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Abstract

Superspreading events play an important role in the spread of several pathogens, such as

SARS-CoV-2. While the basic reproduction number of the original Wuhan SARS-CoV-2 is

estimated to be about 3 for Belgium, there is substantial inter-individual variation in the num-

ber of secondary cases each infected individual causes—with most infectious individuals

generating no or only a few secondary cases, while about 20% of infectious individuals is

responsible for 80% of new infections. Multiple factors contribute to the occurrence of super-

spreading events: heterogeneity in infectiousness, individual variations in susceptibility, dif-

ferences in contact behavior, and the environment in which transmission takes place. While

superspreading has been included in several infectious disease transmission models,

research into the effects of different forms of superspreading on the spread of pathogens

remains limited. To disentangle the effects of infectiousness-related heterogeneity on the

one hand and contact-related heterogeneity on the other, we implemented both forms of

superspreading in an individual-based model describing the transmission and spread of

SARS-CoV-2 in a synthetic Belgian population. We considered its impact on viral spread as

well as on epidemic resurgence after a period of social distancing. We found that the effects

of superspreading driven by heterogeneity in infectiousness are different from the effects of

superspreading driven by heterogeneity in contact behavior. On the one hand, a higher level

of infectiousness-related heterogeneity results in a lower risk of an outbreak persisting fol-

lowing the introduction of one infected individual into the population. Outbreaks that did per-

sist led to fewer total cases and were slower, with a lower peak which occurred at a later

point in time, and a lower herd immunity threshold. Finally, the risk of resurgence of an
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outbreak following a period of lockdown decreased. On the other hand, when contact-

related heterogeneity was high, this also led to fewer cases in total during persistent out-

breaks, but caused outbreaks to be more explosive in regard to other aspects (such as

higher peaks which occurred earlier, and a higher herd immunity threshold). Finally, the risk

of resurgence of an outbreak following a period of lockdown increased. We found that these

effects were conserved when testing combinations of infectiousness-related and contact-

related heterogeneity.

Author summary

To investigate the effect of different sources of superspreading on disease dynamics, we

implemented superspreading driven by heterogeneity in infectiousness and heterogeneity

in contact behavior into an individual-based model for the transmission of SARS-CoV-2

in the Belgian population. We compared the impact of both forms of superspreading in a

scenario without interventions as well as in a scenario in which a period of strict social dis-

tancing (i.e. a lockdown) is followed by a period of partial release. We found that both

forms of superspreading have very different effects. On the one hand, increasing the level

of infectiousness-related heterogeneity led to less outbreaks being observed following the

introduction of one infected individual in the population. Furthermore, final outbreak

sizes decreased, and outbreaks became slower, with lower and later peaks, and a lower

herd immunity threshold. Finally, the risk for resurgence of an outbreak following a

period of lockdown also decreased. On the other hand, when contact-related heterogene-

ity was high, this also led to smaller final sizes, but caused outbreaks to be more explosive

regarding other aspects (such as higher peaks that occurred earlier). The herd immunity

threshold also increased, as did the risk of resurgence of outbreaks.

Introduction

As of December 2021, the SARS-CoV-2 pandemic has led to over 300 million confirmed cases

and more than 5 million confirmed deaths worldwide [1]. Mathematical modeling has been

instrumental in understanding transmission dynamics, as well as in evaluating the impact of

both pharmaceutical and non-pharmaceutical interventions [2–9]. A large number of different

models were developed to account for the multitude of factors that were found to be important

for the spread and control of SARS-CoV-2, including age [10, 11], seasonality [12, 13], and

superspreading [14–20].

Through the analysis of contact tracing data and the reconstruction of transmission clus-

ters, superspreading events have been shown to be a driving factor in the spread of several

pathogens, among which are SARS-CoV-1, MERS, and, more recently, SARS-CoV-2 [21–27].

This means that the number of secondary cases caused by a single infectious individual is sub-

ject to substantial inter-individual variation. In other words, a small number of infected per-

sons generates the majority of new infections, while most infected individuals cause only very

few to no secondary cases.

In 2005, Lloyd-Smith et al. [28] proposed a framework to study superspreading dynamics

in which the expected number of secondary cases caused by an infected individual, i.e., the

individual reproduction number, is represented by a random variable, following a distribution

—Lloyd-Smith et al. use a Negative Binomial distribution—on the positive real axis [28, 29].
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As such, superspreading events can be characterized as occurrences in the right-hand tail of

the aforementioned distribution. When such a superspreading event occurs, different factors,

such as for example heterogeneity in infectiousness or heterogeneity in contact behavior, are at

play [30]. Increased infectiousness—defined here as the likelihood that a social contact

between an infectious and a susceptible individual leads to transmission—either due to behav-

ioral, physical or biological reasons, may play a role. For example, more virus particles are

shed when talking loudly or singing [31]. Furthermore, given the importance of aerosol trans-

mission for the spread of SARS-CoV-2, differences in immune response among individuals

may explain why some persons experience a more virulent infection than others, thereby

excreting more virus particles and producing more secondary cases [32–34]. Additionally, tim-

ing is also important, i.e., individuals infected with SARS-CoV-2 are most infectious during a

short interval [35], a period which is not necessarily accompanied by COVID-19 symptoms

and associated behavioural change [36].

Some individuals have a higher number of contacts, and thus more opportunity to infect

others, which is especially important during the short interval in which they are most infec-

tious [37]. Some persons might not have a higher number of total contacts, but meet more sus-

ceptible individuals than others—such as for example in nursing homes [38]. Finally, the

environment also plays an important role in the genesis of superspreading events: the risk of

transmission is much higher in enclosed spaces than it is outside, and ventilation works well to

limit transmission indoors [38, 39].

In the research presented here, we focus on inter-individual heterogeneity in infectiousness

and heterogeneity in number of contacts. However, the other sources of heterogeneity men-

tioned above—intra-individual temporal variation in infectiousness, heterogeneity in suscepti-

bility, and the environments in which contacts take place—remain an important topic for

future research regarding superspreading.

Some transmission models for SARS-CoV-2 [14–20, 40], as well as for other pathogens like

SARS-CoV-1 [41–43] and MERS [44], have taken superspreading into account. These

approaches include compartmental models [15, 16], that divide the population in different and

exclusive subpopulations based on realistic disease states, and branching process models [14,

28], as well as network and individual-based models [17–20, 40–44], in which each individual

in the population is represented as a separate entity. Some models include the superspreading

potential of individuals as a general factor [14, 17, 28], while others implement superspreading

events as the result of heterogeneity in infectiousness [16], contact behavior [18, 19, 43], or a

combination of both [15, 20, 41, 42, 44].

However, while some of these models do demonstrate that both factors contribute to the

occurrence of superspreading events [20], it is still poorly understood how exactly these differ-

ent forms of superspreading impact the spread of disease and the effectiveness of control mea-

sures. To further investigate these questions in detail, we tested the effect of different forms of

superspreading on the spread of SARS-CoV-2 in the Belgian population. To this end, we

implemented both infectiousness-related and contact-related heterogeneity into STRIDE, an

individual-based model for the transmission of SARS-CoV-2 [9, 45].

In an individual-based model, each individual is represented by a separate entity with a

unique set of characteristics, such as age, health status, and behavioral traits. As such, individ-

ual-based models are particularly suited to model superspreading, as they allow for a direct

integration of different sources of heterogeneity at the individual level.

We investigated the effects of superspreading caused by variation in infectiousness versus

heterogeneity in contact behaviour, in the absence of intervention measures. Additionally, we

looked at the impact of different modes of superspreading on the effectiveness of social
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distancing—a non-pharmaceutical intervention which continues to play an important role in

the control of SARS-CoV-2.

Materials and methods

Implementation

We used STRIDE [45], an individual-based, stochastic model, which was recently adapted to

encompass the disease-specific features related to the transmission of SARS-CoV-2 in the Bel-

gian population [9]. In this model, individuals are assigned to social contact pools representing

their household, a workplace or school (depending on the individual’s age and employment

status), and more general communities representing an individual’s leisure contacts, contacts

on public transportation and contacts in other locations. These latter communities consist of

on average 500 persons and differ for each person between week- and weekend days.

Simulations move forward in discrete time-steps of one day. Each simulation day, two pro-

cesses take place. First, the health state of each individual is updated. Individuals can be in one

of the following states: Susceptible, Exposed, Infectious, Infectious and Symptomatic, Symp-

tomatic, and Recovered. We assume that individuals obtain immunity after recovery from the

disease, and maintain this immunity for the duration of the simulation. For more information

on our implementation of the natural history of SARS-CoV-2, see S1 Text.

Secondly, individuals can access the pools of which they are a member, depending on the

day of the week and their health status—e.g., children do not visit their school pool during the

weekend, and symptomatic individuals primarily remain within their household pool. The

number of contacts an individual makes each day in each of the above locations is based on

their age and the type of location (household, school, workplace, or community). More specifi-

cally, daily contact rates are based on a social contact survey conducted in Belgium in 2010–

2011 [46]. When a contact occurs between an infectious individual and a susceptible individ-

ual, a ‘transmission probability’ determines whether a transmission event occurs. This trans-

mission probability depends solely on the infectious individual in our model, and not on the

location in which the contact takes place.

We adapted the model to represent both infectiousness-related and contact-related hetero-

geneity. Both are implemented on the individual level: an individual will have a tendency to be

more or less infectious, or have more or less daily contacts over the course of the entire simula-

tion. Infectiousness-related heterogeneity was implemented as follows. When a person

becomes infected, an ‘individual transmission probability’ is assigned to this person. This

probability determines whether an actual transmission event takes place whenever a contact

occurs between the infected individual and a susceptible individual. We assume that this prob-

ability remains the same for the entire duration of an individual’s infectious period—one of

the limitations we elaborate on in the discussion.

Following the work of Lloyd-Smith et al. [28], we chose to represent inter-individual varia-

tion by using a Gamma distribution. As such, each individual transmission probability is

drawn from a (right-)truncated Gamma distribution on the interval (0, 1]. The truncated dis-

tribution is characterized by a shape parameter αi, which determines the level of overdisper-

sion of the distribution, and a mean—hereafter referred to as the mean transmission

probability. A lower value of αi entails more variation in the individual transmission probabil-

ity, and thus a higher level of superspreading, as shown in Fig 1A.

To account for contact-related heterogeneity, we multiply an individual’s contact rate in

community and workplace pools by a factor, which is unique for each individual. This factor is

drawn from a Gamma distribution with shape parameter αc and mean 1, upon creation of the
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individual. Again, a lower value of αc implies more variation in contact rates and thus a higher

level of superspreading, which is shown in Fig 1B.

The code of STRIDE is open-source and available at https://github.com/elisekaa/stride. All

code and data used for the research in this paper has been assigned a DOI using Zenodo: 10.

5281/zenodo.6669350.

Simulations

For an exhaustive overview of the population and parameters used in the simulations

described below, we refer to S1 Text and earlier work conducted on SARS-CoV-2 transmission

using the STRIDE simulator [9]. As there is no standard procedure to estimate the number of

realisations necessary for the type of simulations we conduct, we chose to run 200 stochastic

simulations for each scenario described below, which led to stable results.

Verification. We verified our implementation of superspreading in STRIDE in a number

of ways. First, we confirmed that the mean R0 remained stable over the different scenarios

regarding infectiousness-related and contacts-related heterogeneity, to ensure that the differ-

ences we observed were indeed due to variations in infectiousness- and contact-related hetero-

geneity. We found that the mean R0 was indeed consistent between the different scenarios,

although the variance did differ—which we expected. This is shown in Fig A in S2 Text.

We also checked that the baseline case—in which both the individual transmission proba-

bility and the individual contact factor are constant—corresponds to a scenario in which either

Fig 1. Probability density functions of the Gamma distributions considered for the individual transmission probability

(panel a) and the individual contact factor (panel b).

https://doi.org/10.1371/journal.pcbi.1009980.g001
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the individual transmission probability or the individual contact probability follows a Gamma

distribution with respectively αi = 10 and αc = 10. This should be the case, since, as the shape

parameter α approaches infinity, the dispersion of the distribution decreases, and the distribu-

tion becomes more centered around the mean.

Furthermore, we calculated P80: the minimal proportion of infected individuals that is

responsible for 80% of cases—a measure commonly used in the superspreading literature [22,

28, 29]. We calculated P80 for each simulation by ordering individuals that were infectious dur-

ing the simulation according to the number of secondary cases they caused, in decreasing

order. Next, we compute the proportion of individuals that are responsible for 80% of the total

number of infections caused over the entire simulation run. We used this measure to verify

that as we decreased either αi or αc, this resulted in more heterogeneity in transmission—lead-

ing in turn to a lower P80. We observed that this was the case, but the effect was stronger with

the same values for αi compared to αc. This is shown in Fig B in S2 Text.

Finally, we constructed a theoretical description for the transmission process in STRIDE,

which allowed us to calculate the expected number of secondary cases per infected individual,

as well as the variance of this quantity. We then compared the results of this theoretical

description with simulation results for different forms and levels of superspreading. We

observed that the results of our analytical calculations were largely in agreement with the

results obtained through simulations, which is shown in Fig C–N in S2 Text.

For more details on the way in which these checks were conducted, and their results, see S2

Text.

Superspreading effects in the absence of interventions. First, we investigated the effect

of different modes of superspreading on the unmitigated spread of SARS-CoV-2. To do this,

we introduced one infected individual in a completely susceptible population at the beginning

of a simulation and tracked transmission events over a period of 200 days. Typically, after this

period, no more new infections were recorded for all considered scenarios, so we assumed we

had observed most, if not all, of the epidemic curve. This is apparent from the plots depicting

the evolution of the number of new cases and the cumulative number of cases per day, as

shown in Fig B–E in S1 File.

To compare the effect of infectiousness-related heterogeneity to the effect of contact-related

heterogeneity, we varied the distribution of the individual transmission probability and the

individual contact factor as described in Table 1. The values for αi and αc were chosen as

Table 1. Overview of scenarios.

Scenario Individual transmission probability Individual contact factor

Baseline 0.08 1.00

A Trunc. Gamma (αi = 10.0, mean = 0.08) 1.00

B Trunc. Gamma (αi = 1.0, mean = 0.08) 1.00

C Trunc. Gamma (αi = 0.6, mean = 0.08) 1.00

D Trunc. Gamma (αi = 0.4, mean = 0.08) 1.00

E Trunc. Gamma (αi = 0.2, mean = 0.08) 1.00

F 0.08 Gamma (αc = 10.0, mean = 1.0)

G 0.08 Gamma (αc = 1.0, mean = 1.0)

H 0.08 Gamma (αc = 0.6, mean = 1.0)

I 0.08 Gamma (αc = 0.4, mean = 1.0)

J 0.08 Gamma (αc = 0.2, mean = 1.0)

Overview of scenarios based on the distribution considered for the individual transmission probability and the

individual contact factor.

https://doi.org/10.1371/journal.pcbi.1009980.t001
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follows: the value 10 represents a distribution in line with the baseline scenario (i.e., a distribu-

tion which approaches a degenerate one), with low levels of heterogeneity for either the indi-

vidual transmission probability or the individual contact factor, a value of 1 was chosen as an

intermediate scenario, and values 0.6, 0.4 and 0.2 were chosen to represent a high level of het-

erogeneity, in line with what we would expect to see in the transmission of SARS-CoV-2 [29].

The mean of the truncated Gamma distribution considered for the individual transmission

probability (i.e., 0.08) was chosen so that it corresponds to an R0 value of about 3 in the base-

line scenario. This is in line with initial estimates for R0 for SARS-CoV-2 [3, 9, 47, 48].

We then compared epidemiological metrics between the different scenarios. First, we

looked at the probability of extinction, calculated as the fraction of simulation runs that pro-

duce no more new cases after only a few (or no) initial secondary infections [49]. We define

what is regarded as extinction by looking at the final outbreak sizes after 200 simulation days,

resulting from all simulations over all scenarios. After ordering these in descending order, a

sharp drop-off can be observed, separating runs with persistent outbreaks from runs in which

extinction occurs. As we found that outbreaks starting from one initial case either remain

below 15 cases, or grow much larger, we set the threshold below which we will consider an out-

break to have gone extinct at 20 cases. In Fig A in S1 File, a histogram is shown depicting the

frequency of final outbreak sizes per scenario.

We also compared the attack rate of outbreaks, and looked at the peak size and the timing

of the peak. Furthermore, we investigated the evolution of the daily effective reproduction

number Rt. We approximated Rt by calculating the mean number of secondary cases caused by

individuals that contracted infection on day t. However, since at the end of a simulation only a

few infected individuals remain, thereby making inference about Rt prone to substantial oscil-

lations in daily estimates, we applied a LOWESS smoothing approach for the time-varying Rt-

values [50].

To further gauge the effect of different forms of superspreading on epidemic spread, we

estimated the herd immunity threshold, the day this threshold is reached, and the day on

which the last infection is recorded. In the absence of a standard procedure to define the herd

immunity threshold in an individual-based model, we estimated this measure as follows. We

looked at the proportion of individuals that were no longer susceptible (i.e., recovered or cur-

rently infected) on the last day for which the smoothed Rt� 1.

Finally, we kept track of the type of location (household, school, workplace or community)

in which infections occurred.

Superspreading effects in the presence of social distancing. We considered a scenario to

investigate the impact of different forms of superspreading on the effectiveness of a period

with strong social distancing followed by a period of mild relaxations.

The scenario was implemented as follows: after the introduction of a single infected individ-

ual in the population we simulated 30 days without interventions, after which a ‘lockdown’

period began, in which schools were closed (primary, secondary, and tertiary education), con-

tacts at the workplace were reduced by 94.51% and contacts in the communities were reduced

by 88.74%. These contact reductions were inferred based on social contact data collected for

Belgium from April to mid-May 2020 in the CoMix study [51].

After 60 days of lockdown (i.e. on day 90 of the simulation), a partial release of the lock-

down followed. Schools were re-opened and contacts in the workplace increased to 25.09% of

pre-pandemic levels, while contacts in the community increased to 28.55% of pre-pandemic

levels. Again, these contact reductions were estimated based on data collected in the CoMix

study, from mid-May to August 2020. More information on how these and the above estimates

were obtained can be found in S1 Text.
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We tested the same distributions for the individual contact probability and for the individ-

ual contact factor as listed in Table 1. We ran each simulation for 600 days (30 days pre-lock-

down, 60 days lockdown and 510 days partial release), after which we typically did not observe

any new infections. This can be seen in the plots in Fig N–Q in S1 File, showing the number of

new cases and the number of cumulative cases per day.

We compared the number of cases before, during, and after the lockdown between the dif-

ferent scenarios, as well as the attack rate over the entire simulation. We also looked at the evo-

lution of the number of new cases, the cumulative number of cases and the effective Rt per day.

Additionally, we calculated a ‘resurgence probability’, to represent the chance that a lockdown

followed by a partial release would not be effective in stopping the epidemic in a particular sce-

nario. This resurgence probability was calculated as follows. As the effectiveness of a lockdown

can only be gauged when the epidemic is still ongoing, and we did not consider the importa-

tion of new cases, we only took into account those runs in which new cases were still being

observed when the lockdown period started. As such, we excluded simulation runs in which 0

cases were recorded during the entire lockdown period. Then, to define resurgence, we looked

at the distribution of the number of cases during the period of partial release.

For all scenarios, we observed that either at most 309 cases occurred during the period of

partial release, or a much larger number. As such we set the ‘resurgence threshold’ at 500

cases. In Fig L in S1 File, a histogram is shown depicting the frequency of numbers of cases

during the release period per scenario.

Sensitivity analysis. We conducted a sensitivity analysis regarding the mean transmission

probability and the number of infected cases introduced at the beginning of the simulation.

More information on this can be found in S3 Text.

To get an idea of the combined effect of infectiousness-related and contact-related hetero-

geneity on disease spread, we also ran simulations for combinations of αi and αc. We con-

structed a grid using Latin Hypercube Sampling, and ran 10 simulations for each combination

of αi and αc in this grid. We describe this analysis in more detail in S4 Text.

Results

Superspreading effects in the absence of interventions

We investigated the spread of SARS-CoV-2 throughout the Belgian population, following the

introduction of one infected individual. First, we looked at the probability of extinction. Using

the extinction threshold of 20 cases, we calculated, for each scenario, the proportion of simula-

tion runs that lead to extinction. We observed that as infectiousness-related heterogeneity

increases, the extinction probability also increases (see Fig 2A). In the baseline scenario, where

the transmission probability is the same for all individuals, extinction occurs in 12.5% of all

simulation runs. As αi decreases to 0.2, however, we see that as much as 72% of the simulation

runs produce less than 20 cases.

A different trend can be observed when varying contact-related heterogeneity (see Fig 2B).

Here, varying αc has very little effect on the fraction of runs that lead to extinction.

We also looked at the attack rate of outbreaks. In the baseline scenario, around 92.5% of the

population is infected 200 days after the introduction of an infected individual in the popula-

tion, whenever extinction did not occur. When increasing infectiousness-related heterogeneity

as well as when increasing contact-related heterogeneity, the final size of outbreaks lowers.

However, this decrease is much more pronounced in the case of contact heterogeneity. This is

shown in Fig 3.

When looking at the size and timing of the peak of the epidemic curve of outbreaks when

no extinction occurs (see Fig 4), opposite trends can be observed for increasing heterogeneity
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in infectiousness and contacts, respectively. When infectiousness-related heterogeneity

increases, the mean size of the peak decreases, while no effect is seen on the time when the

peak occurs. However, when contact-related heterogeneity increases, the mean peak size

becomes higher and also occurs earlier. Furthermore, contact-related heterogeneity leads to

more variability in peak size.

These trends can also be observed when looking at the evolution of the number of new

cases, the number of cumulative cases and the smoothed daily Rt values. The number of new

cases per day, the cumulative number of cases per day, and the smoothed Rt per day for the dif-

ferent scenarios is shown in Fig B–G in S1 File.

We estimated the impact of different modes of superspreading on the herd immunity

threshold (see Fig 5). We observed that when infectiousness-related heterogeneity increases as

αi decreases from 10 to 0.2, the average herd immunity threshold decreases from 58.97% to

32.66%. This strong decline is in part due to the increase in the number of runs in which

extinction occurs, but is still present when these runs are excluded, as can be seen in Fig 5C.

However, when contact-related heterogeneity increases, an opposite trend can be observed:

the herd immunity threshold increases to 64.28% when αc decreases to 0.2.

We also looked at the day on which the herd immunity threshold is reached (see Fig H in

S1 File), and the day on which the last transmission event is observed (see Fig I in S1 File). We

Fig 2. Extinction probabilities for scenarios investigating infectiousness-related heterogeneity (in green, panel a) and contact-related

heterogeneity (in blue, panel b), defined as the proportion of simulation runs (n = 200) that produces less than 20 cases. Error bars

represent 95% (Clopper-Pearson) confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009980.g002
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Fig 3. Violin plots for the attack rate over 200 days for scenarios investigating the infectiousness-related

heterogeneity (in green, panel a) and contact-related heterogeneity (in blue, panel b). The orange dots represent the

mean attack rate across the simulation runs without extinction, i.e., simulation runs in which extinction occurs (< 20

cases) were excluded.

https://doi.org/10.1371/journal.pcbi.1009980.g003

Fig 4. Violin plots for the size and day of peak across the different simulation runs for scenarios investigating the

infectiousness-related heterogeneity (in green, panels a and c, respectively) and contact-related heterogeneity (in

blue, panels b and d, respectively). The orange dots represent the mean of the simulated peak sizes and days at which

the peak is reached. Simulation runs in which extinction occurs (< 20 cases) were excluded.

https://doi.org/10.1371/journal.pcbi.1009980.g004
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observed that, with higher infectiousness-related heterogeneity, the epidemic slows down, as

the herd immunity threshold is reached later—even though it is lower—and the last infections

are observed at a later time compared to the baseline scenario. Conversely, with higher con-

tact-related heterogeneity, the herd immunity threshold is reached faster and infections stop

occurring at an earlier point in the simulation.

Finally, we looked at the type of locations in which transmissions occurred (see Fig J–K in

S1 File). We found that neither increasing heterogeneity in infectiousness nor increasing het-

erogeneity in contact behavior changed the locations where most infections took place, which

for all scenarios were communities and households.

We also investigated the impact of different combinations of αi and αc. We found that the

effects we observed when testing different values for αi and αc separately were largely con-

served when we tested combinations of αi and αc, which is shown in Fig B in S4 Text. The

extinction probability is still dominated by αi (increasing for lower values of αi), while there

was no discernible effect of αc. Although the attack rate decreased for both lower values of αi

and αc, the impact of αc on the attack rate was much larger. The effects of αi and αc on the size

and timing of the peak, the herd immunity threshold and the day on which the last transmis-

sion event was observed remained opposite. However, αi had a bigger impact on the size of the

peak and the herd immunity threshold, while αc dominated the timing of the peak and the day

of the last transmission event.

Superspreading effects in the presence of social distancing

We investigated the effect of different forms of superspreading on the outcome of a social dis-

tancing scenario. We compared the number of cases before lockdown (day 0—day 30, see

Fig 6A–6B), during lockdown (day 30—day 90, see Fig 6C–6D) and during the period of par-

tial release (day 90—day 600, see Fig 6E–6F) between the different scenarios.

Fig 5. Violin plots of the estimated herd immunity threshold values over the different simulation runs including

or excluding runs with extinction for scenarios investigating the infectiousness-related heterogeneity (in green,

panels a and c, respectively) and contact-related heterogeneity (in blue, panels b and d, respectively). The orange

dots represent the mean of the simulated values.

https://doi.org/10.1371/journal.pcbi.1009980.g005
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The number of cases observed before lockdown confirmed what we observed when exam-

ining unmitigated transmission: when contact-related heterogeneity is high, the start of out-

breaks is more explosive. On the contrary, when infectiousness-related heterogeneity is high,

many outbreaks stop after only a few cases. During lockdown, we also observe more cases

when there is higher contact-related heterogeneity. However, as infectiousness-related hetero-

geneity increases, the average number of cases observed during lockdown slightly decreases.

Finally, the number of cases during the partial release phase decreases sharply as infectious-

ness-related heterogeneity increases, while changes in contact-related heterogeneity seem to

have little impact on the number of cases during this period. The same trends can be observed

when looking at the attack rate over the entire simulation period (see Fig M in S1 File).

Furthermore, we looked at the evolution of the number of new cases per day, the cumula-

tive number of cases and the smoothed daily Rt values (see Fig N–S in S1 File). We observed

that with higher infectiousness-related heterogeneity, outbreaks were slower to fade out during

the period of partial release. When contact-related heterogeneity was high outbreaks were

more explosive and took off again faster once social distancing measures were relaxed. How-

ever, what is remarkable here as well is that, as contact-related heterogeneity increases, distinct

waves can be observed during the period of partial relaxations (see Fig M and Q in S1 File).

We calculated the resurgence probability for different forms and levels of superspreading

(see Fig 7). As infectiousness-related heterogeneity increases, the resurgence probability

decreases, meaning that it is less likely that the epidemic grows large in size again when relax-

ing measures after a period of lockdown. However, resurgence probabilities increase slightly as

contact-related heterogeneity increases.

We assessed how the herd immunity threshold changes when social distancing is applied

(see Fig 8). For the baseline case, the estimated herd immunity threshold lowered from 56.89%

without interventions to 18.18% on average in the social distancing scenario. When increasing

Fig 6. Violin plots for the number of cases before lockdown (day 0–day 30), during lockdown (day 30–day 90) and

during partial release phase (day 90–day 600) for the different scenarios investigating infectiousness-related

heterogeneity (in green, panels a, c, and e, respectively) and contact-related heterogeneity (in blue, panels b, d,

and f, respectively). The orange dots represent the mean of the simulated values.

https://doi.org/10.1371/journal.pcbi.1009980.g006
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Fig 7. The proportion of simulation runs, in which the number of cases during lockdown is greater than 0, that

produces more than 500 cases during the partial release phase for scenarios investigating infectiousness-related

heterogeneity (in green, panel a) and contact-related heterogeneity (in blue, panel b). Error bars represent 95%

(Clopper-Pearson) confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009980.g007

Fig 8. Violin plots for the herd immunity threshold as estimated for the social distancing scenario, when

investigating infectiousness-related heterogeneity (in green, panel a) and contact-related heterogeneity (in blue,

panel b). The orange dots represent the mean of the simulated values.

https://doi.org/10.1371/journal.pcbi.1009980.g008
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infectiousness-related heterogeneity, the herd immunity threshold decreased even further: to

2.28% when αi = 0.2. However, this is not the case when contact-related heterogeneity is high.

Even though the average herd immunity threshold initially lowers from 16.94% to 13.89%

when αc decreases from 10 to 0.6, it again increases to 22.43% when αc is further decreased to

0.2.

Finally, we looked at the locations in which transmissions occurred (see Fig T–U in S1

File). We found that social distancing had little effect on where transmission happened: even

though there were less transmissions overall, most transmissions still occurred in households

and communities for all scenarios.

Discussion

Conclusion

We investigated different forms of superspreading in an individual-based model by consider-

ing both infectiousness-related heterogeneity and contact-related heterogeneity. We found

that these two types of superspreading have very different effects, both on the unmitigated

spread of SARS-CoV-2 as well as on the effectiveness of social distancing measures. In the

absence of containment measures, we observed that with high infectiousness-related heteroge-

neity, the introduction of an infected individual in the population led to large outbreaks less

frequently. Furthermore, peak sizes were smaller and occurred at a later time. The estimated

herd immunity threshold also decreased. On the other hand, when contact-related heterogene-

ity is high, we observed that the introduction of an infected individual led to outbreaks slightly

more often compared to the baseline scenario in which the mean transmission probability is

0.08 for all individuals and the individual contact factor is set to 1. Outbreaks that did not go

extinct after only a few secondary cases were also more explosive, with higher peaks that

occurred earlier. The herd immunity threshold also increased slightly.

The difference between the effects caused by these two forms of superspreading might be

explained by the fact that when infectiousness-based heterogeneity is high, superspreaders

have to infect other superspreaders to keep the epidemic going—leading to more extinctions

and a drawn-out, but less explosive, outbreak whenever extinction does not occur. Further-

more, not all infected individuals with a very high individual transmission probability will

have a lot of contacts and thus the opportunity to realize their ‘transmission potential’. How-

ever, when a person has a large number of contacts, they not only have more opportunity to

infect others once they are infected, but they also have a disproportionally high chance to be

exposed to infection themselves [37], leading to faster, more explosive outbreaks.

We also observed that the total attack rate of outbreaks decreased much faster when con-

tact-related heterogeneity increased than when infectiousness-related heterogeneity increased.

This seems to be in contrast with the results described above, but can be explained due to a

faster depletion of superspreaders (and susceptible individuals in general). This is enhanced by

the fact that STRIDE uses a structured population, in which individuals are limited in the con-

tacts they can make by the constraints of the contact pools (household, school, workplace,

communities) they belong to. As such, when a large fraction of the persons in their contact

pools has already been infected, an infected individual cannot cause a large number of second-

ary cases, no matter how infectious they are, or how many contacts they have [52]. Further-

more, as contact-related heterogeneity increases, more individuals will have no or very few

contacts, making them ‘unreachable’, thereby decreasing the maximum number of cases that

can be generated during an outbreak.
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We should also note here that the same αi and αc parameters lead to different levels of over-

dispersion in transmissions (as shown in Fig A–B in S2 Text)—which might explain some of

the differences between both forms of superspreading.

Other models [16, 42, 44] that implement both heterogeneity in infectiousness and hetero-

geneity in contacts also conclude that superspreading driven by contact-related heterogeneity

leads to more explosive outbreaks. These models (and others that only consider infectious-

ness-related heterogeneity), however, do not capture the slowdown of outbreaks due to infec-

tiousness-related heterogeneity, since they do not implement a structured population, and

hence every highly infectious person is able to realize their ‘transmission potential’.

In this respect, some interesting parallels to research on network models can be drawn. A

recent review considers the difference between ‘out-degree’ and ‘in-degree’ in partially

directed networks [53]. Extinction probability is a function of out-degree, while epidemic size

is a function of in-degree. This might explain why infectiousness-related heterogeneity has

more impact on extinction while contact-related heterogeneity has more impact on attack

rate: infectiousness-related heterogeneity mainly affects ‘out-degree’, while contact-related het-

erogeneity has more impact on ‘in-degree’. An important difference however, is that the num-

ber of secondary cases an infected individual can cause in STRIDE is always limited by the

contact pools that individual belongs to, no matter how large the total population is.

It is likely that in the current SARS-CoV-2 pandemic, a combination of both heterogeneity

in infectiousness and heterogeneity in contacts—in addition to a multitude of other factors—

has facilitated the occurrence of superspreading events [15, 20]. For example, for the original

Wuhan SARS-CoV-2, P80 was estimated to be about 0.1 [22]. Based on the results depicted in

Fig A1 in S4 Text, we can then estimate αi to be between 0.25 and 0.25, depending on the value

for αc, which can be estimated from contact surveys. As circumstances change and new vari-

ants appear, the relative contribution of different forms of superspreading presumably also

changes [54]. Calibrating our model of superspreading to the different waves and variants of

SARS-CoV-2 would thus be a useful extension of our present work.

We also investigated the impact of different forms of superspreading on the effectiveness of

social distancing. We found that, when superspreading is driven by heterogeneity in infec-

tiousness, a period of strict social distancing, followed by a partial release is most effective and

extinguishes almost all outbreaks. This is in line with the conclusion of other models that also

assume superspreading events are driven by heterogeneity in infectiousness [18, 19].

However, when superspreading is driven by heterogeneity in contact behavior, we

found that while social distancing measures might limit cases during a strict lockdown, the

chance of resurgence of the epidemic following relaxations increases. Furthermore, with high

infectiousness-related heterogeneity, few outbreaks grow large in size after a period of lock-

down, but outbreaks that do not go extinct linger for a long time before completely

disappearing.

Limitations

Some limitations need to be taken into account when interpreting these results.

Each individual that is infected over the course of the simulation, eventually recovers and

gains immunity for the remainder of the simulation. As such, neither deaths nor re-infections

occur. We also did not model the waning of immunity, nor vaccination, making these results

more representative of the initial wave of the SARS-CoV-2 pandemic. Additionally, we only

introduce infected individuals at the beginning of the simulation, and do not take into account

the continuous importation of infectious individuals into the population. Furthermore, we

focus on the initial course of the infections, in which individuals can transmit the disease. We
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did not model hospitalizations with case isolation, since we assume the transmission dynamics

are mostly shaped by the pre-symptomatic and mild symptomatic stages and individuals

exhibit adapted social contact patterns once they become symptomatic. To fully capture the

effect of superspreading on the spread of SARS-CoV-2, these factors would, however, need to

be taken into account.

To represent heterogeneity in infectiousness and contact behavior, we used a right-trun-

cated and untruncated Gamma distribution respectively. However, other distributions could

be used to obtain similar levels of heterogeneity, which we did not test in the current study

[29].

Finally, we only modeled heterogeneity caused by differences between individuals: hetero-

geneity in infectiousness and heterogeneity in number of daily contacts. However, several

other factors might contribute to the occurrence of superspreading events. These can be attrib-

utable to differences between individuals as well, such as heterogeneity in susceptibility [55] or

infectiousness that varies over time [35], or they can be attributable to differences in the envi-

ronment, such as the differing spreading potential between indoor and outdoor venues or

superspreading facilitated by mass events [25, 56, 57]. Although these factors may be impor-

tant in the occurrence of superspreading events, we did not model them in our current study.

We did however model two different community pools (for weekdays and weekend days,

respectively), where individuals could potentially contact a larger number (up to 500) of peo-

ple, which could serve as a proxy for attending a large event. However, large events also have a

temporal aspect that is not modeled through community contact pools. As such, explicitly

modeling mass gatherings might lead to new insights regarding the effect of different types of

superspreading on disease spread and on the effectiveness of interventions. Furthermore, our

implementation of contact heterogeneity implicitly constitutes a proxy for heterogeneity in

contact environment as well.

Future work

Several extensions of this work could be useful in furthering our understanding of super-

spreading both within the context of the current COVID-19 pandemic and within a broader

context.

Further research is needed to disentangle effects of both forms of superspreading. As such,

it would be possible to estimate the level of both infectiousness-related and contact-related het-

erogeneity at play in the current SARS-CoV-2 pandemic. We plan to use data collected during

the CoMix study [51] to estimate the level of contact-related heterogeneity during different

phases of the SARS-CoV-2 pandemic. Subsequently, assuming that the two forms of heteroge-

neity investigated in this paper are most important for the occurrence of superspreading

events, it is possible to estimate the level of infectiousness-related heterogeneity from the over-

all observed heterogeneity in transmissions. Further insight could also be gained by comparing

the importance of these two types of superspreading for the spread of different pathogens, as

contact-related heterogeneity presumably remains largely the same for a population under the

spread of different pathogens.

We implemented heterogeneity in contact behavior by applying a distribution to the daily

contact rate of individuals. There is however, in the context of social distancing, another possi-

ble type of contact heterogeneity, namely non-compliance to social distancing measures. It

would be relevant to investigate how different forms of superspreading modulate the negative

effect of this phenomenon on the effectiveness of social distancing measures.

Furthermore, while we investigated the impact of superspreading on the effectiveness of

social distancing, it is conceivable that superspreading also has an impact on other
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interventions, both pharmaceutical and non-pharmaceutical, such as vaccination, contact trac-

ing and universal testing [14, 58].

Finally, we did not take into account person characteristics that might make an individual

more or less likely to be a superspreader, due to the lack of data about this subject. Instead, the

individual transmission probability and individual contact factor were drawn at random from

a distribution. However, some characteristics, such as age, profession, or perception of the

severity of COVID-19, might have an impact on how likely an individual is to transmit the dis-

ease [17]. Taking such characteristics into account when distributing transmission potential in

the population would provide a more accurate model of superspreading.
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