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ABSTRACT

We develop a method for investigating conditional extremal relationships between variables at their
extreme levels. We consider an inner product space constructed from transformed-linear combinations
of independent regularly varying random variables. By developing the projection theorem for the
inner product space, we derive the concept of partial tail correlation via projection theorem. We
show that the partial tail correlation can be understood as the inner product of the prediction errors
associated with the best transformed-linear prediction. Similar to Gaussian cases, we connect partial
tail correlation to the inverse of the inner product matrix and show that a zero in this inverse implies a
partial tail correlation of zero. We develop a hypothesis test for the partial tail correlation of zero
and demonstrate the performance in a simulation study as well as in two applications: high nitrogen
dioxide levels in Washington DC and extreme river discharges in the upper Danube basin.

Keywords First keyword · Second keyword ·More

1 Motivation

For Gaussian random vectors, the covariance matrix provides complete information about dependence between variables.
Even so, conditional relationships, which are a key concept for understanding causal structures between variables,
are not directly apparent from the covariance matrix. In Gaussian cases, conditional relationships can be completely
specified since conditional distributions are obtainable and remain Gaussian. Conditional relationships are more readily
apparent from the the precision matrix (the inverse of the covariance matrix). The conditional relationship between Xi

and Xj given all other elements of a Gaussian random vector (denoted by X\(i,j)) is related to the (i, j)th element of
the precision matrix. Specifically, if the (i, j)th element of the precision matrix is zero, that is Σ−1

i,j = 0, then Xi and
Xj are conditionally independent given X\(i,j).

When a distributional assumption is not made, one cannot fully characterize conditional relationships. However, the
notion of partial correlation provides a measure of the strength of the conditional relationships between two variables.
Consider a centered p-dimensional random vector Xp with covariance matrix Σ. Partitioning into two subvectors,
let Xp = (X(1)T ,X(2)T )T , where X(1) = (Xi, Xj)

T and X(2) = XT
\(i,j), and partition the covariance matrix

accordingly

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

The partial correlation can be connected to the idea of residuals. Consider the matrix

Σ1|2 = E[(X(1) − X̂)(X(1) − X̂)T ],

∗Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding
agencies.
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where X̂ = (X̂i, X̂j)
T is the vector of best linear predictors in terms of mean squared prediction errors. The partial

correlation between Xi and Xj given X\(i,j) is given by

ρij =
[Σ1|2]12√

[Σ1|2]11[Σ1|2]22

.

Note that ρij = 0 if and only if [Σ1|2]12 = 0. By matrix inversion, we can show that if the (i, j)th element in the
precision matrix is zero, then the partial correlation between Xi and Xj is also zero.

To illustrate conditional relationships between variables, consider the simple 4-dimensional linear modelX1

X2

X3

X4

 =

 1 0 0 0
φ 1 0 0
φ2 φ 1 0
φ3 φ2 φ 1


Z1

Z2

Z3

Z4

 ,
where |φ| < 1 and Zi are uncorrelated noise terms with mean 0 and variance 1. Another way of thinking of this model
is through the equation

Xi = φXi−1 + Zi,

which if X0 = 0 a.s., can generate Xi sequentially for i = 1, . . . , 4. The precision matrix of X4 = (X1, ..., X4)T is

Q := Σ−1
X4

=

 1 −φ 0 0
−φ 1 + φ2 −φ 0
0 −φ 1 + φ2 −φ
0 0 −φ 1

 .
The sparsity seen in the precision matrix can lead to model simplification. In the Gaussian setting, precision matrices
have been linked to Gaussian Markov random fields, which in turn can be linked to graphical representations for models
[Rue and Held, 2005]. Following the convention in [Rue and Held, 2005] of connecting graph nodes for non-zero
entries of the precision matrix yields the graph in Figure 1 for the illustrative model. Since we have not specified the
Xi’s to be Gaussian, the graph does not imply truly Markov behavior. However, in terms of linear prediction, the
predicted value of Xi given only its neighbors Xi−1 and Xi+1 is the same as if predicted on X4 \Xi.

Figure 1: The graph given by the precision matrix of the illustrative model.

As it is based on covariance, partial correlation describes conditional relationships at the center of the distribution and
is not well-suited for describing relationships in the tail. In the past few years, there has been a concerted effort to
develop simplified models for high dimensional extremes based on graphical models and conditional relationships at
extreme levels. Gissibl and Klüppelberg [2018] develop causal structure for max linear models via directed acyclic
graphs. Directed graphs differ from Figure 1 in that the graph edges have direction. Via max linear operations, Gissibl
and Klüppelberg [2018] connect directed acyclic graphs to max stable models, and model sparsity is achieved from the
graph structure simplifying high-dimensional models. In other work, Engelke and Hitz [2020] develop the notion of
conditional independence for a multivariate Pareto distribution. In particular, Engelke and Hitz [2020] focus on the
Hüsler and Reiss [1989] model which is characterized by a variogram. The graphical structure of the Hüsler and Reiss
[1989] can be described by a sparse pattern from precision matrices. Engelke and Hitz [2020] use AIC to perform
likelihood-based model selection, and use a greedy algorithm to stepwise search of graphical models.

In this work, we develop a novel method for characterizing and investigating extremal conditional relationships between
pairs of variables. We rely on multivariate regular variation on the positive orthant to describe extremal dependence
in the upper tail, which is assumed to be the direction of interest. We develop the projection theorem for the inner
product space defined in Lee and Cooley [2021], and we consider subspaces spanned by a collection of p variables.

2



arXiv Template A PREPRINT

Via the projection theorem, we develop the idea of partial tail correlation. We show that partial tail correlation can be
understood as the inner product of the prediction errors associated with the transformed linear prediction. Similar to the
Gaussian case, we connect partial tail correlation to the inverse of the inner product matrix, and show that a zero in this
inverse implies a partial tail correlation of zero. Our approach differs from Gissibl and Klüppelberg [2018] in that our
approach is more closely linked to ideas from linear models in non-extreme statistics. Our approach is less model-based
than that of Engelke and Hitz [2020] in that we do not specify the full model, but instead only work from summaries of
pairwise dependence.

In terms of inference, we connect the matrix of inner products to the tail pairwise dependence matrix (TPDM) in Cooley
and Thibaud [2019]. We define the observed residuals, which when considered in pairs are regularly varying in R2

rather than on the positive orthant. Finally, we develop a test for the hypothesis that the partial tail correlation is zero.
We demonstrate the performance of this test via a simulation study as well as in two applications: high nitrogen dioxide
levels in Washington D.C. to explore conditional extremal relationships between stations ,and assessing flood risk in
application to extreme river discharges in the upper Danube basin which was studied in Engelke and Hitz [2020].

2 Background

2.1 Multivariate Regular Variation

Our framework assumes multivariate regular variation, which is closely related to classical multivariate extreme value
analysis [De Haan and Ferreira, 2007, Appendix B]. Let X be a p-dimensional regularly varying random vector in
Rp+ = [0,∞]p (denoted by RV p+(α)). A formal definition is that X ∈ RV p+(α) is regularly varying if there exists a
normalizing function b(s) → ∞ as s → ∞ and a non-degenerate limit measure νX for sets in E := [0,∞)p \ {0}
such that

sPr(b(s)−1X ∈ ·) v−→ νX(·) (1)
as s → ∞, where v−→ indicates vague convergence in the space of non-negative Radon measures on [0,∞]p \ {0}
[Resnick, 2007]. The normalizing function is of the form b(s) = U(s)s1/α where U(s) is slowly varying, and the tail
index α determines the power law of the tail. Applying the same normalization b(s) for all components of X , we
assume X has common marginal distributions throughout.

Following notations in Resnick [2007], given any norm ‖ · ‖, let T : X 7→ (‖X‖,X/‖X‖) = (R,W ) be the polar
coordinate transformation. We can equivalently formulate the regular variation by Resnick [2007],

sPr((b(s)−1R,W ) ∈ ·) ν−→ cνα ×HX , (2)

where να is the measure on (0,∞] and HX is the angular (or spectral measure) on the unit ball Θ+
p−1 = {w ∈ E :

||w|| = 1}. The angular measure HX fully characterizes tail dependence in the limit; however, modeling HX is
challenging in high dimensions.

The right hand side in (2) is a product measure, implying that the radial and angular measure are independent of each
other in the limit. For a set C(r,B) = {x ∈ Rp+ : ||x|| > r,x/||x|| ∈ B} defined with some high threshold r and a
Borel set B ⊂ Θ+

p−1, the scaling property of HX implies νX(C(r,B)) = cr−αHX(B).

2.2 Tail Pairwise Dependence Matrix

To fully characterize the angular measure is challenging even in moderately large dimension. Instead, we use the
summary information of tail dependence in a matrix of pairwise dependence measures, which is obtainable in high
dimensions. We choose a bivariate dependence measure which has similar properties to covariance. Let X ∈ RV p+(2)

have its angular measure HX . We consider the tail pairwise dependence matrix ΣX = {σXij
}i,j=1,··· ,p ∈ R+

p×p
defined in Cooley and Thibaud [2019]. The (i, j)th element of ΣX is σXij

=
∫

Θ+
p−1

wiwjdHX(w) on Θ+
p−1 = {w ∈

Rp−1
+ : ||w||2 = 1} and is essentially the extremal dependence measure of Larsson and Resnick [2012].

However, unlike Larsson and Resnick [2012], we set two main different features in our framework. First of all,
we require α = 2 and the L2 norm to make ΣX have similar properties to a covariance matrix; ΣX is positive
semi-definite [Cooley and Thibaud, 2019]. In addition, we do not require HX to be a probability measure so that
the diagonal elements σXii

imply the relative magnitudes of the respective elements Xi like a covariance matrix.
The relation between the scale and the magnitude of each element of X can be readily observed by regular variation
lims→∞ sPr(b(s)−1Xi > c) = c−2σX ii. By letting x = cU(s)s1/2, the relation can be equivalently expressed as

lim
x→∞

Pr(Xi > x)

x−2U(x)
= σX ii. (3)

3
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Therefore, the magnitude of Xi tied to the diagonal element σXii is based on tail probabilities. Furthermore, the sum
of diagonal elements is identical to the total mass of the angular measure since

∑p
i=1 σXii =

∫
Θ+

p−1
dHX(w). If the

(i, j)th element of σij = 0 is zero, then it implies the asymptotic independence of (Xi, Xj) since HXp
({w ∈ Θ+

p−1 :

wi > 0, wj > 0}) = 0. Unlike covariance matrices, there is an additional property of the TPDM in that it is completely
positive, meaning there exists some q∗ <∞ and a nonnegative p× q∗ matrix A∗ such that ΣX = A∗A

T
∗ . The value of

q∗ is unknown, and A∗ is not unique.

2.3 Transformed Linear Operations

To establish a vector space in the positive orthant, Cooley and Thibaud [2019] defined transformed linear operations.
For x ∈ Rp+ = [0,∞)p, a key idea is to consider a monotone bijection function t mapping from R to R+, with
t−1 its inverse. The transform t is applied to x or y := t−1(x) componentwise. For x1 and x2 ∈ Rp+ = [0,∞)p,
consider the transformed linear operations: vector addition x1⊕x2 = t{t−1(x1) + t−1(x2)}, and scalar multiplication
a ◦ x1 = t{at−1(x1)} for a ∈ R. We can easily show that Rp+ with these transformed-linear operations is a
vector space [Cooley and Thibaud, 2019]. Furthermore, for xj ∈ R+ and aj ∈ R, j = 1, ..., q, a transformed-

linear combination is defined as a1 ◦ x1 ⊕ · · · ⊕ aq ◦ xq = t
{∑q

j=1 ajt
−1(xj)

}
. Let A = (a1, ...,aq) be a p × q

matrix of real numbers where aj ∈ Rp is a p-dimensional column vector for j = 1, . . . , q. Matrix multiplication is
defined as A ◦ x = a1 ◦ x1 ⊕ · · · ⊕ aq ◦ xq = t{At−1(x)} and note that A ◦ x ∈ Rp+. For a matrix B ∈ Rr×p,
B ◦A ◦ x = B ◦ t{At−1(x)} = t{BAt−1(x)} = BA ◦ x. It coincides with the standard matrix multiplication.

More importantly, to preserve regular variation on the positive orthant, Cooley and Thibaud [2019] consider the specific
transform t : R→ (0,∞), t(y) = log{exp(y) + 1} and its inverse t−1 : (0,∞)→ R, t−1 = log{exp(x)− 1} under
some conditions. This transform t is called the softplus function widely used in neural networks. The important property
that the transform must meet is such that limy→∞ t(y)/y = limx→∞ t−1(x)/x = 1. The condition implies that the
transform negligibly affects large values. Consider Xi = (Xi1, . . . , Xi,p)

T ∈ RV p+(α), another condition we require
is a lower tail condition P (Xi,j < x) → 0 as x → 0. This condition ensures that a ◦Xi does not affect the upper
tail for a < 0. For the softplus t, the lower tail condition is met since sPr{Xi,j ≤ exp(−kb(s))} → 0 as s → ∞
for all k > 0, j = 1, · · · , p. This lower tail condition ensures that none of marginals have enough non-zero mass at 0.
The lower tail condition is met by standard regularly varying distributions such as the Pareto and the Fréchet. Other
transforms t : R→ R+ meeting both the aforementioned limiting properties and the lower tail condition can be used to
preserve regular variation on the positive orthant.

More precisely, Cooley and Thibaud [2019] show the following.

Proposition 2.1. Let sPr(b(s)−1Xi ∈ ·)
ν−→ νXi

(·), i = 1, 2 and X1,X2 be independent, then

sPr(b(s)−1(X1 ⊕X2) ∈ ·) ν−→ νX1(·) + νX2(·)

Proposition 2.2. Let sPr(b(s)−1X ∈ ·) ν−→ νX(·), then for a ∈ R,

sPr[b(s)−1(a ◦X) ∈ ·] ν−→
{

aανX(·) if a > 0

0 if a ≤ 0

Furthermore, Cooley and Thibaud [2019] consider a simple and useful model framework for X ∈ RV p+(α) via
transformed linear combinations of independent regularly varying random variables. Under the aforementioned
propositions, we can construct a regularly varying random vector X by applying an arbitrary matrix A to a vector of
independent regularly varying random variables Z. Let A = (a1, . . . ,aq) with maxi=1,...p aij > 0 for all j = 1, ..., q,
where aj ∈ Rp and hence A ∈ Rp×q . Let

X = A ◦Z = t(At−1(Z)), (4)

where Z = (Z1, . . . Zq)
T is a vector of independent and identically distributed regularly varying random variables

meeting sPr(b(s)−1Zj > z) → z−α as s → ∞ for j = 1, . . . , q and the lower tail condition. Then, X ∈ RV p+(α),
and when normalized by b(s), its angular measure is HX =

∑q
j=1 ‖a

(0)
j ‖αδa(0)

j /‖a(0)
j ‖

(·), where δ is the Dirac mass
function. The angular measure HX is consistent with point masses corresponding to the normalized columns of A. The
zero operation a(0) := max(a, 0) is applied to vectors or matrices componentwise throughout.

Cooley and Thibaud [2019] show that as q →∞, the class of angular measures constructed by this matrix multiplication
is dense in the class of possible angular measures, implying we are only required to consider a nonnegative matrix A to
construct the dense class.
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If X = A ◦Z as in (4), the TPDM of the resulting vector is ΣA◦Z = A(0)A(0)T . Further, if X ∈ RV p+(2) has TPDM
ΣX , the completely positive decomposition implies that there exists a 0 < q∗ <∞ and a nonnegative p× q∗ matrix A∗
such that X∗ := A∗ ◦Z has TPDM ΣX∗ = ΣX .

3 Projection Theorem in Inner Product Space Vq

3.1 Inner Product Space Vq

We briefly review the vector space of regularly varying random variables constructed from a transformed-linear
combinations that was introduced by Lee and Cooley [2021]. For a ∈ Rq , the vector space is,

Vq =
{
X;X = aT ◦Z = a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq}, (5)

where Zj ∈ RV 1
+(2), j = 1, . . . , q, are independent regularly varying random variables meeting lower tail condition

sP (Zj ≤ exp(−kb(s))) → 0 as s → ∞ with a common normalization limz→∞
P (Zj>z)
z−2L(z) = 1. We note that Vq is a

stochastic vector space and a Hilbert space [Lee, 2022]. For any X1, X2 in Vq , the inner product of X1 = aT1 ◦Z and
X2 = aT2 ◦Z is defined as

〈X1, X2〉 := aT1 a2 =

q∑
i=1

a1ia2i.

We define the angle between X1 and X2 to be

θ = cos−1[〈X1, X2〉/(||X1|| ||X2||)],
where θ ∈ [0, π]. We say X1, X2 ∈ Vq are orthogonal if 〈X1, X2〉 = 0. The norm of X is defined as ‖X‖Vq =√
〈X,X〉. We use the subscript Vq to remind that the norm is based on the coefficients which determine the random

variable and to distinguish from the usual Euclidean norm based on a location in space. The norm induces the metric of
X1 and X2 as d(X1, X2) = ‖X1 	X2‖Vq =

√∑q
i=1(a1i − a2i)2.

We recall the tail ratio of X = aT ◦Z ∈ Vq,

TR(X) := lim
z→∞

P (X > z)

P (Z1 > z)
=

q∑
j=1

(a
(0)
j )

2
,

in Lee and Cooley [2021] where only the positive elements of a contribute. The square in the exponent arises because
we assume α = 2. Unlike the norm which is not estimable since the random variable’s coefficients are not observable
from data, the tail ratio is estimable. However, the metric can be connected to the tail ratio

TR (max((X1 	X2), (X2 	X1))) =

q∑
j=1

(a1j − a2j)
2 = d2(X1, X2),

because P (max(Z1, Z2) > z) ∼ P (Z1 > z) + P (Z2 > z) as z → ∞ for independent regularly varying random
variables Z1 and Z2 [cf. Jessen and Mikosch, 2006, Lemma 3.1]. This equality still holds for non-independent regularly
varying random variables X1 	X2 and X2 	X1 because of the max operation. See proofs in Lee [2022]. In general, it
is required for α = 2 to connect the inner products of Vq to quantities which are observable from the tail behavior of
the data. We will return to this discussion in Section 5.

For a random vector whose elements are in Vq: Xp = (X1, . . . , Xp)
T where Xi = aTi ◦Z ∈ Vq for i = 1, . . . , p, it

was shown that Xp ∈ RV p+(2) and Xp is of the form A ◦Z. We denote the matrix of inner products by

ΓXp
= 〈Xi, Xj〉i,j=1,...p = AAT . (6)

The inner product matrix ΓX for Xi ∈ Vq will be connected to the TPDM ΣX for X ∈ RV p+(2) in section 5

3.2 Projection Theorem in Vq

As any X ∈ Vq is uniquely identifiable by its vector of coefficients a, Vq is isomorphic to Rq with the same inner
product. Therefore, Vq is complete and is Hilbert space [Lee, 2022]. Let Xi = aTi ◦Z ∈ Vq, i = 1, . . . , p, where p is
assumed to be less than q. We consider the subspace VA spanned by a finite set {X1, . . . , Xp}, where A refers to the
matrix which generates Xp = (X1, . . . , Xp)

T . Thus,

VA = {bT ◦Xp; b ∈ Rp}.

5
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We develop the projection theorem in the vector space Vq constructed from transformed-linear combinations. For any
X ∈ Vq , we define a transformed-projection mapping PVA by

PVAX = {bT ◦Xp such that ||X 	 (bT ◦Xp)||Vq = inf
Y ∈VA

||X 	 Y ||Vq}.

We say PVA is a transformed-linear projection mapping of Vq onto VA. We define the orthogonal complement of a
subset V⊥A ⊂ Vq as

V⊥A = {X ∈ Vq; 〈X,Y 〉 = 0 ∀Y ∈ VA};
that is, V⊥A is the set of all elements of Vq which are orthogonal to all elements of VA.

Lee and Cooley [2021] briefly mentioned the projection theorem as an alternative method to find the optimal transformed
linear predictor of an unobserved Xp+1 given Xp. Here, we present a more thorough development of the projection
theorem. The following development of the projection theorem and its properties are similar to the the presentation in
Brockwell et al. [1991] and Cline [1983]. Instead of considering transformed linear operations of nonnegative regularly
varying random variables as we do, Cline [1983] considered standard linear combinations of symmetric regularly
varying random variables with any tail index. We defer all proofs to the Appendix A and B.
Theorem 3.1. (Projection theorem) Let VA be the previously defined subspace of the Hilbert space Vq and X ∈ Vq.
Let Xi =

∑q
j=1 aij ◦ Zj ∈ Vq, i = 1, . . . , p, and let X =

∑q
j=1 a

∗
j ◦ Zj ∈ Vq . Then

i) X̂ := PVAX (X̂ is the projection of X onto VA) has a unique element in VA such that

||X 	 X̂||Vq = inf
Y ∈VA

||X 	 Y ||Vq , and

ii) X̂ ∈ VA such that ||X 	 X̂||Vq = infY ∈VA ||X 	 Y ||Vq if and only if X̂ ∈ VA and (X 	 X̂) ∈ V⊥A .

Now, let I be the identity mapping on Vq . The proposition below shows there is a unique mapping PVA of Vq onto VA
such that I − PVA maps Vq onto V⊥A by Theorem 3.1.
Proposition 3.1. (Property of Projection Mappings) Let PVA be the projection mapping of Vq onto a subspace VA.
Then,
i) PVA(α ◦X ⊕ β ◦ Y ) = α ◦ PVAX ⊕ β ◦ PVAY, X, Y ∈ Vq, α, β ∈ R.

[That is, the projection mapping PVA is a linear mapping.]
ii) For every X ∈ Vq , there exist an element of VA and an element of V⊥A such that

X = PVAX ⊕ (I − PVA)X

and this decomposition is unique.

Theorem 3.1 shows that X̂ ∈ VA is the unique element closest to X such that

〈X 	 X̂, Y 〉 = 0 (7)

for all Y ∈ VA. The equation (7) is called the prediction equation and makes X̂ as the best predictor of X ∈ Vq.
When we consider the problem of predicting an unobserved Xp+1 by using the transformed-linear predictor of
(X1, . . . , Xp), the goal is to find X̂p+1 ∈ VA that minimizes ||X̂p+1 	Xp+1||Vq . The prediction equation is written as
〈Xp+1 	 X̂p+1, Xi〉 = 0, for i = 1, · · · , p. This condition can equivalently be expressed with the matrix notation by
the linearity of the inner product.

[< Xp+1, Xi >]
p

i=1 = [< Xi, Xj >]
p

i,j=1 [bi]
p

i=1 =
[∑q

k=1 aikajk
]p
i,j=1

[bi]
p

i=1 (8)

Solving this equation, this in turn yields the form of the best transformed linear predictor of X̂ = bT ◦Xp in terms of
minimizing the tail metric.

3.3 Inner Product Matrix of Prediction Errors

Changing focus from the setting where Xp is observed and Xp+1 is unobserved, we continue to assume Xp =

(X1, . . . , Xp)
T where Xi ∈ Vq, for i = 1, . . . , p,, but assume we partition the vector so that Xp = (X(1)T ,X(2)T )T ,

where X(1) has dimension p1 < p and X(2) has dimension p− p1. Without loss of generality, Xp can be reordered so
that X(1) is any subvector of elements of Xp. Partitioning A yields[

X(1)

X(2)

]
=

[
A(1)

A(2)

]
◦Zq.

6
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The matrix of inner products of (X(1)T ,X(2)T )T is

Γ(X(1)T ,X(2)T )T =

[
A(1)A(1)T A(1)A(2)T

A(2)A(1)T A(2)A(2)T

]
:=

[
Γ11 Γ12

Γ21 Γ22

]
. (9)

We now consider the problem of finding PVAX
(1) via projection theorem. Minimizing d(bT ◦X(2),X(1)) is identical

to minimization of ‖bTA(2) −A(1)‖2Vq . Taking derivatives with respect to b and setting equal to zero, the minimizer b̂
solves (A(2)A(2)T )b̂ = A(2)A(1)T . If (A(2)A(2)T ) is invertible, then the solution b̂ is,

b̂ = (A(2)A(2)T )−1A(2)A(1)T = Γ−1
22 Γ21. (10)

With the best linear predictor, we can then consider the vector of prediction errors X(1)	 X̂ = (A(1)−bTA(2)) ◦Z ∈
RV +

p1 (2), and whose elements are in Vq. The inner product of these prediction errors has a similar form to the
conditional covariance matrix under Gaussian assumptions.

‖X(1) 	 X̂‖2Vq : = 〈X(1) 	 X̂,X(1) 	 X̂〉
= (A(1) − b̂TA(2))(A(1) − b̂TA(2))T

= Γ11 − Γ12Γ−1
22 Γ21.

(11)

4 Partial Tail Correlation

4.1 Partial Tail Correlation via the Projection Theorem

We now turn attention to developing the notion of partial tail correlation between pairs of elements of a vector
Xp = (X1, . . . , Xp)

T where Xi ∈ Vq for i = 1, . . . , p. Let X(1) = (Xi, Xj)
T and X(2) = (Xp \ (Xi, Xj))

T . From
a geometric perspective the projection theorem provides a way of defining the partial tail correlation between Xi and
Xj given X(2) as the cosine of the angle between the prediction errors.

Because we aim to project X(1) onto the space spanned by X(2), we consider the subspace VA2
spanned by a finite

set {X1, . . . , Xp} \ {Xi, Xj}. Note that VA2
⊂ VA. We define PVA2

as the projection mapping of Vq onto VA2
.

We denote by PVA2
X(1) the projection of X(1) onto the space VA2 . We call (X(1) 	 PVA2

X(1)) prediction errors
obtained by projecting X(1) onto the space VA2

. The orthogonality condition says PVA2
X(1) = bT ◦X(2) is such that

X(1) 	 PVA2
X(1) is orthogonal to the space VA2 . Proposition 3.1 says that X(1) can be uniquely expressed as the

sum of PVA2
X(1) and (I − PVA2

)X(1).

Definition 4.1. Let Xi ∈ Vq for i = 1, ..., p. Denote by VA2
the space spanned by the set of variables X(2) =

(Xp \ {Xi, Xj})T . Let Xi	PVA2
Xi and Xj 	PVA2

Xj be prediction errors obtained after projecting Xi and Xj onto
the space VA2

, respectively. Then, the partial tail correlation between Xi and Xj is defined as

ρEij =
< Xi 	 PVA2

Xi, Xj 	 PVA2
Xj >

‖Xi 	 PVA2
Xi‖Vq‖Xj 	 PVA2

Xj‖Vq

, (12)

where the superscript E in ρEij stands for "extreme". 〈Xi 	 PVA2
Xi, Xj 	 PVA2

Xj〉 = 0 iff ρEij = 0, which we denote
by Xi ⊥ Xj |X(2).

As before we denote the inner product matrix of prediction errors by

Γ1|2 :=<X(1) 	 PVA2
X(1),X(1) 	 PVA2

X(1) >

= Γ11 − Γ12Γ−1
22 Γ21.

We define Γ1|2 as the conditional inner product matrix (IPM). The partial tail correlation can be represented by elements
of the conditional IPM,

ρEi,j =
aij√
aiiajj

, i, j = 1, 2, (13)

where Γ1|2 = [aij ]i,j=1,2. Note that Γ1|2 is positive semi-definite but not completely positive.

7



arXiv Template A PREPRINT

4.2 Partial Tail Correlation and Transformed Linear Prediction

We return temporarily to the problem of predicting one variable Xp+1 ∈ Vq given Xp ∈ RV p+(2). In this setting,
the partial tail correlation corresponds to the coefficients of the vector b for the best transformed-linear predictor.
Importantly, if bi denotes the ith element of b, bi = 0 iff Xp+1 ⊥ Xi|Xp \ X1. This implies that if Xp+1 and Xi

given Xp \Xi have partial tail correlation of zero, then Xi adds no additional information to the transformed-linear
prediction of Xp+1. Without loss of generality, below we consider the specific case where i = 1.
Proposition 4.1. Let VA be the previously defined subspace of the Hilbert space Vq . Assume Xi ∈ Vq , i = 1, ..., p+ 1.
Then the partial tail correlation between Xp+1 and X1 is zero if and only if the ith coefficient of b in the best
transformed-linear predictor X̂p+1 = bT ◦Xp = b1 ◦X1 ⊕ · · · ⊕ bp ◦Xp is zero.

Proof. By projection theorem, the space VA can be decomposed into two orthogonal subspaces VA1
spanned by

(X2, · · · , Xp) and VA⊥1 spanned by (X1 	 PVA1
X1), respectively. Thus, the projection of Xp+1 onto the space VA

can also be split into two parts,

X̂p+1 = PVAXp+1 = PVA1
Xp+1 ⊕ PV

A⊥1
Xp+1 = PVA1

Xp+1 ⊕ c ◦ (X1 	 PV
A⊥1
X1), (14)

where c =
〈Xp+1,X1	PVA1

X1〉
||X1	PVA1

X1||2 =
〈Xp+1	PVA1

Xp+1,X1	PVA1
X1〉

||X1	PVA1
X1||2 since PVA1

Xp+1 ⊥ X1 	 PVA1
X1. We show that c

is related to the partial tail correlation between X1 and Xp+1. To find the form of c, we note that the projection of
any variable in Vq onto the space VA1 is represented by the transformed-linear combination of the remaining variables
{X2, · · · , Xp}. The projection of X1 onto VA1 is PVA1

X1 =
⊕p−1

i=1 di ◦Xi+1 and the projection of Xp+1 onto VA1 is
PVA1

Xp+1 =
⊕p−1

i=1 ei◦Xi+1. Substituting these projections into (14), X̂p+1 = c◦X1⊕
(∑p−1

i=1 (di−cei)◦Xi+1

)
. By

matching the coefficient c ofX1 in (14) with the b1 of the best transformed-linear predictor X̂p+1 = b1◦X1⊕· · · bp◦Xp,
the coefficient c can be expressed in terms of the inner product of residuals,

c = b1 =
〈Xp+1, X1 	 PVA1

X1〉
‖X1 	 PVA1

X1‖2Vq

=
〈Xp+1 	 PVA1

Xp+1, X1 	 PVA1
X1〉

‖X1 	 PVA1
X1‖2Vq

.

Thus, if b1 is zero, then the partial tail correlation between Xp+1 and X1 is zero.

Another way of understanding PV
A⊥1
Xp+1 is through the regression setting. We consider a simple linear regression

with no intercept Y = Xβ + ε. The projection of Y onto the space spanned by X is given by Ŷ = PXY = Xβ̂ where
β = (XTX)−1XT y. Note that Ŷ can be expressed in terms of the inner products, we have Ŷ = 〈X,y〉

〈X,X〉X . By replacing

Y and X with Xp+1 and X1 	 PVA1
X1 respectively, X̂p+1 = PVA1

Xp+1 =
〈Xp+1,X1	PVA1

X1〉
||X1	PVA1

X1||2 (X1 	 PVA1
X1).

4.3 Relation between Partial Tail Correlation and the Inverse Inner Product Matrix

In non-extreme analysis of dependence, the precision matrix (the inverse of the covariance matrix) provides information
about conditional relationships between variables. In the non-extreme setting, the partial correlation between Xi

and Xj given all other elements of X\(i,j) is related to the (i, j)th element of the precision matrix. Specifically,
Σ−1
ij = 0⇔ Xi ⊥ Xj |X\{Xi,Xj}. Analogously, we connect the idea of partial tail correlation in (12) to the inverse of

the inner product matrix. The relation between the partial tail correlation and the inverse inner product matrix can be
shown by matrix inversion.

Let Xp ∈ RV +
p (2) be a p-dimensional regularly varying random vector where Xi ∈ Vq, i = 1, . . . , p. As in Section

4.1, partition Xp into two subvectors X(1) := (Xi, Xj)
T and X(2) := XT

\(i,j). Recall the block form of the inner

product matrix of Xp = (X(1)T ,X(2)T )T

ΓXp
:=

[
Γ11 Γ12

Γ21 Γ22

]
, (15)

By the matrix inversion in block form,

Γ−1
Xp

=

[
Γ−1

1|2 −Γ−1
1|2Γ12Γ−1

22

−Γ−1
22 Γ21Γ−1

1|2 Γ−1
22 + Γ−1

22 Γ21Γ−1
1|2Γ12Γ−1

22 ,

]
(16)

8
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where Γ−1
1|2 ∈ R2×2 is the inverse of the conditional IPM. Note that the matrix Γ−1

1|2 could have negative off-diagonal
elements. Since both of Γ1|2 and Γ−1

1|2 are a 2 by 2 matrix, the relation between Γ1|2 and Γ−1
1|2 can be readily shown by

the inversion formula,

Γ−1
1|2 =

1

|Γ1|2|

[
[Γ1|2]22 −[Γ1|2]12

−[Γ1|2]21 [Γ1|2]11

]
, (17)

where [Γ1|2]i,j=1,2 is the element of Γ1|2 and a determinant |Γ1|2| = [Γ1|2]11[Γ1|2]22 − [Γ1|2]12[Γ1|2]21. Thus

ρEi,j =
[Γ1|2]12√

[Γ1|2]11[Γ1|2]22

=
−[Γ−1

1|2]12√
[Γ−1

1|2]11[Γ−1
1|2]22

. (18)

Hence, the partial tail correlation between Xi and Xj given X(2) can be represented by the first block matrix of the
inverse IPM. Note that the direction of the partial tail correlation is of the opposite sign of [Γ−1

1|2]12. If [Γ−1
1|2]12 = 0 it

implies that Xi and Xj given X\(i,j) are partially uncorrelated in terms of tail behavior.

We can also consider the case where we predict one variable Xp+1 ∈ Vq conditioned on Xp ∈ RV p+(2). Similarly, let
Γ(Xp+1,XT

p )T be partitioned in block form,

Γ(Xp+1,XT
p )T =

[
Γ11 Γ12

Γ21 Γ22

]
, (19)

where Γ11 ∈ R is a scale of Xp+1 and Γ22 ∈ Rp×p is the IPM of Xp. Suppose Γ22 is invertible, then by the inverse
formula,

Γ−1
(Xp+1,XT

p )T
=

[
1
k − 1

kΓ12Γ−1
22

− 1
kΓ−1

22 Γ21 (Γ22 − Γ21Γ−1
11 Γ12)−1

]
=

[
1
k − 1

kb
T

− 1
kb (Γ22 − Γ21Γ−1

11 Γ12)−1

]
(20)

where k = Γ11 − Γ12Γ−1
22 Γ21 ∈ R. Thus, the inverse IPM can be expressed in terms of the vector b = Γ−1

22 Γ21, and we
see that if the element of Γ−1 relating Xp+1 to Xi, Γ−1

1,i+1, equals zero, then bi = 0.

For illustration, we now consider the transformed-linear modelX1

X2

X3

X4

 =

 1 0 0 0
φ 1 0 0
φ2 φ 1 0
φ3 φ2 φ 1

 ◦
Z1

Z2

Z3

Z4

 (21)

where {Zi} is a sequence of independent regularly varying α = 2 with unit scale. We set φ ∈ (0, 1) to induce a positive
dependence in the {Xi}. The sequential generating equation is

Xi = φ ◦Xi−1 ⊕ Zi, for i = 1, 2, 3, 4,

where X0 = 0 a.s.

By the matrix inversion in (20), the inverse IPM shows a sparse pattern.

Σ−1
(Xp+1,XT

p )T
=

 1 −φ 0 0
−φ 1 + φ2 −φ 0
0 −φ 1 + φ2 −φ
0 0 −φ 1

 , (22)

The partial tail correlation between Xi and Xi−k is zero for |i| > 1. In terms of transformed linear prediction, consider
X̂4 = bT ◦X3 where b = Γ−1

22 Γ21 = (0, 0, φ)T . These optimized weights imply that given X3, knowledge of X1 or
X2 does not provide additional information about X4 in terms of tail behaviors.

5 Positive Subset Vq
+ as a Modeling Framework

In the vector space Vq in (5), we essentially require that the elements of the coefficient vectors a take negative values
for Vq to be a vector space. However, we note that X = a ◦ Z ∈ Vq and X+ = a(0) ◦ Z have the same tail ratio
because negative values in a do not contribute to tail behaviors. Thus, Xp = A ◦ Zq and X+

p = A(0) ◦ Z are

9
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indistinguishable in terms of their tail behavior because they both have the same angular measure: HX = HX+
p

=∑q
j=1 ‖a

(0)
j ‖αδa(0)j /‖a(0)j ‖

(·).

In terms of modeling and inference, it is reasonable to restrict attention to the positive subset Vq+ =
{
X;X = aT ◦Z =

a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq}, where aj ∈ [0,∞), j = 1, . . . , q, and Z = (Z1, . . . Zq)
T meeting a lower tail condition

and having a common unit scale. Critically, if Xp = A ◦Z where A ≥ 0, then ΣX = ΓX = AAT . The assumption
Xi ∈ Vq+ for i = 1, . . . , p is really essential for modeling as the inner product matrix which forms the basis is not
estimable as the coefficients which determine X1 are not observable; however, the TPDM is estimable.

Perhaps most importantly, q is not identifiable, nor does it need to be in order to use the framework for modeling. In
fact, we do not need to believe that our data arise from a linear combination of q regularly varying random variables.
Even if we do not believe that our data are constructed by this linear combinations, our summary matrix or its inverse
is still obtainable from the data and provides a useful information about extreme dependence between variables. The
definition of the TPDM is not tied to Vq, these pairwise dependence summaries can be estimated for any regularly
varying random vector in RV p+(2). If we are willing to make the modeling assumption that Xi = aTi ◦Zq ∈ V

q
+, for

i = 1, . . . , p, we then have all the tools that arise from this inner product space. This is not such a strong assumption
since angular measures arising from p × q matrices A are dense in the class of angular measures for p-dimensional
regularly varying random vectors as q →∞ [Cooley and Thibaud, 2019].

6 Hypothesis Testing for Zero Elements in the Inverse TPDM

6.1 Asymptotic Normality of TPDM Estimates

We aim to develop a hypothesis test for H0 : ρEij = 0 versus H1 : ρEij 6= 0. Towards that aim, we first review
the asymptotic normality of the sample TPDM Σ̂ using results for the extremal dependence measure by (Resnick
[2004];Larsson and Resnick [2012]).

Let Xp ∈ RV p+(2) be a p-dimensional regularly varying random vector such that nP (n−1/2Xp ∈ ·)
ν−→ νXp(·) and

have the angular measure HX . Unlike Larsson and Resnick [2012], we do not require HX to be a probability measure
so that the scale of the components of Xp is retained in the angular measure. We can find the equivalent form of
the extremal dependence measure given as σij = limx→∞mE[WiWj |R > x], where R = ||(Xi, Xj)||, x is a high
threshold, and m = HXp(Θ+

p−1) is the total mass of the angular measure by [Larsson and Resnick, 2012, Proposition4].
This equivalent form provides a natural estimator for σij .

Let x` = (x`,1, . . . , x`,p)
T , ` = 1, . . . , n be realizations of iid copies of Rp+-valued regularly varying vectors with the

tail index α = 2. Letting r` = ‖x`‖ and w` = r−1
` x`, the natural estimator for σij is

σ̂ij(n) =
m̂

k

n∑
`=1

w`,iw`,jI[r` > r(k)], (23)

where m̂ is an estimate of HXp
(Θ+

p−1), k := k(n) is such that limn→∞ k/n = 0 as k →∞, and r(k) is the kth upper
order statistic in the sample of size n. If we preprocess the data to have a common unit scale, then m is identical to p.
When the data are not preprocessed to have a common unit scale, an estimator for m is given as m̂ = (r2

(k)/n)k by
Cooley and Thibaud [2019].

Asymptotic normality is shown for the estimator of the extremal dependence measure in the case of iid observations by
Resnick [2004] and Larsson and Resnick [2012]. The asymptotic normality of σ̂ij(n) is proven under the following
condition. Let F be the distribution function of R and F̄ be its tail probability.

lim
n→∞

√
k
(n
k
mE[WiWjI[R/b(n/k) ≥ t−γ ]]− E[mWiWj

n

k
F̄ (b(n/k)t−γ ]

)
= 0, (24)

holds locally uniformly for t ∈ [0,∞), and assume that τ2 = V ar(WiWj) > 0. Larsson and Resnick [2012] notes
that τ2 = 0 implies asymptotic independence, meaning that the rate factor

√
k increases too slowly to obtain a

non-degenerate limit. This condition implies that the dependence between (Wi,lWj,l) and Rl must decay fast enough
with n as Rl is conditioned to lie above b(n/k). The condition (24) does not require the second-order regular variation
condition and the use of the order statistic does not require to know the normalization b(·). Under the condition (24),
the estimator σ̂ij(n) is asymptotically normal by Larsson and Resnick [2012].

√
k(σ̂ij(n)−mE[WiWj ]) ∼ N(0, τ2

ij),

10
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where m is the total mass of HX(·) and τ2
ij = V ar(σ̂ij).

Following a construction method for Xp as in (4), that is, Xp = A ◦Z ∈ RV p+(2), we can specify an explicit form
of the variance τ2

ij in terms of the angular measure HX being consistent with point masses. For Xi = aTi ◦ Z and

Xj = aTj ◦Z in Vq , the (i, j)th element of ΣA◦Z is given by σij =
∫

Θ+
p−1

wiwjdHA◦Z(w) =
∑q
l=1 a

(0)
il a

(0)
jl , where

HX(·) =
∑q
l=1 ||a

(0)
l ||2δal/||al||(·). To find τ2

ij = V ar(σ̂ij), we first consider

V ar(WiWj) =

∫
Θ+

p−1

(wiwj − E[WiWj ])
2dNX(w) = E[W 2

i W
2
j ]− E[WiWj ]

2,

where NX(·) = m−1HX(·) indicates a probability measure, E[WiWj ] = 1
m

∑q
l=1 a

(0)
il a

(0)
jl , and E[W 2

i W
2
j ] =

1
m

∑q
l=1

a
(0)2

il

||a(0)
l ||

a
(0)2

jl

||a(0)
l ||

. We thus have V ar(σ̂ij) = V ar
(
m
k

∑n
l=1WilWjlI[Rl > R(k)]

)
= m2

k V ar[Wi,1Wj,1] since

(Wi,l,Wj,l)’s are i.i.d. We can obtain an estimate of V̂ ar(σ̂ij) by estimating V ar(Wi1Wj1). To obtain V̂ ar(Wi1Wj1),
a natural estimate for E[WiWj ] and E[W 2

i W
2
j ] are Ê[WiWj ] = 1

k−1

∑k
l=1 wi,lwj,lI[Rl > R(k)] and Ê[W 2

i W
2
j ] =

1
k−1

∑k
l=1 w

2
ilw

2
jlI[Rl > R(k)], respectively.

6.2 Residuals and Asymptotic Normality of the Conditional Inner Product Matrix

The ultimate goal is to derive the asymptotic normality of the sample conditional inner product matrix. We assume
that we observe iid copies of Xp whose elements are in Vq, from which we obtain Σ̂, an estimate of the TPDM. A
straightforward estimator of the conditional inner product matrix is

Γ̂1|2 = [Σ̂11 − Σ̂12Σ̂−1
22 Σ̂21], (25)

where Σ̂ij for i, j = 1, 2 are sample block matrices in (15). However, the distribution of Γ̂1|2 is not straightforward to
obtain from (25).

As the partial tail correlation is tied to the inner product of prediction errors, it is natural to consider using the observed
‘residuals’ to understand the properties of the sample conditional inner product matrix. The prediction errors are in Vq
and X(1) 	 X̂ = (A(1) − bTA(2)) ◦Zq . Thus

Γ1|2 = (A(1) − bTA(2))(A(1) − bTA(2))T ,

and note that Γ1|2 is not necessarily completely positive. Unlike the original data where we can assume away the
importance of any negative coefficients as described in Section 5, here negative coefficients are consequential. If we
consider the TPDM of the prediction errors,

ΣX(1)	X̂ = (A(1) − bTA(2))(0)(A(1) − bTA(2))(0)T 6= Γ1|2.

Furthermore, the order of the definition of the prediction errors matters as the scale of X(1)	 X̂ is (A(1)− bTA(2))(0),
and this differs from the scale of X̂ 	X(1) which is (bTA(2) −A(1))(0).

As the conditional inner product matrix is not completely positive, the direct use of transformed-residuals is not suitable
for estimation. Instead, we consider the preimages of the prediction errors in (4.1) to account for negative coefficients.
Assuming Zj , j = 1, . . . , q, is independent and identically distributed regularly varying random variable with unit
scale meeting lower tail condition nP (Zj ≤ exp

(
−kn1/2

)
) → 0 for any k > 0, we define the preimages of the

transformed-residuals by
U := t−1(X(1) 	 X̂) = (A(1) − bTA(2))t−1(Zq)

which are not restricted to the positive orthant. Lemma A4 in the appendix in Cooley and Thibaud [2019] implies
that U ∈ RV2(2). Let U = (U1, U2)T and continue to let T denote the polar coordinate transformation, T (U1, U2) =
(R,W ), where R = ||(U1, U2)||2 and W = (U1/R,U2/R). We can summarize the second-order behaviors of U with
respect to the angular measure HU . We define

σUij
=

∫
Θ1

wiwjdHU (w), i, j = 1, 2,

where Θ1 = {w ∈ R : ||w||2 = 1}, and HU is the angular measure of U . Thus, the pairwise tail dependence
matrix of U is ΣU := (A(1) − bTA(2))(A(1) − bTA(2))T identical to Γ1|2. In contrast to the fact that σX12

= 0

11
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implies asymptotic independence of X1 and X2, σU12 = 0 does not necessarily mean that elements U1 and U2 are
asymptotically independent. Instead this implies∫

Θ1:w1w2>0

w1w2dHU (w) =

∫
Θ1:w1w2<0

w1w2dHU (w),

meaning that angular components of (w1, w2) are uncorrelated on the L2 unit ball and quadrants of (w1, w2) plane are
balanced.

The off-diagonal element σU12
in Γ1|2 is of primary interest because it is tied to the idea of the partial tail correlation ρEij .

Following similar steps above, let U` = (U`,1, U`,2), ` = 1, . . . , n, be iid copies of U ∈ RV2(2). We set R` = ||U`||2,
W` = (U`,1/R`, U`,2/R`), and k(n) =

∑n
`=1 I[R` > R(k)], is the number of exceedances over the kth upper order

statistic.

Since U is a linear combination of independent Zj’s, its angular measure is discrete and σu12 has a simple form. Let
A(1) − bTA(2) := C = (cT1 , · · · , cTq )T ∈ R2×q. The (1, 2) element of ΣU is

σu12 =

∫
Θ1

w1w2dHU (w) =

q∑
i=1

c1ic2i,

where HU (·) =
∑q
j=1 ||cj ||2δcj/||cj ||(·) and δ(·) is a Dirac mass function.

The natural estimator for σu12 =
∫

Θ1
w1w2dHU (w) = m̃

∫
Θ1
w1w2dNU (w) is given by

σ̂u12,n = m̃

∫
Θ1

w1w2dN̂U (w) =
m̃

k

n∑
l=1

w1lw2lI[Rl > R(k)], (26)

where m̃ is the total mass of the angular measure HU (·) and NU (·) = m̃−1HU (·) is a probability measure. k =∑n
`=1 I[R` > R(k)] is such that limn→∞ k/n = 0 as k →∞ and R(k) is the kth upper order statistic in the sample of

size n.

Under the condition (24), the estimator σ̂u12,n is asymptotically normal by Larsson and Resnick [2012],
√
k(σ̂u12,n − m̃E[W1,1W2,1]) ∼ N(0, τu

2

),

where m̃ is the total mass of the angular measure HU identical to the sum of diagonal elements of the conditional
TPDM Σ1|2. To obtain τu

2

= m̃2V ar(W1W2), we first consider V ar(W1W2),

V ar(W1W2) =

∫
Θ1

(w1w2 − E[W1W2])2dNU (w),

where NU (·) = m̃−1HU (·).

V ar(σ̂u12,n) = V ar
(m̃
k

n∑
l=1

W1lW2lI[Rl > R(k)]
)

=
m̃2

k
V ar[W1,1W2,1] since (W1,l,W2,l)’s are iid

Our estimate τ̂u
2

for m̃2V ar(σu12,n) is obtained in the same manner as above. Under the null hypothesis H0 : ρEij = 0,

since
√
k(σ̂u12,n − σu12) ∼ N(0, τu

2

), we have

σ̂u12,n√
τ̂u2/k

∼ Tk−1, (27)

where Tk−1 denotes a t-distribution with k − 1 degrees of freedom. With the asymptotic result, we can construct
confidence intervals and perform a hypothesis test for zero elements in the inverse TPDM.

6.3 Asymptotic Normality for the Transformed-linear Extreme Illustrative Model

We use a simulation study to illustrate asymptotic normality for the sample conditional inner product matrix and perform
a hypothesis test for zero elements in its inverse. We again consider the four-dimensional transformed-linear extreme
model in (4.3) with generating equation

Xi = φ ◦Xi−1 ⊕ Zi, i = 1, 2, 3, 4,

12
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where {Zi} is a sequence of independent regularly varying random variables meeting lower tail condition, φ ∈ (0, 1)
and X0 = 0 a.s.

Our simulation study aims to estimate the partial correlation between X2 and X4 given X1 and X3, and to test whether
this is significantly different from zero. We set φ = 0.7 and generate n = 10, 000 four dimensional vectors X4. The
largest 2% of the samples is used to find the estimated TPDM Σ̂X4

.

Let X(1) = (X2, X4)T and X(2) = (X1, X3)T . We find b̂ = Σ̂−1
22 Σ̂21 and subsequently find X̂(1). We then obtain

two dimensional vectors of residuals U = t−1(X(1))−t−1(X̂(1)). We have two methods for estimating the conditional
inner product matrix. The first is to use the partitions of the estimated TPDM Γ̂1|2 = Σ̂11 − Σ̂12Σ̂−1

22 Σ̂21. The second
is to estimate Γ1|2 from the residuals. For this method, we use the largest 2% of angular components. We focus on
the off diagonal element [Σ1|2]12. Figure 2 shows the comparison between the kernel density of estimates obtained
from the residuals (solid line) and the kernel density from the partition of the TPDM (dashed line) under repeated
simulations. The figure shows little difference in these methods, and we suggest using the estimate from the partition as
this is immediately available from the estimated TPDM.

Importantly, Figure 2 indicates that the variance of the residuals does in fact capture the uncertainty in the estimates of
the conditional inner product matrix. Following the procedure in Section 6.1, we obtain estimated variances for τu

2

.
From the equation in (27), we construct a 95% confidence interval for each iteration and achieve a coverage rate of 0.95.

−0.2 −0.1 0.0 0.1 0.2

0
5

10
15
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−0.2 −0.1 0.0 0.1 0.2
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10
15

Figure 2: The kernel density based on the residuals (solid line) versus the kernel density from the partition of the TPDM
(dashed line).

7 Application

7.1 Nitrogen Dioxide Air Pollution

We apply the idea of partial tail correlation to daily EPA NO2 data from five stations in the Washington DC metropolitan
area (see Figure 3). We analyze 5163 daily NO2 data between 1995 and 2016 where all five stations have measurements.
We follow the same preprocessing process by Lee and Cooley [2021] so that we can assume each variable Xi ∈ RV 1

+(2)

for i = 1, . . . , 5. Let X(orig)
i denote the random variable for detrended NO2 at the ith location. We apply the empirical

CDF to perform marginal transformation Xi = 1/

√
1− F̂i(X(orig)

i )− δ for each location so that Xi follows a ’shifted’
Pareto distribution for i = 1, . . . 5. Each Xi ∈ RV 1

+(2) and the shift δ = 0.9352 is such that E[t−1(Xi)] = 0. This
shift makes the preimages of the transformed data centered which helps reduce bias in the estimation of the TPDM [Lee
and Cooley, 2021]. Assuming X = (X1, . . . , X5)T ∈ RV 5

+(2), we let Xt = (X1,t, . . . , X5,t)
T denote the random

vector of the daily NO2 level on day t and be iid copies of X.

The goal is to test whether or not extreme NO2 levels between each pair of stations exhibit partial tail correlation.
The first step is to estimate the TPDM Σ̂X . Let xt denote the observed daily NO2 level on day t. For each i 6= j,

13
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let rt,ij = ‖(xt,i, xt,j)‖ and (wt,i, wt,j) = (xt,i, xt,j)/rt,ij . We let σ̂ij = 2k−1
∑n
i=1 wt,iwt,jI[rt,ij > r∗i,j ], where

k =
∑n
t=1 I[rt,ij > r∗ij ] is the number of exceedances. We set r∗ij as the 0.95 quantile for radial components. Due

to the pairwise estimation for the TPDM, the total mass 2 arises from the fact that each Xi has the unit scale after
preprocessing. We can then calculate Σ̂−1, which is given in Table 1. The inverse TPDM includes small values close to
zero. Our aim can now be described as trying to assess if each off-diagonal element is significantly different from 0.

Table 1: Inverse TPDM for all pairs of five stations

1 2 3 4 5
1 2.10 -0.54 -0.19 -0.81 -0.23
2 -0.54 2.72 -1.14 -0.31 -0.58
3 -0.19 -1.14 2.28 -0.22 -0.38
4 -0.81 -0.31 -0.22 2.11 -0.47
5 -0.23 -0.58 -0.38 -0.47 2.01

For each i 6= j for i, j = 1, . . . , 5, let X(1)
t = (Xt,i, Xt,j)

T and X
(2)
t = (Xt \ (Xt,i, Xt,j))

T . Given the estimated
TPDM Σ̂X , we obtain X̂t = b̂T ◦X(2)

t ∈ RV 2
+(2), where b̂ = Σ̂−1

22 Σ̂21. After computing X̂t for all t, we take the top
5% of X̂t to find residual vectors Ut = t−1(X

(1)
t ) − t−1(X̂t) = t−1(X

(1)
t ) − b̂T t−1(X

(2)
t ) ∈ RV 2(2). Note that

we suppress the index (i, j) in Ut for simplicity.

For each pair of (Xi, Xj)
T given all other components, we estimate the off-diagonal element of the conditional

TPDM [Σ1|2]12 and its variance. Let rt,12 = ‖(Ut,1, Ut,2)‖ and (wt,1, wt,2) = (ut,1, ut,2)/rt,12. We let σ̂u12 =

m̃∗k−1
∑k
i=1 wt,1wt,2I[rt,12 > r∗12], where k =

∑n
t=1 I[rt,12 > r∗12] and m̃∗ is an estimate for the total mass of

HU (·). We choose r∗12 as the 0.98 quantile for radial components.

Under the null hypothesis that ρEij = 0, for each i 6= j, we calculate test statistics t =
√
k(σ̂u12/τ̂

u), where τ̂u is an
estimate for m̃

√
V ar(WiWj). We employ the Tukey’s exact procedure to adjust for multiple comparisons because

the Tukey’s exact procedure is well-suited for all pairwise comparisons where the number of exceedances is equal
across all pairwise comparisons. We have the total number of observations N = 103× 10 = 1030 where each pairwise
comparison has the equal number of threshold exccedances of 103 and there are 10 pairwise comparisons. The degrees
of freedom is df = N − 10 = 1020. Having a critical value of tcrit = 4.797, we summarize test statistics in Table 2. If
|t| < 4.797, then we fail to reject the null hypothesis that ρEij = 0.

Table 2: Test statistics for each pair of stations i 6= j for i, j = 1, . . . , 5

1 2 3 4 5
1 - 1.69 1.69 2.37 9.89
2 1.69 - 6.18 7.83 3.27
3 1.69 6.18 – 2.42 4.50
4 2.37 7.83 2.42 - 5.31
5 9.89 3.27 4.50 5.31 -

We create an undirected graphical model for five stations given in Figure 3 by assuming partial tail correlation implies
conditional independence. The extremal graph looks similar to a Markov chain. The thickness of lines is proportional
to the test statistics, and describes the strength of the conditional relationship. The extremal graph from the partial tail
correlation has 4 edges determined to be significant from the

(
5
2

)
= 10 possible edges.

7.2 Danube River Basin

We also employ the notion of partial tail correlation to investigate conditional relationships between the extremes of
average daily river discharges in the upper Danube basin. The Danube is Europe’s second largest river and the upper
Danube extends from its source in Germany to Bratislava in Slovakia2. To assess flood risks caused by extreme river
discharges, there are a number of gauging stations along the river and its tributaries. The main feature in the upper
Danube basin is that there are physical flow connections among stations. This feature allows us to compare the estimated
graphical structure to the known structure of the river network on the Danube. Figure 4 shows the river network in the
upper Danube basin where the path 10→ · · · → 1 is the main channel and the 21 other locations are on tributaries.

2https://www.icpdr.org/main/danube-basin/river-basin
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Figure 3: Left: An outline of Washington, D.C. with locations of five NO2 monitors. Right: The extremal graph induced
by partial tail tail correlation for five stations. The thickness of edges corresponds to absolute values of test statistics
being greater than 4.797.

Figure 4: Physical flow connections in the upper Danube river basin

We analyze average daily river discharges from 31 gauging stations for 1960-2009. The data are available in the
Bavarian Environmental Agency3. This data set has been widely used across multiple disciplines to assess flood risk.
Asadi et al. [2015] used a spatial extremes model to fit data from these 31 stations. Engelke and Hitz [2020] fit an
extremal undirected graphical model based on the Hüsler-Reiss model to this data.

We follow a similar preprocessing approach as Asadi et al. [2015] in order to compare results. Engelke and Hitz [2020]
and Asadi et al. [2015] only considered June, July, and August because the main factor causing extreme flooding is
extreme precipitation in these summer months. It results in n = 50 × 92 = 4600 daily river discharges where all
gauging stations have measurements. Focusing on the summer period helps remove seasonality. The overall trend in
extreme river discharges on the Danube turns out to be insignificant by Katz et al. [2002]. Extreme discharges for each

3http://www.gkd.bayern.de
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station occur in clusters because extreme discharges at downstream may occur a few days later from upstream stations.
To remove temporal dependence, they set nonoverlapping timewindows of length p = 9 days and then take the largest
value within each window, resulting in a declustered time series of n = 428 independent data from the original data.
However, we decide to use the whole sample of size n = 4600 to get a large enough sample size by treating the data as
independent samples.

We assume each Xi ∈ RV 1
+(2) in our inner product space. Let X(orig)

i denote the random variable for average
daily river discharges at the ith station for i = 1, . . . , 31. For simplicity, we apply the empirical CDF to perform

the marginal transformation Xi = 1/

√
(1− F̂i(X(orig)

i )) − δ for each station so that Xi follows the shifted Pareto
distribution. That is, each Xi ∈ RV 1

+(2) and the shift δ = 0.9352 is such that E[t−1(Xi)] = 0. We assume
X = (X1, . . . , X31)T ∈ RV 31

+ (2). We let Xt = (X1,t, . . . , X31,t)
T denote the random vector of the average daily

river discharge on day t, which we treat as iid copies of X.

We first investigate a sub-network for the stations on the main channel, 10→ · · · → 1. The physical flow connections
look similar to a graphical model generated by an AR(1) model or the Markov chain. The goal is to test whether
or not extreme discharges between each pair of stations exhibit partial tail correlation. To perform a hypothesis test
for the partial tail correlation for each pair of stations, we first estimate the TPDM Σ̂X . Let xt denote the observed
average daily discharge on day t. For each i 6= j, let rt,ij = ‖(xt,i, xt,j)‖ and (wt,i, wt,j) = (xt,i, xt,j)/rt,ij . We let
σ̂ij = 2k−1

∑k
i=1 wt,iwt,jI[rt,ij > r∗i,j ], where k =

∑n
t=1 I[rt,ij > r∗ij ] is the number of exceedances. We set r∗ij as

the 0.95 quantile for radial components. We can then calculate Σ̂−1, which is given in Table 3. The goal is to assess if
each off-diagonal element is significantly different from 0.

Table 3: Inverse TPDM for the main path.

1 2 3 4 5 6 7 8 9 10
1 4.33 -5.41 4.62 -2.77 4.74 -4.32 -1.72 2.95 -1.41 -0.78
2 -5.41 29.24 -32.01 8.24 -4.45 3.00 2.17 -2.57 0.72 1.72
3 4.62 -32.01 46.69 -19.71 -5.91 7.00 -1.53 4.99 -4.34 0.31
4 -2.77 8.24 -19.71 39.78 -28.03 2.08 1.76 -4.24 1.15 1.57
5 4.74 -4.45 -5.91 -28.03 123.04 -101.71 11.22 6.83 0.78 -7.34
6 -4.32 3.00 7.00 2.08 -101.71 123.03 -29.01 -13.46 10.06 4.36
7 -1.72 2.17 -1.53 1.76 11.22 -29.01 25.30 -3.89 -2.96 -1.84
8 2.95 -2.57 4.99 -4.24 6.83 -13.46 -3.89 26.37 -22.79 6.03
9 -1.41 0.72 -4.34 1.15 0.78 10.06 -2.96 -22.79 39.47 -20.87

10 -0.78 1.72 0.31 1.57 -7.34 4.36 -1.84 6.03 -20.87 17.66

For each i 6= j for i, j = 1, . . . , 10, let X(1)
t = (Xt,i, Xt,j)

T and X
(2)
t = (Xt \ (Xt,i, Xt,j))

T . Given the estimated
TPDM Σ̂X , we obtain X̂t = b̂T ◦X(2)

t ∈ RV 2
+(2), where b̂ = Σ̂−1

22 Σ̂21 for all t = 1, . . . , 4600. We only consider
those for which X̂t exceeds the 0.98 quantile to find two dimensional residual vectors Ut = t−1(X

(1)
t )− t−1(X̂t) =

t−1(X
(1)
t )− b̂T t−1(X

(2)
t ) ∈ RV 2(2). Note that we suppress the index (i, j) in Ut for simplicity.

Following the similar steps in NO2 application, for each pair of (Xi, Xj)
T given all other components, we estimate the

off-diagonal element of the conditional TPDM [Σ1|2]12 and its variance. Let rt,12 = ‖(Ut,1, Ut,2)‖ and (wt,1, wt,2) =

(ut,1, ut,2)/rt,12. We let σ̂u12 = m̃∗k−1
∑k
i=1 wt,1wt,2I[rt,12 > r∗12], where k =

∑n
t=1 I[rt,12 > r∗12] and m̃∗ is an

estimate for the total mass of HU (·). We choose r∗12 as the 0.98 quantile for radial components. For each pair of
(Xi, Xj)

T given all other components, we estimate the off-diagonal element of the conditional TPDM [Σ1|2]12 and its
variance.

Under the null hypothesis that ρEij = 0, for each i 6= j, we calculate test statistics t =
√
k(σ̂u12/τ̂

u), where τ̂u is an
estimate for m̃

√
V ar(WiWj).We employ the Tukey’s exact procedure to adjust for multiple comparisons. We consider

10 nodes and 45 possible comparisons. The total number of observations is N = 92× 45 = 4140 where each pairwise
comparison has the equal number of threshold exccedances of 92 and there are 45 pairwise comparisons. Hence, the
degrees of freedom is df = N − 45 = 4095. Finding a critical value of tcrit = 5.847, we summarize test statistics in a
matrix (4). If |t| < 5.847, then we fail to reject the null hypothesis that ρEij = 0.

Let G = (V,E) be an undirected graphic with a node set V = {1, . . . , 10} and its edge setE. Based on the test statistics
in the table above, we create an undirected graphical model for the main path by assuming partial tail correlation implies
conditional relationships in Figure 5. Each circle indicates a node. Extreme discharges at nearby stations tend to be
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Table 4: Test statistics for each pair of stations i 6= j for i, j = 1, . . . , 10 in the main path.

1 2 3 4 5 6 7 8 9 10
1 - 7.62 -3.46 3.12 -0.84 -0.35 4.77 -1.65 -0.18 1.29
2 7.62 - 21.40 -3.52 -1.02 0.43 -0.77 -1.24 -0.01 -0.52
3 -3.46 21.40 - 6.94 0.46 -0.53 -1.91 0.80 -0.06 0.81
4 3.12 -3.52 6.94 - 8.76 -1.66 0.85 3.51 -1.03 -1.73
5 -0.84 -1.02 0.46 8.76 - 16.93 -1.55 -0.88 0.78 -0.20
6 -0.35 0.43 -0.53 -1.66 16.93 - 8.92 -0.26 -0.80 -0.45
7 4.77 -0.77 -1.91 0.85 -1.55 8.92 - 2.82 2.00 0.06
8 -1.65 -1.24 0.80 3.51 -0.88 -0.26 2.82 - 9.62 -3.81
9 -0.18 -0.01 -0.06 -1.03 0.78 -0.80 2.00 9.62 - 15.21

10 1.29 -0.52 0.81 -1.73 -0.20 -0.45 0.06 -3.81 15.21 -

partially correlated in terms of tail behaviors. The thickness of lines is proportional to the test statistics, and describes
the strength of the conditional relationship. Focusing on the main stream line, our extremal graph shows a resemblance
to the physical flow connection. The graph from the partial tail correlation has 8 edges determined to be significant.
The disconnection between a station 8 and 7 is not a big surprise because the actual distance between them is far away
from each other.

Figure 5: The known physical flow connections (above) versus the extremal graph induced by partial tail correlation
(below) for the main path 10 → · · · → 1 in the upper Danube river basin. The thickness of edges corresponds to
absolute values of test statistics being greater than 5.847.

We also investigate the whole river network in the upper Danube basin. Following the similar steps above, we standardize
the off-diagonal element of the conditional TPDM for each pair of stations. We obtain the critical value of 7.189 via
the Tukey’s exact procedure. We then create an undirected graph on the whole river network. The extremal graph
constructed from the partial tail correlation has 192 significant edges out of the 465 possible edges. The graph has a
noteworthy reduction from all possible edges but is quite complicated to interpret.

The graph found by Engelke and Hitz [2020] was much more simple and closely resembled the physical flow network.
However, their approach was much more model-based and used knowledge of the physical flow graph to perform
stepwise model selection based on AIC. In recent work, Röttger et al. [2021] use a somewhat less model-based approach
to fit a graphical model on this same Danube data and find a more connected network than their earlier estimate, but one
which is still more simple than the one in Figure 5. We believe that including too many variables may introduce noise
when estimating the TPDM.
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8 Summary and Discussion

A vector space constructed from transformed linear combinations of independent regularly varying random variables
provides a framework for linear prediction for extremes. We develop projection theorem as a natural way of defining
partial tail correlation in the context of extremes. Similar to Gaussian cases, sparsity in the inverted TPDM can also be
tied to the idea of the partial tail correlation. Without a distributional assumption, the notion of partial tail correlation
can provide much less model-based approach for describing conditional relationships between variables at extreme
levels.

Using the asymptotic normality result for the estimator of the conditional TPDM, we develop a hypothesis test for zero
elements in the inverse extremal matrix. We observed the performance of conditional extremal relationships between
variables in simulation study as well as in both applications: high NO2 levels in Washington D.C. and extreme river
discharges in the upper Danube river basin.

Especially, in the upper Daunbe river basin application, focusing on the main channel 10→ · · · → 1, one can explore
further the oscillating pattern in the table of test statistics for each pair of stations. The study of this pattern may be tied
to the idea of directed graphs. Furthermore, taking the spatial dependence into account can be another important factor
when describing conditional relationships between variables at extreme levels.
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A Projection Theorem

Theorem A.1. (Projection theorem) Let VA be the previously defined subspace of the Hilbert space Vq and X ∈ Vq.
Let Xi =

∑q
j=1 aij ◦ Zj ∈ Vq, i = 1, . . . , p, and let X =

∑q
j=1 a

∗
j ◦ Zj ∈ Vq . Then

i) X̂ := PVAX (X̂ is the projection of X onto VA) has a unique element in VA such that

||X 	 X̂||Vq = inf
Y ∈VA

||X 	 Y ||Vq , and

ii) X̂ ∈ VA such that ||X 	 X̂||Vq = infY ∈VA ||X 	 Y ||Vq if and only if X̂ ∈ VA and (X 	 X̂) ∈ V⊥A .

Proof. i) Consider Xi =
∑q
j=1 aij ◦ Zj , i = 1, . . . , p, and X =

∑q
j=1 a

∗
j ◦ Zj in Vq. For Xp = (X1, . . . , Xp)

T ,

consider bT ◦Xp ∈ VA. ||X 	 (bT ◦Xp)||2Vq =
∑q
j=1(a∗j − bTa·j)

2 where a·j is the jth column vector of A.
We assume Rank(A) = p. Let Sj = {b ∈ Rp such that bTa·j = a∗} and fj(b) = (a∗j − bTa·j)

2. For b /∈ Sj ,
∂fj(b)
∂b = 2a·j [b

Ta·j − a∗j ] and ∂2fj(b)
∂b∂bT = 2a·ja

T
·j(ba·j − a∗j ). As a·jaT·j is nonnegative definite, fj is convex off of

Sj . Since fj is minimized on Sj , fj is convex everywhere. Thus for b1 and b2 and any w ∈ (0, 1),

wfj(b1) + (1− w)fj(b2) ≥ fj(wb1 + (1− w)b2),

where equality above implies bT1 a·j = bT2 a·j . Equality does not hold for every j. ||X 	 (bT ◦Xp)||2Vq =
∑q
j=1 fj is

strictly convex since A is full rank. ||X 	 (bT ◦Xp)||Vq →∞ as max1≤j≤p |a∗j | → ∞. Thus, ||X 	 (bT ◦Xp)||Vq

must have a unique minimum.
ii) Suppose X̂ ∈ VA and (X 	 X̂) ∈ V⊥A . For any Y ∈ VA,

||X 	 Y ||2Vq = 〈(X 	 X̂)⊕ (X̂ 	 Y ), (X 	 X̂)⊕ (X̂ 	 Y )〉
= ||X 	 X̂||2Vq + ||X̂ 	 Y ||2Vq

≥ ||X 	 X̂||2Vq ,

with equality iff Y = X̂. Thus, X̂ is such that ||X 	 X̂||Vq = infY ∈VA ||X 	 Y ||Vq .

Conversely if X̂ ∈ VA and (X 	 X̂) /∈ VA, then X̂ is not the element of VA closest to X since there exists

X̃ = X̂ ⊕ a ◦ Y/||Y ||2Vq

closer to X where Y is any element of Vq such that 〈X 	 X̂, Y 〉 6= 0 and a = 〈X 	 X̂, Y 〉.

||X 	 X̃||2Vq = 〈X 	 X̂ ⊕ X̂ 	 X̃,X 	 X̂ ⊕ X̂ 	 X̃〉

= ||X 	 X̂||2Vq + a2 ◦ 1

||Y ||2Vq

+ 2〈X 	 X̂, X̂ 	 X̃〉

= ||X 	 X̂||2Vq − a2 ◦ 1

||Y ||2Vq

< ||X 	 X̂||2Vq .

B Property of Projection Mappings

Proposition B.1. (Property of Projection Mappings) Let PVA be the projection mapping of Vq onto a subspace VA.
Then,
i) PVA(α ◦X ⊕ β ◦ Y ) = α ◦ PVAX ⊕ β ◦ PVAY, X, Y ∈ Vq, α, β ∈ R.
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[That is, the projection mapping PVA is a linear mapping.]
ii) For every X ∈ Vq , there exist an element of VA and an element of V⊥A such that

X = PVAX ⊕ (I − PVA)X

and this decomposition is unique.

Proof. i) (α ◦ PVAX)⊕ (β ◦ PVAY ) ∈ VA since VA is a linear subspace of Vq . In addition,

α ◦X ⊕ β ◦ Y 	 (α ◦ PVAX ⊕ β ◦ PVAY ) = α ◦ (X 	 PVAX)⊕ β ◦ (Y 	 PVAY ) ∈ V⊥A
since V⊥A is a linear subspace of Vq. Thus, these two properties indicate α ◦ PVAX ⊕ β ◦ PVAY is the projection of
PVA(α ◦X ⊕ β ◦ Y ). We note that this linear mapping is not necessarily true when α 6= 2.
ii). To show uniqueness of decomposition, let X = Y ⊕ Z, Y ∈ VA, Z ∈ V⊥A be another decomposition, then

Y 	 PVAX ⊕ Z 	 (I − PVA)X = 0.

By taking inner products of each side with Y 	 PVA , ||Y 	 PVAX||2Vq = 0 since Z 	 (I − PVA)X ∈ V⊥A . Hence
Y = PVAX and Z = (I − PVA)X .
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