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Transformed-linear prediction for extremes

Jeongjin Lee∗

Department of Statistics, Colorado State University
and

Daniel Cooley
Department of Statistics, Colorado State University

July 14, 2022

Abstract

We consider the problem of performing prediction when observed values are at
their highest levels. We construct an inner product space of nonnegative random vari-
ables from transformed-linear combinations of independent regularly varying random
variables. Under a reasonable modeling assumption, the matrix of inner products cor-
responds to the tail pairwise dependence matrix, which summarizes tail dependence.
The projection theorem yields the optimal transformed-linear predictor, which has
the same form as the best linear unbiased predictor in non-extreme prediction. We
also construct prediction intervals based on the geometry of regular variation. We
show that these intervals have good coverage in a simulation study as well as in
two applications: prediction of high pollution levels, and prediction of large financial
losses.

Keywords: Multivariate Regular Variation, Projection Theorem, Tail Pairwise Dependence
Matrix, Air Pollution, Financial Risk
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1 Introduction

Prediction of unobserved quantities is a common objective of statistical analyses. Figure

1 shows the one-hour maximum measurements of the air pollutant nitrogen dioxide (NO2)

in parts per billion for four monitoring stations in the Washington DC area on January

23, 2020. Given these measurements, it is natural to ask what the predicted level would

be at a nearby unmonitored location such as Alexandria VA, which is marked “Alx” in

Figure 1 and which had NO2 monitoring prior to 2015. What makes this particular day

interesting is that measurements are at very high levels; each measurement exceeds its

station’s empirical 0.98 quantile for the year, and the Arlington station (Arl) is recording

its highest measurement for the year. We propose a linear prediction method which is

designed specifically for when observed values are at extreme levels and which is based on

a framework from extreme value analysis.

If the joint distribution of all variates were known, the conditional distribution would

provide complete information about the variate of interest given the observed values. The

air pollution data’s distribution is not known, is clearly non-Gaussian, and there is no clear

choice for a candidate joint distribution. Further, extreme value analysis would caution

against using a model that had been fit to the entire data set to describe behavior in the

joint tail.

Linear methods, such as kriging in spatial statistics, offer a straightforward predictor

by simply applying weights to each of the observations. Linear prediction methods do

not require specification of the joint distribution and instead provide the best (in terms

of mean square prediction error, MSPE) linear unbiased prediction (BLUP) weights given

only the covariance structure between the observed and unobserved measurements. Un-

certainty is often summarized by MSPE and prediction intervals are commonly based on
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Figure 1: Maximum NO2 measurements for January 23, 2020. All observations are above

the empirical .98 quantile for each location.

Gaussian assumptions. However, covariance could be a poor descriptor of dependence in a

distribution’s joint upper tail, and Gaussian assumptions may be poorly suited to describe

uncertainty in the tail.

In this work, we propose a extremal prediction method which is similar in spirit to

familiar linear prediction. We will analyze only data which are extreme. To provide a

framework for modeling dependence in the upper tail, we rely on regular variation on the

positive orthant. Modeling in the positive orthant allows our method to focus only on the

upper tail, which is assumed to be the direction of interest; in this example we are interested

in predicting when pollution levels are high. On the way to developing our prediction

method, we will construct a vector space of non-negative regularly-varying random vectors

arising from transformed-linear operations. We summarize pairwise tail dependencies in

a matrix which has properties analogous to a covariance matrix. Our transformed-linear

predictor has a similar form to the BLUP in non-extreme linear prediction. Rather than

being based on the elliptical geometry underlying standard linear prediction, uncertainty
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quantification is based on on the polar geometry of regular variation. We will show that

our method has good coverage when applied to the Washington air pollution data and also

when applied to a higher dimensional financial data set.

2 Background

2.1 Regular variation on the positive orthant

Informally, a multivariate regularly varying random variable has a distribution which is

jointly heavy tailed. Regular variation is closely tied to classical extreme value analysis

(De Haan & Ferreira 2007, Appendix B), and Resnick (2007) gives a comprehensive treat-

ment. Let X be a p-dimensional random vector that takes values in Rp
+ = [0,∞)p. X is

regularly varying (denoted RV p
+(α)) if there exists a function b(s) → ∞ as s → ∞ and a

non-degenerate limit measure νX for sets in [0,∞)p \ {0} such that

sPr(b(s)−1X ∈ ·) v−→ νX(·) (1)

as s → ∞, where
v−→ indicates vague convergence in the space of non-negative Radon

measures on [0,∞]p \ {0}. The normalizing function is of the form b(s) = U(s)s1/α where

U(s) is a slowly varying function, and α is termed the tail index.

For any set C ⊂ [0,∞]p\{0} and k > 0, the measure has the scaling property νX(kC) =

k−ανX(C). This scaling property implies regular variation can be more easily understood in

a polar geometry. Given any norm, r > 0, and Borel set B ⊂ S+
p−1 = {w ∈ Rp

+ : ||w|| = 1},

the set C(r, B) = {x ∈ Rp
+ : ||x|| > r,x/||x|| ∈ B} has measure νX(C(r, B)) = r−αHX(B),

where HX is a measure on S+
p−1. The angular measure HX fully describes tail dependence

in the limit; however, modeling HX even in moderate dimensions is difficult. The measure’s

intensity function in terms of polar coordinates is νX(dr × dw) = αr−α−1drdHX(w).
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2.2 Transformed linear operations

In order to perform linear-like operations for vectors in the positive orthant, Cooley &

Thibaud (2019) defined transformed linear operations. Consider x ∈ Rp
+ = [0,∞)p, let t be

a monotone bijection mapping from R to R+, with t−1 its inverse. For y ∈ Rp, t(y) applies

the transform componentwise. For x1 and x2 ∈ Rp
+ = [0,∞)p, define vector addition as

x1⊕x2 = t{t−1(x1) + t−1(x2)} and define scalar multiplication as a ◦x1 = t{at−1(x1)} for

a ∈ R. It is straightforward to show that Rp
+ with these transformed-linear operations is a

vector space as it is isomorphic to Rp with standard operations.

To apply transformed linear operations to non-negative regularly-varying random vec-

tors, Cooley & Thibaud (2019) consider the softplus function t(y) = log{1 + exp(y)}.

The important property is limy→∞ t(y)/y = limx→∞ t
−1(x)/x = 1. Because t negligibly

affects large values, regular variation in the upper tail is preserved when t is used to de-

fine transformed-linear operations on regularly-varying random vectors. More precisely, if

sPr(b(s)−1Xi ∈ ·)
ν−→ νXi

(·), i = 1, 2 and X1,X2 are independent, then sPr(b(s)−1(X1 ⊕

X2) ∈ ·) ν−→ νX1(·) + νX2(·); and sPr[b(s)−1(a ◦ X) ∈ ·] v−→ aανX(·) if a > 0, and

sPr[b(s)−1(a ◦X) ∈ ·] v−→ 0 if a ≤ 0. A lower tail condition is required which guaran-

tees that P (Xi,j < x)→ 0 as x→ 0 fast enough so that when a < 0, a ◦Xi does not affect

the upper tail. For the softplus t, the lower tail condition is sPr{Xi,j ≤ exp(−kb(s))} → 0,

as s→∞, j = 1, · · · , p, for all k > 0. The lower tail condition is met by common regularly

varying distributions like the Fréchet and Pareto. Other R 7→ R+ transforms with the same

limiting properties and with appropriately adjusted lower tail conditions could be used in

place of t.

Cooley & Thibaud (2019) go on to construct X ∈ RV p
+(α) via transformed linear

combinations of independent regularly varying random variables. Let A = (a1, . . . ,aq),
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where aj ∈ Rp and hence A ∈ Rp×q. Let

X = A ◦Z = t(At−1(Z)), (2)

where Z = (Z1, . . . Zq)
T is a vector of independent regularly varying random variables

where sPr(b(s)−1Zj > z)→ z−α for all j. X is regularly varying with angular measure

HX =

q∑
j=1

‖a(0)
j ‖αδa(0)

j /‖a(0)
j ‖

(·), (3)

where δ is the Dirac mass function. The zero operation a(0) := max(a, 0) will be important

throughout, and is understood to be componentwise when applied to vectors or matrices.

As q →∞ the class of angular measures resulting from this construction method is dense

in the class of possible angular measures.

2.3 Tail Pairwise Dependence Matrix

If p is even moderately large, it is challenging to describe the angular measure HX for

X ∈ RV p
+(α). Rather than fully characterize HX , we will summarize tail dependence via

a matrix of pairwise summary measures. Many bivariate dependence measures have been

suggested for extremes; we choose one which has properties similar to covariance.

Let α = 2 and let X ∈ RV p
+(2) have angular measure HX . Let ΣX = {σXij

}i,j=1,··· ,p be

the p× p matrix where

σXij
=

∫
Θ+

p−1

wiwjdHX(w), (4)

and Θ+
p−1 = {w ∈ Rp−1

+ : ||w||2 = 1}. Each element σXij
is essentially the extremal

dependence measure of Larsson & Resnick (2012); however unlike Larsson & Resnick (2012),

we require that α = 2 and the L2 norm which together make ΣX have properties analogous

to a covariance matrix. Specifically, ΣX can be shown to be positive semi-definite (Cooley

& Thibaud 2019). Following Cooley & Thibaud (2019), we call ΣX the tail pairwise
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dependence matrix. This should not be confused with the ‘tail dependence matrix’ of

Shyamalkumar & Tao (2020) which is a matrix of alternate extremal dependence measures

χij (Coles et al. 1999) and which is not guaranteed to be positive definite.

Larsson & Resnick (2012) also assume HX is a probability measure, giving their ex-

tremal dependence measure a fixed range of values analogous to correlation. We do not

require HX to be a probability measure, and like a covariance matrix the diagonal elements

σX ii reflect the relative magnitudes of the respective elements Xi. Regular variation im-

plies lims→∞ sPr(b(s)
−1Xi > c) = c−2σX ii. Letting x = cU(s)s1/2, there is a correponding

slowly varying function such that the relation can be rewritten as

lim
x→∞

Pr(Xi > x)

x−2L(x)
= σX ii. (5)

So the ‘magnitude’ of the elements of X described by the diagonal elements of the TPDM

is in terms of suitably-normalized tail probabilities rather than variance. The presence of

the slowly varying function L(x) in the denominator means it is ambiguous to discuss the

‘scale’ of a regularly varying random variable, as scale information is in both the normalizing

sequence and the angular measure (and consequently, TPDM). Because the notion of ‘scale’

is inherent in principal component analysis, Cooley & Thibaud (2019) further assumed that

X was Pareto-tailed, making L(x) a constant that was pushed into the angular measure

HX and subsequently into ΣX . Here, we will not require a Pareto tail, and the random

variables we will construct in Section 3 will have a natural normalizing function.

An additional property of the TPDM that is not generally true for covariance matrices

is that it is completely positive. That is, there exists some q∗ <∞ and a nonnegative p×q∗

matrix A∗ such that ΣX = A∗A
T
∗ . The value of q∗ is not known, and A∗ is not unique.

If X = A◦Z as in (2), the TPDM of the resulting vector is ΣA◦Z = A(0)A(0)T . Further,

if X ∈ RV p
+(2) has TPDM ΣX , the completely positive decomposition implies that there
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exists a 0 < q∗ < ∞ and a nonnegative p × q∗ matrix A∗ such that X∗ := A∗ ◦ Z has the

same TPDM as X. In Section 5, we will use this completely positive decomposition to

create prediction intervals.

3 Inner product space and prediction

3.1 Inner product space Vq

We consider a space of regularly varying random variables constructed from transformed-

linear combinations. We assume α = 2 to obtain an inner product space. Let Z =

(Z1, . . . Zq)
T be a vector of independent Zj ∈ RV 1

+(2) meeting lower tail condition sPr(b(s)−1Zj >

z) → z−2 and which have a common normalizing function limz→∞
P (Zj>z)

z−2L(z)
= 1 for j =

1, . . . , q. For a ∈ Rq, consider the space

Vq =
{
X;X = aT ◦Z = a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq}. (6)

Vq ⊂ RV 1
+(2). If X1 = aT1 ◦ Z and X2 = aT2 ◦ Z, then X1 ⊕X2 = (a1 + a2)T ◦ Z. Also,

c◦X1 = ca1 ◦Z for c ∈ R. Vq is isomorphic to Rq as any X ∈ Vq is uniquely identifiable by

its vector of coefficients a. Like Rq, Vq is complete and thus is a Hilbert space (Lee 2022).

Vq differs from the vector space in Cooley & Thibaud (2019) which was a non-stochastic

vector space for Rp
+.

We define the inner product of X1 = aT1 ◦Z and X2 = aT1 ◦Z as

〈X1, X2〉 := aT1 a2 =

q∑
i=1

a1ia2i.

We say X1, X2 ∈ Vq are orthogonal if 〈X1, X2〉 = 0. The norm is defined as ‖X‖Vq =√
〈X,X〉, whose subscript Vq distinguishes this norm based on the random variable’s coeffi-

cients from the usual Euclidean norm. The norm defines a metric d(X1, X2) = ‖X1	X2‖Vq .

We will further describe the meaning of this metric in Section 4.
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We will consider vectors X = (X1, . . . , Xp)
T where Xi = aTi ◦ Z ∈ Vq for i = 1, . . . , p.

X ∈ RV p
+(2) and is of the form A ◦Z in (2). We denote the matrix of inner products

ΓX = 〈Xi, Xj〉i,j=1,...p = AAT . (7)

We will relate ΓX for Xi in Vq to the TPDM ΣX for general X ∈ RV p
+(2) in Section 4.

3.2 Transformed-linear prediction

As Vq is isomorphic to Hilbert space Rq, the best transformed-linear predictor follows

similarly. Assume Xi = aTi ◦Z ∈ Vq for i = 1, . . . , p+ 1. Let Xp = (X1, . . . , Xp)
T . We aim

to find b ∈ Rp such that d(bT ◦Xp, Xp+1) is minimized. Writing in matrix form Xp

Xp+1

 =

 Ap

aTp+1

 ◦Z,
where Ap = (aT1 , . . . ,a

T
p )T . The matrix of inner products of (XT

p , Xp+1)T is

Γ(XT
p ,Xp+1)T =

 ApA
T
p Apap+1

aTp+1A
T
p aTp+1ap+1

 :=

Γ11 Γ12

Γ21 Γ22

 . (8)

Minimizing d(bT ◦Xp, Xp+1) is equivalent to minimizing ‖ATp b−ap+1‖2
2. Taking derivatives

with respect to b and setting equal to zero, the minimizer b̂ solves (ApA
T
p )b̂ = Apap+1. If

ApA
T
p is invertible, then the solution b̂ is,

b̂ = (ApA
T
p )−1Apap+1 = Γ−1

11 Γ12. (9)

An equivalent way to think of the best transformed-linear prediction is through the

projection theorem. X̂p+1 is such that Xp+1 	 X̂p+1 is orthogonal to the plane spanned by

X1, · · · , Xp. The orthogonality condition can be stated as < Xp+1 	 X̂p+1, Xi >= 0, for

i = 1, · · · , p. By linearity of inner products, this can equivalently be expressed in matrix
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notation as[
< Xp+1, Xi >

]p
i=1

=

[
< Xi, Xj >

]p
i,j=1

[
bi

]p
i=1

=

[∑q
k=1 aikajk

]p
i,j=1

[
bi

]p
i=1

. (10)

By (8), b̂ satisfies Apap+1 = ApA
T
p b̂ as above.

4 Subset Vq+

We have employed transformed linear operations to construct regularly-varying random

vectors X = A◦Z that take values in the positive orthant, and we have tied these vectors’

elements to the vector space Vq. It is essential that the elements of the coefficient vectors

a are allowed to be negative for Vq to be a vector space. However, negative values in a

do not influence tail behavior. Recalling that if regularly varying Z1, Z2 are independent,

P (Z1 + Z2 > z) ∼ P (Z1 > z) + P (Z2 > z) as z →∞ (cf. Jessen & Mikosch 2006, Lemma

3.1), we can discuss the magnitude of X ∈ Vq (as in (5)) in terms of the common tail

behavior of the generating Zj’s. We call

TR(X) := lim
z→∞

P (X > z)

P (Z1 > z)
=

q∑
j=1

(a
(0)
j )

2

the tail ratio of X and only the positive elements of a contribute. X = a ◦ Z ∈ Vq

and X+ = a(0) ◦ Z have the same tail ratio. Furthermore, if X = A ◦ Z, both it and

X+ = A(0) ◦ Z have the same angular measure: HX = HX+ =
∑q

j=1 ‖a
(0)
j ‖2δ

a
(0)
j /‖a(0)j ‖

(·).

X and X+ are indistinguishable in terms of their tail behavior.

In terms of modeling, it seems reasonable to restrict our attention to the subset Vq+ ={
X;X = aT ◦ Z = a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq}, where aj ∈ [0,∞), and Z = (Z1, . . . Zq)

T as

in (6). Considering inference for a random vector X ∈ RV p
+, we assume that X = A ◦ Z

for some unknown p × q matrix A because it is a simple and useful modeling framework.

Recall such constructions are dense in RV p
+. Inference for X will focus on its tail behavior,

10



and since this is indistinguishable from that of X+, it is reasonable to assume aij ≥ 0 for

i = 1, . . . , p, and j = 1, . . . , q, and thus Xi ∈ Vq+ for i = 1, . . . , p.

Continuing with inference, if p is even of moderate size, then estimating HX is chal-

lenging, so we focus on summarizing dependence via the TPDM. If X = A ◦ Z and all

aij ≥ 0, then ΣX = ΓX = AAT . Furthermore, if inference focuses on the TPDM, then q,

the number of independent Zj’s from which X is generated, does not need to be specified.

Turning our attention toward prediction, it seems reasonable to assume that the el-

ements of (XT
p , Xp+1)T are in Vq+, and prediction can be done in terms of the TPDM.

Considering predictors of the form bT ◦Xp and letting Σ(XT
p ,Xp+1)T be partitioned as in

(8), X̂p+1 = b̂T ◦Xp where b̂ = Σ−1
11 Σ12 will minimize ‖Xp+1 	 X̂p+1‖Vq . Because b̂ is not

required to consist of nonnegative elements, the predictor X̂p+1 is not necessarily in Vq+.

We can now better discuss the meaning of the metric d(X1, X2) = ‖X1 	X2‖Vq , which

in turn provides interpretation of what our predictor minimizes. Except under the unusual

circumstance where
∑q

j=1

(
(a1j − a2j)

(0)
)2

=
∑q

j=1

(
(a2j − a1j)

(0)
)2

, TR(X1	X2) does not

equal TR(X2 	X1). However, because P (max(Z1, Z2) > z) ∼ P (Z1 > z) + P (Z2 > z) as

z →∞,

TR (max((X1 	X2), (X2 	X1))) =

q∑
j=1

(a1j − a2j)
2 = d2(X1, X2).

Thus b̂ is such that TR
(

max((Xp+1 	 X̂p+1), (X̂p+1 	Xp+1))
)

is minimized, and our best

transformed linear predictor can be understood via this tail property rather than only in

terms of the coefficients of Vq, which are presumably unknown.
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5 Prediction Error

5.1 Analogue to Mean Square Prediction Error

In the non-extreme setting, linear prediction minimizes MSPE. Additionally, as MSPE

corresponds to the conditional variance under a Gaussian assumption, it is used to generate

Gaussian-based prediction intervals. Our transformed linear prediction has an analogous

quantity

||X̂p+1 	Xp+1||2Vq : =< X̂p+1 	Xp+1, X̂p+1 	Xp+1 >

= (b̂TAp − aTp+1)(b̂TAp − ap+1)T

= Σ22 − Σ21Σ−1
11 Σ12 := K.

(11)

Importantly, K can be calculated directly from the (estimated) TPDM. Unlike MSPE, K

is not understood via expectation, but instead via tail probabilities as

TR
(

max((Xp+1 	 X̂p+1), (X̂p+1 	Xp+1))
)

= K.

The quantity K is meaningful to minimize, but seems not very useful for constructing

prediction intervals. To illustrate, we simulate n = 20, 000 four dimensional vectors X and

obtain X̂4 predicted on (X1, X2, X3)T . X is generated from a 4 × 10 matrix A applied

to a vector Z comprised of 10 independent RV+(2) random variables; the elements of

A are drawn from a uniform(0,5) distribution. Using the known TPDM to obtain K =

0.224 and known tail behavior of the Zj’s, we calculate P (D ≤ 2.99) ≈ 0.95 where D =

max((Xp+1 	 X̂p+1), (X̂p+1 	 Xp+1)). We observe 0.952 of the simulated D values are

in fact below this bound. However, Figure 2 shows that knowledge of K is not useful

for constructing prediction intervals. Unlike the Gaussian case where the variance of the

conditional distribution does not depend on the predicted value X̂p+1, in the polar geometry

of regular variation, the magnitude of the error is related to the size of the predicted value.
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In the next sections we use the polar geometry of regular variation to construct meaningful

prediction intervals when X̂p+1 is large.
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Figure 2: Left panel: The plot of D = max(X̂4 	X4, X4 	 X̂4) against X̂4. The horizontal

dashed line indicates the approximate 0.95 quantile for D.

5.2 Prediction inner product matrix and completely positive de-

composition

The vector (X̂p+1, Xp+1)T ∈ RV 2
+(2), and this vector’s tail dependence is characterized by

H(X̂p+1,Xp+1)T . While this angular measure is not readily available, the 2 × 2 ‘prediction’

inner product matrix

Γ(X̂p+1,Xp+1)T =

(b̂TAp)

aTp+1

[(ATp b̂) ap+1

]
=

Σ21Σ−1
11 Σ12 Σ21Σ−1

11 Σ12

Σ21Σ−1
11 Σ12 Σ22

, (12)

is readily available from the TPDM, and we use the information in this matrix to quantify

prediction uncertainty. The last expression in (12) is in terms of the partitioned TPDM,

as we have assumed X1, . . . , Xp+1 ∈ Vq+.

Although the entries of b̂TAp are not guaranteed to be nonnegative, the Cholesky de-

composition of the 2 × 2 prediction inner product matrix yields positive entries and thus

13



Γ(X̂p+1,Xp+1)T is completely positive. We use the non-uniqueness of completely positive

decomposition to obtain nonnegative 2 × q∗ matrices B such that BBT = Γ(X̂p+1,Xp+1)T ,

and use (3) to construct a potential angular measure. Given a q∗ ≥ 2, there exist pro-

cedures (Groetzner & Dür 2020) to find examples of these matrices B. Since our goal is

to obtain a potential angular measure Ĥ(X̂p+1,Xp+1)T from the information in Γ(X̂p+1,Xp+1)T ,

there would seem to be incentive to set q∗ large, thereby distributing the total mass of

the angular measure HB◦Z into q∗ point masses. On the other hand, as q∗ grows, the

procedures for obtaining B require more computation. We take a practical approach. We

choose q∗ to be of moderate size, but apply the procedure repeatedly, obtaining nonneg-

ative B(k), k = 1, . . . , ndecomp, such that B(k)B(k)T = Γ(X̂p+1,Xp+1)T for all k. We then set

Ĥ(X̂p+1,Xp+1)T = n−1
decomp

∑ndecomp

k=1 HB(k)◦Z , and n−1
decomp

∑ndecomp

k=1 B(k)B(k)T = Γ(X̂p+1,Xp+1)T as

desired. Ĥ(X̂p+1,Xp+1)T consists of ndecompq∗ point masses.

We use a simulation study to illustrate. We again begin by generating a matrix A whose

elements are drawn from a uniform(0,5) distribution; however this time the dimension of

A is 7× 400 thus the true angular measure consists of 400 point masses. We draw 60,000

random realizations of X = A ◦ Z, and use the first 40,000 as a training set. The largest

1% of this training set is used to estimate the seven-dimensional TPDM, from which we

obtain b̂ and additionally Γ̂(X̂p+1,Xp+1)T . We then use the completely positive decomposition

to obtain 2 × 9 matrices B(k), k = 1, . . . , 51, resulting in an estimated angular measure

Ĥ(X̂p+1,Xp+1)T consisting of 459 point masses. We obtain a 95% joint region by drawing

bounds at the 0.025 and 0.975 quantiles of Ĥ(X̂p+1,Xp+1)T . The left panel of Figure 3 shows

the scatterplot of the 20,000 remaining test points X̂p+1 and Xp+1 and the 95% joint region.

Thresholding at the 0.95 quantile of ‖(X̂p+1, Xp+1)‖Vq , we find that 0.963 of the large values

fall within the joint region.
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5.3 Prediction intervals for Xp+1 given large X̂p+1

The region obtained in the previous section describes the joint behavior of X̂p+1 and Xp+1,

but the quantity of interest is the conditional behavior of Xp+1 given a specific large value of

X̂p+1. Cooley et al. (2012) use the limiting intensity function of regular variation to get an

approximate density of Xp+1 given large Xp. They fit a parametric model for H(Xp,Xp+1)T

and transform from polar form to obtain ν(Xp,Xp+1)T (dx). Cooley et al. (2012) applied their

method in moderate dimension (p = 4). Applying their approach in higher dimensions

would require fitting a high dimensional angular measure model. We adapt the method of

Cooley et al. (2012) to model the relationship between Xp+1 and X̂p+1. Regardless of p,

we only need to describe this bivariate relationship.

Changing from polar coordinates to Cartesian, a bivariate regularly varying random

vector (X1, X2) with α = 2 and angular density h(X1,X2) defined on Θ+
1 has limiting measure

ν(dx1, dx2) = 2‖x‖−5
2 x2h(x‖x‖−1

2 ). Following Cooley et al. (2012), the conditional density

of X2|X1 = x1 if x1 is large is approximately

fX2|X1(x2|x1) = 2c−1‖(x1, x2)‖−5
2 x2h

(
(x1, x2)

‖(x1, x2)‖−1
2

)
, (13)

where c =
∫∞

0
2‖(x1, x2)‖−5

2 x2h
(

(x1,x2)

‖(x1,x2)‖−1
2

)
dx2.

We use (13) to obtain an estimate of the conditional density of Xp+1 given large X̂p+1.

Since (13) requires an angular density, we use a kernel density estimate of Ĥ(X̂p+1,Xp+1)T .

We use the adjusted boundary bias approach of Marron & Ruppert (1994) for the kernel

density estimation since the support of H(X̂p+1,Xp+1) is bounded. We then take the 0.025 and

0.975 quantiles of this estimated conditional density to obtain a 95% prediction interval.

The center panel of Figure 3 illustrates the conditional density for a particular realization

from the aforementioned simulation study where X̂p+1 = 33.17 and with actual value Xp+1

= 48.15 denoted by the blue star. The right panel shows a scatterplot of the largest 5% (by

15



X̂p+1) of the test set from the aforementioned simulation along with the upper and lower

bounds from the conditional density approximation. The coverage rate of these intervals

is 0.947.

●●●
●●
●●●●●
●●●●●●●●

●

●
●●●●●●●●
●
●●

●

●
●

●

●
●
●●●●●● ●●●●●●
●

●●●●

●

●●●●●●

●

●●
●●●
●

●

●●●●●●●●●●●●
●
●

●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●

●●

●●●●
●

●●
●
●●●●

●
●●●●●●
● ●
●●●

●
●●●●

●●●●●

●

●●

●

● ●●●●
●

●●●●●●●●●●●●●●●
●●

●●

●

●
●●●
●●

●●●

●
●

●●●●●●●●●●●●

●

●●●●
●●

●●●●

●

●
●●●●●●● ●
●●●
●● ●

●
●●●

●
●●

●●
●●●●●●●●●
●

●●●●●
●

●

●●●
●●
●●

●

●
●

●
●

●●

●

●●●
●

●● ●●●

●
●

●

●●●
●●●●●●

●

●●

●
●●●●●

●

●●
●

●●●●●●

●

●●
●●●●

●●
●●●

●
●●●●●●●
●

●

●

●●

●

●

●
●●

●

●●●
●

●●
●●●●●

●

●
●

●

●
●●
●●

●

●

●●

●
●●

●
●●●●●
●

●●●●●

●
●

●●
●
●●●●●●●
● ●

●●●●●

●

●●●

●

●
●●

●

●

●●●●
●●●●●
●
●●●●●●●
●●
●

●
●●

●
●

●●●●●●
●
●●
●

●●●●●
●

●●●●
●

●●●
●●

●●
●●●●●●●●●●●●●

●

●

●
●●●●●●●●●
●●

● ●●●

●

●●●●●●●
●●

●

●
●

●

●
●
●

●●●

●

●
●●●●●●●●●

●
●●

●

●●●●●●●●
●●

●

●●

●

●●●●●●●
●

●●●
●

●●
●●●●●

●●
●

● ●
●

●

●
●

●●
●●

●
●●●●

●
●
● ●

●●
●●●●●●●

●●

●

●
●

●●
●

●●●
●
●

●

●
●
● ●

●●●

●●
●●●●

●
●

●
●
●
●
●
●●●●●

●●

●●

●
●
●●●●●●

●

●

●
●

●

●

●

●
●●
●●

●

●●●
●

●

●●●●●●●●●●●●●●
●
●●●●●● ●●●●

●
●●●●●●●●●
●

●●●●●●
●
●

●●●●●●●●●
●●
●
●●
●
●

●

●

●

●●●
●

●●●●●●●●●
●●

●●●●
●●●●●

●
●●●●●
●
●

●
●●●●
●
●●●●

●

●●●●
●
●●●●●●

●
●●
●

●●●●●
●

●
●●
●

●●

●

●●●
●

●
●

●●●
●

●

●●
●

●●

●
●●
●

●●●●
●●
●●●
●●●●●●●
●●

●●

●

●●
●●●●●●●●●● ●

●

●●●●
●

●●●
●●

●
●●●●●●
●
●●

●
●

●

●
●●●●●●●●●●●●●●

●

●
●

●●●●

●

●
●

●●●●
●

●●● ●●
●●

●●

●

●●●●

●

●●●●

●

●

●●●●●●●●
●
●●

●●●●

●
●

●●
●●●
●

●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●
●

●●●●●
●

●●
●●
●●●●●●●●

●●

●●

●●●●●●●●●●●●
●
●

●●●●●●●●

●

●●
●

●
●

●●●●●●

●
●
●

●●
●
●●
●
●

●

●●●●●●●●●
●

●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●

●

●●
● ●
●●●●●●●●

●
●●●●●

●
●
●
●●●●●●

●
●●●●●

●

●●
●

●● ●●●●●
●●
●●●●●●

●
●●●●●●●

●

●●●●●●●
●
●●●●●●●
●

●●●

●

●
●

●
●●
●

●

●●●●
●●
●●●●●●●

●

●
●

●
●

●
●

●●
●●●●●●●●●●●●
●

●●●●●
●●

●
●

●

●●●

●
●●●●
●

●
●●●●●●
●
●

●
●

●
●
●●●●

●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●

●●●● ●●

●

●●●●●●
●
●●
●
●●

●

●●
●●

●●
●

●●●●

●

●

●

●●●●

●
●

●●●
●

●●●
●

●

●

●

●

●

● ●

●
●
●●●
●

●●●●●●●
● ●●●●

●

●●●

●

●●●●●●●●●
●●●●●●

●
●

●

●●●●●
●

●●
●

●●●●
●

●●●●●

●

●●
●●

●
●

●

●●●

●
●●●●●●●●
●
●●●

●

●●●●
●

●●●

●●●●●●●●●●
●
●●●
●●
●
●●●
●●

●
●●●●
●

●

●

●●●●●●●●

● ●
●
●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●

●
●

●

●●●●

●

●
●●
●●●●●●●●

●
●●●●●

●

●●●●
●

●

●
●

●

●
●●●●●

●●●●●
●

●●●●

●

●
●

●●●●●●

●

●
●●

●●●●●
●●●

●
●●
●
●●●

●●
●●●●

●

●●●●●●●
●●●●

●

●●●●●
●

●●● ●●●

●

●●●

●

●●●●●●●●

●
●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●● ●●●

●
●

●

●●●

●

●
●

●

●
●●●

●

●●●
●

●

●●●●●●●●

●
●

●●●
●

●

●

●●●●●
●●●●●●●●
●

●
●●

●●●
●●

●●
●
●●●●●●●●●
●
●●
●●●●●●●●●●

●

●●

●

●●●●
●

●●

●

●●●●●●●

●

●
●

●
●●●●●●●●●●●●●●●●
●

●

●
●●●●

●

●
●

●●●●

●

●●●●●●
●

●●●●●●

●
●●●●●

●
●●●●●●●

●

●
●
●●

●

●
●

●●
●

●●●●
●
●●●●●

●
●

●
●●
●

●

●

● ●●●●●
●●●●●

●
●●●●●

●

●●●●●●●

●●
●

●●
●●●
●●●

●
●

●●

●

●●

●

●
●
●●●●●●●●●●●
●

●●●●●●●●●●
●●

●
●

●

●
●

●●●●●

●

●●●●●●●●●●

●
●●●●●●●●

●

●●

●

●●●●●●
●●●●●●

●

●●●●
●
●●●

●

●●●●●●
●●

●●●

●

●
●
●●

●

●●●●●●
●●●●●●●●●

●

●●●●●●●●●●
●

●●

●

●
●
●●●●●●●●
●●

●
●

● ●●●●

●

●●●

●

●●●●●●
●●●

●
●

●
●

●●●●●●
●
●●●●●
●
●

●

●
●

●●●●●

●

●●●●●●●
●

●●●●●●
●

●
●●

●●●●
●
●●●●

●●●

●

●●●●

●

●●
●

●

●

●

●

●●●●●●●●●●●
●

●

●

●●

●

●●●●
●●
●●●●●

●

●
●

●
● ●●●●

●
●●●●●●●●●●
●●●●●

●
●

●

●

●●●●●
●●

●
●
●

●

●
●●●

●

●●●●●●
●

●●●●
●●

●

●●●
●
●

●●
●

●
●●●●

●●●●●●●●
●
●●●● ●●●●●●●●●●●●●●●●

●

●●●●
●
●●
●

●●

●
●

●●●●●

●

●●●

●

●
●

●

●●
●

●●●●●●●●●●

●

●●●
●

●
●●●●●●●
●

●

●●●●●●●●
● ●

●●●●●
●

●

●●●●
●

●●●●

●

●●●

●

●●●
●
●●●

●

●

●●●●●●●●●●●●
●

●
●
●

●●●
●

●●●●●●

●

●

●●

●

●

●

●

●
●

●

●●
●●●
●●

●
●●●●
●●●●●
●●

●
●
●

●
●●●●

●

●●●
●

●●●●

●

●●●●

●

●

●●●●

●

●
●●●●●●●●
●●●

●

●
●
●

●● ●●●
●

●●●
●●●

●

●●●●●●
●

●

●

●
●
●●●●●●

●

●●●●●●●●●●●
●

●●●●●●●
●

●●
●●

●

●

●●
●

●●●●●●●●
●

●●●

●

●

●
●●●●

●
●●

●

●●

●

●
●
●●

●
●●●

●
●●

●
●

●●

●

●●●●
●

●●●●
●

●

●
●

●●●

●
●

●
●●●●●●

●●●●

●

●●●●
●●●●●●●●●
●

●●●
●●●●●●●

●

●●●●●●
●●●●
●

●●●●●
●

●●●●●
●●●

●● ●●
●●●●●●
●

●●
●

●●
●

●●●●
●

●●●●●
●

●●●
●

●

●

●●●●●●●

●

●●●●●●
●●●●●●●●●●●●

●

●●●
●

●● ●●
●●

●●●●

●

●●●●●
●

●

●

●
●●●●●
●●●●●
●

●
●●

●●●
●

●●●●●●●●
●
●●●
●●●●●●●
●●

●
●●

●

●
●

●
●●●●

●
●●●
●●●

●

●
●

●●●●●●●●●●●●
●

●●●●●
●●●●●
●

●●●●●●
●

●●
●

●

●
●

●●●●●●●●

●

●●●●●●
●
●

●
●
●
●●●●
●●●●
●

●●
●
●●

●●
●

●●
●●●●●

●
●●●

●
●●●

●

●●●●●
●

●● ●
●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●●●
●
●●●●

●
●●
● ●●●
●

●
●
●●
●
●●●●●●●●●●

●

●●●●●

●

●●●
●

●
●

●
●

●●
●●

●●

●●
●

●●
●●●●●●●
●●●●●
●
●
●●

●
●●

●

●●●●●●●●●

●

●●●●
●

●
●

●
●

●

●●

●●●●

●

●●●● ●●●●●
●

●

●
●

●
●●

●●●●●
●

●
●●

●●●●●

●

●

●●●● ●●●
●●

●●●●●

●
●

●●●●●●●●●●

●

●

●

●●●
●
●

●
●●●●

●

●
●

●●●

●
●
●
●●●●

●

●●●
●●●●
●

●●

●

●● ●●●●●●●
●

●
●

●
●●●●●●

●
●

●

●●●

●

●

●

●

●

●

●

● ●
●●●
●

●

●

●
●

●●●●●
●

●

●

●

●●●● ●●●

●
●

●●●●●●●

●

● ●●

●

●●●●●●●
●

●●●●●●●

●

●●
●●●

●

●
●

●

●●●●●●●

●

●●●
●

●

●●●●
●●

●
●●●
●●●●
●

●●

●

●●
●
●●
●
●

●

●
● ●●●●●

●

●
●
●
●

●

●●●
●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●
●

●●●●
●
●●●●●

●●●
●●
●●●●●
●●

●●●●●

●
●

●●●●●●●●
●●

●●●●
●

●●●
●

●
●

●●
●●

●

●●●
●●
●

●●●●● ●●●●●●●
●●●●●●●●●●●
●●●●●

●
●●

●
●

●

●●●●●●
●●●●●●●●●●●●

●

●●
●

●
●●●

●
●●●●
●●
●

●
●●● ●
●●

●
●

●

●

●●●●
●

●
●●
●

●
●●●

●

●
●●●●

●

●●

●

●●●●
●

●
●

●

●
●●●●●●
●●●●

●
●●●

●
●●●●●

●

●
●

●●●●●

●
●

● ●●
●

●
●

●
●●●●●●●

●
●
●●●●●●●●●●●●●●●

●

●●●
●

●●●●●●●
●

●●●●
●

●●

●
●

●

●●●●●●
●

●●
●

●●●● ●
●

●●
●●●●

●

●●●●●●●
●

●●●●●● ●●

●

●
●
●●●●●
●

●
●

●●●●●
●

●

●●●●●●●●●
●
●●●

●
●

●●

●

●●● ●●

●

●
●●●●●●

●●

●●●●●

●

●●●●

●

●
●●

●●
●

●

●
●

●

●

●●●
●
●●●●●●●●
●

●●

●●●
●●●●●●●●●●●

●
●●●

●

●

●

●

●

●●●●●●

●

●

●

●
●●●●●●●●●
●

●

●●

●

●
●●

●
●●●●●●
●

●●●●●●●●●
●
●●●●●

●

●●●●●●●

●

●●●
●●●●
●

●
●●

●●●●●
●

●●●● ●●●
●

● ●
●●

●●
●●●●●●
●

●●●●●●●●
●

●●●●
●

●

●

●
●
●●●●●●●●●●

●
●●●●

●

●●●●

●

●●●●●●●●●●●
●

●

●●●●●●●●●●
●●●

●

●●●●●
●

●●●

●

●●●
●

●
●●●●●

●

●●●●●●●
●

●●●● ●
●●

●
● ●
●●

●

●
●●

●

●●
●●●
●●●●

●

●●●●●●●●●
●●● ●●●●

●
●●
●●

●

●
●

● ●●●●

●

●
●

●●●
●
●●
●

●

●
●

●
●●●●●● ●

●●●●●●
●

●
●●●●
●

●
●
● ●
●●●
●●●●●●●●●●●●●●●

●

●
●●

●●●●

●

●●●●
●

●●●

●

●
●

●●●●●●
●●●●●

●

●

●

●

●

●●
●●

●●
●●●●
●

●

●●●●●●
●

●●
●

●●●
●●

●●●
●●
●

●

●

●●●●●●
●●

●●●
●●

●●●●●

●

●●●●
●

●●●
●●●

●
●●●●●●●●●●●●●●

●
●●
●

●
●●●●●
●
●●●●●
●

●
●●●●
●
● ●
●●●●
●●●
●●●
●●

●

●●●
●
●●●●●

●

●

●

●

●●
●

●●●●

●●
●

●●●●●●●●
●

●

●
●●

●
●●
●

●

●
●
●●●●●●●●●●●

●
●

● ●
●

●●●●●●●● ●●●

●

●●●●●●
●
●●●

●
●●
●

●●
●●●

●
●●●●●

●

●●●●●
●

●●●
●

●●
●●●●

●
●●●●

●

●

●

●●

●●
●●
●
●●●

●
●

●
●●●

●

●●
●

●●●●

●

●

●

●●●
● ●

●
●●●
●
●
●
●

●

●●
●

●●
●●

●

●
●

●

●

●●●●●

●

●●●
●

●
●●●●●●●

●
●
●
●●●●●

●

●
●

●
●

●●●●
●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●●

●

●●
●

●

●

●●●●●●●●●

●

●
●

●

●

●●●●●
●

●●●●
●●

●●●
●●●

●● ●●●●●
●●●●●●●●

●

●●
●●

●●●●●●

●

●
●

●

●
●
●●●
●●● ●●
●

●

●
●

●●●●●●
●●●●●●●●●
●
●

●●
●●

●

●●●●●
●

●
●●

●●
●

●
●●●●●●●●●

●
●
●●●

●
●
●
●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●

●

●●
●

●●

●

●●●●●
●

●●

●

●●●●●●●●●●●●
●●●

● ●
●
●
●●

●
●

●●

●

●
●●

●●● ●●●
●●●●●

●

●●●●●●●
●

●●●●●
●

●●
●

●

●●●●●

●
●●

●

●

●●●

●

●●
●●
●●

●●●●●
●●●
●●

●●●●

●

●●●

●

●

●

●

● ●

●●●
●

●●●

●

●●

●

●
●●●●●●●●●●●●

●
●●●●●●●●●●●●● ●●
●
●
●●●●
●

●

●●●●●●●
●

●
●
●●

●
●●●●●●

●
●●●●●
●●●●
●

●

●●
●
●●

●
●●●
●

●

●●●●
●

●●●●

●

●
●
●
●
●●●●
●
●

●

●●

●
●

●●●●●●●●●●

●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●
●

●
●

●

●● ●
●

●●●●●●●●
●●

●●

●

●●●●●
●

●●

●

●●●●
●●
●

●●●●●●●●●●●●

●

●
●
●
●●●●●●●

●●

●●●●●●

●

●●●

●
●●●●●

●●●●●●●
●●●●
●

●

●

●

●●●●●●
●
●
●●●

●●●●
●
●●●

●

●●●

●●

●●●
●●
●

●●●
●●

●

●
●●●

●
●

●●●●●●●●●●●
●●●●
●●

●●●●

●

●

●

●●●

●

●●

●

●●●
●●

●●

●

●●
●

●●●●●
●●

●

●●

●●
●

●●
●●
●

●
●
●●

●●●
●●●
●

●●
●●●
●

●●●●●●●●●

●

●
●●●●●●●● ●●●●●●●●●
●●●●●●●●●●●●●

●

●

●●●
●

●●●● ●●●

●
●

●●●●●●●●●●●●●●●●
●
●

●
●
●
●●●●●●●

●

●●●
●

●●●●

●

●
●●●●●●●●●●
●●

●●
●

●●●●● ●

●

●●●
●

●●●●●
●●●● ●●●●●●

●
●

●●●●

●

●●●●●●●●●●
●
●●●●●
●●●
●●

●● ●●●●●● ●●●
●

●●●●
●●●●

●●●●●●
●●●●●●

●
●●●●●●●

●

●●●● ●
●

●

●
●
●

●●●●●
●

●

●

●●●
●●●

●●●●●

●

●●●● ●

●

●●●●
●●●
●●●
●
●●●

●●●
●

●●
●

●●●●●
●●

●
●●●● ●●●●●

●
●●

● ●●●●●●●

●
●

●●
●●●●●

●

●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●●●●●

●
●
●
●

●●●●●●●
●

●●
●
●●
●
●●

●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●
●
●

●
●

●

●●●
●

●●●●●●●●●

●

●

●

●
●●
●●●●●

●●
●

●●●

●

●
●

●●●●●●●

●

●●●●●●●●●●

●

●●
●

●●●●
●

●●

●
●●●●

●
●●
●

●●●●●●●●●●
●●●●●●●●

●
●
●

●●

●●●

●

●

●●

●

●

●

●●

●

● ●●●●●●●
●
●●●●●
●

●●●

●

●●●

●

●●●
●●●●●●●●●●●●
●●
●●●
● ●

●●●●

●

●●●●●●
●●
●

●●

●●●
●●●●●

●
●

●●●●●
●●

●

●

●

●

●

●●●●●

●

●
●●●●●●●

●

●●
●

●●●
●

●●
●

●

●●●●●●
●●

●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●
●

●●
●
●●●

●
●

●
●
●

●●●●●●●●●●●

●

●●

●

●●●●●
●

●●

●

●
●●●
●

●●●●●

●

●

●

●●●
●

●●●
●

●

●

●●●
●●

●
● ●●●
●

●
●●
●

●●●

●

●●●

●

●
●

●●
●

●●●
●

●
●●

●●●●
●●●

●
●●●●
●●●●●
●
●●●●●

●

●●●●●

●

●●●●
●

●●
●

●
●●●●●●● ●●●●
●
●

●
●

●●●●●●●●●●●●

●

●

●●
●●●

●●●●
●

●●●●
●

●●●●●●●●●●●●●
●

●●

●

●
●●
●●
●●●

●

●●●●●●

●

●●●

●

●●
●
●●●
●
●●●●

●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●

●

●●
●

●

●●
●

●

●●
●
●

●●●●

●

●
●●●●●
●●
●●

●●

●

●●●●
●●●●●
●

●●●●●●●●●●●●●
●●
●●

●●●●●●●●
●
●●
●
●

●●
●

●●●
●

●

●●

●
●

●
●●●●●●

●
●●●
●

●
●

●●●●●●
●●
●●●●●
●

●
●

●

●

●●

●

●
●

●●●●
●

●
●
●●

●●●●●

●
●●●●●●●●●●●●

●

●

●

●
●

●
●

●●
●

●

●

●●●●●●●●
●

●●●●

●

●
●

●●●●●
●
●●●●●●●●●●●● ●●●●●●●●●
●
●●

●
●

●

●
●

●●●

●
●●
●

●●

●

●

●●●●●●●
●●●

●●●
● ●●●●●●●●●●●●●●

●
●● ●

●
●

●
●●

●

●●

●

●●

●

●●●
●

●●●●●●●

●

●

●

●●
●●

●●●●●●●●
●

●●●●●●●
●●

●●●●●

●

●●●●●
●●

●

●●●●
●●●

●

●
●

●

●●●●

●

●
●
●●●●●●

●
●

●

●●●
●

●●

●●●●

●

●●
●●

●
●
●
●●●●●

●

●
●●

●
●●

●
●

●●
●●

●●

●

●

●
●

●

●

●●
●●●●

●
●●●
●●●●●●●●●

●●●●●●●●●

●

●●●
●●●●●●●●●

●
●●

●
●●●

●●

●●●●●●●●
●

●●

●

●●●●●
●

●
●●●●●

●
●

●

●●●
●
●●

●
●
●●●●●
●

●
●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●●●●●●●●●
●●●●●
●

●
●

●●●●
●

●

●

●
●●●●●

●●
●●●●●●

●●

●●●●●
●
●

●

●●

●

●●●●●●●

●

●●●●●
●

●
●●

● ●●●
●●

●
●
●

●

●

●●
●

●●

●

●●●●
●●

●
●
●●●●●●●

●

●●●●●●

●
●
●

●
●

●
●●
●●●●●●●●●
●
●

●

●●●●●

●
●●●●●●

●

●●
●●●

●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●
●
●●●●●●●

●

●
●●
●

●●
●●●●

●
●●●●●●●
●●
●

●●●●●
●
●

●●

●

●
●

●

●●
●

●●

●

●
●●●●●●●
●●●●●

●
●

●●●●
● ●●
●●●

●●
●

●●
●

●
●●●●●●●●
●

●
●●
●

●

●●●●●
●●●●
●●
●●●●

●

●

●
●

●

●

●●●●●

●
●

●●
●
●●●●●●●

●

●●●●●●
●●●●

●

●

●
●
●

●●

●

●●● ●
●

●

●
●●

●●●●

●

●●
●

●●●●●●●
●●●●

●●
●●●

●

●
●

●●
●

●●●●●●●
●

●

●

●●●
●●●●

●
●●●●●●●●●
●
●●●●●●●●●

●

●
●

●●●●●
●

●

●●●●● ●●●
●

●

●●
●
●●

●
●●●●●●●●●

●

●
●
●●●●●●●●●●●

●
●

●

●●●
●

●●●●●
●●
●

●
●

●

●

●

●

●●●●●●

●

●●●●
●●

●●●

●

●●
●●
●●●●●●●

●●
●

●
●●

●●●●
●

●

●
●●

●●●●●●●

●

●●●●
●

●

●
●
●

●

●

●●
●

●●●●●●●●●●
●

●●●●● ●●●●
●

●●●●●●
●

●

●
●●

●
●●
●

●●●●●●●●●
●●●●●

●

●●●●●
●●

●●●●●

●
●

●

●●
●●●●●●●●

●

●

●●●●
●

●

●

●●

●●

●

●●●●●●●●●●●

●

●
●
●
●●●●●●

●

●
●●●

●

●

●

●●

●

●●
●●

●●
●
●

●●●●●●●●●●●●●

●

●
●

●●●●
●
●

●●●●

●

●●
●

●●
●●●

●

●
●●●
●

●

●

●●
●

●●
●

●●●

●

●●
●
●●●●●

●

●

●
●
●

●

●

●●

●●●
●

●●●●●●●
●●●

●
●

●

●

●●
●●●●●●●●●●●
●

●●●●●
●
●●
●●●
●

●●●●●●●●●●●●●
●●●●

●

●●
●●

●●●●●●●●●●●●

●
●

●

●●

●

●●●●●●●

●
●
●
●●

●

●

●●●●●●●●●●●
●

●●●●

●

●
●

●
●●

●

●●

●

●

● ●

●
●●

●
●●●●●●
●●●

●

●●●●●
●

●●●
●●

●

●
●●●●●● ●●●●●●●●

●

●
●
●●

●

●
●●●●●●●●●●

●

●

●

●●
●

●

●● ●●
●●●

●

●
●●

●

●

●●

●

●●●●●●●
●●

●
●

●

●
●

●●●●●●●●●

●

●●
●

●●●●●●●

●
●●●●●●

●

●●
●
●●●●●●●

●●●●●●●●●●●●●●●●

●

●●● ●
●
●
●●●●
●●
●●●

●

●●●●
●●

●
●●●●●

●●●●●●●●●●●●

●

●●●●●
●
●●●●●●
●●●
●●●●●●●●
●

●
●

●

●

●●●
●●●●

●
●●●●●●●●
●●●●●●●●
●

●

●

●●●●●
●

●●●
●

●●

●

●●●●●●●●●●●●●●
●

●
●

●

●

●

●
●

●
●

●

●
●●●●●●

●
●

●

●

●●●
●●●●●●

●
●

●●●
●
●●●●

●
●●

●●●●●●●

●

●●●●●●●
●●●●●

●

●●●
●

●
●

●●●●●●
●●●●●
●●

●
●
●

●

●●●●●●

●

●
●●●
●
●

●●● ●
●●●

●

●●●●●
●

●●
●

●●●●
●

●

●●●●●
●
●●

●
●●●●

●
●
●

●

●
●

●●●

●

●

●

●

●
●●●●●
●
●

●●●●
●●●●●●●● ●●

●

●

● ●●●●● ●●●●
●

●●●

●

●

●

●●●●●●
●●
●●●●●●●●●

●

●

●●

●●
●●

●
●

●
●●

●
●●●●● ●●●●●●●●●●

●
●

●

●

●●
●●

●

●●
●

●●●●●●●
●●●●●●

●

●
●●

●
●

●●●●

●

●●
●●

●

●
●

●
●

●●●●●●●

●

●
●
●

●
●

●
●
●●●●●●●

●

●

●

●●
●

●

●

●●

●
●

●●

●

●●●●
●
●●●●●●

●

●●

●

●●●●
●

●●●
●

●●●
●
●●

●

●
●

●●●●●
●

●●●● ●●●●●●
●●●

●
●●●
●

●●●

●

●●●
●

●●●●

●

●
●
●

●

●●●
●●

●●●●
●

●●
●●

●●
●

●●●●●
●

●●
●

●●●

●

●
●

●●
●

●●●●●

●
●

●
●
●●●●●●●●●●
●

●●

●
●●
●●●●●●●●●●
●●●●●

●
●

●●●●●●●●●●●●●●●●●
●
●

●●●●●●●
●

●●●●
●●

●

●●

●

●●
●

●
●

●●●●●●
●

●

●

●●●●
●
●

●
●
●
●●●●●●●●

●●
●●●

●

●
●

●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●
●●

●●
●
●●●

●

●●●
●

●●●●●

●

●●●

● ●
●●●

●

●●●●
●

●●●●●
●

●●●

●●
●

●●●●●
●

●●●
●
●●●
●●●●●●●●●

●
●
●
●

●

●●●●●●●●●●●
●

●●●●●●●
●

●
●

●
●●●●●●●●
●

●●●●●●●●● ●
●●

●●
●

●●●●
●
●●

●
●●

●
●●
●
●●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●
●●●●●●

●

●

●

●●●●●●●●●

●
●

●

●
●●●●●●●●●●●●●●
●
●●
●

●●●●●●●●●●

●
●

●
●●

●●

●

●
●●●

●●●●
●

●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●
●

●

●●●●●
●

●●
●
●●●

●●●●●●●
●

●●●

●
●
●●

●
●●● ●●●

●

●

●●●●
●●●

●

●●●●●●
●●●●●

●
●●●●●
● ●●●●
●●●●●

●
●

●●
●

●●●

●

●

●

●●●●●●●●●
●
●●●●●●●●●●
●●

●●●●●●●

●
●

●

●
●
●●

●

●●●●●

●

●●
●
●●

●

●●●●●●●
●

●
●
●●●

●
●

●●
●

●●●●●●●●●

●

●●●●●●●●
●●
●
●
●

●●●

●

●
●

●
●

●

●

●
●●
●
●●●●●

●
●

●

●●●●●●●● ●●●●●●●●
●●●
●

●

●

●●●●●●

●●
●●●●●●●●
●●●
●

●

●● ●●●●

●

●

●

●
●
●

●
●●

●

●●
●

●●●●●●●●●●

●●

●●●
●●●●●●●●

●
●●●●

●
●
●

●●●●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●●●●●●●●●●

●

●
●●

●

●●●
●

●
●

●●●●●●●

●

●●●●●
●●

●●

●

●●●

●

●●●●●●●●●●●●●

●
●

●●
●

●

●●●●

●

●
●●●●

●●●●●●●●●

●

●●●
●

●●●●●
●

●●●●●●

●

●●●●●
●●●●●●●●●

●

●

●●●
●

●●●●●

●
●●
●
●●●●

●
●●

●
●

●●●●●

●

●●

●
●

●
●

●●●●●●●●

●
●

●●●●●●●●

●

●
●

●●
●

●

●
●●●

●

●●●
●
●
●
●
●●
●●●

●

●

●

●
●

●
●
●

●

●
●●●●●●●●●●●●●●● ●●●

●

●
●

●●●●
●●

●
●

●●●

●
●

●●●●

●

●●●●●●
●●

●●●●●●
●●
● ●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●
●
●
●●

●
●

●●●

●

●●●●●●●●●●
●
●●

●

●
●●●

●
●

●●
●
●●●
●
●

●●●
●
●●

●

●

●

●

●

●●

●

●
●

●●

●
●●●●●●

●

●●●●●●
●

●
●●●●●●●●●●●●●

●
●●●●●●●●●

●

●

●●●
●

●●●●●●●
●●●●●
●

●
●

●

●●●
●

●●

●

●●●●●●●
●

●●
●●●●

●
●●●●
●
●●●●●●
●

●●●●●●●
●
●
●●
●

●●

●

●●●●●●●

●

●
● ●

●

●

●
●●●●

●

●●

●

●●

●●●●●
●
●●●●●●●●●●●●

●

●●

●

●
●●●●●

●

●●●●●●●●●

●

●
●●●●

●

●
●
●

● ●●●●●
●

●

●

●●
●

●●●●

●

●●●●

●

●●●●●

●

●●●●
●

●
●

●●●●●●
●

●●●●●●●●●●

●

●

●

●●●
●

●●
●
●●●●●●●●

●
●●●

●

●●●●●
●

●

●

●

●

●●●●

●

●●●●●
●

●●●●

●
●●●●

●●

●
●
●●●●●●

●
●
●●
●
●

●●
●●

●●●●
●

●●●●●●●●●●●●●●●●●

●

●●●
●

●
●

●

●●●
●

●●●●●●●●

●

●●●
●

●●●●
●
●●●●● ●
●

●●●●●●

●

●
●
●

●

●●

●

●
●

●

●●

●
●●

●●●
●

●

●
●●●●●●●

●

●●●●

●

●●●●●●

●

●
●

●

●●●●●●●
●●●●●●●●●

●

●

●●●●
●

●●●●●●
●●●
●

●
●●●●●
●
●●●●

●
● ●●●●●
●
●●●●●●●●
●

●
●
● ●

●●●
●

●●●●●

●

●●●●●●●●●●●●●●

●
●

●●
●●●●●●●●●●●
●●●

●●●●
●●●●●●

●

●●

●

●●

●
●●
●●

●

●●●●●●
●●●

●
●

●

●
●

●●●●●●●●●

●

●

●●
●●●●●●
●
●●
●
●●●●●●●●●●●●●●●
●
●●●●●●

●

●
●●●●●●●●●●●●●
●●●●●
●
●

●●●
●
●●●●●●●

●
●
●

●●●
●
●
●
●●●●●●
●

●●
●
●

●

●●●●●●●●●●●●
●

●●●●●●●●●●

●

●
●

●

●●●●
●

●
●●

●

●●●●

●

●●●
●●●

●

●●●
●
●●

●
●

●●●●●●●●●●●●

●

●●●
●●

●●●●●●●●●●●
●●

●● ●
●●●●●●●●●

●
●●●●●●●●
●
●●

●

●

●

●

●●●●●●●●●●
●

●●●●●
●●

●

●

●●●●
●●

●
●●●

●

●
●●●●●●●●
●
●●●●●●●●
●●●●●

●

●●●●
●

●
●
●●●

●

●●●●

●

●
●

●

●

●●
●

●●●● ●●●●●●●

●

●
●

●

●

●

●●●●●
●

●

●

● ●●●●●●
●

●●
●

●●
●●●●●●●●●
●

●●●●●●●●●●
●
●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●
●
●●
●
●●

●
●

●
●●

●●
●

●
●●●●●

●
●●
●
●●

●

●●●●●●●●●●
●
●●●

●●●●●
●
●●

●
●●●●

●
●●●●●
●●●
●

●
●●●●●

●

●
●

●●●
●

●●●●●●●●●●● ●●●●●●

●

●●●
●

●
●●

●●●●
●

●

●●●●●●●●●●●●

●

●
●

●●
●

●

●

● ●
●

●
●●●
●

●

●●●

●

●●
●
●●

●●●●●● ●
●●

●●●

●

●●

●

●●●●
●

●●●●●

●

●
●●
●●●●

●

●

●●●●●● ●

●

●●●●●●

●

●

●

●●●
●

●

●●●●●●●●

●●
●●●●●●
● ●●●●

●
●

●
●●●●
●
●●●●●● ●

●

●

●

●●●●●●●
●

●
●

●●
●●●●●●●

●

●
●●

●

●●●
●

●●
●

●●●●●●●

●
●

●●●
●

●●●●
●
●●●●●

●
●●●

●

●

●

●●
●

●●●
●

●
●●●●
●
●●●

●
●

●●●●●●●●●●●
●

●

●●●●●●
●
●●●●●●●

●
●●●●●●●●●
●

●
●

●●●●●●●●
●

●●

●

●●
●
●●●●●●

●●

●
●
●
●●●●●●●●●●●●●●●●●●
●

●●●
●●●

●

●●●●●●
●

●

●●●●●●●●
●●●●●●
●

●●●●
●
●●●
●●

●

●
●●
●

●●●
●

●●●
●

●●●●●●
●
●●●●●●

●
●●●●●●●●●●

●
●●●

●

●●●
●
●

●
●●●●

●
●

●●
●●●●●
●

●

●
●

●●●●
●

●●●●
●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●

●●●
●

●●●●●●

●

●
●

●
●

●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●

●●

●●●●
● ●

●●●●

●●

●
●

●
●●●●

●
●

●●

●

●●●
●
●

●●

●●●●●
●

●●
●●●

●

●
●●●●
●●
●

●

●

●●
●
●●
●

●

●

●●
●●●
●

●●●●●

●
●●●●●●●

●

●●●
●

●●●

●

●●●●

●

●●●●

●
●
●

●

●●●●●
●●●
●

●●●●●●

●

●
●●●●●●
●

●
●

●●●

●

●●●●●●●●
●●●●●
●
●●●●●●

●

●●●●● ●●●●●●●

●

●●
●

●
●

●●●●●
●
●

●

●●●●●●●●●●●●●●●●●
●

●●
●
●
●●●●●●●●
●●

●●●●

●

●●●●
●●●●●●●

●

●

●
●●●●
●

●●●●●●
●

●●●
●

●
●
●●●

●
●●●●●●●

●●●
●●●●

●
●●●
●
●●●

●●

●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●
●●●●
●

●●

●

●●●
●
●●

●

●●●●●●
●

●
●
●●●●●●●

●
●●●
●

●●●●●●
●●

●
●

●

●
●

●●
●

●●
●

●●●●●

●

●●
●

●●

●

●●●
● ●

●●
●●●●●

●

●●●●●●●
● ●●
●●
●●●●●●●●●
●
●●●●●

●
●
●

●●
●

●

●
●●

●

●●●

●

●●
●●
●●●●●●
●

●

●●●●●●●

●
●●●●
●●●●●●●

●

●●●●●●●●●●

●

●●●
●

●
●●●
●

●●●●
●●

●●●●●●●●●
●

●●●●●●●●
●

●
●

●●
●

●

●
●

●●●
●

●●●●●
●

●

●
●●●●

●
●●●
●

●●●

●

●●●●●

●

●●●●●
●

●
●
●●●●●●●●
●●
●●●

●
●●●

●

●

●●●●
●

●

●

●
●

●●●●
●●

●●●●●●●●●●●
●●

● ●●●

●

●●●
●

●
●●●

●●
●
●●●
●

●●●●
●

●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●

●

●
●●

●

●●

●
●●●●●●●●

●

●
●

●

●

●●●
●

●●

●

●●
●
●●●●●●●●●●

●
●
●

●

●●
●●●

●

●
●●●●●●●●●●●●●●●●

●

●
●

●
●

●●●●●●
●

●
●
●●

●

●

●

●
●
●
●●● ●●
●●●
●

●●●
●●●●●●●●●●

●

●●●●●●

●
●

●●

●

●●
●

●
●●
●

●

●●●●●●
●
●●

●
●
●●●

●

●

●●

●
●●

●
●●●●●

●
●●●●

●

●●●●●●
●

●●

●

●●●●
●●●●●●●
●

●

●
●●●●●●●●
●
●●●●●●●

●

●●●●●
●
●
●

●
●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●
●

●
●
●●

●

●●● ●●
●

●●●●●●●
●●●
●

●

●

●●●

●
●

●●
●

●
●

●

●●
●

●●●●●

●
●●●●●●●●
●
●●●●●
●

●

●

●
●

●●●●

●

●
●●●

●
●●●

●

●
●●●

●

●●●●●●●●●●●●●●● ●
●

●●●●●●●●

●
●●●●●
●
●
●
●●
●

●

●

●●●
●●●
●

●

●

●●●●

●

●●●
●
●●●●

●

●●●●●●●●

●

●●●● ●●
●●

●
●●

●

●●●●●●
●

●●●●●●
●

●

●●
●

●●●●
●
●●●●
●
●●●

●

●●●●
●

●●●●
●

●●●●●●●●●●
●

●●●

●

●
●●●●●
●

●●●●
●

●●●●●
●●●
●

●●
●●

●

●●●●

●

●●●

●

●
●

●●●
●

●●●●●●●●●●●●
●

●
●●●●
●

●●●●
●

●●

●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●
●●

●

●●●●●●●●●●●●●
●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●

●

●

●

●
●●●●●

●
●● ●●

● ●

●●●●●●
●●

●

●
●●●●●●

●

●
●●●●●●●
●

●

●

●●
●

●●
●

●
●

●●

●

●

●

●●●

●

●
●
●
●●●●
●
● ●
●
●●●●●●●
●

●

●

●

●

●●●
●

●●●
● ●
●●●●●

●●

●●

●

●
●
●●●●●
●

●●●●●●

●

●●●●●●
● ●

●

●

●●
●

●
●

●
●
●●●●
●

●●●●●
●

●●
●

●
●●●●
●
●
●●●●
●
●

●●● ●
●
●●●●●●●●

●

●

●

●

●

●●
●
●
●
●

●
●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●
●

●

●

●●●
●

●●

●

●●●●
●●●●●●

●

●
●●

●
●

●●●●●●●●●●

●

●●●●●●
●

●
●

●

●

●●

●
●

●●●●●●
●●●●●

●
●
●●●●●●● ●●●●
●

●●●

●

●
●
●●●● ●●●●●●●●●●●

●
● ●●●●●
●
●

●

●

●

●

●●●
●●●●●●●●●
●●
●
●●●●
●
●●●●●●
●●

●
●

●

●●●
●

●●●●●
●

●●
●●●●●

●
●

●●●
●●

●●●

●

●
●

●●●

●

●●●●●●●●●●

●

●●●

●
●

●
●●●●
●●●●
●
●
●●●●
●

●

●

●●●
●
●●●●
●

●●●●●●●●

●

●●●

●

●●
●

●●
●

●

●●●●●●●●●●●
●

●●●
●

●

●
●●
●

●●●●

●
●●●● ●●●●
●●●●●●●●●●
●
●●

●

●●●●●●●●●●
●

●●●●●●
●

●
●●

●

●

●
●

●●
●

●●●●●●●

●

●●

●

●●●●●●●●
●

●

●
●

●●●●
●

●●●●●●●●
●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●● ●●
●

●

●
●

●

●●●
●

●●●
●●

●

●● ●●●

●

●●
●● ●●●

●

●
●●●●●●●

●

●●●●●
●●●●●●●●

●
●●●●●●●●●●●●
●

●●●●
●●●
●

●●●
●

●●●
●
●●

●●●

●
●

●
●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●
●●
●●●
●

●

●
●●●

●
●●●●●
●●●●●●

●

●
●

●

●●

●
●●●●●●●

●

●
●

●●●●
●

●●
●●

●
●

●●●●●
●

●
●●

●●●●

●

●●●
●

●●●
●

●●
●

●●●●●●●

●
●

●●●●●●●

●

●●
●
●●●●
●

●●

●
●●●●
●
●●●●●

●
●●●●●●●●
●●●●

●
●

●
●●●●●●●
●

●●●●●●

●

●●
●●●●

●●
● ●

●
●

● ●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●●
●

●●
●

●●●●

●

●
●●●

●
●
●●●
●

●

●

●

●

●●

●

●●
●

●

●●●●

●

●●●●
●●

●●
●

●

●●●●●●●

●

●

●

●
●
●

●●●●●●●●●

●

●●●
●

●●●
●●

●●●●●●

●

●●●●●●
●

●
●●
●

●● ●●●

●

●

●●●●●●●●●●●●
●
●●●
●

●●
●

●

●

●

●●●●●●
●●

●●●●

●●●
●

●

●
●●●

●

●●
●
●●●●

●

●●●●

●

●●

●

●●●●●●●●●●

●

●

●

●●●
●●
●●●●

●

●
●●●●●●●●●●●

●

●

●●●

●

●

●

●●●

●
●
●●●

●
●●
●

●●●●●
●

●●●●

●

●
●●●●●●●

●
●●●●
●
●●●●●
●

●

●

●

●●●●

●

●●
●●

●
●●

●
●●●

●
●
●

●●●●●●●●●
●

●
●●●

●
●
●●

●

●

●
●●
●

●●●
●●

●●●●
●●●

●

●●●●●●●●●
●

●●

●

●●●●●●●
●

●●
●

●●●●●●●●●

●

●●

●
●

●

●
●

●●●●●
●

●● ●

●
●●
● ●●●
●●●

●

●●●●●●●●●●●●●●●●●●
●
●●

●

●●●●●
●

●
●●●●●

●
●●●●

●

●●

●

●●●●●
●

●●●

●

●●●

●

●●●●●●●●
●

●●●●●
●

●●●●

●

●●●●●
●●●●●●

●●● ●●●●●●●●●
●
●●●●●

●
●●

●
●

●●
●

●●●●●●●●●
●●

●●●●●●●●●●
●●
●●●

●

●●●●

●
●
●●
●
●●●●●

●

●

●

●●●●●

●

●●
●

●●
●

●●●●●●●●

●

●●

●

●●
●
●●●●

●
●●

●●●●●●●●●●●●●●●●●
●

●

●●●●
●

●

●
●

●●
●●
●
●

●●

●

●●●
●●

●●●●

●
●

●

●●● ●●
●
●●●

●

●●
● ●●

●

●

●

●

●●●●●●
●
●●●●●

●
●●●●
●●

●●●●●
●
●●●●
●●●● ●●
●● ●●●

●

●●
●

●●●●●●
●●
●

●●●
●●

●

●

●●

●
●

●●
●

●

●

●
●●
●●

●●●●
●
●

●●
●●●●●●●

●
●●●●●●●●
●

●●
●

●●●●
●●●●●●
●●●●●●
●

●●

●

●●

●●
●

●
●●●●●

●
●

●●●●

●

●
●

●

●●●
●

●
●●●●●●●
●

●
●
●

●

●●●●
●●●

●

●●

●

●
●
●●●●●●●●

●

●
●

●●●
●●

●●

●

●●●

●

●●
●●●●

●●●●

●

●

●

●●●
●
●●●
●●

●●●
●●●

●

●●●
●

●
●
●●

●
●●●●●
●
●●●●●
●
●●●●●●●

●
●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●
●●●●●●
●
●

●

●●● ●●●●
●

●
●●
●●●●
●

●●●●
●

●●●●●●●●
●

●●
●●●

●●

●

●●

●

●●
●●●

●

●●●●●

●●

●

●●
●●●●●
●

●

●

●●●
●

●●●

●
●●

●
●

●●
●
●●●●●●●●●●●

●●●●●
●

●●
●

●●●●
●

●
● ●
●●●●●●●●●

●
●

●
●

●

●●●●●●●●

●

●●●●●●●

●

●●
●

●●
●

●

●

●●●●
●●

●●

●

●●●●

●
●●●●●●●●●

●

●●
●●●●●
●

●●●●●●●●●
●
●●●●●●

●

●

●

●●●●●●
●

●

●

●
●●●●

●

●

●●●●●●
●

●●
●●

●

●●●
●

●
●

●

●
●●●●●●●●●
●●●● ●●●●●●●●

●

●
●●

●
●●●●
●●●●●●

●

●

●

●
●
●

●●●●●
●●

●
●

●●

●

●

●

●●●

●
●●●●
●

●●●

●

●●●●●●●●
●●

●
●●

●
●

●

●
●●●●●●●

●

●●●●
●

●●●●
●●●●●●●

●●●●●●●●●●
●

●

●
●

●●●
●

●●●●
●●

●●●●●
●●
●
●

●

●●
●
●
●

●●●●●
●

●

●

●

●●●●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●● ●

●

●●
●

●●
●
●●●●●

●

●●

●

●
●

●●
●

●●●●●●
●●●●

●

●
●
●●
●

●●●●
●

●●●

●

●●●●

●●

●
●

●●●●●●●●●●●●●●
●●●

●
●●●●●

●

●
●

●
●●●

●
● ●●

●●●●●●
●●●●●●●●●●●●●●

●

●●
●●●●●●●
●

●●
●●

●●●

●
●

●●

●

●
●●●●●●●

●
●●●●

●

●
●

●●●
●

●●

●

●●
●

● ●●●●●●●●●●●
●

●
●
●●●
●
●●
●●

●
●●●
●

●

●

●
●●●●●

●●●●●●

●●●
●

●
● ●●

●

●
●
●

●
● ●●●●
●●●●
●●

●
●
●●●●●●●●
●

●●

●●

●●●

●
●●
●

●●●●●
●●●●●●

●
●
●
●●●●
●
●●●
●●

●
●

●●●●●●●●
●●●●●●●

●
●
●

●●●●●●●●●●

●

●●●●●●
●
●●●●●

●
● ●
●●

●

●
●

●

●

●
● ●
●●

●

●

●

●
●

●

●●●●●●
● ●

●

●

●●
●●
●●●●●●●
●●

●
●

●

●●
●

●
●●
●●●● ●●●

●

●
●

●●●●●●●●●●●●●
●●
●

●
●●●

●

●●

●

●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●

●
●●●●●●●●●●
●
●●●●●● ●

●

●●●●●●●●●
●●

●●●●
●●●●●●●

●

●●●●
●●

●●
●

●
●
●

●
●●

●
●●●●●●●●●●●
●

●
●
●●●●
●

● ●
●

●
●

●

●●● ●
●

●●
●

●

●●
●

●
●

●

●
●

●
●
●

●

●●●●
●●●●●

●

●●●●●●●
●

●●●

●

●

●
●●●●

●●●●
●

●●
●

●●●●●●

●

●
●●

●

●●●●●
●
●

●
●●

●
●
●

●●●●●
●

●●●●●

●
●

●

●●●●●●●●●●●●
●

●●

●
●●●●

●
●●●●●●●●

●
●●●

●

●●●●

●

●
●

●●
●

●●
●
●●●

●●●●●●

●

●●

●
●●

●●
●● ●●●
●●●●●

●●
●

●●
●●

●
●●●

●●
●
●●

●

●●●●
●

●

●●

●

●●●
●●

●●
●

●
●●
●
●●●

●
●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●
●

●●●●

●

●●●●●●●
●●
●

●
●●
●
●●●●●
●●

●
●●

●●
●●

●
●●●●●●●●●●●●●●

●
●●●
●●●●
●●● ●●●
●●

●●●●●●

●
●
●
● ●●
●●

●

●

●

●●
●●

●

●●

●●

●

●●●
●

●●
●●
●●●●●
●

●●●●●●
●

●●●

●

●●●

●

●●

●

●●●●●
●
●

● ●●●
●●●
●●●
●●

●●●

●

●
●
●●●
● ●
●●
●●●●●
●●
●

●
●

●●●●●

●

●●
●
●●●●●

●
●●●●●●●

●
● ●●●

● ●●●●
●

●●●●

●

●●●●
●●

●●●●●●●

●

●
●●●●●●●

●
●●●●●●●
●

●●●●

●
●●●●●●●
●●●●●●●

●

●●●●●●●●●●●
●

●●●
●

●●

●

●●
●

●●●
●

●

●

●

●●
●

●

●●●●
●●●

●

●●●●●●●

●

●●●●●●●●●●

●●
●
●●●

●

●●●
●●

●●●
●●●●

●

●
●
●●●●●●●●

●●
●
●

●

●●●●●●
●

●●
●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●
●●●●●●●

●

●●
●

●●●●●

●

●●●●
●●

●
●
●●●●

●

●●●●●●●●●●●●
●

●
●

●
●●●●●●

●

●●●●●

●

●

●

●●

●

●●●
●
●●●●●

●●

●
●

●●●

●●
●●●●●●●

●
●●

●

●●
●●●●
●
●

●
●●●●●●●

●
●●●●●

●
●●●●●●●●●

●
● ●●

●

●
●

●●●●●●●●

●●
●

●

●●

●

●
●

●●●●●● ●●●●●●●●●●●●

●

●●●
●

●●
●●
●

●
●●
●

●
●

●●
●

●●
●

●●
●

●
●
●●●●
●
●

●

●●●●●●●●●●●●
●

●●●
●

●●●●

●

●●●

●
●

●●●
●
●●●●
●

●●●● ●●●
●

●

●

●●●●●
●

●●●●●●●●
●

●●●●●
●●●●●●●

●
●●
●

●
●
●

●

●

●
●

●●●●●●
●●

●
●●●
●

●

●●●●●●●●●●

●

●

●

●
●●

●
●

●●
●
●

●●

●

●
●

●

●
●●

●

●●●●●●●●●●
●

●●●

●
●

● ●●

●

●●
●

●

●●●●●●●●●●
●

●
●●

●

●●●●●●●
●●●
●●●

●

●
●

●●●

●

●●●
●

●●

●

●●●●●●
●●

●●●●

●
●

●
●

●

●●●●●●●
●

●●●●●●●●●●●
●

●●●●●●
●

●
●
●●●●●●
●

●

●
●●●●

●
●●●●

●

●●
●●●●●●●

●●

●●●●
●
●●●●●●●●●●●●●● ●●●●●

●

●●●
●●
●

●
●

●●●●
●●●●●●●●●
●
●●
●

●●●●●●●●

●

●●

●
●●●●●●●●●●●

●

●●●● ●●

●

●●●●
●
●

●
●
●
●
●●

●

●●●●●●

●

●●●

●

●●●●●●

●

●●●●●●
●

●●●
●●●●●
●
●●●
●
●●
●●

●

●

●●
●
●
●

●●●●●
●

●●●
●

●

●●

●

●●●●●

●

●●●●●●●
●

●●●
●●

●

●
●

●

●●

●

●●
●

●●●●

●
●●●

●

●●●

●

●●
●

●●
●

●●●●●●●●

●

●
●

●●●●●● ●●●●
●●●●●●

●
●●●●●

●

●●●●●●●●●●●●●
●

●●
●●

●●●●
●
●

●

●●
●

●●
●
●●●●●●
●

●●●

●

●●●
●●●
●●

●
●

●●●●●●●●●●●●

●

●
●
●●
●●●●●

●

●
●

●

●

●●●●●●
●
●●●●

●
●●●

●

●

●

●

●

●●●●

●

●

●

●●●●●●●●
●

●●●●●●
●
●

●
●●

●●●●
●

●

●
●●

●

●●●

● ●

●●●●

●

●
●

●●●●●●●●●●●●
●●
●●

●●
●●●●
●
●●●

●
●●

●●
●●

●
●

●
●●●

●●
●

●●●
●

●●●

●

●
●

●●
●●●
●

●●●●
● ●

●●●●

●

●●●●

●

●
●●●●
●
●●

●

●

●●●
●

●
●

●●●●

●

●

●

●●●
●

●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●

●

●●●
●●

●●
●●

●●●●●●●
●

●●●●●●
●

●
●●●●●●●●
●●●●●

●

●
●

●
●

●

●●

●

●●●●●●●

●

●
●●●●●●

●

●●
●●●●●
●

●●
●

●●●●●
●

●

●●

●
●●●

●●
●
●●

●

●

●●●●
●

●●
●

●●● ●
●

●●●●●●
●●● ●

●●
●
●●●●●●●●●●

●

●●
●

●●●●●●●●●●●●●●

●●

●●
●●●●●●●●●●●●●

●●

●●●●●●

●

●●●●●●●
●

●

●
●

●
●

●

●●
●●

●

●●●●

●
●
●

●
●

●●●●
●
●

●●

●

●●●

●

●

●

●●
●

●
●

●●●
●●
●

●●●
●●●●●●●●●●
●●

●●●●●●●●
●●●

●
●
●●●●●

●●
●●●
●

●●
●●●●●●
●●

●
●●

●

●
●

●●●●
●
●●
●
●●

●
●●●●●●●●●

●●
●●●

●

●●●
●
●

●
●

●

●●

●●●

●●●●●●●

●

●●●●●●●●
●

● ●
●●
●
●●●

●
●

●

●
●
●

●
●●●●●
●
●●

●

●●
●

●●●●●●

●

●
●●

●

●●●●●●●
●
●

●

●
●●●

●
●●●●●

●●●
●
●
●

●
●●●●●●●●
●

●

●

●
●

●●●●●●●●
●●
●●

●

●●
●

●●●●●●●
●
●●
●
●●●●●

●

●
●●

●
●
●
● ●
●●●●●

●

●●
●

●●●●●●
●
●
●●
●

●●●●●
●●●●●●●●●●

●

●●●
●
●●
●
●●●●●●●

●

●●

●

●

●

●
●

●

●●●●●●

●

●●●●●●● ●
●●

●

●

●●●

●

●●

●

●●●●●●●
●

●
●

●

●●

●●●

●

●●●●●●●

●
●
●

●●●●●●●●
●

●●●●

●

●
●
●●
●●

●

●

●●●
●

●●

●

●●●●●●●●

●

●●
●

●
●

●●

●

●
●

●●

●

●
●●●●●
●

●●●●●
●

●●●●●

●

●
●●●●

●

●

●

●
●
●●●●●●●●●●

●
●●●

●

●●●

●

●●●●
●●●

●

●●●
●

●
●●
●●●●●●●●

●

●●
●
●●●●●●●●●●

●

●
●

●●●●
●●
●●
●

●

●●●

●

●●

●
●

●●●●●●

●

●●●●●●
●

●●●●

●
●●●
●●●●●
●

●
●●
●
●●●●●●●●
●

●●

●

●●

●

●

●

●●●
●

●●
●●●●●●

●●●
●●●●●●●●●

●●
●●

●●●●●●●
●

●●●●●●●
●●●

●
●

●●
●

●
●●●●●●●

●

●
●
●●●●●●
●

●●●●

●

●●●●●●●●
●●●●●●
●

●

●

●●●●●

●

●●
●
●●●●●●●●
●
●●

●

● ●
●

●

●●●

●

●
●

●●●

●

●●●●●

●

●●●●●
●

●●●●●●●
●●●

●
●●
●

●●●
●●●●●●●●●●●●●●●

●●
●●●●
●

●
●

●●●●●
●

●

●
●●●

●

●
●

●

●

●●●

●●

●●●●

●

●●●
●●

●
●
●●●
●

●

●

●

●●

●

●●●●●●

●

●●●●

●

●●●
●

●

●●
●

●●● ●●
●●
●●●●●

●
●●

●●●●●●●
●

●●●●●●

●

●●●●●●●●●●●●●●
●

●

●●●
●

●
●●

●

●
●

●

●●●●●

●

●●●●
●

●●
●
●
●
●●
●

●●

●

●

●●●●●●
●
●
●●●●●●

●

●●
●●●

●

●
●●●●
●

●

●

●

●
●●

●●
●
●●

●

●●●
●

●●●

●

●●

●

●
●●●

●
●●●●●

●
●●●●●●●●●●●●●●

●●
●●
●
●

●●●●●
●

●
●

●●●●●
●

●●●●
●

●●●●●●
●

●●

●●

●

●

●●
●

●
●
●

●

●

●●●
●

●●

●
●
●●●●●●●●

●
●●●●●
●●

●
●

●●●●●●

●
●●
●●●●●●●●●

●

●

●

●
●●●●●●

●

●●
●●

●

●

●
●●●●●●●
●●

●

●●●
●●
●

●

●●●

●
●

●
●

●●●●●

●

●●●●●

●

●
●

●●●

●

●●

●
●
●

●●
●
●●●●

●

●●

●

●●
●

●

●●
●
●●●●●●
●●●
●●●

●
●

●

●●●●●●
●●●●●
●
●●

●
●●

●
●●●●●●

●
●●
●

●

●
●

●●●●●●
● ●●●●
●●●

●
●●●●●●

●

●

●●●●●●

●
●●

●

●
●

●●●
●

●●●●
●

●

●
●
●●●●●●●●

●
●
●

●●●●●●●

●
●●●●●●●
●

●

●●●

●●

●●
●

●●●●●●●●
●

●●●●
●

●●●●●

●

●
●

●

●●●
●●

●●●●

●

●

●●●●●
●●●
●●●

●
●

●●●●●●●●●
●

●

●
●

●

●●
●

●●●●●●
●
●●●

●
●●●●●

●
●●●●

●●

●

●●●
●

●●●
●●

●

●●
●●
●●●●●●●●●
●●
●

●

●
●
●
●
●●●●●●●

●

●
●●●●●●●●●● ●●●

●
●●

●●●

●●●

●

●●●
●●

●
●●●●●●

●
●●
●
●●●●●
●●●●●●●●●●
●
●
●

●

●●●●
●
●

●●●●●●●
●

●●

●

●●●●●
●

●●●●●
●

●●
●●●
●●●
●●

●

●●●●●

●
●

●
●
●

●

●●●●

●

●
●
●●●

●
●
● ●

●●●●●
●

●
●

●●●
●

●●
●

●
●

●

●
●●●●●
●

●●

●

●●●●●
●●●●

●

●●● ●●●●●●●●●●●●

●
●

●

●●
●●●●

●

●

●●

●

●
●

●

●

●●
●
●●

●

●
●
●●

●

●
●●

●

● ●
●

●

●

●●●●●●
●

●

●
●●

●●●●●●

●

●●

●●

●●●●
●●

●●●●
●

●●●
●

●●

●
●

●

●
●●●●●●●●●●●
●

●

●
●●●

●

●●●

●
●●

●
●●●●●●●●●●●●●

●●
●
●

●

●

●●●●●●●
●

●●●●●
●
●●●●

●

●
●

●●●●●
●●●
●●●●

●
●●●●●
●●●● ●●●●●●
●

●●●

●

●
●
●●

●

●●●
●●

●

●

●
●

●

●●●●●●●●●●●●
●●
●●

●●

●

●
●

●
●

●

●

●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●
●

●
●●

●

●
●●

●●
●
●●●

●

●
●●●●●●
●

●

●
●●●
●
●●●●●●●

●
●
●

●●●●
●
●●●●

●●●●●

●

●●
●

●●●●●
●

●

●

●●

●●●●●●
●

●●●●●●
●

●●
●

●●●●●●●

●

●●
●

●
●●●●●

●
● ●●●●●

●

●
●

●

●
●
● ●

●●●●
●

●

●●●●

●

●
●

●●●

●

●●●
●

●

●●●
●

●●●●●

●●

●● ●●● ●●●●●●
●
●
●

●●●
●

●●●●●
●

●

●

●●
●●●
●●●
●
●

●

●

●●●●●●●
●
●

●

●●
●

●

●

●●
●
●
●●●●
●

●●●●●

●

●
●●

●
●●●●
●

●●●
●●

●●
●

●
●●●
●
●

●
●●

●

●●●●

●

●●●●
●

●

●

●●●●●●●●●

●

●
●

●●●●●●●

●

●●●●●●●
●

●●
●●●●

●

●●● ●●

●●
●

●
●

●●
●

●

●

●●●●

●

●●●●●●
●●

●
●

●●●●●●●●
●●

●●
●

●

●●●●
●

●●●●●

●

●●●

●

●
● ●

●●

●

●●
●●

●

●●●●
●

● ●

●

●

●

●

●●●●●
●

●

●
●●●

●●
●●●●●

●●

●

●
●●●●●●●

●●●●●●●●●●
●
●●●

●
●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●
●

●●●●●●●●●
●

●●●

●

●

●

●●
●●●

●●●●●●●

●
●

●
●●●●●●●●
●

●

●●●●●●●●
●●●
●●●

●
● ●

●●

●●
●
●●●

●

●●●

●

●

●
●●●●
●
●

●
●●●●●●●●●●●●● ●●

●

●
●●●●●●●●●●
●
●●●●●●

●
●●
●●
●●●●●

●●
●●●●●●●●●

●

●
●●

●●
●

●●
●●●●●●●● ●●●●●
●

●●

●
●●

●

● ●●
●
●

●
●

●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●
●

●

●

●●

●

●●●●●●●●●●●
●●
●●●●●
●

●●●
●

●●●
●

●●●

●

●●●
●
●●●●● ●●

●
●●

●●

●

●
●
●

●●●

●
●●●●●●

●
●●●●●● ●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●●●●●●●●●●●●

●

●●●●
●

●

●

●●
●

●●

●

●●

●
●
●
●
●●●

●

●●
●●

●●
●●●
●
●
●●●
●
●●
●
●●

●
●●●●

●●●●●●●

●

●●●●
●●●●

●●●●●●
●●●●●

●
●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●
●
●●●

●
●●

●

●●
●
●●
●●

●●●●
●
●●●●●

●

●●
●

●●
●●●●●

●●
●

●●●●●

●

●●
●●

●●
●
●●

●

●●●
●

●●●●

●

●●●●●
●
●●

●

●●●
●

●●●●
●
●●●

●●●●●●●●●●

●
●

●

●

●
●●

●●●

●

●●●●●●●●

●

●

●

●●● ●
●

●
●
●

●

●●
●

●●●
●

●
●●
●

●●
●●●●●

●

●●●●●
●

●

●●●●

●

●
●

●●●●
●●

●
●
●●●●●●●●

●

●●●
●●●●

●

●

●

●●
●
●●●●●●●●●●●

●●●●
●●

●

●●●●

●
●●●●●

●●

●
●●●●●

●
●●

●

●
●
●●●●

●
●

●
●●●●●

●

●

●●●●●●●●
●

●●

●

●
●
●

●

●●●●

●
●●

●●
●
●●●●●●●

●
●●

●

●
●●
●●●●●●●●●

●
●●●●

●
●●●

●
●●● ●●●●

●
●●●●●●

●
●●●●●●

●

●

●

●
●
●●●

●

●●●●
●
●●

●
●

●

●

●
●
●●
●

●●●●●●
●

●●
●
●

●
● ●
●●
●

●●●●●●
●
●

●●
● ●●●●● ●

●

●●●
●

●

●●●●●
●

●●●●
●

●
●
●●●●●●

●
●●●

●●●●●●●

●

●●●●●
●
●●

●

●●●●
●

●
●

●
●
●

●●

●

●●●●●●●
●●●●

●

●●●

●

●●●●●●●
●
●●

●
●

●

●

●●●
●● ●

●●●●●

●

●●●●
●

● ●

●

●●●●●●
●
●●●●●●●●

●

●

●

●●●●●●●
●

●

●

●●

●

●

●

●
●●●●

●
●●●

●
●
●

● ●●●●
●

●●●
●
●
●

●●●
●

●●●●

●

●

●

●

● ●
●●●
●●
●

●●●●●●●●
●
●●●●

●

●

●

●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●
●●
●

●●●●●●●
●●●
●
●
●●●●●●●
●
●
●

●●●●●
●

●●

●●
●
●

●
●

●
●

●

●

●
●●

●

●●●
●
●●●●
●●●

●
●●
●●●●
●

●●●
●

●●●●
●

●●●●●
●
●
● ●

●●●●
●●●●●●●
●●

●●●●

●
●●●●

●

●●
●
●●●

●

●●

●

●●●●●●●●●●

●

●●●●●
●

●●●●●●●
●

●

●

●●●●
●● ●

●●●●
●

●

●

●●●●●●●●●●●●●●

●

●●

●
●
●●●●

●
●

●
●

●
●
●●●●●●
●●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Predicted values

O
bs

er
ve

d 
va

lu
es

*

●

●

33.15 33.16 33.17 33.18 33.19 33.20 33.21

0
20

40
60

80

Predicted values

O
bs

er
ve

d 
va

lu
es

33.17

*

−

−

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●

●

●

●

●

●

●●

●

●●
●●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
10

20
30

40
50

X
p+

1

X̂p+1

Figure 3: (Left) The estimated joint 95% joint prediction region based on the approxi-

mated angular measure Ĥ(X̂p+1,Xp+1)T . The star indicates a particular observation which

has a predicted value of 33.17 and an observed value of 48.15. (Center) The approximate

conditional density fXp+1|X̂p+1
(Xp+1|x̂p+1 = 33.17). The horizontal segments indicate the

95% conditional prediction interval, and the star denotes the actual value of 48.15. The

units of the horizontal axis are the predicted values and the units of the conditional density

are omitted. (Right) the scatter plot of X̂p+1 and Xp+1 with 95% conditional prediction

intervals given each large value of X̂p+1.

6 Applications

6.1 Nitrogen dioxide air pollution.

NO2 is one of six air pollutants for which the US Environmental Protection Agency (EPA)

has national air quality standards. We analyze daily EPA NO2 data1 from five locations

1https://www.epa.gov/outdoor-air-quality-data/download-daily-data

16



in the Washington DC metropolitan area (see Figure 1). The first four stations (McMil-

lan 11-001-0043, River Terrace 11-001-0041, Takoma 11-001-0025, Arlington 51-013-0020)

have long data records spanning 1995-2020. Alexandria does not have observations after

2016. We will perform prediction at Alexandria given data at the other four locations.

Observations in Alexandria actually come from two different stations: 51-510-0009 which

has measurements from January1995 to August 2012 and 51-510-00210 from August 2012

to April 2016. Exploratory analysis did not indicate any detectable change point in the

Alexandria data either with respect to the marginal distribution or with dependence with

other stations, so we treat this data as coming from a single station. There are 5163 days

between 1995 and 2016 where all five locations have measurements. Because NO2 levels

have decreased over the study period, we detrend at each location using a moving average

mean and standard deviation with window of 901 days to center and scale.

Our inner product space assumes each Xi ∈ RV 1
+(α = 2), and the detrended NO2 data

must be transformed to meet this assumption. In fact, it is unclear whether the NO2 data

are even heavy tailed. Nevertheless, we believe the regular variation framework is useful for

describing the tail dependence for this data after marginal transformation. Characterizing

dependence after marginal transformation is justified by Sklar’s theorem (Sklar (1959),

see also Resnick (1987, Proposition 5.15)), and such transformations are regularly used in

multivariate extremes studies. After viewing standard diagnostic plots, we fit a generalized

Pareto distribution above each location’s 0.95 quantile and obtain the marginal estimated

cdf’s F̂i which are the empirical cdf below the 0.95 quantile and the fitted generalized

Pareto above. Letting X
(orig)
i denote the random variable for detrended NO2 at location

i, we define Xi = 1/

√
(1− F̂i(X(orig)

i )) − δ obtaining a ‘shifted’ Pareto distribution for

i = 1, . . . , 5. Each Xi ∈ RV+(α = 2) and the shift δ = 0.9352 is such that E[t−1(Xi)] = 0.
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This shift makes the preimages of the transformed data centered which we found reduced

bias in the estimation of the TPDM. We assume X = (X1, . . . , X5)T ∈ RV 5
+(α = 2).

Further, we let Xt denote the random vector of observations on day t, which we assume

to be iid copies of X. This is a simplifying assumption as there is temporal dependence in

the NO2 data, but it seems less informative that the spatial dependence exhibited by each

day’s observations.

We first predict during the period prior to 2015 in order that we can use the observed

data at Alexandria to assess performance. Indices are randomly drawn to divide the data

set into training and test sets consisting of 3442 and 1721 observations respectively, and

both sets cover the entire observational period. Using the training set, the five-dimensional

TPDM Σ̂X is estimated as follows. Let xt denote the observed measurements on day t.

For each i 6= j in 1, . . . , 5, let rt,ij = ‖(xt,i, xt,j)‖2 and (wt,i, wt,j) = (xt,i, xt,j)/rt,ij. We let

σ̂ij = 2n−1
exc

∑n
t=1wt,iwt,jI(rt,ij > r∗ij), where nexc =

∑n
t=1 I(rt,ij > r∗ij). We choose r∗ij to

correspond to the 0.95 quantile. The constant 2 arises from knowledge that the tail ratio of

each Xi is one due to the marginal transformation. This pairwise estimation of the TPDM

differs from the method in Cooley & Thibaud (2019) who used the entire vector norm as

the radial component. Mhatre & Cooley (2021) show that the TPDM is equivalent whether

it is defined in terms of the angular measure of the entire vector or the angular measure

corresponding to the two-dimensional marginals.

From Σ̂X , we obtain X̂t,5 = b̂T ◦Xt,4, where b̂ = (−0.047, 0.177, 0.192, 0.482)T . We

note that the largest weighted component is Arlington, which is closest to Alexandria.

Interestingly, McMillan has a slightly negative weight. We calculate X̂t,5 for all t, but

only consider those for which X̂t,5 exceeds the 0.95 quantile. The left panel of Figure 4

shows the scatterplot of the values xt,5 versus x̂t,5. By taking the inverse of the marginal

18



transformation, multiplying by the moving average standard deviation and adding the

moving average mean, the predicted value can be put on the scale of the original data. The

center panel of Figure 4 shows the scatterplot on the original scale.

For each large predicted value x̂t,5, we use the method described in Section 5.3 to create

95% prediction intervals. We chose the matrix B arising from the completely positive

decomposition to again be 2× 9. On the Pareto scale, these prediction intervals are linear

with x̂t,5 and are shown in the left panel of Figure 4. The coverage rate of these intervals is

0.965. The intervals can similarly be back-transformed to be on the original scale as shown

in the center panel of Figure 4. The lack of monotonicity in these intervals with respect to

the predicted value is due to the trend in the data over the observation period.

For comparison to standard linear prediction, we find the BLUP based on the estimated

covariance matrix from the entire data set, and create Gaussian-based 95% confidence

intervals from the estimated MSPE. When done on the original data, we obtain a coverage

rate of 0.88, and when done on square-root transformed data to account for the skewness,

we obtain a coverage rate of 0.78.

We also compare our prediction method to the extremes-based method of Cooley et al.

(2012), which approximated the conditional distribution of the large values of a regularly

varying variate via a parametric model for the angular measure. The method of Cooley

et al. (2012) can be done due to this application’s relatively low dimension. As done in

Cooley et al. (2012), the pairwise beta model (Cooley et al. 2010) is fit by maximum

likelihood to the preprocessed training data set. The 95% prediction intervals are based

on the approximated conditional density of X5 given x1, . . . , x4, and the achieved coverage

rate for the test set is 0.965. Because the fitted angular measure model would seemingly

contain more information than the estimated TPDM, we were surprised that the widths of
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the prediction intervals were very similar for the two methods. The average ratio of Cooley

et al. (2012) average interval width to our TPDM-based approach was 1.04.

We then apply our prediction method to five dates in 2019 and 2020 when observed

values at the four recording stations were large and no observation was taken at Alexandria.

Here, we use the entire period from 1995-2016 to estimate the TPDM, and we obtain a

slightly different estimate b̂ = (0.026, 0.153, 0.118, 0.461)T . The right panel of Figure 4

shows the point estimate and 95% prediction intervals from our transformed-linear approach

(after back transformation to original scale). The trend at Arlington was used for the

unobserved trend at Alexandria. For comparison, covariance matrix-based BLUP’s and

MSPE-based 95% prediction intervals for these dates are shown with a dashed line.
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Figure 4: (Left) Scatterplot of X̂5 and X5 with the 95% prediction intervals on the Pareto

scale. (Center) Scatterplot and 95% prediction intervals after transformation back to the

original scale of the NO2 data. (Right) Comparison of the point predictions and 95%

prediction intervals using the transformed linear approach (solid line) and a Gaussian-based

approach with the covariance matrix (dashed line) for five recent dates when Alexandria is

not observed.
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6.2 Industry portfolios.

We apply the transformed-linear prediction method to a higher dimensional financial data

set. The data set obtained from the Kenneth French Data Library2 contains the value-

averaged daily returns of 30 industry portfolios. We analyze data for 1950-2020, consisting

of n = 17911 observations. Since our interest is in extreme losses, we negate the returns, set

negative returns to zero so that data is in the positive orthant.Although these data appear to

be heavy-tailed, it still requires marginal transformation so that α = 2 can be assumed. Let

X(orig) denote the random vector of the value-averaged daily returns. For simplicity we use

the empirical CDF to perform the marginal transformation Xi = 1/

√
(1− F̂i(X(orig)

i )) −

δ, which is applied to each industry’s data so that Xi follows the same shifted Pareto

distribution as before. We again assume Xt, the random vector denoting the observations

on day t, are iid copies of X. The data set is randomly split into two sets. The training

set consists of two-thirds of the data (ntrain = 11940) to estimate the TPDM and obtain

the vector b̂. The test set consists of the remaining one-third of the data (ntest = 5970) to

assess coverage rates.

Following similar steps in the previous application, the 30× 30 TPDM ΣX is estimated

first in the training set. We focus on performing the linear prediction for extreme losses

of coal, beer, and paper. The three largest coefficients in b̂coal are (0.42, 0.36, 0.20) and

correspond to fabricated products and machinery, steel, and oil respectively. The three

largest coefficients b̂beer are (0.52, 0.24, 0.12) and correspond to food products, retail, and

consumer goods (household). The three largest coefficients for b̂paper are (0.21, 0.11, 0.08)

and correspond to chemicals, consumer goods (household), and construction materials. The

assessed coverage rates of our transformed linear 95% prediction intervals for coal, beer,

2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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and paper are 97.9%, 96.3%, and 98%, respectively.

For the purpose of comparison, we also assessed coverage rates of the MSPE-based 95%

prediction intervals. Because the data are strongly non-Gaussian, we use the empirical

CDF to transform the marginals to be standard normal before estimating the covariance

matrix. The coverage rates of MSPE-based 95% prediction intervals are 79.3%, 66.6%, and

51.2% for coal, beer, and paper respectively.

7 Summary and Discussion

We have proposed a method for performing linear prediction when observations are large.

To do so, we constructed an inner product space of nonnegative random variables arising

from transformed linear combinations of independent regularly varying random variables.

The elements of the TPDM correspond to these inner products if one is willing to assume

that these random variables in Vq+. The projection theorem yields the optimal transformed

linear predictor. Our method for obtaining prediction intervals shows very good perfor-

mance both in a simulation study and in two applications. The method is simple and is

based only on the TPDM which is estimable in high dimensions.

We restrict to nonnegative regularly varying random variables to focus attention on

the upper tail. Relaxing this restriction could allow one to use standard linear operations.

Even when the data can be negative, we believe there is value in focusing in one direction.

In the financial application, tail dependence for extreme losses can be different than for

gains, and this information is lost when dependence is summarized with a single number

as in the TPDM.

The random vectors X = A ◦ Z comprised of elements of our vector space have a

simple angular measure consisting of q point masses where q is the number of columns of
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A. Previous models with angular measures consisting of discrete point masses have been

criticized as being overly simple. A difference here is that we do not have to specify q

to use this framework to perform prediction, or more generally, we do not have to really

believe that our data arise from such a simple model. Rather, if we are comfortable with

the information contained in the TPDM, then we can use its information to easily obtain

a point prediction and sensible prediction intervals that reflect the information contained.

In many applications, dependence cannot be measured between the observed values

and the value to be predicted. In kriging for example, a spatial process model is first fit

so that covariance between any two locations is quantified. One can imagine modeling the

extremal pairwise dependence as a function of distance before applying the methods here

to perform prediction for extreme levels.
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