
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

The Coding of Isaac

Leveraging elements of video games to convey information about software quality and
technical debt in the context of software visualization

BAYET, Anthony

Award date:
2022

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Nov. 2022

https://researchportal.unamur.be/en/studentTheses/23e75d93-e4bb-47c2-be4c-38f1ef3d6992

The Coding of Isaac: Leveraging elements of
video games to convey information about
software quality and technical debt in the

context of software visualization

Anthony BAYET
Aniss GRABSI

RUE GRANDGAGNAGE, 21 ● B-5000 NAMUR(BELGIUM)

Abstract

Software quality is an important element to manage in a development project in order to avoid
ever increasing refactoring costs. Visualizing the current quality state of their code is one common
way to help developers in this task. We believe that a video game-based visualization tool can
help developers become more engaged and get a better overall picture of their code quality in a
novel way. Which brings us to these two questions: How intuitive and accurate is the video game
medium to visualize the software technical debt for industry practitioners and academics? How
useful is the video game in visualizing the technical debt of software in the field? These questions
are explored in this work through the development of a video game prototype and its evaluation
through 12 semi-structured interviews and surveys. Players easily understood the relationship
between the game and the metrics. The visual elements we designed and the overall structure
of the game were intuitive to users. There is still room to improve the game to make it more
engaging and useful to developers, it needs more gamification elements. The video game medium
is an intuitive way to convey information about software quality and technical debt, although
more gamification would improve it.

Keywords: Technical debt, Video game, Software visualization, Software quality

i

Acknowledgment

We would like to thank our supervisor Prof. Benoît Vanderose from the university of Namur,
our co-supervisor Prof. Fabian Gilson from the Canterbury Christ Church University, Te Whare
Wānanga o Waitaha, and our internship supervisor, Dr. Zadia Codabux from the university of
Saskatchewan for their guidance throughout this project.

We would also like to thank all the people who participated in the pilot tests and interviews
conducted as part of this research.

ii

Contents

1 Introduction 1

2 Background 3

2.1 Video Game . 3

2.1.1 Game elements . 3

2.1.2 Gamification . 3

2.1.3 Interactions . 3

2.1.4 Active or passive . 4

2.1.5 Offline or real-time . 4

2.1.6 Dungeon crawler genre . 4

2.1.7 Game components . 5

2.1.8 Technologies used . 7

2.2 Code Quality and Technical Debt . 8

2.2.1 SonarCloud . 9

2.3 Measurement theory . 10

2.3.1 Theory . 10

2.3.2 Application to quality metrics . 10

2.3.3 Application to game variables . 12

2.4 Conclusion . 14

3 Related Work 15

4 Research questions 18

5 Methodology 19

6 Design 21

6.1 Rooms . 22

6.2 Enemies . 26

6.2.1 Type . 26

6.2.2 Size . 27

6.2.3 Spawn . 27

6.2.4 Health . 30

6.3 Player . 30

iii

6.3.1 Navigation . 31

6.3.2 Map . 32

6.3.3 Combat . 33

6.4 Sound . 34

6.5 Visualization tool features . 34

6.6 Tutorial . 35

6.7 Project selection . 37

6.8 Conclusion . 38

7 Implementation 39

7.1 Architecture . 39

7.2 Game flow . 41

7.3 SonarCloud . 43

8 Evaluation Methodology 44

8.1 Participants selection . 44

8.2 Interview objectives . 45

8.3 Protocol . 45

8.4 Tools used for coding and analysis . 47

8.5 Data coding process . 50

8.6 Data analysis process . 51

9 Pilot test 52

9.1 Resulting changes . 52

9.1.1 Questionnaire . 52

9.1.2 Colors . 52

9.1.3 Game . 56

10 Results 58

10.1 Mapping . 58

10.2 Information . 59

10.3 Freeze feature . 60

10.4 Music . 62

10.5 Color scales . 63

10.6 Navigation . 64

iv

10.7 Gameplay . 66

10.8 Goal of the game . 66

10.9 Target users . 67

10.10Potential usage . 68

10.11Missing features . 70

10.12Project selection . 71

10.13Performance . 71

10.14Others . 72

11 Discussions 73

12 Threats to validity 77

13 Future works 79

14 Conclusion 80

15 Bibliography 81

A Appendix 84

Tutorial room designs . 84

Javascript game frameworks comparison . 85

Consent form . 87

Demographics form . 88

End of interview questionnaire . 92

Information sheet . 96

v

1 Introduction

Khomh et al. [2009] showed that classes with code smells, i.e., classes showing signs of poor
code quality, are more prone to change than classes of better quality. Fontana et al. [2013] and
Zazworka et al. [2011] then confirmed that software quality is correlated with the number of
code smells a software presents, forcing developers to devote time to changing, modifying, and
fixing code more often when it contains code smells than when it does not. Zazworka et al.
[2011] states "god classes", which are classes that do to many functions, have been confirmed to
have the technical debt property of incurring interest since they “cost” the organization more in
terms of changes and defects as the software development lifecycle progresses". These previous
works have shown and demonstrated that it is important to manage this technical debt to avoid
increasing interest payments(cost to fix the technical debt later). One of the first activities to be
undertaken to manage debt is to let developers know it exists (Codabux et al. [2014]). So it is
important to visualize technical debt and have tools that can track and provide insight into it.
This led this study to the world of code quality visualization, and more precisely to the possible
innovations in this field using video games.

Games are not just entertainment, Dörner et al. [2016] explains that games can have a more
serious purpose in addition to the entertainment part. This causes a compromise between enter-
tainment and serious purpose, but it is manageable. Doherty et al. [2018] states that games can
then be used for eight different purposes, namely: education, entertainment, exercise, meditation,
party and social. Our research explores a new goal which is the visualization of code quality in
software projects. Tekinbas and Zimmerman [2003] discusses that games can be representations
by themselves, which is the reason for the existence of our research.

Software is a product that can become incredibly complex. In this case, it can be very difficult
to estimate the cost of the quality of the software accurately. Software quality is a broad topic,
so our research focuses on one specific element: technical debt and code level quality, ignoring
other elements such as dependencies. To help practitioners in this task, many code quality tools
are available, such as Embold1 or SonarQube2. However, while these tools can provide detailed
measurements of bugs, code smells, and other code quality metrics(e.g. number of line of codes,
coupling), they have trouble solving directly the problem of visualizing the software quality.
Developers are overwhelmed by the amount of information about the quality of their code and
must try to make sense of it on their own.

One way to overcome this issue is to use software visualization. This field of computer science
focuses on the visualization of computer programs and their behavior. It is an important part of
computer science, as it plays a significant role in the development and understanding of software.

The problem is that most research in this area still focuses on an overly grounded approach. Most
visualizations are analytical and precise, but none have attempted to translate the analytical
data into a more intuitive instrument. This general impression would allow developers to quickly
identify the most relevant attributes of a program and easily assess its quality without having to
read detailed tables of statistics and numbers on their code.

We propose to use a video game as a medium to depict software quality and use the game me-
chanics to visualize software code-level quality. To do this, a game based visualization called The
Coding of Isaac has been created. It allows the player to navigate the code quality of a codebase
to get a general idea of the amount of technical debt present in the codebase. The prototype
was evaluated using surveys and interviews to answer two main research questions(RQ):

1https://embold.io/
2https://www.sonarqube.org/

1

https://embold.io/
https://www.sonarqube.org/

RQ1: How intuitive and accurate is the video game medium to visualize the software technical
debt for industry practitioners and academics?

RQ2: How useful is the video game in visualizing the technical debt of software in the field?

Following our evaluation, our results are promising. The players played the game without any
issues and were able to understand the relationship of the game and the metrics. The visual
elements (e.g. monsters, walls, floors), and overall structure of the game were intuitive to users.
However, there is still room to improve the game to make it more engaging and useful to devel-
opers in their daily workflow by incorporating more gamification aspects.

To summarize the contribution of this thesis:

Contribution 1: A description of the Dungeon Crawler game genre by breaking down each of
the elements that make up this type of game in detail.
Contribution 2: A proposed mapping between code quality metrics and video game compo-
nents based on the application of the theory of measurement by Allen [1979] to metrics of code
quality and to the components of video games.
Contribution 3: A prototype game3 designed to visualize code quality in software development
projects. Along with detailed information about how the game was designed and implemented.
Contribution 4: An evaluation of this prototype with field practitioners and students to deter-
mine if software professionals are interested in incorporating our tool into their daily workflow?

3Source code available on https://github.com/snail-unamur/Yo-kai-watch

2

https://github.com/snail-unamur/Yo-kai-watch

2 Background

In this chapter we will define terminologies, present general design aspects considered for a video
game, describe the dungeon crawler genre being the one chosen for this study and its main game
components. Then, we look at what is code quality and the main code metrics. Finally, this
chapter ends with a description of measurement theory and its role in this type of mapping task.
It is important to note that the items presented in the following sections are not an exhaustive
list of items in terms of code quality metrics or game components. The design elements included
in the prototype developed during this study will be taken from these lists.

2.1 Video Game

2.1.1 Game elements

Werbach and Hunter [2012], define the categories of elements that make up a video game. They
are either a component, a mechanic, or a dynamic. Game dynamics are the overall picture
of the game (e.g., emotion, progression, narrative). Game mechanics are the processes that
make the player move forward (e.g., chance, cooperation, competition, feedback). Finally, game
components are the specific objects that bring the mechanics and dynamics to life (e.g. quests,
levels, leaderboards, visual elements, game rules).

2.1.2 Gamification

According to Deterding et al. [2011], gamification is the practice of taking methodologies or
game elements and applying them to non-game applications and processes to improve the user
experience. Indeed, as mentioned in the introduction, we are taking game components and
applying them to the world of technical debt management and visualization.

2.1.3 Interactions

As mentioned earlier, the centerpiece of this study is the video game that aims to help developers
visualize code quality metrics. The product has two different aspects: a visualization tool and a
video game. Therefore, users will interact with both parts of the product. The interactions can
be of two types, visualization-related or game-related interactions. For the first type, according
to Dimara and Perin [2020] when interacting with a visualization tool, the interaction will fall
into one of these seven categories: Input data (e.g., adding, creating, modifying, correcting data),
Processing data (e.g., compiling, filtering, selecting a subset, deriving from raw data), Mapping
data (e.g., changing the layout of data, adding visual markers mapped to variables), Presenta-
tion data (e.g., navigating, styling, highlighting, and so on), and Output data (e.g., creating,
editing, and so on). navigate, style, highlight), Meta (e.g., undo, redo, save actions), Social (e.g.,
communicate with peers, share results), Interface (modify the user interface, e.g., add notes to
data items, open, close, or modify interface panels). For the second type, the game-related inter-
actions, a multitude of interactions belong to this category, e.g. fighting enemies, navigating in
the game environment, interacting with non-player characters, etc. Some interactions will only
fit into one category, but sometimes an interaction will impact both the visualization and the
gameplay aspect of the product.

3

2.1.4 Active or passive

A major aspect in the design of a video game for this research is whether it is an active or a
passive game. An active game is defined in this study as a game in which the player performs
at least some game-related interactions, the player is an actor in the game. On the contrary,
in a passive game, the player only performs visualization-related interactions, the player is an
observer of the game. In both cases, the game represents the quality of the code and the instance
of the game will be different based on that, the difference being that in the passive game, the
user interacts with the product as a tool rather than a game, while in the active game, the player
must perform game-related interactions to get complete information about the quality of the
code.

All game genres are by default active games, as one of the main characteristics of video games
is to make players take action. However, at first glance, some genres seem easier to turn into
passive games than others. For example, there are "idle" games: games of this kind ask the player
to interact just a little bit from time to time, and then wait to see the results. Since the number
of interactions is very limited, it is easy to imagine that they could be replaced or generated
procedurally. Nevertheless, any kind of game can be turned into a passive game. To do so,
it is necessary only to have the players’ interactions replaced and generated by some artificial
intelligence.

2.1.5 Offline or real-time

Visualization can have two types of rendering mode, offline and real-time. Offline means that
the visualization is not immediately updated, the user must wait for the data to be processed for
a certain period of time before accessing the latest status. In the case of real time, every time
the underlying data is updated, the visualization is updated at the same time (e.g. a developer
has pushed a new commit).

2.1.6 Dungeon crawler genre

The game developed in this study is a dungeon crawler. The choice of the game genre will guide
the subsequent steps. According to Brewer [2016] The dungeon crawler genre was born with the
famous board game "Dungeons and Dragons" (D&D) by Gary Gygax and Dave Arneson in 1970.
Later, with the progression of computer technology, some video games began to offer dungeon
crawler elements similar to those of D&D, such as combat and character evolution. It was with
pedit5, also known as The Dungeon, written in 1975 by Rusty Rutherford, that the Dungeon
crawler genre really began to take shape, it allowed you to play and explore a dungeon with your
character and its D&D-like statics such as hit points, strength, dexterity, etc. Video games and
board games that feature primarily dungeon crawling elements are considered to be belonging
to the Dungeon crawler.

In this work, we will sometimes refer to the game as the "dungeon crawler". In addition to this
definition, this genre is often used combined with the "roguelike" genre which is still according
to Brewer [2016] a category of games using random generation of mazes, monsters, and loots.
Furthermore, the game sessions of a dungeon crawler game can be independent and short, in
opposition to scenario-based game genres where the player follows a story well-defined. There
exist some dungeon crawler scenario-based games (e.g. Path of Exile4)that do not rely on level

4https://www.pathofexile.com/

4

https://www.pathofexile.com/

generation and independent game session. However, games like The Binding of Isaac5 and
Hadès6 show the potential of the dungeon crawler genre with level generation and short, mostly
independent game sessions.

A deeper dive into the finer elements that make up a dungeon crawler is made in the next section,
so that we can map them later to the SonarCloud code metrics.

2.1.7 Game components

A multitude of "dungeon crawler" type games have been developed over the years. For example,
on Steam7, the popular video game distribution platform, there are 2,158 games with labelled
"Dungeon Crawler" in the best-seller category8. And some of them have unique gameplay ele-
ments, for example, in the popular game The Binding of Isaac, the player encounters two types
of rooms, Angel rooms and Devil rooms, which are very specific gameplay elements of this game,
another example is the gods encounter in Hadès, from time to time the player interact with a
Greek god and talk with them. These two examples illustrate why it would be complicated to
create an exhaustive list of dungeon crawler game components. Instead, in the following sections
of this study, only the most common dungeon crawler game components will be presented.

Appearance The appearance of the elements that the player can see is a variable composed of
multiple visual variables. These elements are typically the player character, monsters, weapons,
projectiles, power-ups, obstacles, rooms, walls, doors, and user interface elements. The visual
variables of these elements are hue, saturation, luminance, opacity, size and the sprite used.

Moreover, the interactions between the visual elements are very important, in this context we
will talk about contrast, for example if two elements have the same color and are overlapping,
they will not be distinguishable.

Hit box The size of the elements is visual, but it can also be "physical" in the game using a
hit box. "A hit box is an invisible shape commonly used in video games for real-time collision
detection; it is a type of collision box9". In most cases, the visual and physical sizes are related
because the collision box is invisible, so if the game wants to be fair to the player, it tries to
match the graphics with the collision box, so that the players can understand what’s in the
collision box, and they don’t have to guess it.

In the game, the hit box can prevent the player from going through a small door, making a large
monster easier to hit or a small monster harder to hit. Much of the gameplay uses the hit box
of different objects in the game.

Movement speed It is the speed of the elements (player, monsters, projectile). It can be
discrete with categories, like walk and run modes. Or, the speed can be continuous, like a
specific amount N of pixels per second.

5https://store.steampowered.com/app/113200/The_Binding_of_Isaac/
6https://www.supergiantgames.com/games/hades
7https://store.steampowered.com/
8https://store.steampowered.com/tags/en/Dungeon+Crawler#p=0&tab=TopSellers accessed 16 May 2022.
9https://en.wikipedia.org/wiki/Collision_detection#Hitbox accessed 9 May 2022.

5

https://store.steampowered.com/app/113200/The_Binding_of_Isaac/
https://www.supergiantgames.com/games/hades
https://store.steampowered.com/
https://store.steampowered.com/tags/en/Dungeon+Crawler#p=0&tab=TopSellers
https://en.wikipedia.org/wiki/Collision_detection#Hitbox

In the game, it may be necessary to reach a certain threshold of movement speed to perform
certain actions. For example, running fast enough may allow you to "run on water" and reach
new places. Or you may need a certain speed to be able to dodge certain enemy attacks.

However, elements that are too fast would be impossible for the user to perceive or react to.
Conversely, an element moving too slowly would make the movement impossible to perceive, and
if it is the speed of the player character that is too slow or too fast, it could make the game
unplayable.

Friction force As in real life, when an object is in motion, it does not stop immediately. On
the contrary, it will keep a certain speed which will decrease with time because of the friction
force. This variable is very specific, it applies to any moving element and is composed of two
elements. First, the force that determines at what speed the element will stop moving. Secondly,
the mathematical formula slowing down the element which can be a linear deceleration of N
pixels/seconds or any other formula.

Damage Damage in a game can be inflicted or taken by the player, monsters, traps or scenery.
It can be displayed in several ways, for example as a floating number indicating the amount
of damage taken. Also, the affected element can have an animation to show it, possibly with
different animations depending on the amount of damage taken. Additionally, there can be a
visual effect of the "hit", like a small explosion. Also, the game object taking the damage can
make a sound when hit.

Attack speed The attack speed determines how many attacks per second an entity can per-
form.

Trajectory The projectiles follow a specific trajectory in a game, it can be linear, curved,
spiral, etc. The trajectory is composed of a type of trajectory and depending on this type, a
quantitative value can be attached to it to describe the angle for example.

Health The health points of the player or the monsters. As with damage, health information
can be displayed in several ways. First, health points can be displayed as a simple number or as
symbols indicating the exact number of health points. Second, it can be a health bar that can
be filled up more or less to represent the amount of health left. Third, the appearance of the
entity can describe its health level, for example it can bleed or look dirty. Finally, the monster’s
skills or behavior may depend on its health. This concerns especially the bosses, when the fight
can be long, the boss will have different phases, in each phase it will use different attacks (e.g.
in the first phase it will use one sword and in the second phase two swords). Also, some games
like Minecraft10 do not even indicate the health of some monsters. In these games, players have
to keep in mind how much life the monster has left depending on the damage it has taken.

If the health is represented by elements like numbers, symbols or a health bar it can be positioned
at multiple places. The player’s health can be in the user interface or floating near the player’s
character. For monsters, most of the time it is displayed near to them floating around.

Finally, multiple ways to represent health of an entity can be used together to have some redun-
dancy.

10https://www.minecraft.net

6

https://www.minecraft.net

Environment In a dungeon crawler, the environment is the location of the player character,
monsters, traps, obstacles and access to other rooms. The location and number of these elements,
as well as the layout and size of the rooms, are very important to the gameplay.

In addition, the environment can have special effects, for example, there can be fog or more or
less light to annoy the player. The "fog of war" is also an element that can be used to modify
the environment, reducing what the player can see outside a certain distance from their position.
Finally, the environment can positively or negatively affect the characteristics of the player or the
monsters, such as increasing the damage dealt or reducing the movement speed of the monsters.

Link between rooms Dungeon Crawler games are usually divided into several separate rooms
that are connected by doors or teleporters. Access to other rooms from a specific room is crucial
in these games. For example, if there is a boss fight, the exits may be locked if the boss is alive,
or the player may have to pay with some in-game currency to open a door.

Others As explained in the introduction of this section, it is not possible nor very interesting
to try to create an exhaustive list of gameplay elements that can be found in a dungeon crawler
because there are already enough with the list presented here. Nevertheless, a list is presented
below of some additional elements of dungeon controls considered not relevant enough to be
exploited as a visualization variable for the rest of this work.

• Attack range.
• Defense.
• Height of elements like obstacles and jump height.
• Resources (e.g. bomb, keys, coins in "The Binding of Isaac").
• Critical chance and damage multiplier.
• Items to pick up.
• Type of damage (ice, fire, wind, slash, piercing, etc.).
• Knock back inflicted and resistance.
• Number of ammo remaining.
• Projectiles bounce number.
• Teleporters to skip rooms.
• Number of life (you are allowed to die and resurrect on place a number of time).
• Percentage of the map discovered.
• Combination of items giving super-powers.
• Distance in which monsters can sense the player.
• Game specific elements (e.g. probability of devil or angel rooms in The Binding of Isaac,

artifacts and identity of the god giving the power ups in Hadès, etc.)

2.1.8 Technologies used

For the prototype, Phaser 311, a javascript game engine is used to create a web browser game.
Express12, a framework built on top of Node.JS13 is also used to create a backend server. The
frontend, built with Phaser 3, also needs to be served by a server, which is usually done by
software such as Nginx14 or Apache httpd15. However, in this study, we tested the prototype

11https://phaser.io/phaser3
12https://expressjs.com/
13https://nodejs.org/
14https://www.nginx.com/
15https://httpd.apache.org/

7

https://phaser.io/phaser3
https://expressjs.com/
https://nodejs.org/
https://www.nginx.com/
https://httpd.apache.org/

using the development web server provided with Phaser 3. The game is then built and served
using Docker16, a tool that permits an easier building and deployment of apps. The rationale
behind these choices is described in detail in Section 7 Implementation.

2.2 Code Quality and Technical Debt

This work is focused on visualization of code quality and technical debt. Behutiye et al. [2017]
define technical debt (TD) as "a metaphor used to communicate the consequences of poor software
development practices to non-technical stakeholders." This means that the accumulation of all
issues raised by low quality eventually makes the software unstable, prone to vulnerabilities and
bugs, and less maintainable. Developers will eventually have to improve the software by fixing
the issues or refactoring the code, therefore paying off the debt.

Code quality is the quality of the software at the code level. It is possible to assess the quality
of a code base from the information provided by code metrics. Code metrics are measures
that give developers insight into the code they are reading. These metrics can range from the
simple number of lines of code to the coupling between classes to the depth of the inheritance
tree. There is virtually no limit to the number of metrics one can collect on a source code. In
their systematic mapping study, Nuñez-Varela et al. [2017] found a total of 190 different code
metrics for object-oriented programs. And after classifying them into 27 categories, we can see
that metrics can support a wide variety of tasks such as quality, failures, complexity, cohesion,
change, maintainability and many more.

As specified in more details in Section 2.2.1 SonarCloud, this study uses SonarCloud, let’s dive
into the metrics they use for their product. The tool offers a complete documentation17 presenting
the different metrics used to characterize a project. These are listed in Table 1

Sonarcloud is based on three elements that define the quality of a code: bugs and vulnerabilities,
which are simple in the sense that the more bugs or vulnerabilities and the more severe they
are, the worse the code is in terms of quality, because bugs make the software unstable and
vulnerabilities make it insecure and prone to attacks. The last element is code smell. A code
smell is the consequence of a bad piece of code. Usually, when a code metric finds a problem
in the code, that problem is called a code smell. These three elements combined are used to
evaluate the quality of the code.

Metric label Description

Cyclomatic Complexity Complexity of the flow of the program e.g. keywords increment-
ing the complexity in Java: if, for, while, case, catch, throw,
&&, ||, ? from 1 to infinity e.g. 18 - 924 - 1092

Cognitive Complexity How hard it is to understand the code’s control flow18.

Duplications Number of duplicated blocks of lines.

Issues Number of issues raised. Can be bugs, code smells or vulnera-
bilities.

16https://www.docker.com/
17https://docs.sonarcloud.io/digging-deeper/metric-definitions/ accessed 10 February 2022.
18Additional details on the calculation method can be found on https://www.sonarsource.com/resources/

white-papers/cognitive-complexity/

8

https://www.docker.com/
https://docs.sonarcloud.io/digging-deeper/metric-definitions/
https://www.sonarsource.com/resources/white-papers/cognitive-complexity/
https://www.sonarsource.com/resources/white-papers/cognitive-complexity/

Maintainability Metric related to the technical debt of a project based on the
code smells identified. This metric calculates the technical debt
using the SQALE index.

Reliability Metric related to the reliability of the code base based on the
number of bugs and their severity.

Security Metric related to degree of security of the code base based on
the number of vulnerabilities and their severity

Size Can be different kind of size-related metrics such as: the num-
ber of line of codes, comments, classes, files, directories, etc.

Tests Test-related metrics such as the number of failed unit tests,
code coverage, integration tests, etc.

Table 1: SonarCloud metrics.

2.2.1 SonarCloud

In this work, the focus is not on finding a new method for collecting code quality metrics, but
only on innovating their visualization. Thus, a quality analysis tool was needed as a basis for
collecting software quality metrics to feed the visualization that was developed. To this end,
SonarCloud was chosen. This is a cloud-based software quality management tool developed by
SonarSource SA. This company also owns SonarQube, which is the self-hosted version. The two
tools share, according to Cameron [2020], "the same underlying static analysis engine to detect
bugs, vulnerabilities and code smells and generate valuable code quality metrics." They both
provide a comprehensive interactive dashboard to explore a specific code base and gain insight
into its quality. In this thesis, SonarCloud is used exclusively, as it provides a way to explore open
source repositories and their quality data through an API, which was convenient for conducting
our experiment.

9

2.3 Measurement theory

The previous sections have listed general software quality metrics and dungeon crawler’s game
variables. Mapping them will be one of the next steps, but before we dive in, we will build the
theoretical foundations in order to constrain the possible links between the two sets and to make
sure that they are rigorously chosen.

2.3.1 Theory

This section is based on the work of Allen [1979] for whom this is a more specific subfield called
"Scaling theory" whose "main goals [are] to produce good scales". This reference will be used to
find the scale of the metrics and game variables we have. We will then be able to characterize
the scales and know which ones can be mapped together.

In the measurement theory there are five scales: nominal, ordinal, interval, ratio, and absolute.
The nominal scale is used to classify items into distinct categories. This scale has no relationship
between two distinct items, other than equality and category belonging, unlike the ordinal scale.
It differs from the nominal scale by the ordering of the items, which makes it possible to calculate
the median of a set of items. The interval scale has the same characteristics as the previous
ones, in addition it has a distance between two elements which allows to calculate many more
statistical values like the average, the correlation, etc. Next, the ratio scale has an an additional
element, the absolute zero which means the absence of the measured phenomenon. Finally, we
get the absolute scale which refers to any direct count of things (for example, the number of
lines of code).

In this work, the absolute scale will be referred to as the "highest level" of scale and the nominal
scale as the "lowest level" of scale. With respect to scale transformation, a higher scale can always
be converted to a lower scale, the side effect being loss of information. But, it is not possible to
do the reverse without refining the information and adding relationships between elements. For
example, to transform a number of lines of code (absolute scale) into an ordinal scale, one can
set thresholds at a specific quantity of lines of code and define three categories as follows:

• If the software product has more than 50 millions lines of code, then it will be put in a
category labelled "Big projects".

• If the product has less than 50 millions lines of code and more than 10 millions, then it
will be put in the category "Medium projects".

• Finally, if it has less than 10 millions lines of code, then it will be put in the category
"Small projects".

Now that the theoretical framework has been described, it will be applied on the previously
elicited elements to find their scale type. First for the SonarCloud code quality metrics and then
for the game components.

2.3.2 Application to quality metrics

The software quality metrics proposed by SonarCloud and presented in Section 2.2 Code Quality
and Technical Debt are analyzed using measurement theory. The type of scale associated with

10

each metric is summarized in the "Scale" column of the Table 2. We observe that many of them
are on an absolute scale, this is understandable because in this context most metrics are pure
counts of elements.

Metric label (Details) Values Scale
Cyclomatic
Complexity Number Absolute

Cognitive
Complexity Number Absolute

Duplications

Density Ratio in % of duplicated lines Absolute

Duplicated lines Number Absolute

Duplicated blocks Number Absolute

Duplicated files Number per directory Absolute

Security
Review

Review Category Category name Nominal

Priority Low, Medium, High Ordinal

Assignee Username Nominal

Status To review, Reviewed as safe,
Reviewed as fixed Ordinal

Rating A, B, C, D Ordinal

Reviewed % Absolute

Size

New Lines Number Absolute

Lines of Code Number Absolute

Lines Number Absolute

Statements Number Absolute

Functions Number Absolute

Classes Number Absolute

Files Number Absolute

Comment Lines Number Absolute

Comments % Absolute

Tests

Coverage % Absolute

Lines to Cover Number Absolute

Uncovered Lines Number Absolute

Line Coverage % Absolute

Conditions to Cover Number Absolute

Uncovered Conditions Number Absolute

Condition Coverage % Absolute

11

Issues

Number of issues Number Absolute

Type Vulnerability, Bug, Code smell Nominal

Severity INFO, MINOR, MAJOR,
CRITICAL, BLOCKER Ordinal

Status Open, Confirmed, Resolved,
Reopened, Closed Nominal

Resolution When an issue is closed it
can be: Fixed or Removed Nominal

Date Date Absolute

Time to fix Number Absolute

Assignee Username Nominal

Tags Tags label Nominal

Maintainability

Number of code smells
(per file and directory) Number Absolute

Technical debt Number of mins, hours, ... Absolute

Debt ratio % Absolute

Rating A, B, C, D, E Ordinal

Effort to reach an A rating Number of mins, hours, ... Absolute

Reliability

Number of bugs
(per file and directory) Number Absolute

Rating A, B, C, D, E Ordinal

Remediation effort Number of mins, hours, ... Absolute

Security

Number of vulnerabilities
(per file and directory) Number Absolute

Rating A, B, C, D, E Ordinal

Remediation Effort Number of mins, hours, ... Absolute

Table 2: Quality metrics framed in measurement theory.

2.3.3 Application to game variables

To analyze the game variables, we cannot use the same methodology as for the quality measures.
This is because SonarCloud measurements as described formally in the documentation19 are
purely numerical or textual. For game variables, most of the time they will be more visual and
uncountable even if they are sometimes presented redundantly with a more traditional numerical
value. Users will usually have to interpret the data without knowing their exact amount.

Thus, it is considered that users will measure the game variables at their nominal or ordinal
value. For example, a player cannot know the exact amount of health left with a health bar only
with their eyes, they could measure it with a ruler, but this use case is not considered plausible.
As opposed to a clear specific amount of health such as 89/100.

19https://docs.sonarcloud.io/

12

https://docs.sonarcloud.io/

Furthermore, depending on the details of the game design, some scales may vary. For example,
the size of the environment could be on an absolute scale instead of an ordinal scale if the player
can discriminate the exact size of the room without additional tools, if the tiles are large enough,
they can count them.

Finally, Table 3 summarizes the result of applying measurement theory to game variables. As
discussed, people cannot accurately measure most game variables just with their eyes. There-
fore, in our context, many of the game variables will be measured by players on ordinal scales.
Although they can be transformed into measurements on absolute scales if their exact values are
displayed on the screen.

Elements (Details) Value Scale

Appearance

Color hue #000000 - #ffffff ordinal

Color saturation % ordinal

Color luminance % ordinal

Opacity % ordinal

Skin Dragon, Demon, Goblin, ... nominal

Size (Hitbox and appearance) Small, Medium, Large ordinal

Movement speed Slow (swimming, crawling), Normal
(walking), Fast (flying, running) ordinal

Friction force
Strength Low (slippery), Normal, High (glue) ordinal

Mathematical Formula Linear, Exponential, ... nominal

Damage

Floating number Number absolute

Colored number Text color ordinal

Sized number Text Size ordinal

Animation "Ouch!", "took a lot of damage Aw",
"took little damage" ordinal

Health

Numbers Number absolute

Symbols Number of symbols absolute

Bar fulfillment Filling level of the bar ordinal

Appearance cf. Appearance ordinal

Skill set, behavior e.g. Boss phases ordinal

Attack speed Slow, Normal, Fast ordinal

Environment

Size Small, Medium, Big ordinal

Type Snow, Desert, Jungle, ... nominal

Number of elements Number of monsters, obstacles, doors absolute

Layout Simple, Complex, Square or L shape, ... nominal

Hide/conceal Fog of war, lighting (more or less) ordinal

13

Link between rooms Doors (locked or not), teleporters absolute

Trajectory
Type Linear, Curvy, Spiral nominal

Strength Angle, Curve strength (e.g. steep,
gentle) ordinal

Table 3: Game components framed in measurement theory.

2.4 Conclusion

The purpose of this step was to define and describe each term or concept used in this paper, as
well as to define the theoretical basis used to construct the experiment. Based on measurement
theory, we associated each item with the type of scale of their measurement. This shows that
quality measures are primarily measured on absolute scales and game variables on ordinal scales.
As explained in the introduction, this means that quality measures will be representable by
game variables because absolute scales are higher level scales than ordinal scales. Thus, the
transformation is allowed, but it involves a loss of information. Since mapping is theoretically
possible and these foundations are established, after presenting the context and goal of the
research, the Section 6 Design will discuss a mapping between code quality measures and game
variables.

14

3 Related Work

The state of research on technical debt (TD) is quite broad, according to Behutiye et al. [2017],
they identified five research areas of interest related to the TD literature in agile software devel-
opment (ASD). Of these areas, "technical debt management in ASD" was found to draw the most
attention, followed by "architecture in ASD and its relationship to technical debt." Furthermore,
eight categories addressing the causes and five categories addressing the consequences of TD
in ASD were identified. "Emphasis on speed of delivery" and "architecture and design issues"
were among the top causes of TD in ASD. "Reduced productivity", "system degradation", and
"increased maintenance costs" are major consequences of time loss in ASD. In addition, they
found 12 TD management strategies in the ASD context, of which "redesign" and "improving
TD visibility" were the most important.

In the area of software visualization, two of the most popular tools are Gource by Caudwell [2010]
and Code City by Wettel and Lanza [2007]. Gource is a visualization tool that allows you to see
the evolution of a software project as it unfolds in a video animation; you can see the developers
interacting with the files represented by nodes. Code City, on the other hand, revolves around
the metaphor of the city. Classes are blocks in the city and can grow larger or smaller depending
on the number of attributes and methods they contain.

In addition, many dashboards, as shown in Figure 1, exist on the market such as SonarQube20

and its cloud-based version SonarCloud21, Embold22, Duecode23, etc. These dashboards give a
lot of information about the quality of a project’s code, such as the number of bugs, code smells
or vulnerabilities, but can be quite tedious to use. Interpreting the information they provide can
also be quite difficult.

Figure 1: SonarCloud’s dashboard of Brave (web browser).
20https://www.sonarqube.org/
21https://sonarcloud.io/
22https://embold.io/
23https://duecode.io/blog/code-quality-dashboard/

15

https://www.sonarqube.org/
https://sonarcloud.io/
https://embold.io/
https://duecode.io/blog/code-quality-dashboard/

The use of a game related tools and elements for visualization is not a common practice but not
new either. Indeed, Friese et al. [2008] had already discussed the pros and cons of using game
engines for scientific purposes through three tools. Pérez et al. [2015] presents another tool,
"SweetUnityMol: A video game-based computer graphic software", and Boeykens [2011] discusses
the use of game engines for architectural historical reconstruction. In addition, Reina et al.
[2020] discusses multiple elements of the video game industry that could benefit the visualization
field, the paper shows that there are ready-made building blocks for visualization purposes built
directly into Unity24, one of the most famous game engines.

Moreover, some research focuses on the use of games for software visualization. Khaloo et al.
[2017] presented "Code Park", a tool that places the player in a 3D game-like environment to
visualize a project’s code base in a more engaging and intuitive way. In addition, Balogh and
Beszedes [2013] conducted a study on using an existing game to visualize the code base of a
software project instead of developing a new one from scratch. They exploited the features
of the game Minecraft to create a Code City-like tool in the game. In particular, the game
graphics to create the visualization and potentially the multiplayer functionality to add a way
to collaborate within the visualization.

Merino et al. [2017] takes it a step further and turns the Code city 3D environment into "City
VR", a similar tool that also depicts classes but uses virtual reality (VR), allowing the user
to interact with the visualization in novel ways. Their goal is to "maximize user engagement"
using this device as they state it being "an interface analogous to computer games". Romano
et al. [2019] compared the effectiveness of a 3D game versus a virtual reality game for software
visualization and concluded that virtual reality significantly improved the accuracy of solving
program comprehension tasks. Furthermore, when performing these tasks, participants using
the city metaphor displayed in an immersive virtual reality were found to be significantly faster
than those viewing with the city metaphor on a regular computer screen. Finally, Oberhauser
and Lecon [2017] also worked on software visualization using VR. They built multiple metaphors
exploiting VR, such as a universe where planets represent classes, bubble terrestrial cities where
each city is a java package. However, the emphasis here is on education through entertainment,
which is called edutainment. Their game "DepEnd" aims to motivate players to become familiar
with source code dependency structures. And their other game "BLong" helps them to get
familiar with the modularization of a code project and remember its structural modularization.

But, most of the work on game-based tools is not for software visualization purpose, instead
they are focused on edutainment tools aimed to help the learning process of computer science
concepts, by taking advantage of the engaging effect of video games, like Yohannis and Prabowo
[2015], Oberhauser [2016], Oberhauser and Lecon [2017] and Raab [2012].

Finally, most of the research presented so far seems to be content with using video game produc-
tion tools such as 3D game engines, virtual reality game engines to create software visualizations.
Or, when they do implement video game elements, it is to maximize user engagement and in-
crease their motivation to learn computing concepts. After scouring the literature, Balogh and
Beszedes [2013] is the closest to the goal of the study presented here, but they primarily use the
Minecraft environment to replicate Code City instead of diving into all the gameplay elements
the game offers. To our knowledge, no work has looked at using video games to convey informa-
tion about code quality in a software development project. The only source found referring to
the use of game elements for this purpose is a blog post by an SAP employee Wulff [2020] that
presents the idea of a software visualization tool that would be a video game where the game
elements are actually mapped to the software in question, allowing the player to understand the
quality status of their project while playing. To conclude this section, Table 4 summarize the

24https://unity.com/

16

https://unity.com/

main differences between the solution proposed in this thesis and the current state of the art.

Our solution Classic software
visualization tools

Dashboards Gamified software
visualization tools

Allows for an
in-depth use of the
game components

offered by the
gamified approach as

a conveyor of
information.

/ / Uses video game to
maximize user

engagement and
increase their
motivation.

Allows the user to
visualize the

software along with
its current state of

quality

Allows the user to
visualize the

software without any
insight on the

quality

Gives insights on the
software and its

quality without a
visualization

Doesn’t offer any
insight on the

quality or is focused
on edutainment

Goal: Offer an
overview of the code
quality of a project

using the video game
medium

Goal: Represent the
software through a

visualization

Goal: Giving
detailed data on the
quality of a software

Goal: Offer a novel
way of visualizing

the software or
educate through
entertainment

Table 4: Our solution compared to the current state of the art.

17

4 Research questions

A thorough analysis of the state of the art leads to the conclusion that there are currently
no research focused on leveraging video game components to convey information in software
visualization tool for software development projects. Outside of the literature, in a blog post,
an SAP consultant and developer posted by Wulff [2020], talks about his "dream" of a game
that would make reading code metrics easier. This game would belong to the city builder genre
where the player must create and manage a city. The metaphor of a city in the context of
software visualization is clearly inspired from Code City from Wettel and Lanza [2008], where
each building is a class or a file, and its size can be the number of lines of code or its complexity.
In addition, in their version of the game the author imagines game-related features such as the
state of the buildings that could represent the overall quality of a class. This shows that there
might be an interest in a visualization tool leveraging game components, and also that there
is room for research on this topic in the literature. Therefore, the objective of this thesis is
to determine if a video game can be a medium for conveying information about code quality
and technical debt in the context of a code quality visualization tool. Our objective led to the
following research questions.

RQ1: How intuitive and accurate is the video game medium to visualize the software technical
debt for industry practitioners and academics?

Research sub-question 1.1 clarifies what is meant by "accurate," and question 1.2 defines "intu-
itive." Combining both sub-answers yields the answer for RQ1.

• RQ1.1: How accurately can the developers distinguish between different aspects of tech-
nical debt in the game? For example, if a file contains many vulnerabilities but no bugs,
does the player understand that the code base is vulnerable but not buggy? How precise
is this understanding?

• RQ1.2: What game mechanics can be used to allow the player to naturally relate to the
underlying code quality metrics? The objective is to find game mechanics and code quality
measures that, put together, allow the player to understand the connection with little or
no explanation.

Hypothesis 1: We expect that it is both possible to find a good mapping between the game and
the software code metrics and that this mapping is made very intuitive as defined in RQ1.2 so
that developers understand it quickly.

RQ2: How useful is the video game in visualizing the technical debt of software in the field?

Similar to research question 1, the usefulness is defined and will be answered by the combination
of the four sub-questions below.

• RQ2.1: How much does it encourage developers to repay some debt?
• RQ2.2: To what extent can the tool be used by other types of users than those for whom

it was originally designed, namely developers?
• RQ2.3: How often would this tool be used in the workflow of a target user?
• RQ2.4: In which context would this tool be used?

Hypothesis 2: We expect this tool to be very useful for developers to get quick overall insight on
the quality of their code.

18

5 Methodology

To answer the research questions and make a relevant contribution to the field of software visu-
alization, the following approach is taken:

First, an exploratory study is conducted on the vast literature of software visualization, gamifi-
cation, gamified software visualization, technical debt and code quality. A thorough analysis of
the state of the art leads to the conclusion that there is no research focused on the use of video
games as software visualization for development projects.

Secondly, the expected contribution to the current literature is defined. The general idea is to
test if the idea of having a video game as a medium to better understand the technical debt and
code quality of a software development project is relevant.

Third, research questions are defined with the objective of evaluating the quality, usefulness and
relevance of such a contribution. As described in more detail in the Section 4 Research questions.

To effectively answer the research questions, a prototype game visualizing the code quality of
software projects is developed. It is designed by creating a mapping between code quality metrics
and game components. The prototype could have been developed using two opposing approaches.

On the one hand, the game could use an existing game as a base and modify it by adjusting its
components based on a mapping to code quality metrics. The main advantages of this approach
are that the experience of the selected game would be proven based on its success in the market,
and development would be accelerated based on the ease with which the game can be modified.
Conversely, there are two major drawbacks. First, the potential limits of game modification, in
fact some games are built to be modified by the community but still there are always inherent
limits to a software product based on its architecture and design. Second, the rights to use a
proprietary commercial game may be limited.

On the other hand, the prototype can be developed from scratch. This involves more development
work and less certainty about the quality of the game, but it gives more possibilities to implement
any desired functionality and avoid limitations of the right to use. Thus, this research follows
the second approach to have the potential to develop any functionality and counterbalance the
development burden and quality risk of the game by keeping the game design as simple as
possible.

The game will be classified as an active dungeon crawler according to the definitions mentioned
in the Section 2.1 Video Game. Initially, two game ideas were considered.

The first idea is a passive city building game which is a real-time visualization in which the city,
buildings, roads, residents are generated based on the quality metrics of the software project
code. This game would be used by developers while they are coding, since it is a passive game,
the player does not need to play it to get the information, so they can keep it on the side,
take a look at the information when they need it and visualize the impact of their changes in
real time. If they need more clarification or other information about the visualization, they can
interact with the visualization aspect of the tool since it is a passive game that only allows for
visualization-related interactions.

The second idea is an active offline visualization game of the "dungeon crawler" kind in which
the different components of the game are generated based on code quality metrics. This game
concept would be used by developers as an independent work activity to visualize the quality of
the code base.

19

For this research, the second game concept was chosen. The choice of an active game was made
because it is closer to the common definition of a video game than its passive opposite. It allows
experimenting with the use of game-related interactions to convey information in a visualization
tool. In addition, its active aspect aims to engage the user more in its use. Moreover, this aspect
is in good synergy with the offline aspect. Indeed, since the game is intended to be used as a
standalone activity and not while doing something else, such as coding, the visualization can be
offline, which reduces the performance constraints of the real-time alternative. But on the other
hand, it does not support any real-time functionality.

Finally, when it comes to the game genre, there are many possibilities. The dungeon crawler
is particularly appropriate for two main reasons. First, as presented in the Section 2.1 Video
Game, some dungeon crawler games have already shown the potential of procedurally generated
levels. Since the goal of this research is to generate a visualization that is a video game based
on code quality metrics, choosing a game genre that is suitable for procedural level generation
is very convenient. On the other hand, since this tool is supposed to be used to visualize the
quality of a code base from time to time, it is interesting to have a game that can be played in
short independent sessions. This would not be possible with a scenario-based game where the
sessions would be linked by a story that would evolve over time.

In short, the prototype developed in this work is a brand new offline active dungeon crawler
game.

Coming back to the research methodology, once the prototype is developed and functional, it is
evaluated through 12 interviews and questionnaires. The results are then presented and discussed
to conclude on possible future research and the threats to the validity.

20

6 Design

The goal of this research is to determine the usefulness of a video game for visualizing the
technical debt and code quality of a software program, as well as the intuitive and accurate
nature of this medium. The first steps were to explore the literature, state the exact research
questions, enumerate the various components of a dungeon crawler game and the code quality
metrics of interest, and dive into the measurement theory to derive general guidelines in order
to frame the mapping of the two parts. This section is devoted to practice, mapping the game
components to the code quality metrics and designing a dungeon crawler game that will then be
evaluated to answer the research questions.

The game design phase in this work is divided into two parts. The first step is a preliminary
ideation phase aimed at generating a first draft design. Then, this is used by the authors to
further develop the overall game and its components. In both parts, the authors need to match
some code metrics to game components. As mentioned earlier, this research uses measurement
theory to support this activity. It is used as a constraint when mapping elements that states
that any code quality metric can only be mapped to a game component of lower or equivalent
scale. This constraint is taken into account by the authors throughout the design of the game.

First, for the preliminary ideation phase, the two authors work separately for 15 minutes. Both
of them, equipped with paper and pens, have to make a first drawing of the game as complete
as possible. The quality of the drawing does not matter, as long as the designer can use it to
formulate his or her own idea of the game. When the time is up, the authors meet, present their
own ideas and discuss them. Then they work together to select the best elements of each concept
to create a common preliminary design that will serve as the basis for the final design. So, once
this basic foundation is defined, the authors imagine and discuss additional concepts to add until
the game design feels complete. It is complicated to specifically and objectively define what a
complete game design is. In this study, the authors stop adding elements to the game when the
number of mapped metrics is satisfactory and the game is complete enough to be playable. The
minimum playable dungeon crawler consists of rooms, ways for the player to move between them,
enemies that appear in those rooms, and a way for the player to fight them.

The preliminary results of the ideation phase are not discussed here. Instead, this section will
directly present the complete game design. Before doing so, a few general points must be con-
sidered.

First, the aesthetic design of the game will be limited by the tile set selected by the authors. A
tile set is an image file containing the different elements used in a 2D video game, the elements
are framed by an atomic unit, which are squares of a defined size. In the context of this research,
since the authors are not designers, they cannot create a tile set from scratch or customize it
extensively. The one selected here was created by Robert, alias 0x72, who offers it for free use
on itch.io 25. This tile set uses tiles with 16 pixels per side.

Second, the overall structure of the game screen is composed of two elements. A heads-up
display (HUD), also called status bar26, which is fixed on the screen and displays information to
the player. The other element is called the playing field in this research, it is the actual view of
the game that is central and follows the player character.

Finally, several code quality metrics were presented in the Section 2.2 Code Quality and Technical
Debt but only some of them will be included in the visualization to avoid overloading it. The

25https://0x72.itch.io/dungeontileset-ii accessed 10 February 2022
26https://en.wikipedia.org/wiki/HUD_(video_gaming) accessed 26 May 2022

21

itch.io
https://0x72.itch.io/dungeontileset-ii
https://en.wikipedia.org/wiki/HUD_(video_gaming)

metrics were selected during the game design when an interesting mapping was found by the
authors. The Table 5 summarizes the selection.

Metric label (Details) Values Scale

Size Files and Folders Number Absolute

Issues

Number of issues Number Absolute

Type Vulnerability, Bug, Code smell Nominal

Severity INFO, MINOR, MAJOR,
CRITICAL, BLOCKER Ordinal

Time to fix Number Absolute

Maintainability

Number of code smells
(per file and directory) Number Absolute

Rating A, B, C, D, E Ordinal

Technical debt Number of mins, hours, ... Absolute

Reliability

Number of bugs
(per file and directory) Number Absolute

Rating A, B, C, D, E Ordinal

Remediation effort Number of mins, hours, ... Absolute

Security

Number of vulnerabilities
(per file and directory) Number Absolute

Rating A, B, C, D, E Ordinal

Remediation Effort Number of mins, hours, ... Absolute

Table 5: Quality metrics used in The Coding of Isaac.

The goal of the design phase is twofold: to map the selected code quality metrics to the elements
of the dungeon crawler game so that the latter represent the former, and to have a playable
dungeon crawler game. This means that in order to have a complete dungeon crawler game,
some elements will be added to the game even if they do not represent any quality metrics of
the code. The goal is to develop a minimum playable dungeon crawler game in order to have the
smallest possible core. Then, only the minimal number of elements required to consider a game
as a dungeon crawler is considered. As defined above, a minimal playable dungeon crawler is a
game consisting of rooms, ways for the player to move between them, enemies that appear in
those rooms, and a way for the player to fight them.

6.1 Rooms

The first link imagined is between the directory structure of a software project and the rooms of
a dungeon crawler. The directory structure can be visualized as a tree where folders are nodes,
files are leaves and folders can contain both files and other folders, Figure 2 shows an example
of such structure. Navigation in a directory structure is based on a hierarchical structure where
a folder is called the parent and contains items called children. From a specific element, it is
possible to go to the parent, unless it is the root item, which is the directory containing all the
others and has no parent, or to go to a child item, unless it is a leaf. In The Coding of Isaac,

22

directories and files are rooms in which a player can be. A room is a flat horizontal surface
where the player can walk and navigate. The player can also move from one room to another
by navigating vertically, climbing a ladder to go up to the parent element or digging a hole to
access the child element. The elements that make up the structure of a software project are the
rooms of the game, and the links between the rooms are defined by the hierarchical structure of
the directory.

Figure 2: Software project directory structure example.

In a video game, the most basic element composing a room is the floor, which can be more
or less detailed, have a texture more or less fancy. It can also be bounded or unbounded, in
the first case the room has to be bounded by some kind of borders which are also detailed to
some extent, and have a specific texture. These boundaries will determine the shape of the
room. The textures of these two elements will give the overall look of the room, which seems
perfectly adequate to represent some general measures of quality. Second, the texture of the
walls that bound a room represents the level of security of the folder or file represented by
the room. The wall metaphor is used to represent security using the firewall concept to help
users understand this relationship. The floor texture represents the reliability rating, which is
a function of the number of bugs present in the code. This rating affects the ground texture,
referring to its effect on the overall stability of the software product. Finally, above the ground
texture, to represent the maintainability score, more or less cracks of varying size are displayed.
The maintainability rating is represented by a less visible element than the other two, because a
bad maintainability rating does not imply visible problems, but more general implicit problems
that will be troublesome in the long run.

All three types of ratings use a five-value ordinal scale ranging from A (best rating) to E (worst
rating). As mentioned earlier, the association of a quality metric with a game element will only
be allowed if the scale of the quality metric is lower than or equivalent to that of the game
element. In addition, the more similar the scales, the more data will be preserved. The security
and reliability metrics are mapped to the wall and ground texture, respectively. For this first
design iteration, the texture values chosen are those of the element skin. In Section 2.1 Video
Game, the skin is considered to be placed at a nominal scale, which would not be consistent with
the previously cited constraint. In order to transform this nominal scale into an ordinal scale,

23

the authors decided to use the metaphor of material to order the different textures according to
their preciousness, resulting in the following order: wood, stone, iron, gold and diamond. This
scale is inspired by the one used in the game Minecraft, very popular in the gaming community.
In practice, the use of this scale generates heterogeneous looking rooms with very dissimilar tiles,
as shown in the Figure 3.

Figure 3: Room example using the materials tile set.

Concerning the maintainability rating, it is mapped to the percentage of slight and deep cracks
displayed on the ground. A percentage is a value on an ratio scale which is an higher scale then
the rating’s one. Thus, similarly than in the Section 2.3 Measurement theory, thresholds are
defined in the ratio scale to create categories that can be ordered from no cracks to lot of cracks.
The percentage categories are summarized in the Table 6.

Maintainability
rating

Ground cracks
percentage

A No cracks

B 20% Cracks
60% Slight cracks

C 40% Cracks
20% Slight cracks

D 60% Cracks

E 80% Cracks

Table 6: Percentage of cracks according to maintainability rating values.

Therefore, a room will represent either a file or a folder in the directory structure of a software
project. Its walls and floor will reflect the overall quality of that part of the project. As explained
earlier, the rooms are linked together according to the hierarchical structure of the directory
structure. Then, when a player is in a room, they must have access to the parent directory and

24

the child elements. As each directory can have only one parent, it is not necessary to select it,
at any time the player can press the E key to go to the parent directory of the current one.
Conversely, if the player wants to go to a child item, they will have to select which one. To do
this, separate squares are displayed on the floor of each room, each being an access to a child
item. Like the rooms, the squares have boundaries and a defined floor area. They will therefore
have a texture corresponding to the quality of the generic code of the file or folder they refer
to. In this way, the player can see the general quality of a sub-room without having to navigate
through it, and if they wants to navigate further into a child element, they have to walk over it
and press Q.

The squares are arranged in a grid. They are all the same size, three tiles per side, and are
separated by two tiles. A room is therefore always a square, when it represents a folder, the size
of the room varies according to the number of children according to the formula below:

Sroom =
√

Nchildren ∗ Ssquare + (
√

Nchildren + 1) ∗ 2

Where:

Sroom = Size of the room
Nchildren = Number of children of folder
Ssquare = Size of a square

The room size is limited by a minimum value of 11 tiles in order to maintain sufficient space
in the room under all circumstances, even if a folder contains only one child. In the case of
rooms representing files, it is different, since a file cannot have any child, the size of the room is
constant. Moreover, on the floor there is only one square which represents the folder itself, this
square is an exception because it is not an access to another room but it is present here just to
keep homogeneity between rooms. Figure 4 shows an example of this kind of room.

Figure 4: File room example.

This design choice keeps a homogeneous design in all rooms, regardless of the number of child
elements. Moreover, an alternative design solution would have been to match the size of the

25

files and folders to the size of the rooms and squares. This would make the rooms less similar
and redundant, and add the information about the size of the elements to the visualization, but
the main problem with this alternative is that it would make the generation of the rooms much
more complex, which would take too much time to develop. Regarding the chosen design, its
disadvantage is the repetitiveness between rooms which is slightly compensated by the variety
of textures due to the difference in general quality metrics between the parts of the software
project, and the variation of the enemies.

6.2 Enemies

Enemies are one of the main elements of a dungeon crawler game. They are the threats that force
the player to fight and explore the dungeon further. In parallel, in software engineering, people
are threatened by issues in the code. Then, in The Coding of Isaac, each code issue is associated
with a monster in the game. One of the goals is to make the player feel overwhelmed when there
are too many issues in the code and then too many monsters. Moreover, in this kind of game,
monsters can behave in many ways and have more or less complex list of actions they can perform
in the game, which is called a skill set. The approach of this work is always to create a functional
prototype in order to evaluate it later, instead of having a deep and complex gameplay. Then,
the enemy part of the gameplay is inspired by the recently released game Vampire Survivors 27

which showed, with more than 98% of the 98 000 extremely positive reviews on steam, that the
gameplay does not need to be complex to have an interesting game. In The Coding of Isaac, the
monsters run straight at the player, if they reach him and their hitboxes collide, they do damage.
On the other hand, the player’s gameplay can take different forms, the traditional one is to play
as a character and fight monsters, which can be done with weapons, spells, etc. As an example
of an original form of combat in a dungeon crawler : Sandusky [2018] has created a peaceful
dungeon crawler where the player fight monsters in a non-violent way. The traditional approach
to combat was chosen in this work, in which the player plays a knight and fights monsters using a
sword. The remainder of this section will focus on the enemies in The Coding of Isaac, detailing
other aspects of the monsters and issues that are significant to the game and its visualization
role.

6.2.1 Type

Code quality issues can be of different types, they can be bugs, code smells or vulnerabilities.
The value of this type is expressed on a nominal scale, no order relationship is strictly defined
between the values. In the game presented here, an issue is represented by a monster and the
type of issue is mapped to the monster type represented by different skins. There are three
types of monsters: goblin, demon and zombie, which, like the issue types, are on a nominal scale.
This means that there is no order relationship between any two types. In practice, since these
elements are not only theoretical, but also visible, some relationships exist due to the difference
in color, height, width, etc. These minor differences are largely erased by the difference in skin
design between the monster types, which is a major and highly discriminating difference. In the
end, vulnerabilities are represented by demons, bugs by goblins, and code smells by zombies.

27https://store.steampowered.com/app/1794680/Vampire_Survivors/ accessed 25 May 2022.

26

https://store.steampowered.com/app/1794680/Vampire_Survivors/

6.2.2 Size

In addition, the issues have different levels of severity. In fact, SonarCloud uses five different
values to define the severity of issues, which are placed on an ordinal scale as follows, from least
severe to most severe: INFO, MINOR, MAJOR, CRITICAL, BLOCKING. The severity level is
mapped to the size of the monsters. As discussed in the introduction to this section, the authors,
lacking sufficient design expertise, had to rely exclusively on resources they found online. The tile
set they chose designed, for each monster category, three size levels that we will refer to here as
tiny, medium, and large, each with a different skin. As a result, this study maps small monsters
to INFO and MINOR severity issues, medium monsters to MAJOR issues, and large monsters
to CRITICAL and BLOCKER issues. This mapping was chosen because the size of a monster
represents its threat level, which reflects the severity of the issues. However, it is important to
know that using size to represent severity can be misleading because users may understand a
large monster as an issue that is widespread in the code, impacting a large number of lines of
code. Figure 5 summarizes the mapping between monsters and issues.

Figure 5: Mapping of monsters and issues.

6.2.3 Spawn

In dungeon crawler games, monsters can spawn in a variety of ways. For example, all the monsters
in a room may be directly there when the player enters the room, they may also arrive in waves
depending on timing or when enough enemies in a wave are killed. The way monsters spawn in
dungeon crawler games has a significant impact on the gameplay experience. Furthermore, in
the context of this research, monsters represent issues in the code, these are an important part
of the visualization, so the characteristics defining how they spawn will have a large impact on
how users perceive it. This research seeks to give the user the feeling of being overwhelmed by
monsters when there are a lot of issues in a specific folder or file, so the pace of spawn will be
very crucial to this goal. Also, the number of items in a room at the same time is a common
performance bottleneck in video games, so this should be taken into account when designing the
spawn of monsters.

In this game, the monsters in a specific room are the sum of the monsters of each child in the
folder, if it is a file the number of monsters is equal to the number of issues. Thus, the chosen
approach is to spawn the monsters from the accesses to the child elements, represented by the

27

squares on the floor of the room. In addition, on each square, there is an indicator of the number
of monsters that have yet to spawn from that location and the total number of monsters, dead or
alive, related to that child. This indicator is illustrated by the elements a) in Figure 6. Using this,
the player is able to quickly find which directory or file has more or less issues. The disadvantage
is that the number of monsters displayed does not give any details about the type and severity
of the issues that will spawn.

Figure 6: Labels in the main game screen: a) the numbers displayed on the tiles, b) the file and
folder names displayed in the upper left corner, and c) the total number of monsters alive and
going to spawn.

When spawning, monsters from the same directory or file do not spawn in exactly the same place.
Instead, nine spawn points are defined and distributed in the area of each square and monsters
spawn randomly on one of these spawn points, this is illustrated in Figure 7. This way, if a lot of
monsters have to spawn in a short period of time on the same square, it will look more organic
and visible than on a single static point.

Figure 7: Locations of monster spawn points in one square. Each spawning point is represented
by a red dot.

One of the major aspects of monster spawning is the timing and context of the spawning: when
will the monsters spawn and what event will trigger their spawning. Several approaches can
be taken, since this is an important part of dungeon crawler gameplay, they will be discussed in
detail here.

First, monsters can spawn on all squares at once when the player enters a room. This approach
gives an idea at a glance of how many issues a folder contains. It can work if the number of

28

monsters per tile is low enough. For example, if there is more than one monster per tile that
spawns as soon as the player enters the room, the game would not be playable. Thus, this
approach is not suitable for the context of this research, as a folder may have more than a
thousand associated issues, which will overload the room and also cause performance problems.
Nevertheless, this approach would be interesting if the mapping of issues and monsters were
different. For example, if instead of associating an issue with a single monster, several issues
were grouped together and represented by a single large monster, then this spawn approach
would be usable because the number of monsters would be quite limited.

Second, monsters can spawn in waves. Several elements define this approach: which monsters
spawn from which squares, when.

The selection of monsters that pop up in each wave greatly influences the game experience and the
information the user will understand from the tool. In some games, different types of monsters
have different attack patterns, some only do close combat, others can throw projectiles. In such a
context, it is interesting to mix the different types of monsters to have a varied fighting experience.
But in The Coding of Isaac, all monster types have the same basic pattern of walking towards
the player. However, each monster represents a specific issue whose characteristics are reflected
by the skin and size of the monster. Therefore, users will understand different information
depending on the selection of monsters that spawn. For example, two squares both have ten
monsters that will spawn on them, if for one square the first two monsters to spawn are medium
and for the other it is two small ones, the player might think that the first square is more
critical than the second one but in the end the first square might have ten medium monsters
and the other one might have two small ones and eight big ones. The example is illustrated in
Figure 8. Nevertheless, in this research, the texture of the room elements is designed to give
general information about the quality of the code in a folder or file, the important information
about the monsters is their number and the player’s ability to kill them all. The spawning order
of the monsters is the same as the issue order offered by default by the SonarCloud API.

Figure 8: Illustration of the problem of the spawning order of monsters.

The second element of the spawn of monsters in The Coding of Isaac is their original square. A
first approach is to spawn monsters from a sub-room until it is exhausted, then choose another
one to continue until all are exhausted. It may be interesting to focus on specific squares of the
parent one by one, but it defeats the purpose of the tool, which is to give a general idea of the
quality of the room. Besides, if the player wants to focus on a specific square, they can always
dig in it. A second approach is to spawn a certain number of monsters in each square that still
contains monsters at the same time. The main drawback of this approach is that the number
of monsters that spawn depends on the number of files and folders in a room. This approach,
where the number of monsters to spawn is set to infinity and the triggering event is the player’s
entry into the room, is identical to the first approach presented where all monsters spawn at
once. The final approach to selecting squares is to consider the squares in a circular list, spawn
a quantity of monsters in one square and move on to the next, once a square is exhausted it can
be removed from the list. This approach allows monsters to be spawned from each square and
gives an overall idea of the stakes of the folder. Obviously, if the player is in a room representing

29

a file, there is no square selection since there is only one square in the room.

The last component is the spawn trigger event, it can be periodic after a defined period of time or
depend on a specific action of the player, for example when the player enters a room or has killed
some monsters and the number of living monsters is below a defined threshold. The advantage
of the latter approach is that it can help solve the potential performance issue if the threshold is
low enough. The issue with this approach is that the game waits for the player and gives them
some control over the appearance of monsters, which erases the feeling of being overwhelmed.
The periodic trigger event has the exact opposite disadvantage and advantage. Another variable
in the periodic trigger is the time between waves, which can be fixed for all rooms (e.g., one
wave every two seconds), or variable depending on the number of monsters to be spawned (e.g.,
all monsters must spawn within three minutes). The latter solution is interesting for having a
variable spawn rate, so that a room with few issues will have a low spawn rate and seem more
manageable than a room with many issues. But the disadvantage of this strategy is that it can
be difficult to find the right length of time to be appreciable, either for rooms with few issues or
for rooms with many issues. On the other hand, the strategy using a fixed amount of time will
be less scalable, for a large amount of issues it will take a long time to spawn them all.

Finally, as mentioned in the introduction to this section, one of the purposes of monsters in The
Coding of Isaac is to make the player feel overwhelmed when a folder has a lot of issues. Thus,
the spawn of monsters in this game is based on a periodic triggering event with a fixed time, at
each triggering event a monster spawns from a specific square, then the next monster will spawn
from the next square and so on. This way, the player will have an overview of the issues in the
folder and is expected to feel overwhelmed if there are too many monsters. In addition, the HUD
displays information about how many monsters are alive and still have to spawn, illustrated by
the element c) in Figure 6.

6.2.4 Health

The final component of monsters that we discuss here is their health. As presented in the Section
2.1.7 Health, the health of a monster can be visualized in several ways. In this work, a monster’s
health is mapped to the estimated number of minutes it would take to solve the associated issue.
The concept is that by attacking the monsters, the player will feel if they as an individual are
able to tackle the issues. This metric is provided by SonarCloud as an estimate and its accuracy
obviously depends on many factors such as the developer’s skills, experience with the project,
etc. It is used in a similar way here, as a way to estimate whether an issue can be solved by an
individual. Thus, the information about the health of a monster does not have to be very precise
either. It is then represented only by a health bar without any numerical values displayed, just
to let players know how successful they are in solving the issues.

6.3 Player

The player character in The Coding of Isaac is not intended to convey much information about
the quality of the project code. Rather, it is a means by which the player can interact with the
game to gather information by exploring and fighting monsters.

30

6.3.1 Navigation

As presented earlier in the Section 6.1 Rooms, the player can navigate in two perpendicular
directions.

On the one hand, the player can navigate horizontally, which refers to exploring a single room.
To do this, the player can use four keys: W, A, S and D which represent the actions to move the
character up, left, down, and right, respectively. All key assignment decisions are made according
to the American keyboard layout. They are chosen instead of the traditional arrow keys so that
users use their left hand to move and leaves their right hand free to use the mouse. The players
are supposed to keep their left hand near these keys during the game, as these should be used
often. Specifically, players are supposed to use these controls with their index, middle and ring
fingers and leave their little finger and thumb free for the other controls.

On the other hand, the player can navigate vertically. As we saw earlier, this involves moving
from a specific folder or file to its parent by moving up or to one of its children by moving down.
The player can use the E key to go up from anywhere in a room, and the Q key to dig into a
specific child item that the player character is standing on, if they are standing on any. The
animations of these actions are shown in Figure 9 and Figure 10 respectively. These keys were
chosen because they are meant to provide a very common interaction for the player and are
very close to the horizontal move keys (W, A, S, D). When the player enters a new room, their
character is positioned near the center of the room, at the bottom right of the center square
instead of the center where monsters spawn to prevent a monster from spawning directly on the
player.

Figure 9: Go up animation.

Figure 10: Dig animation.

To help them find their way around the vertical structure of the game, two labels are added to
the upper left corner of the HUD, illustrated by the element b) in Figure 6. The first is the
name of the current file or directory. The second is the name of the file or folder represented by
the square that the player character is currently on. If they are not on any square, the message
"Nothing here" is displayed instead.

Also, since monsters spawn on squares that are a representation of the sub-directories and files,
it may be difficult or impossible for the player to reach a specific square if too many monsters
spawn there. Thus, the player can also navigate using the mouse, the right click is similar to
climbing in the parent element, and the left click corresponds to digging in the square on which
the mouse cursor is located. Also, when digging the player character is moved quickly over the
square instead of an instant teleportation in order to keep a consistent flow for the user.

These two navigation modes force the player to go through each room one by one. If they want

31

to reach a specific square, this would not be convenient. Therefore, a map function has been
added to the game to help the player in this case.

6.3.2 Map

The map is designed to give the player a more holistic view of the project structure, and to
help them navigate more quickly between two distinct rooms. This screen consists of two main
elements, also called panels, the project directory structure in the center and a search bar with
a suggestion list in the upper left corner, illustrated in Figure 11.

Figure 11: Map screen.

The tab key is chosen to open the map because it can be pressed by the little finger of the left
hand which is supposed to be free as mentioned earlier. The map can be closed using the same
key, which corresponds to going to the currently selected file or folder. Clicking on an item in
the suggestion list will also close the map and send the player into the room. The suggestion list
is generated based on the search string typed into the search bar. The search is designed to find
all items whose path begins with the search string. This is not the most usable search engine as
some users might want to find the item from its name directly, but it is the best compromise to
have sufficient functionalities for the time allocated for development.

This screen of the game is more detached from the game aspect and closer to the real structure
of the project, only the information about the size metrics of the project as presented in Section
2.2 Code Quality and Technical Debt is displayed. Folders and files are represented by rectangles
with the name of the item at the top and the number of linked children just below. There are two
different designs, one for files with a brown color and a file icon, and one for folders with a gold
color and a folder icon as shown in Figure 12. Players navigate the map with the same character
movement controls: W, A, S and D. When the player opens the map, the focus is on the file
or folder represented by the room they were in. The sibling items are displayed horizontally as
a non looping carousel. By moving left or right, the player moves the focus to the associated
item. This display method is chosen to ensure a partial scalability in case a folder contains many
items. The parent of the current item is displayed at the top of this panel, and the user can

32

access it by moving up and moving the focus towards it. They can also move down, which is like
digging into a folder and focusing on its first child. The order of the children is taken from the
SonarCloud API, in fact they are sorted by type, first folders then files, and alphabetically. As
far as controls go, players can hold down a key to quickly repeat it conveniently, and when they
reach the end of a list and try to go further, the screen shakes slightly to notice them.

Figure 12: Folder map rectangle on the left with the number of children at the bottom, and file
map rectangle on the right. The the folder and file name is displayed at top of the rectangle.

6.3.3 Combat

The second major part of the interaction for the player character is the combat. Similar to the
enemies, the player interaction is designed to be as simple as possible.

In video games, attacks can have many different designs, it can be a close contact attacks or
projectiles, single target or multiple targets, consuming resources or not, etc. In this project, the
player will only have one attack, which will be a close contact, multi-target directional sword
strike in front of the character, with a delay between attacks. The close contact aspect will force
the player to get closer to the monsters and add some challenge to the game. The delay and the
directional aspect serve the same purpose of balancing the game so that it is not too easy.

The directional aspect can be designed in several ways for a top-down game, where the playing
field is seen from above, like The Coding of Isaac. First, the attack can be in the direction of the
mouse cursor. In this project, the mouse is already used to select squares and navigate quickly,
and binding an additional control to the mouse would not be usable. Second, the attack can be
launched in the direction of the nearest enemy or according to the direction of the player’s walk.
The former reduces the challenge for the player since it doesn’t require them to aim manually,
while the latter is chosen to try and keep the difficulty level decent.

Also, the multi-target aspect is chosen instead of a single target attack. Indeed, since this game
is designed for hordes of monsters to come at the player, a multi-target attack is chosen to give
players a sense of satisfaction when slicing through tons of enemies.

In addition, attacks in video games can be launched manually or automatically. For this research,
the manual method is chosen because it involves the player more in the fight. They are expected
to be more aware of the level of difficulty in killing the monsters, which reflects the difficulty in
solving the problems. The attack is triggered by pressing the Space key, because according to
other key bindings, the thumb of the left hand is always free and can press this key conveniently.

In addition, the attack inflicts a certain amount of damage. In this project, the amount is set
to 2.5, as explained in the Section 6.2 Enemies, the health of monsters is the estimated time
required to fix the issue, so the damage inflicted by the player represents 2.5 minutes of work on

33

this issue. This value was determined empirically by the authors by trying it out on a full-size
SonarCloud project called brave core.

An important point of this game is to make it interesting and challenging enough to intrigue the
players but not so much that they forget the main goal which is code quality visualization. To
provide a sort of challenge, the player has three hearts, which are displayed in the HUD in the
upper left corner. Each time they are hit by a monster, they lose a heart, and if they reach zero,
they die. Death should not be too frustrating in this game because the main goal is not the
fighting challenge. The player will then be moved to the middle of the room and it starts over.

In addition, the difficulty of the rooms should be experienced independently, for example the
player should not have more difficulty in a room depending on the previous one. For this reason,
the player’s heart counter is reset to zero when they move from one room to another. This
means that the player cannot die by moving to another room, but they will still lose their
progress because when they enter a room, it starts over.

Finally, knockback and invincible frame mechanics have been added to the game to improve the
gameplay and make it more fluid. These are common mechanics in video games. The knockback
mechanic means that when an object is hit, it is pushed back in the opposite direction of the
attacker, enhancing the feeling of hitting or being hit. The invincibility frame consists of a short
period of time after being hit, during which the player or the monster cannot be hit again, as a
result, something cannot be hit multiple times too quickly.

6.4 Sound

There are two categories of sounds in a video game. First, the sound effects used to support
and reinforce the events that occur in a game, such as footsteps when a character walks, sword
strikes, falls, etc. Secondly, the music for the general atmosphere, it can vary during the game
depending on the atmosphere of the room, whether the player is fighting or not, etc.

In the game presented here, several sound effects are used for the different types of events that
can occur in the game. As far as music is concerned, it is interesting to have an adaptive one
in this context to match the quality metrics of the code and to enhance the visualization. In
fact, in The Coding of Isaac, five pieces of music were selected to reflect the five values of the
reliability assessment. This ranges from the quietest music for the highest reliability rating to
very nervous music for the lowest rating. The choice to duplicate the reliability index coding
was made empirically as it provides an indicator of the overall quality of the room while varying
sufficiently between rooms.

6.5 Visualization tool features

Three features are included in the game solely to support its visualization aspect. First, the player
can click on a monster to access the full details of the issue on the SonarCloud website. This
can pose a usability problem because monsters and squares can overlap and both are clickable.
To address this issue, a second feature is added. It is called here the freeze mode, when it is
activated, the monsters stop spawning up and moving, and the player cannot move the character,
instead the motion controls the camera. Thus, the player can look around, hover objects, and
continue to navigate from room to room with Q, E, and the left and right clicks. Navigating
between rooms keeps the freeze mode on. Moreover, in this mode, the character animations are
canceled to speed up the navigation as much as possible. Finally, when freeze mode is activated,

34

the user can hover monsters and squares with the mouse cursor to get more details about them
with a floating tooltip. For monsters, this is the path of the element they come from, their type
and size. For squares, the information is the path to the file or folder in the project’s directory
structure and the number of numbers linked to it as seen in Figure 13.

Figure 13: Tool tips. The left image is the monster tool tip showing the type of issue and absolute
path to it in the project file structure. And the right image is for squares on the ground which
are subdirectories or files, in the tool tip there is the name of the file/directory and the number
of monsters that will spawn from this place out of the total number of issues in it.

6.6 Tutorial

When someone enters The Coding of Isaac, they first encounter a loading screen used to keep
them informed of the game’s loading progress, and then they land in the tutorial room. This is
designed to resemble a room in the game to directly immerse the player. It is a playable tutorial,
the player have access to all the commands of the game and is free to test them in context. The
key bindings are displayed by icons representing the keys, and the mouse bindings by icons with
the corresponding side blinking. In addition, the tutorial attempts to introduce the player to
the game concepts with some examples of monsters and floor and wall textures. In addition, the
floor texture in this room is designed to be neutral among the scale of textures used in the game.
Finally, when the player wants to exit the tutorial, they can do so by clicking on the central
square named "exit_tutorial". The Figure 14 shows that room.

35

Figure 14: Tutorial room of the first design.

36

6.7 Project selection

The project selection screen is the bridge between the tutorial room, which is the same for all
users, and the actual game which represent a specific software project. This screen consists
of three panels, illustrated in Figure 15 : a search bar, a recommended project, and a list of
suggestions.

Figure 15: Project selection screen.

The user can type in the search bar a string to search for a specific project, and select it in
the suggestion panel which can be scrolled with the mouse wheel. They can also choose the
"recommended project", this panel is specifically there for this search so that later, during the
evaluation, participants will use the same project to have a similar basis for the data. Once the
user clicks on a project name, a loading screen appears to keep the user informed of the project’s
loading progress before actually entering the game.

37

6.8 Conclusion

The design phase of The Coding of Isaac has led to map the selected code quality metrics
presented in the introduction with game components. The Table 7 presents this mapping. In
addition to the mapping, some features have been added to support specifically the usability
of the tool and the game. Now that the design phase is complete, the following step is the
implementation of the tool which is discussed in the next chapter.

Code quality metric
name Metric value Game element

value
Game element

name

Issue type
Code smell Zombie

Monster typeBug Goblin

Vulnerability Demon

Issue severity

INFO
and MINOR Tiny

Monster sizeMAJOR Medium
CRITICAL
and BLOCKER Big

Time to fix issue Number of
minutes

Number of
health point Monster health

Maintainability
rating

A No cracks

Ground cracks
B 20% Cracks

60% Slight cracks

C 40% Cracks
20% Slight cracks

D 60% Cracks

E 80% Cracks

Reliability|Security
rating

A Diamond

Ground|Walls
texture

B Gold

C Iron

D Stone

E Wood

Directory
structure

Number of children Number of tiles
Room structure

Children Squares

Table 7: Quality metrics and game components mapping.

38

7 Implementation

This section presents the technical concerns and implementation details encountered in the de-
velopment of The Coding of Isaac as designed in the previous section. The first part discusses the
overall architecture of the game and the infrastructure components. The second part presents
the interaction path that users will go through when using the tool. The last part explains how
Sonarcloud is included in the solution.

7.1 Architecture

The Coding of Isaac relies on the following three components, also presented in the Figure 16
with their different connection points:

• The Frontend, which is the game
• The SonarCloud application programming interface (API)
• The Backend, which is the bridge between the frontend and the SonarCloud API

Client

Frontend
Server

Backend
Server

SonarCloud
Data

Game files

Project data Project data

Figure 16: Game architecture.

Before choosing the technologies, the first choice to make was between making a standalone game
or a plugin for an existing tool. A standalone game requires developing it from scratch but allows
for greater flexibility and control of the product. On the other hand, a plugin requires learning
the basics of the API or software development kit (SDK) of the tool it is developed for. However,
this can be very convenient for developers as they can continue to use their usual tool with
extended functionality. Choosing to develop a browser-based game combines the advantages of
both approaches. Indeed, opening a website requires nothing more than a browser. A browser
is a tool that developers usually already use, and since we are not locked into any tool, we keep
control over the evolution of the game.

As mentioned in the background, the front-end is powered by the Phaser 3 framework. This
javascript game engine allows to create a game fully playable on a web browser without any
installation required.

The front-end is served by a front-end server integrated to Phaser 3. The backend uses Node.js
and Express, creating a simple REST API to link the SonarCloud API and the front-end. The
backend is necessary because the SonarCloud team refuses to allow cross-origin requests for se-
curity reasons. Therefore, the client cannot access SonarCloud data directly through the Sonar-
Cloud API, the only way to access it the way we want is to use the backend as a bridge between

39

the client and the SonarCloud servers. We chose Express JS because it is a very minimalist,
stable and popular framework to build a simple backend server very quickly. Also, the authors
are both familiar with Javascript, and Phaser 3 is a JavaScript framework. It was logical to keep
the same technology.

When we chose the Phaser 3 framework and web browser as the platform for developing the
game, the goal was to make it as accessible as possible, to avoid installation problems due to
specific hardware or missing drivers, and to minimize the game’s footprint on users’ computers.
Phaser 3 appeared to be the best choice to develop this prototype. Indeed, in this study, the
objective is to create a proof of concept to prove that code quality visualization through a video
game is possible. The different frameworks available on the market were compared using the
following criteria considered important for this study.

• Large and active community
• Complete documentation
• Stability
• Still maintained
• Popularity
• Availability of tutorials
• Allows the making of 2D Games
• Reasonable learning curve
• Avoid compatibility issues (All-in-one)
• Flexible enough to allow the incorporation of external data

A few frameworks have been considered, Table 13 in appendix A compares them according to
the above criteria. As a result, the framework that best matched the previously defined criteria
was selected. The game was tested on Chrome the most popular web browser on the market28.
Moreover, Phaser 3 makes compatibility easier because it does most of the work. Indeed, it uses
WebGL which now has a good compatibility with Internet Explorer, Safari, Opera, Chrome and
Firefox29. Finally, in the next steps, it will make the interview process more convenient since the
interviewees will not have to install anything. The main disadvantage of browser-based games is
the limitation of resources, but in the context of this research this does not matter because the
game, as designed, does not require many resources. As far as requirements are concerned, this
game uses about 750 MB of RAM (on Chrome), an Internet connection and 50 MB of transferred
data every time the game is loaded.

If someone wants to host the game, they will need three elements. First a server to host the
Nodejs/Express back-end, a web server to serve the front-end to clients and a domain name
to make the game accessible to the world. In our case, in order to quickly test the prototype,
everything was hosted on the same home server using Docker30. Once configured, Docker allows
us to do quick builds and makes deployment much simpler. It is also useful to go back to previous
builds in case something goes wrong. However, it is important to note that we did not use a
production-ready web server to serve the frontend, but the development server included with
Phaser3, which should not be done in a real production environment, as it can raise security
and performance issues, as the development server is not built to handle many clients or with
security in mind, unlike a production web server like Nginx31 or Apache32. But since it is only
used here for testing purposes on few users, there was no need to use anything else.

28https://kinsta.com/browser-market-share/
29https://caniuse.com/webgl
30The Docker image is available on the project repository on https://github.com/snail-unamur/Yo-kai-watch
31https://www.nginx.com/
32https://httpd.apache.org/

40

https://kinsta.com/browser-market-share/
https://caniuse.com/webgl
https://github.com/snail-unamur/Yo-kai-watch
https://www.nginx.com/
https://httpd.apache.org/

7.2 Game flow

A user session on The Coding of Isaac always begins with the game downloading from the front-
end web server. The client essentially downloads all the files required to run the game, which is
only necessary once at the beginning of the session. Then, the player enters the tutorial where
they have time to get used to the game controls just before going to the project selection screen
shown in Figure 17.

Figure 17: Project selection screen.
Figure 18: In-game representation of the root
directory of a public project on SonarCloud.

When selecting the project, the player can search for any public project available on SonarCloud,
at the time of writing, it is not possible to connect to a private Sonarcloud repository or any other
Sonarqube repository because the prototype test did not require such functionality. However, in
the case of a final product, it would probably be an important feature to consider. Each time the
player types in text to find a project, the frontend sends a request to the backend server, which
forwards it to the SonarCloud API to get a list of the first 25 projects containing the entered
text, sorted by most recent analysis date on SonarCloud.

Once the player has selected the project, the front-end will similarly query the backend web
server, passing the request to get the data from the latest project analysis to the SonarCloud
API. Finally, the player will enter the game starting in the root file shown in Figure 18. The
workflow textually presented here is summarized in the sequence diagram in Figure 19.

41

:Client

Go to
tutorial

Go to
project selection

Go to
game

:Frontend
Server

Return game files

Request game files

:Backend
Server

Return project data

Request project
data (projectIdentifier)

:SonarCloud
Server

Request project
data (projectIdentifier)

Return project data

loop

Return project names
and identifiers

Search projects
(projectNameQuery)

Search projects
(projectNameQuery)

Return project names
and identifiers

Figure 19: Sequence diagram of the player workflow.

42

7.3 SonarCloud

The choice of SonarCloud is a matter of multiple factors. First, it provides free access to quality
analysis from a large number of open source projects that use the tool for their quality manage-
ment.

Second, they provide an API to access the analysis data from these projects. In the context of
this work, it is very convenient to be able to test the tool on multiple software without having to
install anything or perform our own analysis. Also, it requires less infrastructure than SonarQube
because it is cloud-based and hosted by SonarSource SA.

Third, SonarCloud provides both high-level and low-level information. High-level information is
general assessments of a project’s reliability, maintainability and security. Low-level information
is specific code smells detected in a line of code, the number of lines of code, etc. High-level
information will be particularly important for this project, as we expect it to easily provide
insight into the overall quality of the project.

Finally, the work done in this thesis could be replicated for any other quality management tool,
as long as the tool gives you a way to extract measurements.

The SonarCloud API is very comprehensive and allows for the collection of all types of mea-
surements needed here. However, its documentation is very lacking. Therefore, some reverse
engineering and deduction was required to find some unmentioned but important paths in the
API. For example, the API endpoints for the SonarCloud’s search capabilities in the explore
page are not mentioned in the documentation because it is not a normal use case as stated by
Schmitt [2020]. But for this project, it is necessary to be able to easily search any project. So
we inspected the network tab using the browser’s debugging tools to determine what API calls
were made when searching and filtering results on this page. The relevant API endpoint found
is:

https://sonarcloud.io/api/components/search_projects

The following end point is also used to retrieve the code metrics of a specific project once selected.

https://sonarcloud.io/api/measures/component_tree

And finally, this last endpoit is used to retrieve issues of a specific project from most recent to
oldest.

https://sonarcloud.io/api/issues/search

43

8 Evaluation Methodology

The tool is evaluated iteratively in two rounds. Starting with the initial design presented in
Section 6 Design, it will be refined after the pilot interviews to make sure it is stable enough for
the actual interviews.

The first round of interviews consists of light, informal pilot interviews to identify the major
problems with the initial design and the evaluation protocol for subsequent interviews. The
objectives of these interviews are first to gather specific qualitative data on the game design.
Second, to provide answers to the research questions through surveys, interview questions and
experiments on the intuitiveness of the scales.

To test the prototype, we decided to use a method that combined allowing the target users to
test the game while conducting a semi-structured interview with them. Indeed, this exploratory
research is in a new and specific area of visualization, so it is possible that the authors may not
think of certain questions and answers that would be relevant to the field. For this reason, it is
preferable to use a type of interview with some open-ended questions that allow for unexpected
answers. In order to have some quantitative data as well, at the end of the interview, the
interviewees are asked to fill out a questionnaire to collect their impressions of the game they
had just played.

The game session allows the players to discover the game for the first time and us to observe how
players interact with the game and adapt the questions based on what happens to them in the
game. The questionnaire at the end of the game session helps to cross-check our interpretation
of the qualitative data collected through the interviews with a more quantitative approach.

8.1 Participants selection

To properly assess the quality level of the prototype and answer all the research questions stated
above. We need to select the participants into two groups: industry practitioners and students.
Based on these requirements, 15 volunteers were invited or showed interest to test the game
under our supervision. This actually led to 12 interviews, three volunteers canceled or could not
participate anymore. In order to minimize bias in interviews three rules were followed.

1. No interviews with friends or family.

2. No interviews with acquaintances even if we talked to them for less than five minutes.

3. All interviews are conducted in English if the interviewee fully understands it.

Refraining from taking people we know, we avoid much of the bias that would result from the
person’s opinion of us. We therefore avoid letting this opinion affect the object of the study.

Also, the wording of the questions is very important in interviews because it can influence the
responses. To avoid word choice affecting the interview results, all interviews use exactly the same
questions and are all conducted in English, the language spoken by all interviewees. To determine
this, the preliminary email discussions with the interviewees were in English. Therefore, if they
agree to the meeting, we consider them comfortable doing it in English.

44

8.2 Interview objectives

To conduct the semi-structured interviews. The questions were developed to cover all research
questions and extract as much relevant data as possible. The Table 8 lists all questions and the
expected data related to the research questions.

Id Question Expected data

1

Do you feel overwhelmed by the in-
formation in the game? e.g. too
much information, too little informa-
tion, information too complex, etc.

RQ1.2: Check if the information is on demand
for the user or if one kind of information is being
forced on them

2 What do you think of the severity of
the issues this room contains?

RQ1.1 + RQ1.2: Check participant under-
standing of this file tech debt (code smells, bugs,
vulnerabilities). Compare their answer with the
actual report from SonarCloud

3 What does playing in this room indi-
cate about the code quality?

RQ1.1: Check participant understanding of this
file code quality. Compare their answer with the
actual report from SonarCloud

4 What do you like and don’t like
about combat in the game?

RQ1.2: Get data on combat intuitiveness and
ease of use. What can be improved, etc

5 Do you feel motivated to fix TD
when playing the game?

RQ2.1: Check how much does it encourage de-
velopers to repay some debt.

6 How would you see this tool used in
your everyday life?

RQ2.4: See how participants think they will use
this tool if it was a real product.

7 When would you use this tool? RQ2.3: See when participants think they will
use this tool if it was a real product.

8 Who would you see playing this
game?

RQ2.2: See who participants think will use this
tool if it was a real product.

9 What did you like about the game?
Potentially uncaught information from the other
questions. Maybe if the participant has some-
thing the authors did not think about to say.

10 What did you dislike about the
game?

Potentially uncaught information from the other
questions. Maybe if the participant has some-
thing the authors did think about to say.

Table 8: Interview questions with their corresponding expected data.

8.3 Protocol

The recruitment of the participants was done with the help of the three thesis directors and a
friend. We wanted to have a mix of students and professionals in the software development field.
By combining the connections of our contacts, we managed to get the contact information of
eight employees and four students for the interviews. Each of them was emailed a formal invi-
tation to participate in the study, along with a comprehensive information sheet providing more
information about the study and how we will collect and protect the data. Finally, the interviews

45

were scheduled according to the participant’s availability. Immediately after an interview was
scheduled, the interviewee was given a demographic form to fill out in order to collect more
specific data about their profile. The information sheet and demographic form are available in
the appendix section.

In this document, interviewer and investigator are used as interchangeable names. In addition,
to limit small variations due to the personalities of the researchers, all interviews were conducted
by the same investigator. With the exception of two student interviews that were conducted
face-to-face, the second author acted as an assistant to the interviewer and observed and took
additional notes on the interview process. The structure of each interview is as follows:

1. Presenting who the interviewer is and what this interview is for.
2. Explain once again how the data will be collected.
3. Ask the participant to sign the consent form to allow the interview to start. This document

is in the appendix section.
4. Remind the participant that they can ask any questions they would like at any point.
5. Proceed with the textures and musics ordering tests.
6. Start the game and let the player explore freely while asking the interview questions of

Table 8.
7. Finish the meeting by asking the interviewee to fill out a last questionnaire, which is in the

appendix.

As mentioned in the fifth point, during the interviews, a test of the intuitiveness of the texture
scales is conducted. It is divided into two parts: first five screenshots of the tiles of the game
are showed, each with a color level from the funky color scale with a label attached to it, and
the participant is asked to order it in a way that makes sense to themselves, they do not have
to explain it. Then, the operation is repeated with the rainbow color set. Figure 20 shows the
screenshots used in these experiments.

Figure 20: Images used to test the color scales intuitiveness. Left image is for the funky scale
and the right image is for the rainbow scale.

After the color scales ordering intuitiveness experiments, the subject is asked to repeat a similar
task but with the music. This time, the investigator sends a link to a SoundCloud playlist
containing the five pieces of music, with the title replaced by an identifier from 1 to 5, the
artist’s name removed, and placed in a random order. As with the color scale experiments, the
same random order was kept for all interviews.

Moreover, at any point in the interview, the investigator would let the participant try each
feature for a period of time to gather data on the intuitiveness of the mechanics. If the volunteer
began to say or show signs of annoyance, the researcher would reveal the solution to unblock the

46

participant to avoid loosing too much time. If the investigator had to intervene, the feature in
question was considered poor in terms of intuitiveness.

In addition, to maximize the quality of the interviews, we followed the recommendations of
Turner [2010]. The article proposed a list of practical elements to pay attention to before and
during the interview, such as where the interview should take place or the most optimal way to
ask questions without inducing an answer.

Finally, after the interview, the participant were invited to fill out a survey to gather their final
thoughts about the game. This allows us to have meaningful quantitative data and confirm their
thoughts. The survey questions are taken from the Intrinsic Motivation Inventory33, "a multi-
dimensional measurement device intended to assess participants’ subjective experience related
to a target activity in laboratory experiments". This measurement device was built by Ryan
and Deci [2000]. This tool offers a certain number of variables that can be assessed such as
Interest/Enjoyment, Perceived Competence, Effort/Importance, etc. For our case the relevant
variables that covers our research questions are:

• Interest/Enjoyment
• Perceived Competence
• Value/Usefulness

Interest/enjoyment measures the fun and engaging part of the game, value/usefulness checks if
the game has any value besides being fun and finally perceived competence helps us understand
if the game is too difficult and intuitive or not.

This tool offers a set of questions that can be used to assess each variable. Three and five questions
were selected per variable to have enough redundancy. The authors of this tool have written
that “past research suggests that order effects of item presentation appear to be negligible”. The
questions used in this research are summarized in Table 9

Scoring calculation: (R) questions means that the scoring scale is reversed, so the question score
must be calculated as "8 - value of answer". For normal questions it is the value of the answer.
For each of the three categories detailed above, the mean is calculated.

8.4 Tools used for coding and analysis

A certain number of third-party and home-made tools were used to code the data from interviews
and to analyze it.

Once the interview was conducted, it was transcribed. Using Descript34 first, this automatic
transcription tool takes an audio or video file and turns it into text. It can automatically generate
speaker tags in the text to identify the person speaking. In addition, it adds timestamps to the
text which are very useful to be able to go back to the audio file when it is necessary to listen to
the clip for more context or to correct the automatic transcription.

In practice, each time someone had to correct the transcription generated by the tool because
it is not perfect. In this study, there were different data sources. In the face-to-face interviews,
the voices were recorded on a mobile microphone, the screen was recorded via OBS35 on the

33https://selfdeterminationtheory.org/intrinsic-motivation-inventory/ accessed 19 March 2022
34https://www.descript.com/
35https://obsproject.com/

47

https://selfdeterminationtheory.org/intrinsic-motivation-inventory/
https://www.descript.com/
https://obsproject.com/

Interest/Enjoyment Perceived Competence Value/Usefulness

While I was playing this
game, I was thinking about
how much I enjoyed it.

I believe I was skilled at this
game.

I think this is important to
play this game because it can
help a developer understand
the code quality of a project.

This game did not hold my
attention at all. (R)

I am satisfied with my per-
formance at this game.

I believe playing this game
could be beneficial to me.

I enjoyed playing this game
very much

After playing this game for a
while, I felt competent.

I think playing this game
could help me understand
the issues with the code.

This game was fun to play. I would be willing to play
again because it has some
value to me.

I think that playing this
game is useful for a devel-
oper.

Table 9: Post interview survey questions.

computer, and the field notes of the observations were taken independently. Thus, in order to
ensure temporal consistency of the different data sources, the editing function of Descript was
not used, but the transcript was extracted into a text file and the corrections were made in
Google Doc.

To support the data coding process, the authors used an internal tool named the "label picker"36

to easily explore and reuse existing labels and sub-labels. The tool represents the structure as
explained earlier, from themes to labels to sub-labels. In the tool, labels are considered the
parents of sub-labels and the children of themes. All of these tags are manually added by the
authors once; then, two types of interactions are possible. First, a colored filled circle means that
it has children and clicking on it will display them. Then, a transparent circle is a leaf that has
no children, and by clicking on it, the correctly formatted tag will be placed in the clipboard,
ready to be pasted into the text file. Finally, a click on the central circle will return to the parent.
The tool is illustrated by Figures 21 and 22.

The topic selector, also known as the "topic guide", allows us to analyze all the interview questions
in one place instead of spreading them across multiple documents. The tool displays bubbles
with topics that are based on the coding done in the previous step, as shown in Figure 23. This
tool is a modified version of the label picker tool presented earlier.

A number indicating how many interviews mentioned the specific item has been added to each
bubble. Clicking on the bubble shows the corresponding interview ids. For example, if there
were three mentions of "gamification", only those three interviews will be displayed under the
gamification topic. This way, we can easily see which theme our respondents consider relevant
or not without having to go through each document multiple times. The topic selector has also
been refined by adding relevant information from the demographic survey. For example, if an
accessibility specialist says they do not find the game useful, a bubble for their position is added
indicating a negative opinion, even if they did not mention it directly in their responses during

36Source code of the tool available on https://github.com/snail-unamur/Yo-kai-watch/tree/main/
evaluation/interview_data_visualization_tool

48

https://github.com/snail-unamur/Yo-kai-watch/tree/main/evaluation/interview_data_visualization_tool
https://github.com/snail-unamur/Yo-kai-watch/tree/main/evaluation/interview_data_visualization_tool

Figure 21: Label picker in-house tool screenshots (1).

Figure 22: Label picker in-house tool screenshots (2).

the interview.

Another tool used is a script developed to extract the relevant paragraph or quote from an
interview transcript using the tags assigned to it. Here, timestamps related to the tags are
also extracted, so we know exactly where the tag appeared in the interviews. At any time,
the information given by the quote can be cross-checked with what was actually said in the
conversation, ensuring that everything matches up correctly.

This collection of tools proved extremely useful during the coding and data analysis phase, as it
allowed us to make the coding phase more efficient and quicker and to get a quick overview of
all the different topics discussed in all the interviews at once, as well as to quickly locate specific
pieces of information in the transcripts. All tools were manually tested using a small sample of
example data to verify that the tool’s behavior was expected.

49

Figure 23: Topic selector indicating the number of interviews in which each theme appeared.

8.5 Data coding process

The process of coding began with corrections to the transcript consisting of checking if the
content generated by the tool is correct, but also removing unnecessary content such as greetings
and small talk, dividing the text into paragraphs, and merging the different data sources into
the text file by adding relevant contextual information based on the video and the observation
field notes. These output files are the basic artifacts used to analyze the content.

Miles et al. [2018] open coding approach was followed to obtain more intelligible data from
the files generated from the multiple interview data sources. Both authors participated in the
coding of the data to generate the maximum amount of insight and ensure the least amount of
information loss.

The open coding approach is an iterative process: an interview is conducted and transcribed,
then the data is coded, resulting in labels and sub-labels. Next, the labels are categorized into
broader themes. Then, the process is repeated with a new interview, but this time the labels
and sub-labels already generated are used as the basis for coding the data, while allowing new
labels to emerge from the data.

Each thing said by the participant that the authors consider interesting is tagged during the first
round of coding. This tag contains two parts: the first one, called label, is a descriptive word of
the content and the second part, called sub-label, specifies the first descriptive word with a value,
for example: "STUDENT-POSITIVE", the first part "STUDENT" means that the respondent
is talking about a student using the tool and the second part after the hyphen "POSITIVE"
means that they think that this category of user could use the tool. According to the open
coding approach, the labels and sub-labels are not predefined, they emerge from the data. This
coding is done in the previously generated text files, the person who codes, writes in front of the
paragraphs the tag they find relevant.

The usual workflow began once a text file was fully generated and populated with contextual
information from the other data sources mentioned before. The authors separately code the file

50

using the Label Picker tool and create new tags if necessary. Once both authors have coded the
file once, they discuss each other’s coding to agree on a common coding and create a merged
coded text file that is exported in TXT format so it can be processed automatically. Then, a small
python script is used to extract the tags from the file and generate the list of new tags for this
iteration by comparing it with the list of previous tags. The new tags are then classified in the
different themes. In addition, the script calculates the proportion of new tags generated to the
number of previously generated tags used in the coding. The numerical value of the proportion is
an indicator of the evolution of the completeness of the coding, as well as the absolute number of
new tags generated. The evolution of these values over the course of the interviews is presented
in the Figure 24. It is interesting to note that after six interviews, the values begin to stabilize
around 10-20 new tags per additional interview, and 10-20% of new tags.

Figure 24: Evolution of the proportion and number of new tags through the different interviews.

8.6 Data analysis process

This section presents explanations about how the end-of-interview questionnaires were analyzed
and finally an overview of the methodology followed for the analysis of the interviews is given.

Regarding the questionnaires given to the respondents at the end. They were asked to rate several
sentences on a 7-point Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree). This
standardized scoring system then allowed us to follow Ryan and Deci [2000] and easily track the
responses of different respondents to generate clear statistical results for the analyses.

As for the qualitative data, it comes essentially from the interviews themselves. For each topic
that emerged, the different opinions expressed by the interviewees are summarized. These sum-
maries are then presented in themes in Section 10 Results. To increase the quality and accuracy
of our interpretations, we made sure to cross-check the information with the questionnaires and
interview transcripts before drawing conclusions. In addition, whenever possible and relevant, we
included quotes that were particularly interesting or that helped to illustrate an opinion better
than a rephrased text would.

51

9 Pilot test

Prior to conducting the 12 interviews that will be described in Section 10 Results. Pilot tests
were conducted. The purpose was twofold: to find major problems in the game design and in
the evaluation process. It was important to ensure that the interview questions, protocol, and
game were rigorously vetted and validated prior to implementation, as time and the number of
people available to participate are limited. Pilot interviews would reduce the risk of interview
failure.

These pilot interviews were conducted the same way as the actual interviews thus they followed
the same protocol and recommendations mentioned in Section 8.3 Protocol.

Three pilot interviews were conducted with three computer science students at the University of
Saskatchewan. For this pre-assessment phase, participants were selected based on their accessi-
bility and availability, regardless of their position, experience, or relationships.

9.1 Resulting changes

Numerous insights were obtained from the pilots that led to some changes related to the end
of interview questionnaire, the choice of game colors, combat, tutorial and finally bugs. The
following sections detail for each of these elements what has been changed and why.

9.1.1 Questionnaire

With regard to the questionnaire given at the end of the interview, some questions were confusing
for the pilot study participants. We chose to delete these questions because there were enough
remaining redundant questions to cross validate each variable.

9.1.2 Colors

Furthermore, a significant design problem was identified. The materials metaphor, illustrated in
Figure 25, used for the texture of the ground and walls was not intuitive enough for the testers.
None of them made the connection to the preciousness of the material (wood, stone, iron, gold,
diamond). Players simply thought it was about colors, not materials. This was too confusing for
them, so we decided to rework this design and use the color and color scale design literature to
select the colors that best fit our purpose.

First of all, in this project the objective of the colors is to induce a sense of order with the chosen
colors so that players can clearly differentiate a room with few problems from a room with many
problems by going through three gradual intermediate rooms. Therefore, five colors must be
mapped to the quality grades A, B, C, D and E of the SonarCloud code.

To do this, after a dive into the color and color scale designing literature, we chose to go for
the theory of graphic semiology of BertinBertin [1967]. Although it seems very oriented in the
realization of legends and maps. The theory of colors that the author proposes corresponds
perfectly to what we need in order to overcome the problem of the intuitiveness of our colors. It
is combined with Merwin and Wickens [1993] and Silva et al. [2007] which present three types
of scale: the gray scale, the saturation scale and the rainbow scale (also called spectrum scale).

52

Figure 25: Room example using the materials tile set.

They found that the gray scale is the most effective for ordering elements next to each other, and
that the rainbow scale is better for absolutely estimating the order of elements taken separately.
The main weakness of the gray scale and the saturation scale is that each of them "provides only
a limited number of distinct levels"Silva et al. [2007].

In the context of this study, only one variable needs to be mapped to color. This implies the use
of a "univariate color scale" as discussed in Silva et al. [2007] which could use any of the three
scales described above. In addition, the inclusion of redundancy by combining multiple visual
elements such as color, saturation, or brightness would have some advantages, like overcoming
visual impairments or even improving the clarity of the scale by taking advantage of the strength
of each element.

Thus, considering the task we expect users to perform with the ordinal nature of the data we
have. We decided to go with a modified version of the rainbow scale (1) to help users have
an absolute understanding of room quality.

However, the purple color is removed because it is too close to red, resulting in the following
range: brown, orange, yellow, green and blue. But, in our context, the colors can’t just fill the
wall and floor tiles, there are some color variations in these elements to make them look like walls
and a floor. Also, fully saturated colors are not well suited for a video game where aesthetics are
important. Therefore, a tile set using derived versions of the colors was designed by modifying
manually the colors of the original tile set. An example of a room using this tile set is shown in
Figure 26.

53

Figure 26: Room example using the rainbow scale tile set.

In practice, this scale is very differentiable. However, it is too different from the classic dungeon
crawler that follows a rather dark and more homogeneous color palette to remain consistent
with the universe that takes place in a dungeon atmosphere, the Figure 27 illustrates this with
screenshots from the 10 best-seller games categorized as "Dungeon Crawler" on Steam37. To
counteract the latter problems, another set of tiles was considered. Instead of modifying manually
the color of the walls and ground textures, one texture is selected, and the others are derived
from it using color transformation tools to try to keep as much consistency as possible.

Figure 27: 10 best-seller games categorized as "Dungeon Crawler" on Steam.

We then considered the option of grayscale (2) visible in Figure 28, ranging from the lightest
37https://store.steampowered.com/tags/en/Dungeon+Crawler#p=0&tab=TopSellers accessed 17 May 2022

54

https://store.steampowered.com/tags/en/Dungeon+Crawler#p=0&tab=TopSellers

gray possible for the game to the darkest gray possible. The problem here is that in order for the
game to continue to have distinct textures, we can’t go too dark or too light. Otherwise, the tile
textures disappear. This greatly limits us in a grayscale approach and increases the difficulty for
users to differentiate them.

Figure 28: Room example using the gray scale tile set.

Based on the conclusions drawn earlier and Silva et al. [2007]’s recommendation regarding the
use of redundancy, a new scale was designed by exploiting the hue and brightness of the colors;
in this way, redundancy is added without changing the basic look of the textures and retain the
dungeon-like feel of the game, it is a mix of the rainbow and the grayscale. As recommended
in the same article, it is a grayscale with two additional colors (3). Going from black to
white but passing through red and blue. The goal is to have a better level of comparison and
distinction at the same time.

As shown in Figure 29, the difference in level is not easily distinguished. The saturation level
has been increased to create an original and distinguishable look to the final version shown in
Figure 30.

55

Figure 29: Room example using the rainbow &
gray scale tile set.

Figure 30: Room example using the funky tile
set.

9.1.3 Game

The tutorial room has also undergone a major overhaul. Most of the text guidance has been
removed, because pilot tests showed that people did not read it at all. The Figure 31 shows the
evolution between the first version to the refined one, with the information being lighter and
more digestible for the players.

Figure 31: Tutorial room evolution (enlarged versions in appendix Figure 46 and Figure 47).

Also, to solve the problem of not understanding the game once the player leaves the tutorial.
Information has been added when opening the freeze mode. In this way, if a user needs informa-
tion, they can access it at any time during the game by pressing the corresponding key to freeze
the game and display the overlay as shown in the screenshot in Figure 32.

56

Figure 32: Freeze mode information panel.

Next, the combat system was redesigned to make it more usable and intuitive for players, as we
noticed that most of the participants in our pilot test had difficulties with the system. Initially,
the attack hitbox was a rectangle in front of the player that corresponded to the direction in
which the player was walking as illustrated by the Figure 33. This mechanism made combat
more difficult because in this game the player has to run away from the monsters. So we decided
to switch to an attack that goes around the character instead of an attack that just faces it to
make it easier to fight in the game as seen in Figure 34.

Figure 33: Front attack. The
black box represents the hit-
box.

Figure 34: Circular attack.
The black box represents the
hitbox.

Finally, we tackled all the game breaking bugs identified by the pilot testers to avoid any issues
during the subsequent interviews.

57

10 Results

In this section, the themes identified through the coding of the interview data are presented. The
results are presented as well as the percentage of interviewees who mentioned the same thing.
In parentheses is the actual number of interviews that mentioned the theme in question. When
it is relevant, the data will be illustrated with quotes from the interviews’ transcripts. Also,
some items are not discussed, because they were only mentioned by few person and concerned an
irrelevant topic for this study (e.g. "I like the animation of the character"). Ten themes emerged
from the interview data: Mapping, Usage, Gameplay, Navigation, Target user, Engagement,
Information, Art, Project selection and Performance. The themes "usage" and "art" are not
discussed in separated specific sections as they are under-discussed and less relevant, instead
they are embed in other appropriate sections. In addition, four sections will address major
aspects of this research that were not themes on their own in the data analysis: Music, Missing
features, Freeze feature and Color scales.

10.1 Mapping

The main core of this study is the mapping between the code metrics and the game components,
each interviewee commented at least once on this topic.

One of the key relationships between the measurements and the game is the correspondence
between SonarCloud ratings and the texture of the floor, walls, and the cracks. 75%(9) of par-
ticipants understood that color represented overall quality. Four respondents expressed isolated
opinions, one said that the correlation between color and music was useful (two other participants
said that music represented danger), another suggested having different colors for the walls and
floor. Furthermore, 83%(10) of the participants, when they entered a perfect room, i.e., a room
with only A-tiles and no monsters spawning as shown in Figures 35 and 36, stated that the code
represented by that room must be perfectly clean.

Figure 35: Perfect room
(funky tile set).

Figure 36: Perfect room
(rainbow tile set).

Two interviewees struggled to understand the three main general metrics (reliability, safety,
and maintainability). Also, overall, the maintainability metric was more problematic than the
others. 50%(6) of the participants expressed that they could not find cracks and four of them
were confused and tried to find them, in fact they expressed various theories like:

Interviewee #3: So I get the cracks must be the perimeter around the sub-directories.

58

Concerning the monsters in the game, of the eight interviewees who discussed code smell mon-
sters, only one was confused because they did not use the same word for it in their company.
Vulnerability monsters were not a problem for participants, except for one who thought the wall
itself represented the vulnerability. Finally, bugs were discussed by seven participants, two of
which thought the floor itself represented the bug instances. Overall, 67%(8) of the participants
explicitly said that they understood that each monster represents a SonarCloud issue. Similarly,
no participants were confused by the number of monsters appearing in a room, those who did
mention it said it was intuitive or that the monsters in a room simply came from the subdirecto-
ries. Another monster characteristic discussed in the interviews was the meaning of the size, in
fact two participants did not understand the connection between monster size and code metrics.

Regarding the combat aspect of the game, 58%(7) of the participants felt like not getting any
information from it. In addition, eight participants stated that when they felt overwhelmed by
the monsters, it meant that the code was bad. Only two participants found out that a room in
which they were able to kill all the monsters meant that the debt of this file was repayable by
an individual.

In the end, 75%(9) of the participants found that the room structure was mapped to the project
structure where a room was either a file or a folder and the squares on the floor are sub-elements
contained in the folder. 50%(6) of participants understood that the map also represented the
directory structure of the project, it is important to note that two participants did not use the
map at all.

10.2 Information

In The Coding of Isaac, the information is displayed in several ways. The interviews provided
a lot of feedback on this topic, how it is introduced in the tutorial, the general feeling about
information, and the labels used.

Regarding the information in general, 33%(4) of the participants said that there is some learning
curve to go through to fully understand the game, since there are several metaphors used that
have to be learned like the monsters types, the ground and wall textures. In addition, two
participants found the amount of information too large, and one participant stated that the
information was complex. On the contrary, only two participants found the information intuitive.

The game also includes a tutorial that is supposed to introduce players to the basic concepts of
the game. During the interviews, 75%(9) of the interviewees commented on the tutorial. Most
of the comments were personal opinions or experiences that were not shared by anyone else
as: controls not noticed, trying to click on a monster, needing more help from the interviewer,
finding that there was the right amount of information, and missing information about what the
squares on the floor are. But two observations were made in multiple interviews. First, three
different participants stated that a contextual introduction to what the game actually is was
missing. Second, interviewees #4, #7, #9, and #12 left the tutorial before exploring all the
features presented there, the controls for the movements, attack, freeze mode, maps, navigation
with dig and go up. Also, some of these participants effectively missed some of the commands
as noted in other sections.

Additionally, several dynamic labels are used in the game to display data. The most discussed
labels are a) the numbers displayed on the tiles, b) the file and folder names displayed in the
upper left corner, and c) the total number of monsters alive and going to spawn. These labels
are highlighted in the screenshot in the Figure 37.

59

Figure 37: Labels in the main game screen: a) the numbers displayed on the tiles, b) the file and
folder names displayed in the upper left corner, and c) the total number of monsters alive and
going to spawn.

The number displayed on the tiles was discussed in nice different interviews. Three participants
understood directly that the number corresponded to the number of monsters that will appear
at that location. Three of them had to deduce the meaning empirically by moving from room to
room, killing some monsters, and observing the impact on that label. The last three interviewees
did not fully understand the label. Also, three participants who understood the meaning of the
label said that there was a problem for them, because the number is just the number of monsters,
they do not know the type or size of the enemies, so comparing the rooms on that basis could
be misleading.

The file and folder name indicator was noticed and understood correctly by seven different
interviewees. On the contrary, two participants did not notice it and said that it would be
interesting to have this piece of information.

The last label discussed was the total number of monsters. It was only noticed by 25%(3) of the
participants, but they all understood it correctly.

10.3 Freeze feature

Several people commented on the freeze feature. There are two main use cases for this feature:
reminding the player of essential game information (monster types, color meanings, and com-
mands) through the information panel, and stopping time to let the player explore the room at
ease, additionally unlocking a tool tip providing details about monsters and subdirectory squares
that appears when these items are hovered over with the mouse.

Regarding the informational aspect of the freeze frame feature, ten participants reported that it
was useful or that they had to use it at least once to remember some information. For example,
in the interview #12, after leaving the tutorial, when the player entered the first room of the
Brave project, they immediately froze the game to find out what the monsters were, discovering
that there were some bugs and a lot of code smells in this specific project. On the other hand,
two interviewees had troubles remembering the freeze frame button, in this case; they stated
that they were looking after the key for the freeze mode. Three others missed it in the tutorial,
they did not try to press that key in the tutorial. In these situations, the interviewer helped

60

the participant not to waste too much time by reminding them of this feature. In the case they
missed the key, the interviewer told them about the key when they faced a problem addressed
by this feature, for example, knowing what the types of monsters or the textures stand for, or
having troubles to fight the monsters and observe the elements at the same time.

In addition, through the interviews, some specific isolated opinions were collected on the freeze
feature. In interview #1, the participant thought the information panel was unattractive, with
too much information, and that it was "devy". By "devy" the interviewee might means that it
looks like something for developers, an expert system that would be less attractive but more
focused on the efficiency. Interviewee #6 had trouble understanding that the squares on the
floor are subdirectories and tried to find them in the information panel. Finally, participant
#10 who is an accessibility expert commented on this panel. First, they stated that the icon
for the "Q" key was not clear. Second, while playing, they sometimes used the arrow keys, so
they suggested to add it to the keybinding list. Third, when reading the monster information, as
illustrated in Figure 38, they were confused by the label "monsters", in fact they expected there
to be four categories of enemies: Vulnerabilities, Bugs, Code Smells and Monsters. And they
suggested adding images for this fourth category as the following quote indicates

Interviewee #10: Because just
by these images [of code smells,
bugs and vulnerabilities], I
know; what is a code smell,
what is a bug. But I don’t see
any monster pictures. So that
would help.

Figure 38: Monsters infor-
mation in the freeze panel.

Regarding the second purpose of this function, which is to allow the player to explore the rooms
freely, 25%(3) of the participants did not use the freeze feature to observe or navigate with
the mouse. Three other participants did not use it to observe the room but only to navigate.
This leaves 50%(6) of the interviewees who did use it, two of whom found it on their own, the
others were informed by the interviewer. Similarly, five participants, or 83% of the participants
who used this feature, found it useful. In addition, freezing the game unlocks two additional
interactions. First, hovering over a file or monster displays a tool tip with information as seen in
Figure 39. During the interview, two participants did not use it at all and five used it directly
on their own, the others were mixed. Second, the player can click on any monster to access
the details of the issue on the SonarCloud website. This feature was not used much during the
interviews, indeed six interviewees did not use it at all, four were told by the interviewer about
it, and only one respondent used it intuitively while the last one found it randomly when trying
to click on a tile under a monster. Furthermore, of the six participants who tried this feature,
four of them found it useful.

61

Figure 39: Tool tips. The left image is the monster tool tip showing the type of issue and absolute
path to it in the project file structure. And the right image is for squares on the ground which
are subdirectories or files, in the tool tip there is the name of the file/directory and the number
of monsters that will spawn from this place out of the total number of issues in it.

10.4 Music

In the interviews, 17%(2) of the participants complained about the volume of the music being too
loud, and three participants wanted to adjust the volume themselves, which is not yet possible in
the game. For the interviews conducted online, it was not possible for the participants to reduce
the volume without changing the volume of the call. Only two were able to reduce the volume
because they were in-person interviews, but they did not complain about the volume.

Furthermore, regarding the music itself, participant #11 did not like it, #4 found it too nervous,
and during interview #8, the participant suggested that the music should be customizable to
have their own choice of music as quoted below.

Interviewee #8: Yeah, because, I’m coding. So it would be good if it was my choice
of music.

In addition, as mentioned in Section 8.3 Protocol, before the beginning of the interviews, the
intuitiveness of the music ranking is tested. To do this, participants are asked to listen to the
music and rank it. Then, the Kendall’s tau-b correlation coefficient is calculated, it is done using
a tool from Wessa [2022], of each ranking made by the participants to assess the accuracy with
which they ranked the music in comparison to the one defined by the authors. In this test, the
absolute value of the coefficient is taken into account because whether the participant orders the
music in the same way as the authors or in the opposite order, it is still the right order. As a
result, 50% of the participants found the same order (coefficient = 1), and the others had a value
of 0.4 or less, the results are summarized in Figure 40.

62

Figure 40: Kendall’s tau-b correlation coefficient of the music scale ordering experiment.

10.5 Color scales

The color scales intuitiveness was tested in the same way as the music presented in the previous
section. The protocol used is extensively detailed in the Section 8.3 Protocol. The results of
the experiments on the funky and rainbow color scales are summarized in Figures 41 and 42
respectively.

Figure 41: Kendall’s tau-b correlation coeffi-
cient of the funky color scale ordering experi-
ment.

Figure 42: Kendall’s tau-b correlation coeffi-
cient of the rainbow color scale ordering ex-
periment.

During the interviews, 83%(10) of the interviewees found that the scales were ordered left (dark)
to right (light) (11 & 12 didn’t say it). The funky scale has been criticized by three different
participants, one said that the different colors could not be discriminated enough or that the
inverse order would be more logical, even two participants had trouble to get the order from
left to right and had to deduce it by exploring rooms and thinking about it. On the contrary,

63

nobody had trouble understanding the order of the rainbow scale except one participant which
explained it because they are colorblind and could not see the difference between some of the
chosen colors as they rely only on the hue difference to be discriminated. However, as the funky
scale relies on more characteristics of colors (e.g. brightness, saturation) it is more usable for
people with colorblind disability.

10.6 Navigation

Several participants said they felt compelled to navigate and move from room to room. Inter-
viewees #5 and #10 said it was necessary in order to use the tool properly and interviewees #9
and #10 stated they felt compelled to leave the rooms because of monsters spawning pace.

The most commonly used navigation way by the participants is the dig and go up controls. As
mentioned in the Section 6 Design, this has been design to be used as the first way to navigation.
During the interviews, almost all participants used it on their own, only #12 missed it completely
in the tutorial because they clicked on the exit tile before digging into the example files. Also, #7
and #8 missed the go up key, in fact #8 dug into an example file and left it using the map and
#7 directly clicked on the exit tile without exploring every part of the tutorial. In these three
situations, the investigator reminded the participant what the control was when they appeared
to be stuck in a file or walking around the first room without digging into any files for a few
minutes. This occurs even with the reminder of the controls in the lower left corner of the freeze
menu, but the label dig and go up can be confusing, as indicated by participant #10 who read
the label, as shown in Figure 43, as "dig up".

Figure 43: "dig" and "go up" labels in the freeze panel.

Navigating the game is a key feature of this tool and monsters can make it more difficult. Indeed,
58%(7) of the participants found navigation difficult when there were monsters. The navigation
problems were anticipated by the authors, and to address them, an alternative navigation method
is implemented in the game. Using the mouse, the player can left-click on subdirectories to dig
in and right-click anywhere to go back to the parent folder.

During the interviews, despite the fact that the feature is in the tutorial via blinking mouse icons
in the navigation explanation, only player #10 found it on their own, and after some time during
the game session, they had difficulty remembering this command. Also, participant #1 did not
find the control but also did not complain about the navigation problems, and did not seem to
have any difficulty navigating, so the interviewer did not have to tell them about it. The last
special case was #2 who complained about navigation problems but due to time constraints the
interviewer was unable to show them the control.

The other 75%(9) participants were told by the interviewer how to navigate with the mouse.
Five of them because they explicitly complained about the difficulty of navigating, and the
others because at some point the context of the interview was conducive to introducing this new
interaction. Finally, four people stated that this feature is useful, all of them were introduced to it
by the interviewer, three of them (#3, #7, #9) because they explicitly expressed the navigation

64

problem and the last one (#12) was introduced to it because the timing of the interview allowed
it.

In addition, participant #8 had particular difficulty with click navigation because they did not
have a mouse but only a track pad, which is less convenient than a mouse for this specific
interaction as designed in this study.

This game is designed to be played with one hand on the keyboard and the other on the mouse
to exploit its full potential. But this may not be very clear at first glance. For example, at the
beginning of interview #10, the player starts with exclusively the keyboard, then exclusively the
mouse, and only after navigating for several seconds does they begin to fully use both hands to
navigate effectively. In addition, this may partially explain why 11 out of 12 participants did not
find the mouse controls. The following quote illustrates the problem perfectly.

Interviewee #4: I was just using the keyboard. I didn’t know I could use the mouse.

The last way to navigate the game is to use the map illustrated in Figure 44. All participants
opened it at least once. 42%(5) of them were invited by the interviewer to try it, in order to
test this part of the game as well. Regarding the usability of this feature, four players said
and showed that the map is usable, five showed that it is rather bad and the last three players
remained neutral about the usability of this feature. In addition, during the first interview, the
user suggested that a mini-map in the map screen to quickly navigate with the mouse from one
location in the file system to another would be a great addition to the product. Despite the fact
that there is a search bar in the menu that is already supposed to help users in this specific task,
but as observed, only one interviewee noticed it and tried to use it, but they tried to type only
the name of the file they were looking for when instead they should be writing the full path to
it.

Figure 44: Map screen.

Two participants found navigation more difficult than it could be. They explain this by the fact
that they are not familiar with the code base and file structure of the project, so in a game where

65

the world is the file structure of the project, it is difficult to navigate.

10.7 Gameplay

50%(6) of the participants commented on the gameplay of the product presented here. During
the interviews, 33%(4) of the participants complained about an annoying delay between char-
acter attacks. Similarly, two participants complained about the lack of damage inflicted by the
character they were playing.

In addition, three respondents felt that the combat was not diverse enough, because there is only
one action available to fight and the monsters only run straight at the player. Conversely, 67%
(8) of the participants found the pace of the combat overwhelming with all the monsters coming
towards them. Interestingly, one participant felt that the combat was not diverse enough and
that the pace was too fast.

In addition, 33%(4) of the participants found the fact that the monsters of a specific room were
always spawning when entering it, whether or not they had been killed before, to be confusing.

Finally, the participant #11 stated that they did not find the meaning of having hearts (the
player health bar) in the game.

10.8 Goal of the game

A very popular theme mentioned by 11 of the 12 respondents was the purpose of the game.
50%(6) of the participants, said that they did not find any well-defined goal in the game, but in
the end they thought that it is to kill all the monsters. Another participant just considered that
there was no clear goal of the game, and three respondents stated that the goal was clearly to
kill all the monsters. The participants missing a clear goal for the game mostly asked verbally
what it was.

Interviewee #6: What I am still wondering is what is the objective of playing the
game, but maybe this is just a game with no objective. And so there is no reason to
think about that. But yeah, this is the main remaining question I have. Why am I
playing the game.

In addition, seven participants expressed that they did not feel they had any agency in the game,
i.e., they did not feel like their actions had an impact on the game. Among these, it is interesting
to note the opinions they expressed regarding the goal of the game. Indeed, one of them thought
that the goal of the game was to find the worst file in the code base and kill all the monsters in
it, another one did not talk about the goal of the game at all during the interview. Finally, the
remaining five interviewees expressed both a feeling of not having agency in the game and that
the game has no goal.

44%(4) thought that the objective was to find the worst file to fix. Only interviewee #3 under-
stood the actual goal as it has been designed, as shown in the following quote.

Interviewee #3: It provides that implicit feedback and it provides a nice summary of
all the numerical metrics. Everything kind of works together to provide that implicit
feedback.

66

Additionally, in two interviews, the participant stated that the goal of this tool would be to
be fun. In particular, interviewee #3 articulated this by talking about wanting to have a more
cathartic game, in which one could obliterate the enemies and use the game as an outlet.

Interviewee #3: [..] it’s not as cathartic as if you just go around killing them all and
have your vengeance.

In addition, interviewees were asked if the tool would motivate them to correct the technical
debt of a project they were working on, six responded positively, two said that they were not
sure because they would have to try it with one of their projects to find out, and four did not
think it would motivate them and gave some reasons why. First, according to #2, the tool lacks
a prioritization feature, such as a way to filter problems by type or severity to avoid having a
huge heterogeneous horde of enemies attacking you. Second, according to #6, #11, and #12,
this would be due to the lack of gamification features which will be more detailed in the next
section. Conversely, two participants explained that the tool can be motivating because it makes
you realize how bad the code is when you see the overwhelming number of monsters.

10.9 Target users

This work is interested in who would be the users of the tool presented here, if only the developers
would be interested. Thus, the interviewer asked the same question to each participant.

Who would you see using this tool?

The interviews identified 12 categories of users. Six of them were mentioned more than once.
The category that was most discussed in all interviews was developers in general. Although
according to the opinions of the participants, it is not sure whether the tool would be interesting
for them or not, as two interviewees said it would not be useful for them, four were positive and
one was not sure if it would be the case for all developers, while it certainly would be interesting
for game developers. The second most cited category was managers, here only one participant
thought it would not be interesting for "strong individuals" like managers, another participant
was not sure, but four of them were positive about the interest of this tool for managers. Then
we had four positive opinions about adopting a tool like this for students and three for teachers.
In addition, two people thought that a UX designer would enjoy the tool and two thought that
the team as a whole would be a good user of the game. Another role category that we obtained
evidence on was data scientists. Two data scientists participated in the study and both stated
that the tool would not be useful to them. Finally, three specific roles were cited as potential
users by various participants, they are: Functional Analyst, Solution Architect, and Tester.

In the end, the answers created a list of ten categories of potential users that are summarized in
the Table 10.

When discussing the potential users of this tool, three participants said that traditional dash-
boards, as presented in the Section 3 Related Work, help to get the information more easily.
Specifically, the interviewees, #2 and #11, working in the field of data science said that they do
not use visualization tools at the moment. Conversely, interviewee #9 who is a developer uses
visualization tools (e.g., Jira issue tracker, Github issues with the repository). They stated that
traditional visualization tools are more comprehensive than the one presented here. Additionally,
it is interesting to note that participants #4, #6, #8, and #12 were already using SonarCloud

67

Category Positive Negative
Developer 4 2
Manager 4 1
Student 4 0
Teacher 3 0

UX designer 2 0
Team 2 0

Data scientist 0 2
Functional analyst 1 0
Solution architect 1 0

Tester 1 0

Table 10: Potential users mentioned during the interviews.

or SonarQube and did not comment on this matter. All others had never used a visualization
tool to manage code quality or technical debt.

10.10 Potential usage

As for the target users, the interviewer asked the same question to each participant about the
potential use cases of The Coding of Isaac.

How would you see this tool being used?

92%(11) of the participants responded, only one did not respond and talked about something
else at that time before running out of time for the interview. In the end, 10 different scenarios
were collected across the interviews that are summarized in the Table 11.

Category Occurrences
Debt fight engagement 7

Communication 4
Monitor debt 4

Track people performance 3
Complement classical visualization tools 2

Introduce technical debt in a teaching context 2
Management 1

Task list 1
, Assignment marking 1

Pair programming 1

Table 11: Use case scenarios mentioned during the interviews.

The most cited usage scenario discussed by seven participants is to engage people in the fight
against debt and motivate them to pay off technical debt. Followed by communication, four
participants imagine this tool being used in meetings to present the current state of the program
code. In addition, one of them and three others imagine it more for tracking technical debt over
time. From a management perspective, three interviewees thought that this tool could be used
by managers to track each person’s performance and the status of their code, another user said

68

that managers could also use it to assign people to pay off technical debt for certain parts of
the code. The role of this tool as a complement to traditional software visualization tools and
not as a stand-alone tool was cited by two different participants. Two others suggested using
the tool for educational purposes to introduce the concept of technical debt to students in a
more intuitive and tangible way. Subsequently, some scenarios were cited separately by different
participants: to use it as a task list to select issues to fix or part of project to work on in order
to pay off technical debt, but only with additional functionalities to support it; to use it to get
an overview of the quality of students’ work in order to grade it later; and finally to use it in the
context of pair programming.

One interviewee pointed out that this game is also a tool that creates a kind of dilemma between
having enough information and being entertaining and fun. In fact, two people explicitly said
that it is a tool, but one said that the game aspect was then distracting and the other said that
as a stand-alone tool, it was missing information. Two other participants stated that the product
lacks information, and that it is particularly difficult to access detailed information. One went
into more detail, indicating that information on evolution is missing.

Participants also discussed some requirements for using the tool. #3 and #9 agreed that the tool
would be more suitable for large projects than small ones. On the other hand, #11 cautioned
that it would not be much usable for very large projects because of the number of files and
folders.

Interviewee #11: Like for big projects, with many directories, it could be somehow
complicated, like moving around different rooms.

Interviewee #3 spoke of a possible threat from users who would seek the challenge.

Interviewee #3: [..] if somebody’s enjoying the game too much, then they would [..]
purposely make bad code to have a harder challenge [..]

But right after that, the participant completed their sentence by saying that:

Interviewee #3: [..] but I feel that’s a minor side effect.

Player #1 found that a major barrier to using this tool would be that managers would not like
to let employees play a video game during work hours.

Interviewee #1: I feel like in the business aspect, people are kind of like, go, go, go,
just test it. Like, you don’t need to fool around with playing it and seeing how it
works.

On the opposite, #6 thinks that in order to be engaging, this tool has to be chosen by the user
and not imposed by a hierarchical superior.

Interviewee #6: Maybe some people will not want to play this game and they will not
want to use this tool. So yeah, I think that for some it would work but I would pay
attention that it doesn’t create more frustration for the people that don’t want to play
the game.

69

The final aspect regarding the actual use of this tool that was covered in the interviews is the
frequency of use. 9 of the 12 participants mentioned it. The results are summarized in Table 12.

Category Occurrences
Agile sprint review 3

Release 2
Each week 2

Try by curiosity 2
Each day 1

Table 12: Frequency of use of the tool mentioned during the interviews.

Indeed, three participants imagine that this tool could be used at the end of each sprint in an
Agile development life cycle during the sprint review in order to communicate and track technical
debt. Two participants think that this tool could be used on a regular weekly basis, and one on
a daily basis. In addition, two interviewees stated that the tool could be used to clean up code
before releasing it to production. On the contrary, one participant stated that the tool could not
be used in the later stages of development but only in the early stages, when there is still time
to improve it. Finally, two participants see this tool as a novelty that people would try just to
satisfy their curiosity.

10.11 Missing features

As mentioned in the Section 10.8 Goal of the game, three participants stated that the game
lacked some form of gamification. One of them made this clearer by giving as an example a
scoring system to further motivate the player to use the tool.

In addition, other participants suggested some features that could be added to the game. Re-
spondent #1 talked about adding a mini-map in the upper right corner of the map menu, which
would be clickable to help the player quickly navigate the entire file system. The same partici-
pant said that the information panel in freeze mode reminds them of "lore books" in other games.
Indeed, in some other dungeon crawler games, the player can find information about the different
elements of the game in a book, such as the monsters, their weaknesses, strengths, and a short
description. The interviewee thought that this could be an interesting way to make the tool feel
more like a game. Additionally, the same participant suggested having a message to inform the
user when they have killed all the monsters in a room. This echoes the lack of gamification in
the tool, and this feature would provide metrics on the player’s game session to compare it to
their peers, but the interviewee rethought this thinking that a good player is not necessarily a
good developer, and rewarding them based on their game performance might not be relevant.

Participant #12 who said that the game lacked appropriate gamification features suggested to
add a death recap feature. This idea is detailed in the following quote from that interview.

Interviewee #12: Oh, in that case, what would be great? I just think it would be really
fun if, when you die, you see what code smell or what bug killed you. And it would
give the developers a personal reason to go and eliminate it. It makes it personal.

Also, one participant expressed a need for instant feedback in the game when they fix something
in the code. Another respondent suggested associating the file type with a game element. For

70

example, a python file could have snakes crawling on the ground. Two other participants said it
would be interesting to associate the file size with a game element.

10.12 Project selection

When the player enters the project selection screen illustrated in Figure 45 just after leaving the
tutorial room, the investigator gives them a brief introduction about it:

The projects here are all open-source and publicly available on SonarCloud. For the
sake of this interview, I’ll ask you to select the recommended one, the Brave one.

This moment of project selection was not long in any interview and the interviewee did not talk
much during this time. Nevertheless, some interesting facts were observed through observation of
the players’ interactions. The first action of 42%(5) of the participants was to navigate through
the list of projects, one of them tried to scroll by dragging the "scroll indicator", the circle on
the right of the screen highlighted in the Figure 45, with the mouse, which is not implemented
yet, and then they scrolled with the mouse wheel like the other four participants. 25%(3) of the
participants did not notice the recommended section at first sight, the investigator had to give a
little more explanation.

Figure 45: Project selection screen.

10.13 Performance

The topic of performance was not addressed often by the participants, in fact only three of them
did, each regarding a different topic. Participant #9 found that it took a long time to load
a specific issue page on SonarCloud when trying to access it from the game. Therefore, they
suggested integrating SonarCloud directly into the tool on the side where there is free space, so
that users can access SonarCloud details without having to open a new tab each time. Participant
#8 triggered an out-of-bounds bug where the character goes outside the boundaries of the play
area, in our context the play area is supposed to be limited by the walls of the room but we knew
that sometimes walking in the upper left corner could trigger this bug. Finally, one user noticed

71

a drop in the frame rate because it was letting a lot of monsters appear. So, they suggested
limiting the number of monsters that can appear to avoid this issue. This solution has already
been discussed in Section 6.2.3 Spawn.

10.14 Others

In addition, as mentioned in Section 8.3 Protocol, questionnaires were completed by the inter-
viewees at the end of the interview, which allowed us to verify and compare what each of them
said during and after the play session.

As the Intrinsic Motivation Inventory scale requires, we calculated for each participant the av-
erage for each of the three previously defined variable using the score of the questions. Then a
final average for each variable was made usign the average of each participant. The final results
for each variable is as follow:

• Interest/Enjoyment: 5.17 out of 7.

• Perceived competence mean: 4.39 out of 7.

• Value/Usefulness: 5.17 out of 7.

Each variable has a mean of over 3.5. We can say that, on average, the volunteers found the tool
interesting and enjoyed trying it, found some value in it, or found it useful. Finally, they also
felt that their own skills in using the tool were correct, although we infer a little less positivity
from this because it is a little below the other variables.

72

11 Discussions

Many themes were discussed during the interviews. Based on the data collected from these, this
section will discuss the answers to the research questions. As a reminder, the overall goal of this
research is to determine if a video game can be a medium to convey information about code
quality and technical debt in the context of a code quality visualization tool. This objective is
divided into two main research questions.

RQ1: How intuitive and accurate is the video game medium to visualize the software
technical debt for industry practitioners and students?

This first research question is too broad to be answered directly. It is therefore divided into three
more specific questions and by answering these sub-questions, it will become possible to answer
the general research question.

RQ1.1: How accurately can the developers distinguish between different aspects of
technical debt in the game? For example, if a file contains many vulnerabilities but
no bugs, does the player understand that the code base is vulnerable but not buggy?
How precise is this understanding?

Using The Coding of Isaac, users are able to distinguish a part of a software project with or
without significant technical debt. They are particularly accurate in detecting the perfect part
of the project that contains no problems and is correctly rated by SonarCloud on the three
aspects of maintainability, reliability and security. Due to the absence of poorly rated parts of
the project for maintainability, users have a hard time fully understanding it. For reliability and
safety, they can observe the different textures of the walls and floor as they explore the rooms,
which helps them understand which rooms are better than others on these criteria. Finally,
when it comes to the type of problems related to a case, users can easily understand whether it is
homogeneous or not using the different monster skins that reflect it and are easily differentiated.

Also, as expected, the numerical values of the squares representing subdirectories and files can be
misleading because the type and severity of problems are hidden in the value. Furthermore, even
though the general code quality metrics are represented by the components of the squares, they
are not always sufficient to compare two subdirectories. This led some participants to consider
that to fully understand the state of a project’s technical debt, it is necessary to go through each
room one by one.

Summary RQ1.1: In The Coding of Isaac, the different aspects of technical debt visualized in the
game can be accurately understood within a specific room if the player has had the opportunity
to explore and become accustomed to the different mappings. With respect to the overall state
of a project’s technical debt, due to misleading comparison criteria, users might have to explore
the game at length in order to fully understand it.

RQ1.2: What game mechanics can be used to allow the player to naturally relate to
the underlying code quality metrics? The objective is to find game mechanics and code
quality measures that, put together, allow the player to understand the connection with
little or no explanation.

73

Several game components are used in this research to convey information about the quality of a
software project’s code. One of the main categories of components exploited is the visual element.
It includes the texture of the floor and walls, the cracks on the floor, the monsters with their
different types and sizes. These elements are generally understood by the participants, with the
exception of the cracks, which confuses most of them because they do not find them in the game.
Similarly, interviewees often use the freeze information panel to understand or remember their
meaning, with the exception of monster size which seems to be more intuitive.

Additionally, there were two types of textures for the floor and walls. At first glance, the funky
textures are more intuitive for users to order than the rainbow textures. But in the end, all
players were able to guess the correct order after exploring the rooms and taking a look at the
freeze information panel.

Moreover, the most intuitive mapping of the game components is the monsters to the issues.
Participants understand that they are a threat and that they must eliminate them, at least in
the game as a player. When they start to feel overwhelmed by these elements, they understand
that something is wrong with this part of the software project. Paradoxically, some of them feel
that the combat does not give them any information. In fact, the metaphor of the monsters’ life
as the time estimated to solve the issues was not clear to the users.

Finally, the parallel between the structure of dungeon rooms and the structure of directories is
one of the best understood metaphors. It is important to note that there are many elements that
support this metaphor such as the file and folder names in the HUD and the map screen that is
more like a file structure exploration tool than a game map.

Summary RQ1.2: Multiple game components in the game are intuitive in conveying information
about code quality metrics. First, the visual elements, especially when made explicit by a doc-
ument like the freeze information panel. Second, the metaphor of monsters as code-threatening
elements like problems. Finally, the mapping between the structure of the environment and the
directory structure of the software project.

RQ2: How useful is the video game in visualizing the technical debt of software in the
field?

As with the first research question, the second is too general to be answered directly and is
divided into four specific questions.

RQ2.1: How much does it encourage developers to repay some debt?

In general, participants had mixed views on this question. Half of them responded positively,
thinking that it would motivate them to correct the technical debt. Conversely, three participants
explicitly stated the opposite and that this was due to the lack of gamification in the tool. In
fact, as discussed earlier in this work, the tool was designed as a game, but without an emphasis
on engagement. Instead, the authors considered the game components only as a way to visualize
code quality metrics. Thus, the lack of gamification was intended, but since the tool is a game,
it is understandable that participants expected to find some gamification that would engage
them in using the tool. Additionally, because it is a game, aspects of gamification can be easily
incorporated into this product in the future.

In terms of motivation to fix the technical debt, one participant felt that the tool lacks a filtering
feature to avoid having a huge heterogeneous horde of monsters rushing at you. This was one

74

of the features the authors had in mind that could not be implemented due to time constraints.
Kienle and Muller [2007] consider it a mandatory feature for a complete visualization tool. This
creates the belief that the requirements for the traditional visualization tool and gamified tools
are similar, or at least overlap. In addition, one participant cautioned about potential scalability
issues for very large software projects, which is a common pitfall in software visualization tools
as indicated by Bedu et al. [2019] and presented as a non-functional requirement by Kienle and
Muller [2007].

It is also interesting to note that the feeling of being overwhelmed by monsters is part of the
visualization. The game was designed to give players this feeling when the code presents many
problems. In fact, the majority of participants said that they felt overwhelmed by monsters at
some point and that this meant that the code related to the room was bad. Thus, if a filtering
feature is implemented it should be done carefully so as not to break this feeling.

In addition, two participants felt that they should try the tool on their own project to answer
this question. During the evaluation, each participant tested the tool on the same project to
gather usable data for the research. However, the tool is designed to be used on the project the
user is currently working on.

Summary RQ2.1: The tool encourages users to correct technical debt. It could be more engaging
by incorporating more gamification aspects into the tool. Also, the common requirements and
pitfalls of this type of tool could be similar to those of traditional visualization tools.

RQ2.2: Who would be the target user of such a tool?
RQ2.3: How often would this tool be used in the workflow of a target user?
RQ2.4: In which context would this tool be used?

The other three sub-questions of RQ2 are closely related, and are therefore addressed together
because they require related answers about: who will use the tool when and for what. During
the interviews, two broad categories of users were mentioned by the participants: practitioners
and academics.

First, according to the participants, in industry, developers and managers might be interested
in a tool like this. Developers might want to use it to track and visualize their technical debt
in an attractive way, or to communicate the current status of technical debt in the code base
to managers and stakeholders less in the code. Managers might appreciate this tool to track
technical debt across the project, or to track the performance of individuals, or even to find
parts of the project that need work and assign people to those tasks. These use cases involve
regular use of the tool. But, it can also be used at each sprint review in a scrum development
cycle as a communication tool between all stakeholders, or just before releases to assess the
quality of the code. Similarly, it can be used as a task list or as a way to assign people to a part
of the project, on a daily or weekly basis.

Second, some participants discussed the use of the tool by students and teachers. They indicated
that teachers could use it as a fun way to introduce the concept of technical debt to students, or
to get a sense of the quality of the code produced by students to help teachers grade the work. In
these contexts, the tool would be used on an ad hoc basis to introduce the concept of technical
debt or at specific times to grade student work. In terms of students use of the tool, participants
imagined that they would use it to produce good quality code for their work.

75

In addition, a few participants discussed that because of the playfulness of the tool, "strong
individuals" and "people in the business aspect" would not understand or accept developers "to
fool around playing it". Some also criticized the tool in general, comparing it to traditional
visualization software, claiming that the latter would be more comprehensive and simpler than
the one presented in this research.

Summary RQ2.2, RQ2.3 and RQ2.4: The Coding of Isaac could be used by developers, man-
agers, teachers and students. They could use it to monitor technical debt, track the performance
of individuals, introduce the concept of technical debt, and engage people in the fight against
technical debt. The tool could be used at key moments, such as the end of a sprint or the release
of a new version, or on a weekly or daily basis. Finally, the fun aspect could be a barrier to its
adoption by some people.

The results of the evaluation led to three additional findings that are not directly related to the
research questions, but because they were major topics of discussion during the interviews, they
are discussed here.

First, several participants stated that they lacked an explicit purpose for the game. Since it is
an active game requiring the player to interact with it, they were looking for an objective. Some
said this could be related to the lack of an introduction when the game launches. Similarly, some
interviewees said that they did not feel like they were doing anything, as if their actions were
insignificant. In fact, the goal as stated in this research is to have a sort of contemplative game
where the player visualizes the information. However, explaining more about the purpose of the
game could increase immersion and user engagement.

Second, since the game requires users to play it in order to obtain the information, it must be
usable. Some data on the usability of the game was collected during the interviews, showing
that this tool is not ready to be used without the help of a system expert. This is a major
point of interest for this type of tool, because if it is not sufficiently usable, users will not be
able to understand the information represented in the game, thus completely missing its original
purpose as a visualization tool.

Third, the usability of a video game is supported by the way it presents the game to the player.
This means that the tutorial plays a major role in this task and makes it an essential component
of the usability of the tool. In The Coding of Isaac, the tutorial did not cover all aspects of the
game, such as accessing the details of problems on SonarCloud by clicking on a monster. So this
is a major potential point of improvement for the tool.

Summary additional conclusions: Having an explicit goal for the game might be interesting
for increasing the immersion and user engagement. In addition, the usability of the tool is a
critical point in order to support its main goal of providing access to information. Therefore, the
game tutorial is crucial as it introduces the player to the concepts and controls of the game.

76

12 Threats to validity

Despite the fact that everything was done to minimize bias, there are still several threats to
validity in the evaluation process.

In the color scale test, where we tested participants’ ability to rank different textures, according
to Vegas et al. [2015], a better methodology, such as a cross-over design, might have reduced some
of the threats to validity that we might have now. Because we did not have a huge amount of
participants, we could not simply show one randomly selected set of textures to each participant,
as the risk that the results would only be the opinion of a few respondents was too great. Instead,
all 12 participants ordered both sets. The following is a list of potential threats to validity that
our methodology raises according to the guidelines of Easterbrook et al. [2008]:

Construct validity Since the goal of this research is to determine if a game-based visualization
tool could be useful to developers, asking them directly to give a trial-based evaluation of such
a prototype is a good method for obtaining meaningful data.

Internal validity The test did not take order into account; the two sets of textures were shown
in the same order to each participant, funky then rainbow. What should have been done was
to randomly select the order of the two tests for each participant; in this way, we would have
avoided a potential bias for the second test or, at least, gained insight into the extent to which
the results are affected by a test taken just before. Moreover, the interviewer who conducted
the interviews is a novice in interviewing. Some biases were likely introduced unintentionally
or errors made due to his lack of experience. The interviews may also have been influenced by
the interviewer’s personality. However, the pilot tests served as training for the investigator.
Therefore, this threat has been at least partially mitigated.

About RQ 2.2: The question used in the interviews directly asks participants who they would
see using this tool, we have induced a positive bias because they are less likely to discuss who
they would not see using this tool at all. This may have affected the results of that research
question.

In addition, the results may not be generalizable because this research uses a specific prototype
video game (with certain characteristics such as: offline, active, dungeon crawler). Thus, the
results on game components as a relevant information vector might not work for other game
genres. Or there could be another type or genre that would have yielded better results. Also,
with respect to the game design, it includes only certain game components selected and mapped
by the authors, other game components might produce different results.

For the sake of time, and to ensure that the same evaluation protocol was applied. Only one
project was used for all interviews the Brave browser. This game and visualization may not yield
the same results on other SonarCloud projects.

As for the coding and analysis of the data, this was done by humans and therefore there may be
some bias. Although we have tried to counteract this by having the two authors work separately
and then discussing their coding to reduce the impact of their individual biases.

External validity We believe that generalization of the results is possible at least to the
variety of professional and student profiles that responded to our interviews. Apart from the

77

fact that all of them are people known to our supervisors or to friends. Hence, there might be
some bias because they might just want to please their friends and be less likely to be completely
honest. Another threat is the fact that only five (42%) of the 12 participants used a tool to
manage technical debt which might suggest that it is either not a priority for them or that they
are not very comfortable with it making potentially harming the results of this study.

The results of the evaluation might depend on the usability of the game, while this is not the
main focus of the work. The quality of the UI/UX as well as the way the interviewees perceived
the solution probably plays a role in the results.

The participants’ backgrounds and cultures are not diversified enough, making generalization to
all other cultures a potential challenge. The metaphors used by the authors may be rooted in
their own cultural norms, which greatly threatens generalization.

Respondents provide an evaluation of the game, but this evaluation may be biased for four
reasons: (1) The project, Brave browser, they tested is unfamiliar to them, (2) The interview
environment may not be their workplace; (3) They are distracted by the interviewer asking
questions while they are learning about the game; (4) They are learning about the tool at the
same time they are asked to give feedback.

78

13 Future works

The results showed that game components have potential as information vectors in visualization
tools and what their use cases might be in real life. In addition, this research discusses the
strengths and weaknesses of The Coding of Isaac. Thus, there are two main possible approaches
for future work. Expand the field by continuing to explore other aspects or conduct more in-depth
research on specific elements presented here.

In fact, in order to explore the interest of the field, this research develops a specific instance
of a dungeon crawler game called The Coding of Isaac for code quality visualization. Thus,
future work on tools focusing on visualizing other types of topics would be interesting to see if
the effectiveness of the game components as information vectors depends on it. Furthermore,
the prototype is a specific game instance of a video game genre incorporating only some of its
possible game components. It would therefore be interesting to have similar work on other types
of games of different genres, or with other game components to try to find the best ones.

Moreover, this work reveals that some requirements of classical visualization tools could also
be applicable for gamified tools. It would then be interesting to investigate to what extent the
common good practices and pitfalls of traditional visualization are applicable to this new domain.

Furthermore, this research has drawn specific conclusions regarding the prototype presented here.
Future work could be conducted on these by exploring the addition of gamification as requested.
Similarly, future research could look at the multiple features requested by the interviewees.
Additionally, the best way to test the potential use of a tool in real life is to release it as a
real business tool and measure its success with real users. Therefore, it would be interesting to
conduct research focused on evaluating The Coding of Isaac in this way to further test its value
to practitioners.

Finally, regarding the evaluation of the prototype, it has only been conducted on a single software
project. Further research on the generalization of the results of this work would be interesting.
This can be done by conducting similar evaluations on other projects. Or, by analyzing the
data from the SonarCloud projects and trying to determine if the projects are similar enough to
generalize the results or if additional evaluations on other projects are needed.

79

14 Conclusion

In the literature on the visualization of code quality metrics, no research had been conducted
to date on the potential of the video game as a medium for conveying information. This thesis
explored this part of the field that could bring new possibilities regarding the design of visualiza-
tion tools. Its two main objectives are to understand the potential for intuitiveness and precision
of the video game medium in this use, and to explore the potential for use of a tool of this
type. To find answers, a prototype of a brand new offline active game of the dungeon crawler
type was developed. It was then evaluated through interviews with practitioners and academics.
Due to the lack of previous work on this specific topic, this research tends to explore the topic
in a general way in order to determine if further research would be of interest. Additionally,
conclusions are drawn based on a single prototype that is a specific example of a video game
genre that is not broadly representative of video game design possibilities, so the conclusions
cannot be generalized. However, this work has drawn multiple conclusions about the potential
uses of a brand new active offline dungeon crawler game as a tool for visualizing code quality.

This research revealed that multiple components of a video game can be used to visualize informa-
tion. Indeed, as with traditional visualization tools, visual elements can be used. Furthermore,
the concept of enemies in a video game can be effectively exploited as a metaphor for visualizing
threatening elements to users, and the structure of the game environment can be used to rep-
resent the structure of the actual element being visualized, such as the directory structure of a
software project.

In terms of adoption, a tool like The Coding of Isaac can be used by multiple roles (developers,
managers, teachers, students) for multiple purposes (technical debt, tracking individuals’ perfor-
mance, introducing the concept of technical debt, engaging people in the fight against technical
debt). It would be used on a regular basis, either at certain milestones or on a weekly or daily
basis. Moreover, even if the playful aspect is interesting for visualization purposes as mentioned
before, this aspect could be a barrier to its adoption by some people.

Finally, the design of such a tool could correspond to the design of a visualization tool, so all the
research on the visualization domain would be applicable here. Proving this point would help
define the best practices and pitfalls for the specific domain explored in this study.

We hope that the positive results concluded by this research will pave the way for further research
on this topic, as it is a potential gateway to a multitude of highly innovative design possibilities
for the visualization domain.

80

15 Bibliography

References
Mary J Allen. Introduction to measurement theory. Waveland Press, January 1979.

Gergo Balogh and Arpad Beszedes. CodeMetropolis — a minecraft based collaboration tool for
developers. In 2013 First IEEE Working Conference on Software Visualization (VISSOFT).
IEEE, September 2013.

Laure Bedu, Olivier Tinh, and Fabio Petrillo. A tertiary systematic literature review on software
visualization. In 2019 Working Conference on Software Visualization (VISSOFT), pages 33–
44. IEEE, September 2019.

Woubshet Nema Behutiye, Pilar Rodríguez, Markku Oivo, and Ayşe Tosun. Analyzing the
concept of technical debt in the context of agile software development: A systematic literature
review. Inf. Softw. Technol., 82:139–158, February 2017.

J. Bertin. Sémiologie graphique, volume 8. EHESS, Paris, 1967.

S Boeykens. Using 3D design software, BIM and game engines for architectural historical recon-
struction. Designing Together-CAADfutures, pages 493–509, 2011.

Nathan Brewer. Going rogue: A brief history of the computerized dungeon crawl, 2016.

C. Cameron. Sonarcloud or sonarqube? - guidance on choosing one for your team, apr 2020.
URL https://blog.sonarsource.com/sq-sc_guidance. Accessed on 2022-03-21.

A H Caudwell. Gource: visualizing software version control history. In Proceedings of the ACM
international conference companion on Object oriented programming systems languages and
applications companion, pages 73–74. ACM, 2010.

Zadia Codabux, Byron J Williams, and Nan Niu. A quality assurance approach to technical debt.
In Proceedings of the International Conference on Software Engineering Research and Prac-
tice (SERP), page 1. The Steering Committee of The World Congress in Computer Science,
Computer . . . , 2014.

S Deterding, D Dixon, R Khaled, and L Nacke. From game design elements to gamefulness: defin-
ing“ gamification”. In Proceedings of the 15th international academic MindTrek conference:
Envisioning future media environments, pages 9–15. 2011.

Evanthia Dimara and Charles Perin. What is interaction for data visualization? IEEE Trans.
Vis. Comput. Graph., 26(1):119–129, January 2020.

Shawn M Doherty, Joseph R Keebler, Shayn S Davidson, Evan M Palmer, and Christina M
Frederick. Recategorization of video game genres. Proc. Hum. Factors Ergon. Soc. Annu.
Meet., 62(1):2099–2103, September 2018.

Ralf Dörner, Stefan Göbel, Wolfgang Effelsberg, and Josef Wiemeyer. Serious games. Springer,
2016.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Selecting em-
pirical methods for software engineering research. In Guide to advanced empirical software
engineering, pages 285–311. Springer, 2008.

81

https://blog.sonarsource.com/sq-sc_guidance

Francesca Arcelli Fontana, Vincenzo Ferme, Alessandro Marino, Bartosz Walter, and Pawel
Martenka. Investigating the impact of code smells on system’s quality: An empirical study on
systems of different application domains. In 2013 IEEE International Conference on Software
Maintenance, pages 260–269. IEEE, 2013.

Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter. Using game engines for visualization
in scientific applications. In IFIP International Federation for Information Processing, IFIP
International Federation for Information Processing, pages 11–22. Springer US, Boston, MA,
2008.

Pooya Khaloo, Mehran Maghoumi, Eugene Taranta, David Bettner, and Joseph Laviola. Code
park: A new 3D code visualization tool. In 2017 IEEE Working Conference on Software
Visualization (VISSOFT). IEEE, September 2017.

Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. An exploratory study of
the impact of code smells on software change-proneness. In 2009 16th Working Conference on
Reverse Engineering, pages 75–84. IEEE, 2009.

H M Kienle and H A Muller. Requirements of software visualization tools: A literature survey.
4th IEEE International Workshop on Visualizing Software for Understanding and Analysis,
pages 2–9, 2007.

Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. CityVR: Gameful
software visualization. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, September 2017.

David H Merwin and Christopher D Wickens. Comparison of eight color and gray scales for
displaying continuous 2D data. Proc. Hum. Factors Ergon. Soc. Annu. Meet., 37(19):1330–
1334, October 1993.

Matthew B Miles, A Michael Huberman, and Johnny Saldaña. Qualitative data analysis: A
methods sourcebook. Sage publications, 2018.

Alberto S Nuñez-Varela, Héctor G Pérez-Gonzalez, Francisco E Martínez-Perez, and Carlos
Soubervielle-Montalvo. Source code metrics: A systematic mapping study. Journal of Systems
and Software, 128:164–197, 2017.

R Oberhauser. An ontological perspective on the digital gamification of software engineering
concepts. International Journal on Advances in Software, 9:207–221, 2016.

Roy Oberhauser and Carsten Lecon. Gamified virtual reality for program code structure com-
prehension. Int. J. Virtual Real., 17(2):79–88, January 2017.

S Pérez, T Tubiana, A Imberty, and M Baaden. Three-dimensional representations of complex
carbohydrates and polysaccharides-SweetUnityMol: A video game-based computer graphic
software. Glycobiology, 25(5):483–491, 2015.

F Raab. CodeSmellExplorer: Tangible exploration of code smells and refactorings. In 2012
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
September 2012.

Guido Reina, Hank Childs, Krešimir Matković, Katja Bühler, Manuela Waldner, David Pugmire,
Barbora Kozlíková, Timo Ropinski, Patric Ljung, Takayuki Itoh, Eduard Gröller, and Michael
Krone. The moving target of visualization software for an increasingly complex world. Comput.
Graph., 87:12–29, April 2020.

82

Simone Romano, Nicola Capece, Ugo Erra, Giuseppe Scanniello, and Michele Lanza. On the use
of virtual reality in software visualization: The case of the city metaphor. Information and
Software Technology, 114:92–106, October 2019.

R M Ryan and E L Deci. Self-determination theory and the facilitation of intrinsic motivation,
social development, and well-being. Am. Psychol., 55(1):68–78, January 2000.

T Sandusky. Plato’s Evil Closet: Using a Nonviolent Dungeon Crawler to Address White Het-
eropatriarchy in Video Games (Doctoral dissertation). Mills College, 2018.

O. Schmitt. List of all public projects on sonarcloud using api, oct 2020. URL https:
//community.sonarsource.com/t/list-of-all-public-projects-on-sonarcloud-
using-api/33551/4.

Samuel Silva, Joaquim Madeira, and Beatriz Sousa Santos. There is more to color scales than
meets the eye: A review on the use of color in visualization. In 2007 11th International
Conference Information Visualization (IV ’07). IEEE, July 2007.

K S Tekinbas and E Zimmerman. Rules of play: Game design fundamentals. MIT press, 2003.

Daniel Turner, III. Qualitative interview design: A practical guide for novice investigators. The
Qualitative Report, May 2010.

Sira Vegas, Cecilia Apa, and Natalia Juristo. Crossover designs in software engineering experi-
ments: Benefits and perils. IEEE Transactions on Software Engineering, 42(2):120–135, 2015.

K Werbach and D Hunter. For the win: how game thinking can revolutionize your business.
Wharton Digital Press, 2012.

P Wessa. Free statistics software, office for research development and education, 2022. URL
https://www.wessa.net/.

Richard Wettel and Michele Lanza. Visualizing software systems as cities. In 2007 4th IEEE
International Workshop on Visualizing Software for Understanding and Analysis. IEEE, June
2007.

Richard Wettel and Michele Lanza. Codecity: 3d visualization of large-scale software. In Com-
panion of the 30th international conference on Software engineering, pages 921–922, 2008.

Enno Wulff. I have a dream: Code visualization, Dec 2020. URL https://blogs.sap.com/
2020/12/29/i-have-a-dream-code-visualization/.

Alfa Yohannis and Yulius Prabowo. Sort attack: Visualization and gamification of sorting al-
gorithm learning. In 2015 7th International Conference on Games and Virtual Worlds for
Serious Applications (VS-Games). IEEE, September 2015.

Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman. Investigating the impact
of design debt on software quality. In Proceedings of the 2nd Workshop on Managing Technical
Debt, pages 17–23, 2011.

83

https://community.sonarsource.com/t/list-of-all-public-projects-on-sonarcloud-using-api/33551/4
https://community.sonarsource.com/t/list-of-all-public-projects-on-sonarcloud-using-api/33551/4
https://community.sonarsource.com/t/list-of-all-public-projects-on-sonarcloud-using-api/33551/4
https://www.wessa.net/
https://blogs.sap.com/2020/12/29/i-have-a-dream-code-visualization/
https://blogs.sap.com/2020/12/29/i-have-a-dream-code-visualization/

A Appendix

Figure 46: Tutorial room of the first design.

84

Figure 47: Tutorial room after the pilot interviews.

85

Criteria|Framework Phaser 3 MelonJS ImpactJS KaboomJS

Community Github discussions, Discord, fo-
rums. All community channels
seem quite active with new posts
and topics every day.

Forums not very active, Github
discussions neither, Discord, Git-
ter

Abandoned Forums Not very active Github Discus-
sions, Abandoned Forums, Dis-
cord.

Documentation Detailed documentation avail-
able with >1770 code examples

Detailed documentation avail-
able

Not very complete documenta-
tion, paid online courses avail-
able to get started with it.

Very recent and incomplete.

Stability the 3.0 version of Phaser came
out in Feb 2018. Since then
the latest stable version is 3.55.2
which came out in May 2021.

The framework is quite mature.
latest version is 10.9.0 (May
2022). Development started in
2011.

Last commit on Github was
made in February 2022.

Very new framework that came
out in 2021. Mostly unstable.

Maintenance sta-
tus

The github repo is updated with
new commits every day. A beta
version 3.60 is currently in prepa-
ration. And also the next big it-
eration of the framework called
Phaser 4.

Active development: New com-
mits nearly everyday but only
one person is working on it.

The project seems to have been
abandoned since 2018 when it
got open sourced.

Active development: commits
multiple times per week.

Popularity 31.8k Github stars 4k Github stars 1.8k Github stars 1.6k Github stars

Tutorials Lots of tutorials available on
YouTube even one walk-though
detailing how to build a basic
dungeon crawler.

Two official step by step tuto-
rial but Very few tutorials on
YouTube. Moreover, they are
older than two years old.

Old tutorials available on
YouTube (3-9 years old).

Quite a few tutorials available
on YouTube for such a recent
project.

Learning curve Made easy by the amount of re-
sources on the framework

Quite steep because of the lack
of tutorials and community re-
sources.

Steep because of the lack of tu-
torials, community resources and
support.

Very steep because it is quite
new.

Compatibility All-in-one framework with com-
munity plugins for missing fea-
tures. No other libraries would
be required.

Seems to be self sufficient, but no
community plugins available.

Seems to be all-in-one Lacks a lot of features yet be-
cause it is quite new. More a li-
brary than a framework.

Flexibility Can get quite low level meaning
there is no problem in connecting
external data easily.

Very low level, quite flexible. Very low level, quite flexible. Very low level, very flexible.

Table 13: Comparison of some JavaScript game frameworks for web browser game development.

86

INFORMED CONSENT FORM
Full Title of Project: Yokai Watch - The Coding of Isaac

Name of Principal Investigator: Aniss Grabsi
Please initial box

1. I confirm that I have read and understood the subject information sheet dated
2022-03-08 for the above study and have had the opportunity to ask questions which
have been answered fully

2. I understand that my participation is voluntary and I am free to withdraw at any time,
without giving any reason, without my medical care or legal rights being affected.

3. I give permission for these individuals to collect and process the data as explained in
the information sheet

4. I agree to take part in the above study.

Name of the participant signature date

Name of the investigator signature date

07/06/2022 23:49 The Coding Of Isaac

https://docs.google.com/forms/d/1nYbQmRWJcTb_SbmnjLY1bZKCs0ZzKH2K94iN0kp4uqE/edit 1/4

1.

Une seule réponse possible.

Student Passer à la question 2

Employee Passer à la question 4

Student information

2.

Une seule réponse possible.

Autre :

1st year of Bachelor

2nd year of Bachelor

3rd year of Bachelor

1st year of Master

2nd year of Master

The Coding Of Isaac
Have you ever dreamed of literally killing the bugs in your code? 🔥

Let us introduce you to The Coding of Isaac.

This game aims to give you an overview of the quality of your code base by playing against
it.

We would like you to fill out this short form so we can learn a little more about you before
the interview.

Thank you for your participation!

If you have any questions you can contact us here:
𝗔𝗻𝘁𝗵𝗼𝗻𝘆 𝗕𝗮𝘆𝗲𝘁
𝗔𝗻𝗶𝘀𝘀 𝗚𝗿𝗮𝗯𝘀𝗶

*Obligatoire

What is your current occupation? *

What year of study are you in? *

 | anthony.bayet@student.unamur.be or lpf713@mail.usask.ca
 | aniss.grabsi@student.unamur.be or qcr947@mail.usask.ca

07/06/2022 23:49 The Coding Of Isaac

https://docs.google.com/forms/d/1nYbQmRWJcTb_SbmnjLY1bZKCs0ZzKH2K94iN0kp4uqE/edit 2/4

3.

Une seule réponse possible.

I have never worked in the industry.

less than 2 year

2 - 5 years

6 - 10 years

11 - 20 years

> 20 years

Passer à la question 8

Employee information

4.

Une seule réponse possible.

Autre :

1 - 99

100 - 999

1000 - 4999

> 5000

Don't know

5.

Une seule réponse possible.

0 - 2 years

3 - 5 years

6 - 10 years

11 - 20 years

> 20 years

Do you have some experience working in the industry? *

Number of employees in your company *

How many years of experience do you have in software development? *

07/06/2022 23:49 The Coding Of Isaac

https://docs.google.com/forms/d/1nYbQmRWJcTb_SbmnjLY1bZKCs0ZzKH2K94iN0kp4uqE/edit 3/4

6.

Une seule réponse possible.

Autre :

Software developer

Software architect (Design)

Requirements Analyst

Quality Analyst / Testing

Project Manager

User Interface Development

7.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

About yourself

8.

Une seule réponse possible.

Everyday

Once or twice a week

Once or twice a month

Once or twice a year

I never play video games

What is your role in your department/division? *

My company takes technical debt and quality very seriously. *

How much do you play video games? *

07/06/2022 23:49 The Coding Of Isaac

https://docs.google.com/forms/d/1nYbQmRWJcTb_SbmnjLY1bZKCs0ZzKH2K94iN0kp4uqE/edit 4/4

9.

Une seule réponse possible.

Very little knowledge

1 2 3 4 5 6 7

Very strong knowledge

10.

Autre :

Plusieurs réponses possibles.

Code city

SonarQube / SonarCloud

Embold

I don't use any.

Ce contenu n'est ni rédigé, ni cautionné par Google.

How would you evaluate your knowledge of technical debt (code smells, bugs,

vulnerabilities)?

*

What tools do you generally use to manage/visualize technical debt *

 Forms

07/06/2022 23:50 End of interview questionnaire

https://docs.google.com/forms/d/1vR18wA39G6dR0juBK9YSlYbovJ5GhAREfYwIhDClcv8/edit 1/4

1.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

2.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

3.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

End of interview questionnaire
Thank your for participating in this study.

Before you go, please fill out this questionnaire to give us some global insights on how the
interview went.

*Obligatoire

I think this is important to play this game because it can help a developer

understand the code quality of a project.

*

I believe playing this game could be beneficial to me. *

While I was playing this game, I was thinking about how much I enjoyed it. *

07/06/2022 23:50 End of interview questionnaire

https://docs.google.com/forms/d/1vR18wA39G6dR0juBK9YSlYbovJ5GhAREfYwIhDClcv8/edit 2/4

4.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

5.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

6.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

7.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

This game did not hold my attention at all. *

I believe I was skilled at this game. *

I think playing this game could help me understand the issues with the code *

I am satisfied with my performance at this game *

07/06/2022 23:50 End of interview questionnaire

https://docs.google.com/forms/d/1vR18wA39G6dR0juBK9YSlYbovJ5GhAREfYwIhDClcv8/edit 3/4

8.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

9.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

10.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

11.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

I enjoyed playing this game very much. *

I would be willing to play again because it has some value to me. *

This game was fun to play *

After playing this game for a while, I felt competent. *

07/06/2022 23:50 End of interview questionnaire

https://docs.google.com/forms/d/1vR18wA39G6dR0juBK9YSlYbovJ5GhAREfYwIhDClcv8/edit 4/4

12.

Une seule réponse possible.

Strongly disagree

1 2 3 4 5 6 7

Strongly agree

Ce contenu n'est ni rédigé, ni cautionné par Google.

I think that playing this game is useful for a developer. *

 Forms

The Coding Of Isaac
Interview information sheet

You are invited to participate in a research study that explores how effective a video game
would be in the context of software visualization. After reading this information sheet, you will
have the opportunity to ask any questions you may have. You will be separately requested to
provide consent for participating in the study.

Purpose of the research The goal of this study is to determine if the video game medium is an
effective way to represent the state of the code and technical debt of an IT development project.

Description of the process Subjects will be requested to provide their opinion on the game
they’ll play during the interview. The interview is expected to take approximately 30-40 minutes to
be completed.

Procedures for collecting research data During the interview, the participant will be asked to
describe their thoughts during the game and answer a few questions. At the end of the interview,
the participant will be asked to complete a questionnaire. A microphone will be used to record the
interview and the computer screen will also be recorded.

Potential risks and benefits of participation You will not receive any direct benefit from
participating in the study. The procedures and methods used during this study do not involve
health risks, social risks, financial risks and risks relating to personal data breaches.

Data confidentiality, processing and storage All personal data collected during the study will
be processed in compliance with the EU’s General Data Protection Regulation (GDPR) and the
data protection laws of Canada. Data about individual participants will not be disclosed to
external persons. The data used in this study will be obtained through an interview, a
questionnaire, a microphone and a screen capture. The data will be accessible only to the
researchers on a Google Drive account (owned by Aniss Grabsi) and the processed data will be
stored on the same Google Drive account for a maximum of 2 years.

Protecting the participants' privacy in research papers/publications The research materials
and data collected during the study will be retained by Aniss Grabsi for a maximum of 2 years,
after which they will be securely destroyed. The data will not include personal information on the
participant. Prior to analysis and dissemination, all the data will be completely anonymized. Raw
data will not be disclosed to any third parties.

Funding sources None

Voluntary participation Participation in this study is entirely voluntary, and you have the right to
withdraw from the study at any time, either permanently or for a temporary period. Refusal to
participate or discontinuing participation at any time will not affect any treatment you may later
receive. The data collected on the subjects to the point of withdrawal will also be removed from
the database.

Privacy protection in the context of research papers and communicating about the study
No confidential information or any type of information that might enable the identification of the

subjects will be collected. The questionnaires are completely anonymous. Data will be processed
only on researcher’s computers and published only in aggregated form. Participants will receive
a summary of the findings after the study has been completed. The results can be reported in the
form of a scientific publication.

Inquiries Please direct all inquiries about the study to one of the following researchers

Researchers’ contact details
Name: Aniss Grabsi
Unit: Department of Computer Science, University of Namur (UNamur)

Name: Anthony Bayet
Unit: Department of Computer Science, University of Namur (UNamur)

Email address: aniss.grabsi@student.unamur.be or qcr947@mail.usask.ca

Email address: anthony.bayet@student.unamur.be or lpf713@mail.usask.ca

	Introduction
	Background
	Video Game
	Game elements
	Gamification
	Interactions
	Active or passive
	Offline or real-time
	Dungeon crawler genre
	Game components
	Technologies used

	Code Quality and Technical Debt
	SonarCloud

	Measurement theory
	Theory
	Application to quality metrics
	Application to game variables

	Conclusion

	Related Work
	Research questions
	Methodology
	Design
	Rooms
	Enemies
	Type
	Size
	Spawn
	Health

	Player
	Navigation
	Map
	Combat

	Sound
	Visualization tool features
	Tutorial
	Project selection
	Conclusion

	Implementation
	Architecture
	Game flow
	SonarCloud

	Evaluation Methodology
	Participants selection
	Interview objectives
	Protocol
	Tools used for coding and analysis
	Data coding process
	Data analysis process

	Pilot test
	Resulting changes
	Questionnaire
	Colors
	Game

	Results
	Mapping
	Information
	Freeze feature
	Music
	Color scales
	Navigation
	Gameplay
	Goal of the game
	Target users
	Potential usage
	Missing features
	Project selection
	Performance
	Others

	Discussions
	Threats to validity
	Future works
	Conclusion
	Bibliography
	Appendix
	Tutorial room designs
	Javascript game frameworks comparison
	Consent form
	Demographics form
	End of interview questionnaire
	Information sheet

