naively
modifying the original training datasets. This approach represents the first
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way to see data mutation-induced fairness changes without analysing distribu-
tions from the dataset regarding fairness. However, one problem that prevents
blind mutation from becoming a practical mutation analysis technique is the
enormous number of possible mutated training datasets to train and analyse.
Furthermore, some mutations may be useless or harmful since they may modify
a feature that does not need to be changed.

Due to the previous drawbacks, we also offer a more effective mutation sce-
nario to answer our second research question. We propose a distribution-aware
approach for more targeted mutation towards a specific fairness goal. Unlike
the blind mutation approach, we need to analyse and learn from the original
dataset distributions to generate the modified training datasets. Although this
approach requires a preliminary dataset analysis, we postulate that it represents
a more promising technique for fairness analysis and improvement with fewer
and smarter mutations.

In this section, we explain the steps involved in the baseline creation and altered
datasets creation for each scenario. The results and sensitivity analysis step for
each scenario are presented in Section 5 to answer the research questions.

4.4 Blind mutation

4.4.1 Baseline

We first create a baseline by computing the performance and fairness scores of
the trained algorithms on the original training datasets. Because of the nature
of the learning algorithms, we may obtain different results by running the same
algorithm on the same training data. We train our candidate algorithms ten
times to get a baseline and average the results.
The original scores are shown in Table 5.

Dataset-Prot.Attr. Learning Algorithm Recall Accuracy Precision EOD SPD

Adult - Sex

Logistic Regression 0.47 0.82 0.71 0.3 0.19
Random Forest 0.61 0.84 0.69 0.02 0.17

SVC 0.56 0.84 0.75 0.16 0.18
MLPC 0.61 0.84 0.72 0.13 0.19

COMPAS - Race

Logistic Regression 0.82 0.68 0.67 0.11 0.18
Random Forest 0.74 0.67 0.68 0.15 0.25

SVC 0.73 0.66 0.68 0.08 0.17
MLPC 0.72 0.68 0.71 0.15 0.24

Bank - Age

Logistic Regression 0.82 0.82 0.79 0.19 0.5
Random Forest 0.86 0.84 0.81 0.11 0.42

SVC 0.82 0.82 0.8 0.19 0.5
MLPC 0.85 0.83 0.8 0.14 0.44

Table 5: Baseline - Blind mutation: original scores

4.4.2 Mutation

Second, we create our mutated training datasets to evaluate the score of the
algorithms on modified data. To generate these mutants, we design mutation
operators and a selection strategy.
Both are described on the Adult dataset.
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Mutation Operators. Similar to mutation testing for traditional software,
our mutation operators represent predefined rules, each of which modifies the
original training data to create mutated training datasets. As we drive our
mutation on the data, we design the following operators to introduce potential
fairness changes into the source of the ML algorithms: the training data.

Column Change (CC) operator changes a data point (i, c) at index i
and column c with another value in the range of possible values of the column.
Figure 13 illustrates CC operator in the Adult dataset by changing the value
’Husband’ at index 10,000 in the ’Relationship’ column to a new random value:’
Unmarried’.

Figure 13: Column Change(CC) operator

Column Shuffle (CS) operator shuffles the values at indexes I within a
column c into different orders. Figure 14 illustrates CS operator in the Adult
dataset by shuffling the values at indexes 10,000, 30,001, 30,002 within the
‘Relationship’ column into different orders.

Figure 14: Column Shuffle(CC) operator

Selection strategy Once we have our mutation operators, we have to deter-
mine on which part of the training data to apply them. Therefore, we use a
splitting strategy allowing us to separate the training data into two parts :
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• One to be mutated

• One left unchanged

As we are aware of the data imbalances within the datasets, we decide to use
a semi-blind splitting strategy: StratifiedShuffleSplit5. It allows us to remain
random in choosing which indexes to mutate while ensuring that each class is
mutated.

Figure 15: Selection strategy: stratifieShuffleSplit

For the Adult dataset, StratifiedShuffleSplit (see Figure 15) randomly selects
the instances to be mutated and ensures that these instances preserve the same
percentage of individuals from the population earning more than $50K/year and
from the population earning less than $50K/year.

Mutant generation Based on our selection strategy, we use four channels to
generate our mutated training datasets: 5%-10%-15%-20% training data to
be mutated. Each channel represents the percentage of mutated instances in
the training dataset. As we want to evaluate the impact of small mutations in
the training dataset on the fairness scores of a machine learning model, we do
not modify beyond 20% the training dataset.

For each channel, we have five index folds where we apply mutation opera-
tors. We apply one mutation operator for each index fold on only one attribute
at a time.
This leads us to create :

• 480 training data mutants for the Adult dataset

• 200 training data mutants for the COMPAS dataset

• 640 training data mutants for the Bank dataset

Then, we train the candidate learning algorithms on each mutated training
dataset and compute the performance and fairness scores of the resulting model
variants.

5https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

StratifiedShuffleSplit.html
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4.5 Distribution-aware mutation

Before starting the distribution-aware scenario, we slightly adapt the preprocess-
ing of the datasets to ease our mutations. Directing our mutations to specific
parts of the dataset, we discretise some numerical attributes and also transform
some categorical attributes to conduct our experiments. For Adult, we change
relationship and hours-per-week as follows : relationship={Married, Other},
hours-per-week={>=40, <40}. For COMPAS, we transform priors-count into
priors-count={0, 1-5, >5}

4.5.1 Baseline

As our original training datasets are different from the last mutation scenario,
we create a new baseline shown in Table 6.

Dataset-Prot.Attr. Learning Algorithm Recall Accuracy Precision EOD SPD

Adult - Sex

Logistic Regression 0.56 0.84 0.72 0.23 0.21
Random Forest 0.59 0.83 0.7 0.07 0.18

SVC 0.56 0.85 0.76 0.13 0.18
MLPC 0.59 0.85 0.75 0.1 0.18

COMPAS - Race

Logistic Regression 0.76 0.64 0.64 0.03 0.1
Random Forest 0.81 0.66 0.64 0.05 0.11

SVC 0.83 0.65 0.63 0.07 0.13
MLPC 0.8 0.66 0.64 0.06 0.12

Bank - Age

Logistic Regression 0.82 0.82 0.79 0.19 0.5
Random Forest 0.86 0.84 0.81 0.11 0.42

SVC 0.82 0.82 0.8 0.19 0.5
MLPC 0.85 0.83 0.8 0.14 0.44

Table 6: Baseline - Distribution-aware mutation: original scores

4.5.2 Mutation

Second, we create our mutated training datasets by targeted mutation towards
a specific fairness goal. To generate these mutants, we use Column Change (CC)
operator and design targeted redistribution strategies to explore fairness
improvement approaches.
Our redistribution strategies are described below in the Adult dataset.

• Protected attribute redistributing
As described in RQ2.1, we first want to investigate whether having the
same proportions for each group (privileged/unprivileged) in each class
improves fairness. We follow the next steps to achieve the same propor-
tions. The overall process is illustrated in Figure 16.

1. Count the initial proportions.
We count the number of individuals in each subgroup of (Protected
attribute x Class) in the original training dataset.
For Adult:

– 10,437 females are earning 50K$ or less per year.

– 16,797 males are earning 50K$ or less per year.

– 1,342 females are earning more than 50K$ a year.

– 7,601 males are earning more than 50K$ a year.
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2. Count differences.
We count the differences between each group in each class to deter-
mine the number of instances to be mutated.
Based on the previous numbers:

– Among those earning 50K$ or less per year, the difference be-
tween males and females is 6,360. As a result, 3,180 males have
to be transformed into females to obtain the same proportion of
females and males in the negative class.

– Among those earning more than 50K$ per year, the difference
between males and females is 6,259. As a result, 3,130 males have
to be transformed into females to obtain the same proportion of
females and males in the positive class.

3. Change value.
Based on the last differences, we randomly select indexes from the
group with the most instances for each class and change their value
in the sensitive attribute to the other group to obtain the same pro-
portions.

Figure 16: Protected attribute redistribution strategy
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Through this strategy, we ensure for each class that the number of in-
stances from the unprivileged group is equal to the number of instances
from the privileged group.

• Protected attribute and non-protected attributes redistributing
As described in RQ2.2, we want to go beyond making proportions equal
based on class and protected attribute. We want to investigate whether
making proportions equal based on class, protected attributes and non-
protected attributes improve more fairness than the last redistribution
strategy. We follow the next steps to achieve the same proportions. The
overall process is illustrated in Figure 18.

1. Identify other attributes to be rebalanced.
When we make the proportions equal based on class and protected
attribute in the previous redistribution strategy, we decrease the cor-
relation between the protected attribute and the target y to around
0. Figure 17 shows the correlation matrix between the different at-
tributes of the Adult training set. After rebalancing the instances
regarding the ”sex” attribute (highlighted columns), correlation be-
tween the protected attribute and the target y ≈ 0.

As stated in RQ2.2, we believe that the initial over-representation is
also present in other attributes that affect the final decision. Unfortu-
nately, simply making proportions equal based on protected attribute
and class does not recover the initial over-representation in other at-
tributes.

Figure 17: Correlation matrix after the protected attribute redistribution strat-
egy

Based on the previous correlation matrix, we can see that relation-
ship and hours-per-week are attributes where the different groups
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(privileged and unprivileged) still have different distributions.
Therefore, we propose an approach to select attributes for which the
groups still have a very different distribution even after making pro-
portions equal based on class and protected attribute. We consider
the attributes satisfying the following condition:

isSelected(att) = |corr(A, att)| > 0.1,
where A is the protected attribute and att is the studied attribute.

Accordingly, we select the following attributes to be considered ini-
tially in the redistribution process :

– relationship and hours-per-week for Adult.

– no attribute for COMPAS and Bank since each attribute has a
correlation with the protected attribute around 0 after being re-
balanced on the class and the protected attribute.

2. Count the initial proportions.
We count the number of individuals in each subgroup of (Protected at-
tribute x Selected attributes x Class) in the original training dataset.

3. Count differences.
We count the differences between each group in each subgroup of
(Selected attributes x Class) to determine the number of instances to
be mutated.

4. Change value.
Based on the differences, we randomly select indexes from the group
with the most instances for each subgroup of (Selected attributes x
Class) and change their label in the sensitive attribute to the other
group to obtain the same proportions.

Through this strategy, we ensure each subgroup of (Selected attributes x
Class) that the number of instances from the unprivileged group is equal
to the number of instances from the privileged group. As a result, the
different groups (privileged and non-privileged) no longer have different
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Figure 18: Protected and non-protected attributes redistribution strategy

distributions in the selected attributes. Figure 19 shows the correlation
matrix between the different attributes of the Adult training set after being
rebalanced with the Protected and non-protected attributes redistribution
strategy.

Figure 19: Correlation matrix after the protected and non-protected attribute
selection strategy

Based on Figure 19, we can see that the protected attribute no longer
correlates greater than 0.1 with any other attribute. This means that the
distributions for the privileged and non-privileged subgroups are close for
each attribute.

• Mutant generation
Each redistribution strategy is illustrated with a scenario where we fully
recover the distributions to make proportion equal based on protected
attributes, class or more. For each redistribution strategy, we use ten
channels to generate our mutated training datasets:
10%-20%-30%-40%-50%-60%-70%-80%-90%-100% of distributions
recovered. Each channel represents the percentage of distributions recov-
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ered from the training dataset to fully apply the selection strategy. For
each channel, we have five index folds. Each redistribution strategy leads
us to create 50 training data mutants for each dataset.
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5 Results and Discussion

We conduct a sensitivity analysis for each mutation scenario using three per-
formance metrics (recall, accuracy, precision) and two fairness metrics (EOD,
SPD) introduced in Section 2. To analyse the sensitivity of the algorithms when
potential changes arise in data, we use 1,320 altered training datasets for the
blind mutation scenario and 200 altered training datasets for the distribution-
aware mutation scenario. To illustrate how these modifications impact the algo-
rithms’ fairness, we compare the performance and fairness scores of the resulting
altered training datasets with our baselines presented in Table 5 and Table 6.

5.1 Blind mutation - Sensitivity analysis

First, we evaluate the sensitivity of the candidate learning algorithms through
the mean, standard deviation, maximum and minimum of the resulting fairness
scores of the altered datasets. Table 7 shows the results of the following box-
plots.

Figure 20: Blind mutation: Adult fairness scores

Figure 21: Blind mutation: COMPAS fairness scores
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Figure 22: Blind mutation: Bank fairness scores

Dataset-Prot.Attr. Learning Algorithm Fairness Metric Mean Std Min Max

Adult - Sex

Logistic Regression
EOD 0.304 0.023 0.22 0.38
SPD 0.186 0.008 0.15 0.2

Random Forest
EOD 0.033 0.013 0 0.08
SPD 0.174 0.005 0.16 0.19

SVC
EOD 0.165 0.011 0.14 0.21
SPD 0.182 0.005 0.17 0.19

MLPC
EOD 0.127 0.036 0.02 0.25
SPD 0.188 0.018 0.14 0.27

COMPAS - Race

Logistic Regression
EOD 0.132 0.044 0.08 0.28
SPD 0.21 0.05 0.16 0.39

Random Forest
EOD 0.135 0.036 0.07 0.24
SPD 0.234 0.033 0.17 0.35

SVC
EOD 0.101 0.028 0.07 0.21
SPD 0.202 0.03 0.16 0.31

MLPC
EOD 0.154 0.022 0.08 0.23
SPD 0.237 0.025 0.17 0.31

Bank - Age

Logistic Regression
EOD 0.193 0.023 0.09 0.43
SPD 0.502 0.025 0.33 0.64

Random Forest
EOD 0.111 0.026 0 0.3
SPD 0.422 0.028 0.25 0.53

SVC
EOD 0.194 0.02 0.08 0.35
SPD 0.497 0.018 0.37 0.59

MLPC
EOD 0.128 0.023 0.02 0.31
SPD 0.434 0.024 0.3 0.53

Table 7: Blind mutation: Boxplots scores

In addition, we analyse these results in the light of the baseline by examining
how much the fairness scores can decrease with minor changes in the training
dataset. As ensuring fairness often comes at the cost of performance, we also
compare the impact of fairness enhancement on performance scores. Table 8
shows the scores of one of the resulting models that obtained the minimum for
EOD or SPD. It also compares these scores with the baseline by calculating the
gains or losses regarding fairness and performance.
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Dataset-Prot.Attr. Learning Algorithm Minimum Recall Accuracy Precision EOD SPD

Adult - Sex

Logistic Regression
EOD -9% -1% +0% -8% -4%
SPD -9% -1% +0% -8% -4%

Random Forest
EOD -1% -1% +0% -2% +0%
SPD +0% +0% +0% +0% -1%

SVC
EOD +0% +0% -1% -2% +0%
SPD -3% +0% +1% +0% -1%

MLPC
EOD -6% +0% -3% -11% -5%
SPD -6% +0% -3% -11% -5%

COMPAS - Race

Logistic Regression
EOD -1% +0% +0% -3% -2%
SPD -1% +0% +0% -3% -2%

Random Forest
EOD -2% +0% +0% -8% -8%
SPD -2% +0% +0% -8% -8%

SVC
EOD +0% +0% +0% -1% +0%
SPD +0% +0% +0% -1% -1%

MLPC
EOD +6% +1% -2% -7% -7%
SPD +6% +1% -2% -7% -7%

Bank - Age

Logistic Regression
EOD -1% +0% +1% -10% -17%
SPD -1% +0% +1% -10% -17%

Random Forest
EOD -1% +0% +0% -11% -14%
SPD -4% -1% +1% -7% -17%

SVC
EOD +0% +0% -1% -11% -13%
SPD +0% +0% -1% -11% -13%

MLPC
EOD +1% +1% +0% -12% -14%
SPD +1% +1% +0% -12% -14%

Table 8: Blind mutation: sensitivity analysis

RQ1.1. What is the impact of a few injected perturbations in the
training data on the fairness scores of a machine learning model?

From what we can see, the fairness of machine learning algorithms is highly
sensitive to mutations in the training data. As shown in Table 8, a few al-
terations in the original training data can already lead to significant fairness
enhancement:

• For Adult, MLPC trained on a mutated training dataset obtains gains up
to 11% in EOD and 5% in SPD.

• For COMPAS, Random Forest trained on a mutated training dataset ob-
tains gains up to 8% in EOD and 8% in SPD.

• For Bank, MLPC trained on a mutated training dataset obtains gains up
to 12% in EOD, and Logistic Regression obtains gains up to 17% in SPD.

The results show that the nature of the training dataset is a crucial factor in the
fairness of an ML model. This reinforces our first assumption that the fairness
of an ML model is very sensitive to problems in the training data and that we
should study the constitution of the training data to eliminate the bias.
Furthermore, fairness does not necessarily come at the cost of performance. As
presented in Table 8, only recall appears to be impacted. This represents an
additional motivation to explore the mutation of training data to enhance the
fairness of an ML model while maintaining its performance.

RQ1.2. Which machine learning algorithms are the most sensitive
(or inflexible) to mutations in the training data regarding fairness?
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Depending on the nature of the mutated training dataset, the variation in
the fairness of an algorithm differs. Consider the following ranking based on the
algorithm with the biggest fairness improvement.

Dataset-Prot.Attr. Metric 1st 2nd 3rd 4th

Adult - Sex
EOD MLPC(-11%) LR(-8%) RF and SVC(-2%) /
SPD MLPC(-5%) LR(-4%) RF and SVC(-1%) /

COMPAS - Race
EOD RF(-8%) MLPC(-7%) LR(-3%) SVC(-1%)
SPD RF(-8%) MLPC(-7%) LR(-2%) SVC(-1%)

Bank - Age
EOD MLPC(-12%) SVC and RF(-11%) LR(-10%) /
SPD LR and RF(-17%) MLPC(-14%) SVC(-13%) /

Table 9: Fairness enhancement ranking

Based on Table 9, no algorithm gets the best fairness improvement on all
datasets.
Furthermore, there is no algorithm where the fairness scores are more spread
out for each dataset. Regarding Figures 20,21, 22, we could say at first glance
that Random Forest (RF) or MLPC are the most sensitive algorithms since
their interquartile range is more spread than the others. However, the previous
boxplots also show a large number of outliers within the Logistic Regression
fairness results. Since Logistic Regression shows many fairness scores that do
not follow the same pattern as others, its fairness appears unpredictable and
highly variable. It can also be interpreted as a lack of robustness to data muta-
tions.
Therefore, previous results do not allow us to say that one algorithm is more
prone to data alterations than others. The sensitivity of an algorithm to modi-
fications in the training data is specific to the nature of the original dataset on
which the mutations are performed.

RQ1. How sensitive are machine learning algorithms to mutations in
the training data regarding fairness?

In summary, the nature of the training dataset is a crucial factor in the
fairness of an ML model. A few injected mutations in the training dataset can
lead to large variations in the fairness of an ML model (i.e, high sensitivity of
the learning algorithm to a few injected perturbations in the training dataset).
This confirms our original assumption that fairness issues of an ML model are
strongly linked to problems in the data. Therefore, the mutation approach
represents a pertinent method to explore the fairness of an ML model and track
fairness improvement achieved by mutation techniques on the original training
dataset.
Nevertheless, the sensitivity of algorithms to alterations in the training data
is specific to the nature of the original dataset on which the mutations are
performed. The sensitivity of an algorithm regarding fairness differs from one
dataset to another. Therefore, the fairness-driven sensitivity interpretation of an
algorithm through the mutation approach must remain in the dataset’s context.
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5.2 Distribution-aware mutation - Sensitivity analysis

We analyse the sensitivity of the candidate learning algorithms for each redis-
tribution strategy by analysing the evolution of their fairness and performance
scores as we recover the original training dataset distributions.

• Protected attribute redistributing

Figure 23: Protected attribute redistributing: Adult fairness scores

Figure 24: Protected attribute redistributing: Adult performance scores
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Figure 25: Protected attribute redistributing: COMPAS fairness scores

Figure 26: Protected attribute redistributing: COMPAS performance scores
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Figure 27: Protected attribute redistributing: Bank fairness scores

Figure 28: Protected attribute redistributing: Bank performance scores
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Table 20 shows these results in the light of the baseline by examining gains and
losses in fairness and performance for algorithms trained on mutated training
datasets where we fully recovered distributions(100%).

Dataset-Prot.Attr. Learning Algorithm Recall Accuracy Precision EOD SPD

Adult - Sex

Logistic Regression +4% +0% +3% -18% -6%
Random Forest -3% +1% +3% -3% -4%

SVC -6% -1% +2% -8% -7%
MLPC -10% -1% +4% -5% -7%

COMPAS - Race

Logistic Regression +0% +0% +0% +0% +0%
Random Forest -1% -1% +0% -2% -3%

SVC -1% +0% +0% -2% -2%
MLPC +1% -1% +0% -3% -4%

Bank - Age

Logistic Regression +0% -1% +0% -18% -26%
Random Forest -1% +0% +0% -6% -18%

SVC +1% +0% -1% -16% -22%
MLPC +0% -1% -1% -12% -17%

Table 10: Protected attribute redistributing: sensitivity analysis

RQ2.1. Can having the same proportions for each group (privi-
leged/unprivileged) in each class reduce the bias?

The results obtained in Figures 23 and 27 are consistent with our hypothesis
that redistribution of the protected attribute in a directed manner can improve
fairness. From what we can see, there are significant fairness enhancements
for directed redistribution on the protected attribute in the Adult and Bank
dataset. Indeed, the SPD of each ML algorithm decreases significantly as we
redistribute the protected attribute, while the EOD varies differently depending
on the ML algorithm.
However, the results in Figure 25 do not allow us to say that redistribution on
the protected attribute in a directed manner in COMPAS dataset improves fair-
ness. Unlike Figures 23 and 27, the fairness results obtained in Figure 25 does
not show for each algorithm the same decreasing tendency of fairness scores.
Therefore, this redistribution strategy needs to be further explored in other
datasets to be validated. Although we do not obtain the expected results on
COMPAS, this strategy performs well on Adult and Bank with significant fair-
ness improvements. Moreover, Table 10 also shows that the method can improve
fairness while not seriously affecting performance.
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• Protected attribute and non-protected attributes redistributing

Figure 29: Protected attribute redistributing: sensitivity analysis

RQ2.2. Can making proportions equal based on class, protected, and
non-protected attributes reduce bias?

Results obtained in Figure 29 do not present fairness enhancements. On
the contrary, the fairness results for most algorithms increase as we recover
the distribution. Therefore, modifying the training dataset such that privileged
and unprivileged groups have the same distribution in each class and in non-
protected attributes does not reduce bias for Adult. Nevertheless, this remains
to be confirmed on other datasets.

RQ2. What targeted mutations in training data can improve the
fairness of a machine learning model?

In summary, we obtain interesting results for the first redistribution strat-
egy, suggesting that having the same proportions for each class; group improves
fairness. Nevertheless, this remains to be confirmed on other datasets, as this
strategy does not improve fairness as expected for the COMPAS dataset (Fig-
ure 25).
However, the second redistribution strategy, which suggests having the same
proportions for each group in each class while having the same proportions for
each group in the non-protected attributes, does not improve the fairness of the
ML models.
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6 Threats to validity

Evaluation Bias. Although IBM AIF360 [23] contains over 50 metrics, we
used only two of the most popular fairness metrics. We should explore the
impact of mutations in training data with further evaluation criteria.

Internal Validity. Default configurations. For each learning algorithm, we
used the default configuration as a representative of its learning algorithm ”fam-
ily” and explored its behaviour on altered datasets. During our experiments
in the blind mutation scenario, we have shown that a few injected perturba-
tions in the training dataset can lead to high variations in the fairness scores
of these learning algorithms with the default configuration. We postulate that
we would obtain the same results with different hyperparameter configurations.
Nevertheless, we should verify this assumption by using other hyperparameter
configurations of the candidate learning algorithms.
Naive mutations. Our blind mutation scenario treats the original training
dataset as a black box and, therefore, it can lead to unrealistic mutated training
datasets. As we naively modify the original training dataset, some mutations
may be harmful since they may modify an attribute that does not need to be
changed. For instance, we may blindly modify age attribute in Adult and create
absurd instances such as 14-year-olds, married, with a master’s degree.
Furthermore, as our blind mutation scenario represents the first attempt to see
mutation-induced fairness changes, we may miss important information to inject
critical perturbations in the training data. Therefore, we should pay more atten-
tion to the definition of mutation techniques to improve our mutation approach
so that it is effective for the fairness analysis of ML algorithms.

External Validity. We conducted our experiments on binary classifiers and
popular datasets, which are commonly used in the literature of machine learning
fairness research. We should extend this work to other datasets and other ML
algorithms to explore the usefulness of our approach.
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7 Conclusion

Fairness is an important property that well-designed ML systems should have.
As machine learning (ML) systems are increasingly used in critical systems (e.g.,
recruitment and lending), it is crucial to ensure that decisions computed by such
systems do not exhibit unfair behaviour. Therefore, diagnosing, exposing and
mitigating bias in ML systems is important.

To this end, this thesis has explored whether ML algorithms produce similar
behaviours for several altered datasets with potential injected fairness issues.
As ML algorithms have different learning procedures, they may show different
sensitivity to biases in data. To explore and analyse their sensitivity, we pro-
posed an approach relying on mutation testing to inject potential biases in data
and measure the sensitivity of ML algorithms to these biases.
Assuming fairness problems are strongly linked to issues in the data, we first
designed data alteration techniques. Through our mutation operators, we pro-
posed different ways to inject fairness defects/advantages that could potentially
be introduced into the data.
Then, we proposed two mutation scenarios to explore the impact of data alter-
ations on ML systems’ fairness.

We initially studied the impact of slight data alterations through a blind mu-
tation scenario on three popular datasets with four ML algorithms. By naively
applying our mutation operators to small parts of the data, we demonstrated
high variations in ML systems’ fairness (i.e, high sensitivity of the algorithms
to injected perturbations in data).
As the previous result convinced us that data mutation has an important effect
on ML systems’ fairness, we investigated bias mitigation approaches through
a distribution-aware mutation scenario. We implemented two redistribution
strategies to reduce bias in data. We demonstrated the usefulness of redistri-
bution by considering the proportions of the different groups in relation to the
target y on two datasets, Adult and Bank, with four algorithms. However, we
failed to improve fairness while we redistributed by considering the proportions
of the different groups in relation to the target y and non-sensitive attributes.

Based on the above, we believe the mutation approach is a promising tech-
nique that could discover fairness violations in ML systems for some training
data patterns. This master’s thesis represents an initial exploratory attempt
to demonstrate the usefulness of the mutation approach for a further in-depth
understanding of fairness in ML systems. For future work, we plan to perform
a more comprehensive study to propose smarter data mutation operators to
inject critical fairness issues in data and investigate the relations of mutation
operators and how well such operators introduce fairness faults in data.
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A Datasets’ characteristics

Attributes Type Values #Missing values Description
name Categorical 7,118 0 First and last name of the defendant
first Categorical 2,800 0 First name
last Categorical 3,950 0 Last name
compas screening date Categorical 690 0 The date of which the decile score was given
sex Binary {Male, Female} 0 Gender
dob Categorical 5,452 0 Date of birth
age Numerical [18 - 96] 0 Age in years
age cat Categorical 3 0 Age in a categorical form
race Categorical 6 0 Race
juv fel count Numerical [0 - 20] 0 The juvenil felony count
decile score Numerical [1 - 10] 0 The COMPAS Risk o Recidivism score
juv misd count Numerical [0 - 13] 0 The juvenil misdemeanor count
juv other count Numerical [0 - 17] 0 The juvenil other offenses count
priors count Numerical [0 - 38] 0 The prior offenses count
days b screening arrest Numerical [-414 - 1,057] 307 The number of days between COMPAS screening and arrest
c jail in Categorical 6,907 307 The jail entry date for original crime
c jail out Categorical 6,880 307 The jail exit date for original crime
c case number Categorical 7,192 22 The case number for original crime
c offense date Categorical 927 1,159 The offense date of original crime
c arrest date Categorical 580 6,077 The arrest date for original crime
c days from compas Numerical [0 - 9,485] 22 Between the COMPAS screening and the original crime offense date
c charge degree Binary {F, M} 0 Charge degree of original crime
c charge desc Categorical 437 29 Description of charge for original crime
is recid Binary {0, 1} 0 The binary indicator of recidivation
r case number Categorical 3,471 3,743 The case number of follow-up crime
r charge degree Categorical 10 3,743 Charge degree of follow-up crime
r days from arrest Numerical [-1 - 993] 4,898 Between the follow-up crime and the arrest date (days)
r offense date Categorical 1,075 3,743 The date of follow-up crime
r charge desc Categorical 340 3,801 Description charge for follow-up crime
r jail in Categorical 972 4,898 The jail entry date for follow-up crime
r jail out Categorical 938 4,898 The jail exit date for follow-up crime
violent recid NULL 7,214 Values are all NA. This column is ignored
is violent recid Binary {0, 1} 0 The binary indicator of violent follow-up crime
vr case number Categorical 819 6,395 The case number for violent follow-up crime
vr charge degree Categorical 9 6,395 Charge degree for violent follow-up crime
vr offense date Categorical 570 6,395 The date of offense for violent follow-up crime
vr charge desc Categorical 83 6,395 Description of charge for violent follow-up crime
type of assessment Categorical 1 0 The type of COMPAS score given for decile score
decile score.1 Numerical [1 - 10] 0 Repeat column of decile score
score text Categorical 3 0 Propublica-defined category of decile score
screening date Categorical 690 0 Repeat column of compas screening date
v type of assessment Categorical 1 0 The type of COMPAS score given for v decile score
v decile score Numerical [1 - 10] 0 The COMPAS Risk of Violence score from 1 to 10
v score text Categorical 3 0 Propublica-defined category of v decile score
v screening date Categorical 690 0 The date on which v decile score was given
in custody Categorical 1,156 236 The date on which individual was brought into custody
out custody Categorical 1,169 236 The date on which individual was released from custody
priors count.1 Numerical [0 - 38] 0 Repeat column of priors count
start Numerical [0 - 937] 0 No information
end Numerical [0 - 1,186] 0 No information
event Binary {0, 1} 0 No information
two year recid Binary {0, 1} 0 Whether the defendant is rearrested within two years

Table 11: COMPAS: attributes characteristics
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