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Concerted versus ionic mechanisms of the α and γ extensions in uncatalyzed 
Mukaiyama reaction between β,γ-unsaturated bis silyl ketene acetal and 
benzaldehyde: A DFT study 
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Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium   
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A B S T R A C T   

The uncatalyzed regioselective Mukaiyama aldol reaction between β,γ-unsaturated bis silyl ketene acetal and 
benzaldehyde has been studied theoretically using density functional theory with the M06-2X exchan-
ge–correlation functional. These DFT calculations mostly demonstrate that (i) the α and γ adducts in uncatalyzed 
Mukaiyama reaction can proceed through two mechanisms, ionic and concerted, (ii) the concerted mechanism is 
favored for the α adduct and it is disfavored for the γ adduct, (iii) under 12 and 17 kbar, the α adduct reaction 
path is below the γ adduct reaction path whereas if the pressure decreases to 5 kbar, the opposite is obtained.   

1. Introduction 

Vinylogous Mukaiyama aldol reaction [1–10] is the vinylogous 
extension of the aldol reaction leading to the formation of C–C bond 
between β,γ-unsaturated silyl enol ether [11] or silyl ketene acetal [12] 
and carbonyl compounds to produce linear aldol products through γ 
extension (Fig. 1). This condensation type was discovered by 
Mukaiyama and co-workers [1] in 1975, when the reaction was realized 
between β,γ-unsaturated trialkylsilyl enol-ethers and carbonyl com-
pounds catalyzed by Lewis acid (Fig. 1). 

But in the absence of catalyst [2], both linear and branched aldol 
products will be possible. Indeed, in 1997, Bellassoued et al. [2] studied 
the uncatalyzed condensation between β,γ- unsaturated bis silyl ketene 
acetal 1 and benzaldehyde 2 at 65 ◦C under high pressure conditions and 
in dichloromethane solution. This reaction gives two regioisomers, one 
product resulting from a vinylogous Mukaiyama aldol reaction yielding 
an γ adduct (linear aldol 3, Fig. 2) and the second one resulting in an α 
adduct (branched aldol 4, Fig. 2). The regioselectivity of this reaction is 
dependent on pressure. Indeed, the γ-adduct 3 is the major under 2 and 5 
kbar but it is the minor under 12 and 17 kbar. 

In this manuscript, density functional theory is employed to study 
the different reaction mechanisms that can take place between 1 and 2 
in the absence of a catalyst. This work complements our previous DFT 
investigation [13] on the uncatalyzed Mukaiyama reaction between C, 
O,O-tris(trimethylsilyl)ketene acetal and aldehyde, which we 

demonstrated that the reaction is possible via two mechanisms, 
concerted or stepwise, and that the concerted mechanism is favored. The 
study of the concerted mechanism highlights four types of cyclic tran-
sition states (two pro-anti and two pro-syn) [13]. 

2. Computational methods 

Equilibrium structures of reactants and products were optimized at 
the DFT level using the M06-2X exchange–correlation functional 
[14,15] and the 6-311G* basis set. The transition states were localized 
and characterized using the same M06-2X/6-311G* level of approxi-
mation. Intrinsic Reaction Coordinate (IRC) calculations were then 
performed to check that the transition states are related to the corre-
sponding reactants and products. For all species, reactants, products, 
and transition states, the Gibbs free energy, were evaluated (T = 338.15 
K, P = 2, 5, 12, and 17 kbar) for the reaction between β,γ-unsaturated bis 
silyl ketene acetal 1 and benzaldehyde 2. Solvent effects (dichloro-
methane) were taken into account both in the geometry optimizations 
and in the calculations of the transition states by using the Integral 
Equation Formalism (IEF) version of the Polarizable Continuum Model 
(IEF-PCM) [16,17]. Local nucleophilicity was evaluated using the Fukui 
function [18]. Calculations were performed using the Gaussian 09 
package [19]. 
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3. Results and discussion 

3.1. Reaction mechanism 

The DFT study of the reaction mechanism of the uncatalyzed 

vinylogous Mukaiyama aldol reaction between β,γ-unsaturated bis silyl 
ketene acetal 1 and benzaldehyde 2 leading to the formation of the 
regioisomer 3 shows that two reaction paths are possible, concerted and 
ionic. The concerted mechanism involves the migration of a SiMe3 group 
from the Oa oxygen of the acetal to the Ob oxygen of aldehyde together 

Fig. 1. General scheme for LA-catalyzed Mukaiyama aldol reaction between a β,γ-unsaturated silyl enol ether and an aldehyde.  

Fig. 2. Uncatalyzed Mukaiyama aldol reaction between β,γ-unsaturated bis silyl ketene acetal 1 and benzaldehyde 2.  

Fig. 3. Energy profile [IEFPCM(dichloromethane)/M06-2X/6-311G(d)] for the ionic versus concerted mechanisms of the γ extension Mukaiyama reaction between 
β,γ-unsaturated bis silyl ketene acetal 1 and benzaldehyde 2 under 2 kbar. 
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with the formation of the Cc-Cγ bond. The ionic mechanism is charac-
terized by two transition states (TSi1 and TSi2). The first one (TSi1) 
corresponds to the formation of Cγ-Cc and Cβ-Ob single bonds in a 
concerted process leading to the 4-ring oxetane intermediate (interme-
diate 1) (Fig. 3). The second (TSi2) leads to the C–O cleavage and 
migration of the SiMe3 group from the acetal to the Ob oxygen of 
benzaldehyde (Fig. 3). Note that no stable [4 + 2] cycloaddition be-
tween S-cis conformation of 1 and the C––O carbonyl of 2 has been 
obtained due to the steric hindrance caused by the geminal OSiMe3 
groups (Oa-SiMe3 and Oa’-SiMe3) of 1 [20,21]. As shown in Fig. 3 and 
Table 1, TSi1 lies at lower energy (ΔE∕= = 9.23 kcal/mol, ΔH∕= = 11.14 
kcal/mol, ΔG∕= = 27.66 kcal/mol) than the TSc transition state of the 
concerted mechanism (ΔE∕= = 13.66 kcal/mol, ΔH∕= = 14.83 kcal/mol, 
ΔG∕= = 30.18 kcal/mol). On the other hand, the energy difference be-
tween TSi2 and intermediate 1 is less than 27.74 kcal/mol [E(TSi2) – E 
(intermediate 1) = 16.16 kcal/mol]. Therefore, the ionic mechanism is 
favored over the concerted one. These results are the opposite than those 
of the uncatalyzed α adduct reaction mechanism between 1 and 2 
leading to the formation of regioisomer 4, of which the concerted 
mechanism is more favorable than the ionic one. Indeed, the following 
ordering of the transition state energies (E, H, and G) is observed: Δ∕=

(TSi1′) > Δ∕= (TSc’) > Δ∕= (TSi2′) (Table 1 and Fig. 4). During the 

concerted mechanism, the migration of the silyl group from the silyl 
ketene acetal 1 to the benzaldehyde 2 is accompanied by the formation 
of a CC single bond in a boatlike six-membered ring transition state 
geometry whereas the ionic mechanism is characterized by two transi-
tion states (TSi1′ and TSi2′), the first one (TSi1′) corresponds to the 
formation of Cα-Cc and Cd-Ob single bonds in a concerted process leading 
to the intermediate 1′ (Fig. 4). The second (TSi2′) leads to the migration 
of the SiMe3 group to the carbonyl of benzaldehyde to produce the 
corresponding product (Fig. 4). On the other hand, the same ordering of 
the transition state energies was obtained when one of the OSiMe3 group 
from β,γ-unsaturated bis silyl ketene acetal 1 has been removed to obtain 
β,γ-unsaturated silyl enol ether [Δ∕= (TSc) > Δ∕= (TSi1) > Δ∕= (TSi2) and 
Δ∕= (TSi1′) > Δ∕= (TSc’) > Δ∕= (TSi2′)] (Table S1 of supporting 
information). 

3.2. Regioselectivity 

The regioselectivity of the uncatalyzed reaction between 1 and 2 is 
dependent on pressure (Fig. 2). Indeed, the γ adduct is favored under 2 
and 5kbar but it is disfavored under 12kbar and 17kbar (Fig. 2). This 
pressure dependence of the regioselectivity is in agreement with the 

Table 1 
Activation energy (ΔE∕=, kcal/mol), activation enthalpy (ΔH∕=, kcal/mol), and 
activation free enthalpy (ΔG∕=, kcal/mol) as evaluated with the IEFPCM/M06- 
2X/6-311G* method (P = 2 kbar, T = 338.15 K, solvent = dichloromethane) 
for the reaction between β,γ-unsaturated bis silyl ketene and benzaldehyde.  

Reaction TS ΔE∕= ΔH∕= ΔG∕=

γ adduct TSc  13.66  14.83  30.18 
TSi1  9.23  11.14  27.66 
TSi2  6.04  8.42  22.97 

α adduct TSc’  15.03  16.42  32.31 
TSi1′ 18.73  18.93  36.20 
TSi2′ 13.31  15.02  34.11  

Fig. 4. Energy profile [IEFPCM(dichloromethane)/M06-2X/6-311G(d)] for the ionic versus concerted mechanisms of the α extension Mukaiyama reaction between 
β,γ-unsaturated bis silyl ketene acetal 1 and benzaldehyde 2 under 2 kbar. 

Table 2 
Local nucleophilicity of Cγ and Cα [N(Cγ)/N(Cα), eV], activation free enthalpy 
(ΔG∕=, kcal/mol), and activation free enthalpy differences (ΔΔG∕=, kcal/mol) 
between TSi1 and TSc’ transition states as evaluated with the IEFPCM/M06-2X/ 
6-311G* method (P = 17, 12, 5, and 2 kbar, T = 338.15 K, solvent =
dichloromethane).  

Conditions 3/4a ΔG∕= (TSi1)/ΔG∕= (TSc’) ΔΔG∕=b N(Cγ)/N(Cα) 

17 kbar, 338.15 K 25/75 30.85/28.93  1.92 0.89/0.96 
12 kbar, 338.15 K 35/65 30.76/29.51  1.25 0.72/0.76 
5 kbar, 338.15 K 83/17 27.70/32.22  − 4.52 0.49/0.38 
2 kbar, 338.15 K 88/12 27.66/32.31  − 4.65 0.43/0.30 

bΔΔG∕= ¼ ΔG∕= (TSi1) − ΔG∕= (TSc’). 
a 3/4 ratio obtained by Bellassoued et al. [2]. 
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activation free enthalpy differences between TSi1 and TSc’ transition 
states [ΔG∕= (TSi1) < ΔG∕= (TSc’) under 2 and 5 kbar; ΔG∕= (TSi1) > ΔG∕=

(TSc’) under 12 and 17 kbar] (table 2) and the local nucleophilicity 
values for α and γ carbons of β,γ-unsaturated bis silyl ketene acetal [N 
(Cγ) > N(Cα) under 2 and 5 kbar; N(Cγ) < N(Cα) under 12 and 17 kbar] 
(table 2). 

4. Conclusion 

In 1997, Bellassoued and co-workers [2], studied the Mukaiyama 
aldol reaction between β,γ-unsaturated bis silyl ketene acetal 1 and 
benzaldehyde 2 under high pressure conditions to produce γ-adduct 3 
and α-adduct 4 regioisomers. Our DFT calculation with the M06-2X 
exchange–correlation functional shows that (i) this reaction takes 
place via a cyclic transition states, (ii) the ionic mechanism is favored for 
the γ-adduct reaction (1 + 2 → TSi1 → intermediate 1 → TSi2 → 3) while 
the concerted mechanism is favored for the α-adduct reaction (1 + 2 → 
TSc’ → 4), (iv) The regioselectivity of the reaction can be explained by 
comparing the TSi1 and TSc’ free energies and the local nucleophilicity 
values of Cγ and Cα atoms. 
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