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Query-based Schema Evolution Recommendations
for Hybrid Polystores

Pol Benats, Loup Meurice, Maxime Gobert and Anthony Cleve

Namur Digital Institute, University of Namur, 21 rue Grandgagnage, Namur, 5000, Belgium

Abstract

This paper presents a approach supporting the continuous evolution of hybrid polystores, i.e., software
systems relying on the joint manipulation of several heterogeneous databases (relational, NoSQL). This
approach monitors and analyzes polystore data usage, with a particular focus on query performance, in
order to recommend polystore schema evolutions when relevant. The approach relies on TyphonML, a
modeling language allowing users to express the conceptual schema of the polystore and to map it to
diverse native backends. The approach takes as input (1) the current conceptual schema of the polystore
and its mapping to underlying native databases; (2) the history of queries that have been executed on
the polystore as well as their duration and (3) the (evolving) size of each polystore entity. The suggested
schema evolution recommendations include, among others, the creation of indexes, the merging of
conceptual entities, and the migration of entities from a native backend to another.
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1. Introduction

Schema evolution is a complex and risky process that has been subject to a large research
literature [1]. Most existing approaches and tools supporting schema evolution consider systems
relying on a single database, most often a relational database. Among the most comprehensive
tools, PRISM++ supports the database evolution process by evaluating the impact of schema
modifications on queries and on data. It then helps developers with the rewriting of historical
queries and the migration of related data, thereby reducing the downtime of the system by
reducing manual effort. Complementary approaches make recommendations to the developers
on how to apply schema evolution operations to their system [2, 3].

More recent approaches support the evolution of systems manipulating NoSQL datastores.
For instance, ControVol [4] is a framework capable of warning developers of risky cases of
mismatched data and (implicit) schema. It also suggests and performs automatic fixes to resolve
possible schema migration problems.

In this paper, we present a query-based recommendation approach, designed for hybrid
polystores, i.e., systems made of several possibly heterogeneous relational and NoSQL databases.
The approach captures the queries sent to the polystore, analyses their performance and provides
polystore schema change recommendations for improving the performance of particular queries.
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Our approach is based on the tools of the Typhon project' proposing polyglot and hybrid
persistence architectures for big data analytics on relational and NoSQL databases. At the time
of writing this paper, the database technologies covered in the project were MariaDB, MongoDB,
Redis, Cassandra and Neo4;.

The remainder of the paper is structured as follows. Section 2 discusses related work. Section 3
presents the approach in detail, based on a running example. Section 4 gives concluding remarks.

2. Related work

Recent studies [5, 6] revealed the emergence of more complex data-intensive systems, called hy-
brid polystores. Those modern architectures rely on several heterogeneous, possibly overlapping
databases and on the combination of relational and NoSQL technologies. While understanding
and evolving the database schemas of a hybrid polystore can be time-consuming and complex,
there is still a lack of automated support to assist developers in this task.

Evolution

Database-dependent systems evolution and NoSQL and hybrid polystores schema evolution
are complex processes. Most relational-based existing tool-supported approaches to this process
rely on transformational techniques, generative techniques or a combination of both. For
instance, several authors attempt to contain the ripple effect of changes to the database schema,
e.g., by generating wrappers [7] views or APIs that provide/enable backward compatibility and
by transforming the programs in order to interface them with those intermediate layers.

Scherzinger et al. [8] investigate schema evolution for feature-rich, interactive web appli-
cations that are backed by NoSQL data stores, for document and extensible record stores in
particular. They propose a generic schema evolution interface to NoSQL systems. Such a tool is
intended for developers, administrators, and software architects to declaratively manage the
structure of their production data. The authors investigate the established field of schema evo-
lution in the new context of schema-less NoSQL data stores, contribute to a declarative NoSQL
schema evolution language, introduce a generic NoSQL database programming language that
abstracts from the APIs of the most prominent NoSQL systems, implement schema evolution
operations in in their NoSQL database programming language, investigate whether a proposed
schema evolution operation is safe to execute, and apart from exploring eager migration, they
introduce the notion of lazy migration and point out its potential for future research in the
database community.

De Lima et al. [9] propose an approach for the conversion of conceptual schemas into NoSQL
document logical schemas. It starts with a conceptual schema and workload information given
by the application designer, as shown in Figure 1. The workload information is estimated
over a conceptual schema, being also used as input for the Logical Design phase in order to
generate appropriate logical structures. The mapping of the conceptual schema to a NoSQL
document logical schema is governed by a set of rules that converts each conceptual constructor
to an equivalent representation in the NoSQL document logical model. The logical model is an
abstract model to represent NoSQL document implementation models. In the Implementation

'https://github.com/typhon-project



Design phase, a NoSQL document logical schema is translated to the common implementation
model for NoSQL documents, i.e., the JSON specification. Even though the Implementation
Design level is considered by the approach, the paper focuses on generating optimized NoSQL
document structures from a conceptual schema in the Logical Design level.

Recommendation

A few works propose NoSQL and hybrid polystores schema evolution through recom-
mandations. Mior et al. [10] present a system for recommending database schemas for NoSQL
applications. The cost-based approach uses a novel binary integer programming formulation to
guide the mapping from the application’s conceptual data model to a database schema. They im-
plemented a prototype of this approach for the Cassandra extensible record store. The prototype,
the NoSQL Schema Evaluator (NoSE) is able to capture rules of thumb used by expert designers
without explicitly encoding the rules. Given a conceptual model (optionally with statistics
describing data distribution), an application workload, and an optional space constraint, the
schema design problem is to recommend a schema such that (a) each query in the workload is
answerable using one or more get requests to column families in the schema, (b) the weighted
total cost of answering the queries is minimized, and optionally (c) the aggregate size of the
recommended column families is within a given space constraint. Solving this optimization
problem is the objective of the schema advisor. In addition to the schema, for each query in the
workload, NoSE recommends a specific plan for obtaining an answer to that query using the
recommended schema.

Dynamic program analysis

Several approaches have been proposed for capturing and analysing database queries at
runtime [11, 12, 13, 14]. In contrast with our work, they all consider applications relying on a
single, relational database. Their focus is on recovering implicit knowledge about the database
schema.

To the best of our knowledge recommending database schema evolution is not common in
research, even less when considering systems using SQL and NoSQL databases in combination.
Our approach helps in recommanding polystore schema evolutions with a particular focus on
query performance.

3. Approach

Our approach aims to monitor data usage performance in a Typhon polystore in order to provide
users with schema evolution recommendations, when relevant. It communicates with several
polystore components to retrieve the polystore schema expressed in TyphonML [15] and the
polystore databases. This allows our approach to automatically retrieve useful information
about the polystore, including: (1) the polystore configuration, i.e., the TyphonML entities and
their mapping to underlying native databases; (2) the queries (expressed in TyphonQL [16]) that
are executed on the polystore, and their duration; and (3) the (evolving) size of the TyphonML
entities over time.



Figure 1: Overview of the approach

Adapted

Typhon QL
queries

Polystore
after
evolution

Programs I

queries

Schema and

- - Analytics
query information

DB

1
-—— > Analytics

2. Parsing and classifying queries

3. Visualizing polystore data usage
4. Recommending schema evolutions

3.1. General overview

The general architecture of the approach is depicted in Figure 1. Each time a query is sent
to the polystore the Anaytics module captures it, and keeps it only if it corresponds to a
DML query execution. The Analytics module latter parses, analyses and classifies the query.
This information is stored in the Analytics database, that is used as input for polystore data-
usage visualization. The approach also proposes performance-based schema reconfiguration
recommendations based on the same information. Each of these steps is described in further
details in the remaining of this section.

3.2. Running example

In order to illustrate the approach, we will use as running example a polystore structured
according to the simplified TyphonML schema given in Figure 2. The schema presents 2 concep-
tual entities (i.e. Employees and EmployeeAddress) mapped to 2 physical databases (respectively
MariaDB and MongoDB). Based on this example schema, we automatically generated TyphonQL
queries each query having a fictitious execution time. We also considered a fictitious history of
the polystore entities, especially, as far as their size is concerned.

3.3. Step 1: Capturing polystore queries

The approach exploits the polystore monitoring mechanisms. Thanks to those mechanisms,
we can capture at runtime the successive TyphonQL queries that are sent to the polystore, and



Figure 2: Polystore TyphonML model example

entity Employees {
lastName: string[20]
firstName: string[10]
title: string[30]

1

2

3 .
) 23 relationaldb relDatabase {
5 birthDate: datetime

6

7

8

24 tables {

. 25 table {
phone: string[24] )

X ; 26 EmployeesTable : Employees
photoPath: string[255] 27 idSpec (’Employees.firstName )

address -> EmployeeAddress[1] 28 }

9 } 29 }

11 entity EmployeeAddress {

12 address : string[60] 31 documentdb docDatabase {

13 city: string[15] 32 collections{
- ° 33 EmployeeAddressCollection : EmployeeAddress
14 region: string[15] 3 }
15 postalCode: string[10] 35 }
16 country: string[15] X
17 employee -> Employees[1]

executed by the TyphonQL engine. To do so, we consume and analyse the TyphonQL queries,
generated and pushed by the TyphonQL engine to the Analytics module.

3.4. Step 2: Parsing and classifying queries

The queries at Step 1 include the TyphonQL queries that have been executed by the TyphonQL
engine. The Analytics module parses each of those queries, in order to extract relevant in-
formation to be used during the analytics and recommendation phases. Our tool focuses on
DML queries, i.e., select, insert, delete, and update queries. It ignores other events such as, for
instance, the execution of DDL queries (e.g., create entity, delete entity, ...) sent to the TyphonQL
engine. The tool parses each captured TyphonQL query in order to extract relevant information,
including:

« the type of query (select, insert, delete, update);

« the accessed TyphonML entities;

« the join conditions, if any;

« the query execution time, expressed in milliseconds.

Once the query is parsed and analyzed, the approach also classifies it. This classification
aims to group together all TyphonQL queries of the same form. A group of TyphonQL queries
is called a query category. The queries belonging to the same query category are queries that
would become the same query after replacing all input values with place-holders. For instance,
the following three TyphonQL queries can be classified into the same query category:

1 from EmployeeAddress a select a where a.country == ”Italy”
2 from EmployeeAddress a select a where a.country == ”Belgium”
3 from EmployeeAddress a select a where a.country == “Germany”

Indeed, those queries only differ in terms of their input values. When replacing the only input

value corresponding to the address country ("Italy”, "Belgium” and "Germany”, respectively)
with a place-holder (*?”), we obtain the following query category:

1 from EmployeeAddress a select a where a.country == ”?”



In addition to parsing, analyzing and classifying the queries executed by the TyphonQL
engine, the approach also extracts - at regular time intervals - information about the Typhon
polystore, with a particular focus on TyphonML entities. This includes, in particular, the size
of each TyphonML entity, expressed in terms of number of records, e.g., number of rows for a
relational table or number of documents for a MongoDB collection. The extracted information
is stored in an internal database, that we will call the Analytics Database in the remaining of
this document. The structure of this database is shown in Figure 3.

The QLQuery entity is at the core of the Analytics Database. It corresponds to the infor-
mation stored for each TyphonQL DML query, while QLNormalizedQuery only contains the
corresponding query categories. In our running example, we started from 1007 generated
query events (QLQuery instances), corresponding to 314 different query categories (QLNor-
malizedQuery instances). The TyphonModel collection relates to the successive versions of
the TyphonML schema during the considered period. TyphonEntity and TyphonEntityHistory
include information related to the polystore entities, e.g., size and data manipulation usage, and
their evolution history.

The analytics database populated during this step constitutes the main input of the next three
steps.

3.5. Step 3: Visualizing polystore data usage

The implementation of the approach offers a web interface in order to visualize Typhon polystore
analytics data. The main page of the application is depicted in Figure 4. It provides the user
with a general overview of the polystore data usage at a coarse-grained level and the polystore
configuration.

Polystore schema view

On the right-hand side of the main page, the user can see the current schema configu-
ration of the polystore. In our example, the polystore currently consists of two databases: a
relational database including 9 entities (tables), and a document database consisting of 3 entities
(collections). The size of a circle relates to the number of records (rows, documents) in the
corresponding database/entity. By clicking on a database (relational or document database), the
user can zoom and get more details about the entities it includes.

Polystore entities view

The tool provides the user with a global overview of the current size of the polystore
entities, as shown on the left-hand side of Figure 4. Positioning the mouse on a given entity
would provide with the exact number of records for the entity. The evolution of the entity size
over time is also provided. The user can select the entities of interest, and the tool then shows
the evolution of the size of the selected entities over time in another tab.

Another visual metric concerns the volume and distribution of select, insert, delete and update
operations that have been applied to the polystore during the considered period. Note that
positioning the mouse pointer on a given operation allows to see the exact number of query
occurrences of this type.



Figure 3: Structure of the Analytics Database.
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Figure 4: Schema tab of the web application
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The distribution of executed queries (by CRUD operation or by entity) can also be shown for
a particular period of time, chosen by the user, by checking the corresponding radio button at
the top of the page.

The user can also look at the evolution of the number of CRUD operations executed over
time in more details, at the level of the entire polystore, by clicking on the operations of interest.
A similar visual analytics view is proposed at the level of polystore entities. One can see, for
each entity, the evolution of the number of queries manipulating it over time. The user can
either see the trend for all entities, or select the entity/entities of interest.

Polystore queries view

The user can then have a finer-grained look at the TyphonQL queries executed by the
TyphonQL engine on the polystore. In the query tab, the tool provides the user with two
searchable lists:

« the most frequent query categories, in decreasing order of number of occurrences (left-side
of Figure 5);

« the slowest queries, in decreasing order of execution time (right-side of Figure 5).

Note that the user can also get the same lists, by considering a particular period of time. She
can also search for particular queries using the search bar.



Figure 5: Query tab of the web application
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By looking at the query view, the user can figure out that the most frequent query category
corresponds to the following TyphonQL query, that select the customers and their demographics
information:

1 from CustomerDemographics x0, Customers x1 select x0, x1 where x0.Customers == x1

A total of 59 occurrences of this query category where executed, with an average execution
time of 1223 milliseconds.
The following TyphonQL query was the slowest query during the entire considered period:

1 from Employees e, EmployeeAddress a select e.HomePhone, a.Address where e.EmployeeAddress== a &% a.City == ”"London”

3.6. Step 4: Recommending schema evolutions

The recommendation of schema evolutions based on polystore queries also depends on the
underlying physical databases. Different sources [17, 18] explain the bad smells or anti-patterns
to avoid when using and structuring a database, depending on the technology that implements
it. For example, a TyphonQL query expressing a filtering condition on an entity attribute stored
in the ”value” part of a key-value database (e.g., Redis) will cause a full scan to be performed to
retrieve all the keys that the database contains; the filter on the attribute will then be performed
by the TyphonQL engine. In such a scenario, the choice of a key-value database could be
questioned when databases such as MariaDB and MongoDB offer a native query language
more in line with the expressed TyphonQL query (select from where). Migration of the data
contained in Redis to a SQL or MongoDB database might be recommended. Each database
technology has its own limitations and strengths. MongoDB, for example, does not offer an
efficient way to perform joins between two collections. Therefore, if a TyphonQL query causes
a join between two MongoDB collections, recommendations could be offered to the developer.
Indeed, merging the two collections into one would avoid the need for a join and improve
the query execution time. In order to use the recommandation system the user can inspect a



Figure 6: Query details tab of web application
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particular (slow) query using the "Details” button attached to it. The user can inspect this query
information and evolution of query execution time, as shown in Figure 6. The approach also
proposes recommendations on how to improve the execution time of the query. When possible,
it then recommends polystore schema reconfigurations, in the form of a menu with click-able
options, including one of several recommendations. Some may be mutually-exclusive, which
means that they cannot be selected together in the menu.

Figure 7: Recommendation pop-up of the web application
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O Exclusive options ®

COPY CHANGE OPERATORS TO CLIPBOARD

The recommendation menu shown in Figure 7 corresponds to the slowest TyphonQL query



presented above. It consists in a join between Employees and EmployeeAddress entities and a
selection operator based on the value of the EmployeeAddress.City attribute. In this case, the
approach recommends three possible schema reconfigurations that respectively consist in (1)
defining an index on attribute EmployeeAddress.City; and (2) choosing between migrating the
EmployeeAddress entity to RelationalDatabase database or merging the EmployeeAddress and
Employees entities.

By positioning the mouse on the information icon, the user can get further information about
the expected positive impact of the recommended schema change on the query performance.
Adding an index is a well known technique to speed up a query including an equality condition
on an attribute (e.g., table column or collection field) in its where clause. In the particular case
of the considered query, EmployeeAddress.City is used in the where clause.

Migrating an entity and its relations from a database to another is interesting in our example
as Employees entity is mapped to a relational database (a table) while EmployeeAddress entity is
stored in a document database collection. The join condition of the considered query is slow
since it involves to separately query two different databases, and then to aggregate the results in
the form of a join. This recommendation is an exclusive choice with the merge recommendation
described below, since the latter would include the migration of the entity.

The last proposed recommendation is the merge of two entities into a single entity. The merge
constitutes another recommendation that prevents from a costly join condition in a slow query.
In our example, the recommendation to merge EmployeeAddress into Employees is motivated
by the fact that both entities are referencing each other using a one-to-one relationship (thus
have the same number of records), that both entities rapidly grow in terms of size, and that
they are stored in different databases (one in a relational database, and the other in a document
database) making the join condition slower and slower. This recommendation will probably be
more interesting in terms of performance since it includes an entity migration (from a database
to another) and a relationship removal (by merging both entities).

3.7. Step 5: Applying recommendations

After the user has selected the evolution recommendation(s) he wants to actually apply on the
polystore, it is possible to copy to clipboard the different evolution operators by clicking on
the corresponding button. The tool will automatically generate the list of schema evolution
operators (in the TyphonML syntax) corresponding to the selected recommendations. The user
can simply paste the operators from the clipboard to the TML file of his polystore schema, and
then run the schema evolution tool by passing the modified TML file as input.

The schema evolution tool will then apply the recommended schema reconfigurations to the
polystore. This includes the adaptation of the polystore TyphonML schema, the underlying
native structures and the data instances. In our example, we selected and executed the merge
evolution operator. A new TyphonML schema has been produced as output where EmployeeAd-
dress entity has been merged into Employees entity. The corresponding relational Employees
table now contains its own columns and foreign keys, plus the new columns and data from
EmployeeAddress collection.

Upon request of the user, the query evolution tool [19] can support the adaptation of existing
TyphonQL queries in order to evolve a query into another according to the applied evolution



operators. Thanks to the query evolution tool, the slowest TyphonQL query category can be
automatically adapted, resulting in the following output TyphonQL query:

1 from Employees e select e.HomePhone, e.Address where e.City == ”?”

The resulting query does not include any join condition between both entities. The performance
of the query should therefore be significantly better than in the initial situation.

3.8. Implementation

The implementation of the approach is depicted in Figure 8. Each time a asynchronous post-

Figure 8: Overview of the architecture of the application
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execution event is published to the post-event queue, a Java application wakes up and retrieves
the event. If the event corresponds to a DML query execution, the Java application sends the
corresponding TyphonQL query to a Rascal plugin®. The latter parses, analyses and classifies
the query and sends back the corresponding query information to the Java application. This
information is stored in an internal MongoDB database Figure 3, that is used as input by an
interactive web application. The web application, relying on an Angular frontend and a Node.js
backend, provides users with visual analytics of the polystore data usage, as well as with
performance-based schema reconfiguration recommendations. The evolution module being
asynchronous with the rest of the Typhon project tools, it does not impact the performance of
the queries executed on the polystore.

*https://www.rascal-mpl.org/



4. Conclusion

This paper presents a tool-supported approach to performance-based schema recommendations
for hybrid polystores. Starting from the capture and analysis of the polystore queries, the
approach provides the user with visual analytics of the polystore data usage. The user can
see, among others, which types of queries access which entities, which query categories are
the most frequent, and which queries suffer from a lack of performance. The approach then
makes, for each query category considered as problematic, possible schema reconfiguration
recommendations aiming the speed-up the execution of the considered query. The user can
then select the recommendations to follow, and then apply the associated schema evolution
operators for schema change and data migration.

Those recommendations are currently made at the level of a single query that is considered
too slow. A possible future improvement would be to consider a broader scope of analysis,
by taking more information into account when making recommendations, such as (1) the
most typical combinations of query categories involved; (2) the frequency of occurrence of
those query categories, and (3) the respective performance levels of the underlying native DB

backends.

Availability The approach and its implementation are publicly available as an open-source
project under the terms of the Eclipse Public License [20].
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